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1.  Introduction

Most firms do not only sell one, but many interrelated products. For example, 

supermarkets sell a multitude of substitute, complement or independent goods. Airlines 

and railway companies sell tickets with different conditions for the same route and oil 

corporations sell gasoline in petrol stations that differ by their locations. 

This paper examines multi-product monopoly (MPM) facing linear interrelated 

demand and constant unit costs and shows that in this type of models optimal prices and 

welfare effects can be expressed in a very simple way: As in the textbook case of a 

single product monopoly,  the monopoly price of each good is the average of its own 

inverse demand intercept and its own marginal cost,  and is thus independent of the  

characteristics of other products, the interactions between products and the number of  

products sold. We also show that the deadweight loss is half the monopoly profit. In 

contrast, a common view in the literature is that monopoly prices should be lower for 

complements and higher for substitutes, relative to independent goods (see Section 2). 

Though intuitively plausible at first sight, this conclusion is actually invalid!

We obtain these elementary results for MPM facing three commonly used linear 

demand  structures,  corresponding  to  the  three  examples  cited  above:  The  standard 

models  for  demand  with  heterogeneous  products,  vertically  (quality)  differentiated 

products  and  horizontally  (spatially)  differentiated  products.  As  seen  below,  this 

multitude of demand models is motivated by the diversity of economic settings where 

the issue of MPM pricing has been historically analyzed, often by founding fathers of 

modern industrial economics. Indeed, while product differentiation is nowadays more 

intimately connected to oligopolistic markets, several eminent neo-classical economists 
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in the early 20th century have addressed the MPM problem. Some of these studies have 

arrived at conclusions stressing the relevance of cross-elasticities, which are thus not 

compatible with our findings. A key objective of this paper is to correct such prevalent 

oversights in the literature on the issue of MPM pricing. We also address the issue of 

MPM pricing under non-linear demand and show that our basic insights carry over.

Our results on the deadweight loss may appear surprising at first sight, since the 

welfare functions of the three models we consider are quite different. These results are a 

consequence of the fact that when a new product is added to a product line, existing 

prices do not change. It can be shown that this implies that monopoly profit and the 

deadweight loss always rise proportionally. Consequently the simple relation between 

the deadweight loss and profits in the single good case survives regardless of how many 

products or what types of products are added. 

Based on an extensive literature search going back to the beginnings of modern 

economics,  we  believe  that  these  simple  properties  of  linear  MPM  have  not  been 

uncovered. An early reference to the problem of MPM is from  Wicksell (1901) who 

argues  that  “every  retailer  possesses,  within  his  immediate  circle,  what  we call  an 

actual  sales  monopoly”  (1949 p.  87).  Without  solving  for  the  monopoly prices,  he 

recognizes  that  they  are  “complex  and  …  difficult  to  unravel“  (p.86). Similarly, 

Edgeworth  (1925)  analyzes  railway fares  of  different  classes  but  does  not  give  an 

explicit  solution.  Hotelling (1932) provides a numerical  example where a monopoly 

chooses the profit-maximizing prices for first and second-class railway tickets facing 

different consumer groups, but he does not solve for a general price rule since this is not 

the main focus of his paper. Robinson (1933) is the first to formally solve the problem 
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of a monopolist selling the same product in different markets using third-degree price 

discrimination but she explicitly excludes price interdependence such as in “the case of  

first- and third-class railway fares, analyzed by Edgeworth” (Robinson, 1933, p. 181). 

Coase (1946) goes beyond Robison’s analysis and examines monopoly prices for 

two  interrelated  products  using  verbal  and  graphical  arguments.  He  identifies  two 

different effects of one good on the price of the other good and recognizes that the net 

effect  could  be  positive  or  negative  but  does  not  provide  a  mathematical  solution. 

Following a similar approach Holton (1957) considers the price discrimination by a 

supermarket selling interrelated products. He does not solve for optimal prices either, 

but argues that, “supermarket operators do indeed establish prices with not only price  

elasticities but cross elasticities in mind”, in contrast to our main conclusion.

While the complete solution of MPM pricing seems to have eluded economists’ 

attention, some features of our results have emerged in the marketing literature. Shugan 

and Desiraju (2001) show that monopoly prices of two vertically differentiated products 

do not depend on each other’s costs. Moorthy (2005) and Besanko et al (2005) find that 

with linear  demand MPM prices  do not  respond to  cost  changes  of  other  products. 

Neither of these studies derives the full scope of MPM pricing. 

We think that  our results  can be useful  in  various contexts.  A straightforward 

practical  implication  is  that  even  in  the  presence  of  strong  product  interactions, 

neglecting such relations is part of good pricing practice for a monopolist. Besides its 

managerial relevance this insight also provides a theoretical justification for research in 

economics and marketing analyzing retail prices in a single product context. Another 
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implication  is  that  cross-subsidization  cannot  be  part  of  optimal  pricing  for  a  non-

regulated monopolist, at least under linear demand (Baumol, Panzar and Willig, 1982).

Our  welfare  results  could  serve  as  a  simple  and  practical  benchmark  helping 

antitrust  authorities  estimate  the  social  loss  of  MPM.  If  demand  functions  can  be 

considered  as  approximately  linear,  it  is  not  necessary  to  analyze  in  detail  every 

product’s price elasticity and the cross-elasticity with all other products. The social cost 

of MPM can simply be estimated by looking at the company’s profit. For example this 

approach could help to evaluate the social cost of a local retail monopoly. Similarly the 

deadweight loss caused by a railway monopoly can be estimated from the company’s 

profit without having to analyze the qualities and prices of the different tickets offered. 

Finally our results have implications for joint profit maximization by oligopoly 

firms. Jointly maximizing the total profit is mathematically equivalent to the MPM price 

problem. Our findings indicate that with linear demand, even if products exhibit strong 

interdependencies, oligopoly firms do not need any information about their competitors’ 

products and costs in order to set the prices that maximize joint profit. 

The paper is organized as follows: Section 2 provides examples of misconceptions 

regarding monopoly prices. Section 3 derives the profit-maximizing prices for general 

linear  MPM.  In  Section  4,  we  apply  this  result  to  three  different  models  of 

interdependent products and obtain the MPM price in each case. Section 5 analyzes the 

relation between the deadweight loss and monopoly profits, and Section 6 extends our 

results to non-linear demand. Section 7 briefly concludes.  

2. Illustrative Examples
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An elementary fallacy in basic monopoly theory holds that a firm selling two 

complementary products will charge less for each than if it were selling each of them in 

an independent  market.  In its  most  succinct  form,  this  conventional  wisdom can be 

presented within the standard two-good paradigm.

Consider a representative consumer with utility function U(x1,x2) = a(x1 + x2) –

0.5b(x1
2 + x2

2) + gx1x2 + y, where y is income, and |g| < b. This gives rise to the standard 

symmetric  inverse  demand  function  pi  =  a  – bxi +  gxj (Bowley,  1924).  The 

corresponding direct demand is then xi = a/(b – g) – (bpi + gpj )/( b2 −  g 2),  i,  j = 1, 2. 

While this can also be written as (Singh and Vives, 1984) 

        xi = α − βpi + γpj,  with α = a/(b − g ),  β = b/(b2 −  g 2) and γ = − g /(b2 − g 2), 

it  is important to observe that the constants  α , β and  γ are not autonomous here. In 

contrast, a, b and g are, except for the restriction that |g| < b. 

Using the demand functions in the form xi = α − βpi + γpj,  i,  j = 1, 2, and unit 

cost c for both products, one obtains both monopoly prices as p* = 0.5[c + α/(β − γ)]. 

Then, so goes the fallacy, this price is higher with substitute goods (γ > 0) and lower 

with complements (γ < 0), relative to the case of independent goods (γ = 0).1 This would 

be correct if α and β remained constant when γ changes, which however is not the case. 

Indeed, using the relations between Greek and Roman letters, we obtain α/(β − γ) = a, 

which is the intercept of inverse demand, or the consumer’s willingness to pay at zero 

1 For example Motta (2004, p. 537) argues that, “relative to the benchmark case where the two products  
are independent (…) the monopolist reduces the price of its products when they are complements (…)  
and it increases them when they are substitutes (…). The intuition for this result is straightforward. When  
the products are complements  they exercise a  positive externality on each  other  and  the monopolist  
internalizes it by decreasing its prices".
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consumption i.e., ∂U(0,0)/∂x1,  indeed a primitive constant.2 Hence,  p* = 0.5(c + a), 

which is also the optimal price for a monopolist selling only good i (and facing inverse 

demand pi  = a – bxi and unit cost  c). Hence, with linear demand, a monopolist selling 

two goods  prices  each  as  if  it  were  the  only good sold.  In other  words,  pricing  is 

independent of the (substitute/complement) relations between the two goods.3

On the other hand, optimal outputs do depend on these relationships.  Indeed, 

maximizing total profits with respect to outputs, one gets x* = (a − c)/2(b − g), which is 

higher  for  complements  (g  >  0)  and  lower  for  substitutes  (g  <  0),  relative  to 

independent products.4 This is fully in line with basic economic intuition.

A key broader implication of this elementary example is that one should a priori 

view with suspicion any comparative statics with respect to changes in a parameter of 

the direct demand function. Such changes cannot be viewed in isolation, without due 

consideration of interdependencies with other demand parameters. This often appears to 

be overlooked, so various results in industrial economics might need some revisiting.

Another form this fallacy can commonly take is as follows. Considering MPM 

with general non-linear demand, one easily derives the optimal Lerner index, (pi – ci)/pi, 

as 1/εii –  ( )j j j ijj i
p c x ε

№
−е /(εiipixi), where εii and  εij are the price elasticity and cross-

elasticity. When every cross elasticity  εij is zero, we obtain the single-good monopoly 

condition (pi – ci)/pi = 1/εii. When the goods are substitutes, we have εij < 0, and the price 

2 In contrast, α is the quantity demanded under zero prices. In the presence of substitutes (complements) 
one would expect it to be lower (higher), relative to the case of independent products.
3  This conclusion extends fully to linear demands for any number of goods, as well as to the alternative 
formulation of linear demand, due to Shubik (1959). The verification details are left to the reader.
4 Expressed in terms of the parameters of direct demand,  x* = 0.5[α − (β − γ)c], which would say that 
output is higher for “substitutes” (γ > 0) than for “complements” (γ < 0), in violation of standard intuition.
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pi would appear to be higher compared to the corresponding price in a separate (single-

good) market.5 However, again this argument would be correct only if elasticity εii were 

to remain the same as we add new products. In the presence of substitute goods, the 

quantity demanded for a given product will fall and the value of εii will rise. A higher εii 

offsets the impact of εij’s, and pushes pi in an opposite direction. We will show that for 

linear demand, the two effects cancel out exactly and the prices are not affected.

We now move to a general investigation of MPM with linear demand.

3. The General Linear Model

We start by analyzing MPM pricing for a general linear demand model, which will 

be shown in Section 4 to encompass three commonly used but quite different linear 

demand  structures.  We  refrain  at  this  stage  from  specifying  any  microeconomic 

foundations, because we know of no single one that would cover all of our applications.

We consider a monopoly selling n products with constant marginal costs. Prices, 

quantities and marginal cost are denoted by pi, xi, and ci respectively,  i = 1, …, n. The 

corresponding vectors  for  all  n products  are  written  as  bold  p,  x and  c.  The linear 

demand function is specified by a constant Jacobian matrix ∂x/∂p = A, and a constant 

n×1 vector α, representing the vector of quantity demanded when all prices are zero, as

x(p) = α + Ap (1)

When p = c, we get the socially optimal output  x(c). We assume A is negative 

definite and symmetric, i.e., its elements aij = aji for all i, j. The diagonal elements of A 

are all negative, i.e., aii < 0 for all i, as the demand for every good is downward sloping. 

5 See e.g., Tirole (1988, p. 70).
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The off-diagonal  elements,  however,  can be positive,  negative or zero,  according to 

products being substitutes, complements or independent. Given the demand function (1) 

and marginal costs vector c = (c1,…, cn), we can write the monopoly profit as

π(p) = (p – c)’(α + Ap) (2)

We will demonstrate that the monopoly prices can be expressed in a simple way 

using  the  vector  of  demand  intercepts  p0,  which  is  the  (minimal)  price  vector  that 

exactly reduces demand for all products to zero. As matrix A is invertible, this vector is 

uniquely defined by x(p0) = α + Ap0 = 0, i.e., p0 = −A−1α. 

PROPOSITION 1: The profit-maximizing prices are p* = 0.5(p0+ c). Under these 

prices only half of the socially optimal quantity of every good is sold.

Proof: see Appendix A. 

The impact  of all  the parameters of the demand function (1) on the monopoly 

price vector p* is summarized in the demand intercept p0. This is similar to the single 

product case with linear demand, where the monopoly price does not depend on the 

slope. Hence, Proposition 1 can be interpreted as a generalized version of the solution to 

a single-good or a two-good monopoly (see Section 2). It implies that in general linear 

monopoly only 50% of a product’s cost change is passed on to its price, and that a cost 

change for one product does not affect the prices of other products. This conclusion 

corroborates the findings by Moorthy (2005) and Besanko et al (2005).6 

The  optimal  price  vector  is  thus  independent  of  inter-product  relationships 

(substitutes/complements) if the vector p0 is. The latter in turn depends in general on the 

6 There are also some similarities between our setting and Ramsey’s (1927) pioneering work on optimal 
taxation, although the motivation and the nature of the problem are quite different there.
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microeconomic  foundation  invoked to  derive demand.  As seen in  Section 2,  for the 

standard (Bowley) quadratic utility, p0 indeed has the desired property (easily extended 

to n goods and to Shubik-type demands). In the next section, we show that this property 

also holds for three well-known distinct models of product differentiation in industrial 

organization, so that it actually holds for all widely used versions of linear demand.

The intuition of Proposition 1 can be explained more clearly when the problem is 

set up in quantities. A small change ∆x1 for good 1 (say), keeping the other quantities 

constant, has two effects on profits: a direct quantity effect (p1 − c1)∆x1, and an indirect 

effect  through  price  changes  ∆x1 ( )11
/n

i ii
p x x

=
∂ ∂е .  If  profit  is  maximized,  the  two 

effects must exactly offset each other, i.e.,  p1 − c1 +  ( )11
/n

i ii
p x x

=
∂ ∂е  = 0. Given our 

definition of  p0,  good 1’s inverse demand function is  p1 = p 0
1  + 11

( / )n
i ii

p x x
=

∂ ∂е . The 

symmetry of  1 / ip x∂ ∂  =  1 / ip x∂ ∂  implies p1 –  p 0
1 =  ( )11

/n
i ii

p x x
=

∂ ∂е .  Hence, we must 

have p1 − c1 + p1 − p 0
1  = 0, which directly yields the optimal price p *

1  = 0.5(p 0
1  + c1). 

With the two standard equivalent  ways of solving the monopoly problem, this 

simple solution is not the easiest one to find. The first (second) approach is to use the 

direct (inverse) demand function and solve for monopoly prices (outputs) expressed in 

terms  of  the  parameters  of  the  direct  (inverse)  demand  function.  Only if  one  then 

expresses the optimal prices in terms of the parameters of the indirect demand function 

will the revealing expression for monopoly prices emerge (as done in Section 2). 
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4. Price Independence 

In this section we show that the result derived in section 3 can be applied to MPM 

facing three commonly used models of linear demand for differentiated products, each 

having its own microeconomic foundation. In all three cases we obtain simple profit-

maximizing prices, which are independent of other products and product relations. On 

the other hand, the latter do affect monopoly outputs (as seen in Section 2).

4.1 Heterogeneous products: 

We first look at one of the standard models for heterogeneous products. There is a 

continuum of consumers indexed by a parameter  λ,  which can be interpreted as the 

marginal utility of income, with density function  f(λ). Each consumer  λ has a utility 

function h + (a’y – 0.5y’By)/λ, where h is the numeraire good whose price is 1, y is the 

consumption bundle of the monopoly products, a is an n×1 positive vector and B is an 

n×n matrix. Without loss of generality, let B be symmetric. We assume it to be positive 

definite so that the utility function is concave. 

Each consumer chooses  y to maximize utility subject to a budget constraint  h + 

p’y =  m. The first-order condition of utility maximization,  a –  By − λp =  0 yields an 

individual demand function y = B−1(a – λp). We denote the average λ, ( )f dλ λ λт  by λ

. Integrating all y we get the aggregate demand function: 

x(p) = B−1(a – λ p) (3)

 This demand function (3) follows our general version (1) with B−1a = α, and λ

B−1 = –A. To ensure an interior solution we require the following condition.
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ASSUMPTION 1:  For any λ , B−1(a – λc) > 0. 

Assumption  1  implies  that  when all  prices  are  equal  to  marginal  costs,  every 

consumer  has  a  positive  demand  for  every  product.  This  ensures  that  the  demand 

function (3) is valid under the monopoly price. As B is symmetric and positive definite 

the demand function (3) satisfies the requirement of Proposition 1. The vector  p0 of 

maximum prices is also easy to determine. As B−1 has full rank, x(p) is zero when a – λ

p = 0, so the maximum price vector p0 = a/ λ . We obtain:

PROPOSITION 2: The MPM price for good i is p *
i  = 0.5(ci + ai/ λ ). 

As ai/ λ  and ci only depend on good i, product relations do not affect the optimal 

price. Note that ai/ λ  can be interpreted as the marginal utility of product i to an average 

consumer when her consumption of all  products is zero. This should not depend on 

product relations. If the monopolist can estimate this value, he can choose the optimal 

price  easily,  independently of  how many goods  he  sells  and  how large  their  cross-

elasticities are, in full contrast to the conclusions reached by Holton (1957).

If  the  monopoly sells  each  good  in  an  independent  market,  good  i’s  demand 

function will reduce to (ai – λ pi)/bi and the optimal price will be 0.5(ci + ai/ λ ), which 

is identical to the MPM price. So the MPM achieves optimal price coordination when it 

acts as if it were selling n products in n separate markets. This means again that product 

interdependence does not have any influence on the prices.

Obviously, this  result  can also be applied to multi-market  rather than a multi-

product setting. Consider for example a standard textbook example of third degree price 
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discrimination, a cinema selling tickets to normal customers and students. The cinema 

faces  demand functions  pi = ai –  bixi (i = 1,  2)  for  both  types of  customers.  With 

marginal costs  c, the prices for normal and student tickets are simply pi = 0.5(ai + c), 

consistent with Robinson (1933). Plausibly, however, in reality some normal customers 

and students may prefer to see sets of movies. This leads to interdependent demand with 

product complementarities, i.e. an inverse demand function pi = ai – bixi + rxj, with r > 

0.  The  conventional  wisdom  is  to  be  that  the  price  will  depend  on  the  demand 

interaction term r. As we have demonstrated, this is not true. If demand is linear, the 

price corresponding to Robinson’ solution remains the same with interrelated products.7 

Then what about “first-  and third-class railway fares” that Robinson explicitly 

ruled out? Does the existence of third-class tickets affect the price of the first-class and 

vice versa? Unfortunately this question cannot be answered here because it requires a 

model of vertically differentiated products. Next  we show that the optimal prices of 

“first- and third-class railway fares” are indeed independent.

4.2 Vertically differentiated products

We consider a model of n (≥ 2) vertically differentiated products where product i 

has quality qi (as in Mussa and Rosen, 1978). Without loss of generality, let qi+1 > qi for 

all i, so that qn indicates the highest quality and q1 the lowest. There is a continuum of 

consumers indexed by  θ,  which is uniformly distributed on [0,1].  Each consumer  θ  

purchases at most one good. If he buys good i at price pi, he obtains a surplus of θqi – pi. 

7 Linearity is not always necessary for this result. For instance, if pi = a – bx i
σ

– rx
0.5( 1)
i

σ −
x

0.5( 1)
j

σ +
, σ  > 

0, the price is (σ a + c)/(1 + σ), same as in a separate market (pi = a – bx i
σ

).
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The interpretation of 1/θ is similar to the previous marginal utility of income λ. Each 

consumer chooses the product with the highest surplus, provided it is non-negative. 

We need some assumptions to avoid technical difficulties. To ensure that every 

product has positive demand, we assume that the marginal cost of any product increases 

with its quality, while the consumer benefit increases more. Also the returns of quality 

are diminishing, i.e. marginal costs increase with quality at an increasing rate. If we 

write the marginal cost ci of a product with quality qi as c(qi), this translates into:

ASSUMPTION 2:  For any q, 0 < c’(q) < 1 and c”(q) > 0. 

We can determine the demand for a given good with quality qi by identifying the 

highest and lowest type of consumers buying this good. The marginal consumer who is 

indifferent between buying product 1 and buying nothing gets a surplus θ1q1 – p1 = 0, so 

all  consumers  with  an  index  lower  than  θ1 ≡ p1/q1  will  not  buy any product.  For 

consumer θi indifferent between buying products i and i − 1 we have θiqi−1 – pi−1 = θiqi – 

pi, so  θi ≡ (pi –  pi−1)/(qi –  qi−1). If θi < θI+1 for all  i < n, and θn < 1, we obtain positive 

demand for all goods as xi = θi+1 − θi for i < n and xn = 1 − θn. We will show that these 

conditions hold at the MPM prices. Substituting θis into these demand functions we get:

x1 = 2 1

2 1

p p
q q

−
−  – 1

1

p
q , xn = 1 – 1

1

n n

n n

p p
q q

−

−

−
− ,  

xi = 1

1

i i

i i

p p
q q

+

+

−
−  – 1

1

i i

i i

p p
q q

−

−

−
−  for 1 < i < n (4) 

It  is  easy  to  see  that  (4)  is  linear  with  a  symmetric  Jacobian  matrix,  so 

Proposition 1 applies. To find the MPM price the only information we need is the vector 
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of demand intercepts p0. One can see that the demand for each product is zero when pi = 

qi for all i. So p0 is equal to the vector of product qualities q. In Appendix B we verify 

that the Jacobian matrix is negative definite and each good has a positive demand.

PROPOSITION 3:  The price for good i in MPM with vertically differentiated products  

is p *
i  = 0.5(ci + qi). 

Proof: see Appendix B.

The monopoly price is simply the average of a product’s quality and cost. It is 

again independent of other products’ characteristics. Hence, the prices for “first- and 

third-class railway fares” only depend on the quality and cost of the service offered, not 

on  those  of  other  classes.  In  particular  the  prices  are  the  same  as  the  single  good 

monopoly prices, i.e. the price if  the monopoly only offers one class of tickets. In this 

case demand is xi = 1 – pi/qi, and its optimal price is 0.5(ci + qi), which is identical to the 

MPM price.

According to Proposition 1 the monopoly only sells half the quantities sold in a 

competitive  market.  In a  model  of  vertically differentiated products  every consumer 

acquires at most one product. This means that compared to a competitive market, in 

monopoly some consumers switch to lower quality goods and in total fewer consumers 

will be served. While in the previous model each consumer buys half of the quantity of 

the social optimum, here the number of customers being served falls by half. 

4.3 Horizontally differentiated products
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We finally analyze a model of spatially (horizontally) differentiated products. The 

Hotelling model and its various extensions have been widely used to analyze oligopoly 

competition and location choices. Tirole (1988) discusses spatial  discrimination by a 

monopolist selling one product (p. 140). However, little seems to be known about how a 

monopolist sets prices for a fixed number of horizontally differentiated products with 

predetermined locations. We will show that these prices are again independent of the 

features of other products.

We construct an extended version of the Hotelling model, which can be nested in 

our linear framework. Our model can be visualized as a star-shaped city with  n (≥ 2) 

selling locations owned by a monopolist. The city has  n – 1 roads radiating from the 

center and stretching indefinitely into suburbs. There is one shop at the city center and 

one branch shop along each road with one unit distance from the center. We do not 

address the question of how to choose locations but simply examine how a MPM sets 

profit-maximizing prices at these different shops. We assume that the central shop offers 

consumers a value v1 at a price p1, while branches offer  vi at  pi, for  i > 1. Consumers 

reside along each road with uniform density. Each consumer incurs a unit travel cost τ, 

and maximizes his surplus vi – pi − τs, where s is distance.8 

To ensure an interior  solution  where every shop has  a positive  demand under 

MPM prices, we need certain conditions. On one hand the shops’ net values need to be 

sufficiently high relative to the travel cost so that all consumers between the centre and 

branch shops are covered. On the other hand, the differences between the net values of 

8 Chen and Riordan (2007) analyze an oligopoly version of this model with full symmetry across firms, 

and hence no firm at the center.
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the centre and branch shops should be sufficiently small  so that every shop can sell 

something. These requirements lead to the following conditions.

ASSUMPTION 3.  |v1 – c1 – vi + ci| < τ < 0.2(v1 – c1 + vi – ci) for all i > 1.

In equilibrium no shop can charge a price higher than the value it offers, so we 

have pi < vi for all i. If a branch shop can sell anything, we must have vi − pi + τ > v1 – 

p1.  Under these conditions we can derive the demand functions by identifying marginal 

consumers  indifferent  between  buying  at  the  center  or  a  branch  shop  and  those 

indifferent between a branch and buying nothing. For the former marginal consumers, 

we have  v1 –  p1 –  τyi =  vi –  pi –  τ(1  − yi), where yi is the distance to the centre. Thus 

demand for the central shop yi = 0.5(v1 – p1 + pi – vi + τ)/τ. Shop i serves the remaining 1 

− yi customers, but also attracts clients from the suburb up to a distance  zi, which is 

determined by vi – pi – τzi = 0, so zi = (vi – pi)/τ.  If 0 < yi < 1 for all i > 1, the demand 

function for the center x1 = 2

n
ii

y
=е , and for branch shop i, xi = 1 − yi + zi, i.e., 

x1 = 
1

2
n

τ
−

(τ + v1 – p1) – 2 2
n i i
i

v p
τ=

−е ,

xi = 1 13  3     
2

i iv p v pτ
τ

+ − − +
 for i > 1.     (5) 

Again (5) is linear in prices and the Jacobian matrix is symmetric. We also prove 

that this matrix is negative definite (Appendix C). One can verify that the demand for 

every good is zero when p 0
1  = v1 + 2τ and p 0

i  = vi + τ for any i > 1.9 With these demand 

intercepts we can apply Proposition 1 and obtain the monopoly prices.

9 These hypothetical prices lie outside the permissible price range as demand should vanish when pi ≥ vi.
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PROPOSITION 4: The MPM prices with horizontally differentiated products are p *
1  = 

0.5(v1 + c1) + τ, and p *
i  = 0.5(vi + ci + τ) for i > 1.

Proof: see Appendix C.

The monopoly prices cannot  be characterized  by a single formula  here,  as the 

center shop differs from the others. Nonetheless, all prices again only depend on shop-

specific parameters, not on other shops’ values or costs. In fact, this property can be 

generalized to a model with different distances between the centre and branch shops.10

Similarly to  the previous  two cases,  every shop only sells  half  of  the socially 

optimal  quantity. This  is  somehow surprising,  because the market  always covers all 

consumers between the center and branch shops. Only suburban residents stop buying 

any products due to monopoly pricing. 

In the previous two models, every price is equal to the “naïve” monopoly prices, 

charged in independent markets  or for a single product monopoly. In this  case,  if  a 

branch shop is the only seller along its road, its price would be 0.5(vi + ci + τ), which is 

again exactly the MPM price. However, if the central shop is the only seller, its price 

would be 0.5(v1 +  c1), lower than the  MPM price by  τ. This result indicates that the 

MPM price is not always equal to separate monopoly prices. Nonetheless, for n ≥ 2, the 

introduction of any new product/road will not affect the existing prices. In this sense we 

can still say that the MPM prices are independent of each other.

5. Welfare Loss 

10 If we let si be the distance between the center and shop i, and normalize the average distance to 1, p *
i  

will change slightly, with τ multiplied by (si + 2)/3, while p
*
1  remains the same.
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Estimating the deadweight loss in MPM with complex product relations might at 

first sight appear quite challenging. In this section we will show that the optimal prices 

determined in the previous section can be used to establish a simple relation between 

deadweight loss and monopoly profits. Since profits are usually observable, this relation 

provides an easy way to estimate the social loss caused by MPM. 

Again our result can be understood as a generalization of a well-known property 

of the textbook example of a single product monopoly with linear demand: Deadweight 

loss equals half the monopoly profit.  This relation remains  valid  in our three MPM 

models. This is unexpected because the welfare functions are fundamentally different 

across the three models and cannot be presented in a unified framework.  

In the  standard  model  with  heterogeneous  products  every consumer’s  demand 

vector is y = B−1(a – λp). Substituting this into his utility function (a’y – 0.5y’By)/λ we 

obtain 0.5(a +  λp)’B−1(a/λ –  p) = 0.5a’B−1a/λ  – 0.5λp’B−1p.  Since the first  term is 

independent of prices, we only need to consider the second term. Integrating it for all λ 

the consumer total utility is determined as –0.5 λ p’B−1p. Subtracting the total cost  c’x 

from the utility,  we get the social  welfare.  The deadweight loss can be obtained by 

comparing the welfare under marginal cost pricing and MPM pricing. 

The  deadweight  loss  appears  more  complicated  with  vertically  differentiated 

products. Recall that in this case we have θ1 ≡ 1p / 1q , and θi ≡ ( 1i ip p −− )/( 1i iq q −− ) for i 

> 1. These  θi’s define the consumer demand for each product. Consumers purchasing 

product  i <  n obtain utility qi ∫ + 1i

i
d

θ

θ
θθ  = 0.5qi(θ

2
1+i  –  θ 2

i ). Those purchasing product  n 
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obtain utility qn ∫
1

n
d

θ
θθ  = 0.5qn(1 – θ 2

n ). The total utility of all consumers is equal to 0.5

∑ − 1

1

n
iq (θ 2

1+i  – θ 2
i ) + 0.5qn(1 – θ 2

n ). Subtracting from this function the total cost c’x, we 

obtain social welfare. With p = c and the MPM price vector p*, we obtain the maximum 

welfare and its value under MPM. Their difference is the deadweight loss.

Finally in the case of horizontally differentiated products, the calculation of the 

deadweight loss involves transportation costs. We first consider the utility obtained by 

consumers residing along one road. The utility from the center is 10
( )iy
v s dsτ−т  = v1yi – 

0.5τy 2
i ,  where  yi =  0.5(v1  –  p1  –  vi  +  pi  +  τ)/τ,  which  is  the  position  of  marginal 

consumers  who  are  indifferent  between  purchasing  at  the  centre  or  branch  shop  i. 

Consumers who purchase from shop i obtain utility 
1

0
( )iy

iv s dsτ
−

−т  +  
0

( )iz

iv s dsτ−т  = 

vi(1 –  yi) – 0.5τ(1 –  yi)2 +  vizi – 0.5τz 2
i , where  zi = (vi  –  pi)/τ. After adding the two 

utilities and subtracting the cost c1yi + ci(1 − yi + zi), we obtain the social welfare along 

road i. Adding this welfare for all  i > 1, we have the total social welfare. Given these 

fundamental structural differences the following result might be surprising.

PROPOSITION 5. In all three MPM models, the deadweight loss is half the monopoly  

profit. 

Proof: see Appendix D. 

The simple relationship known from the linear single product monopoly survives 

in all three MPM models. As long as demand and cost functions are linear, the relation 
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between the deadweight loss and profits remains unchanged regardless of how many 

products or what kinds of goods are introduced.11 

The intuition of this result can be best seen in the horizontal model. According to 

Proposition 4, adding a new road does not affect the prices along existing roads, and 

hence will not affect the relationship between welfare loss and monopoly profits there. 

But the additional deadweight loss along the new road is also half the additional profits, 

so the overall loss remains as half of the monopoly profits. For the other two models, 

these relations are more complex, as a new product affects the monopoly profits and 

deadweight  loss  from existing  products.  Nevertheless,  the  simple  relation  is  always 

valid.  If  the  linear  model  is  a  good  approximation,  this  relation  provides  a  good 

indication for the deadweight loss due to MPM pricing.

6. Non-linear Demand 

Linear demand and cost functions are widely used in industrial economics and 

often a  good approximation  of real  market  conditions.  However,  even if  demand is 

approximately linear  the monopoly prices obtained for the linear  model  may not be 

approximately correct if they are very sensitive to non-linearity. In this section we show 

that this is not the case. Our results are still approximately true if the Hessian matrix of 

the consumer  utility function  does  not  vary significantly.  We focus  on the standard 

model for heterogeneous goods. We assume that the representative consumer’s utility 

function  is  h +  u(x),  where  h is  the  numeraire  good,  u(x)  is  continuously  twice 

differentiable  and strictly concave in  x,  so that  the Hessian matrix  u”(x) is  negative 

11 Again the linearity is not always necessary. For example, given the inverse demand function in footnote 
7, the deadweight loss is equal to the profit multiplied by σ /(1 + σ), either one or two goods are sold.
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definite  and  its  determinant  u”(x) ≠ 0.  The  first-order  condition  for  the  utility 

maximization implies an inverse demand function p(x) = u’(x). As in our earlier result, 

the choke-off price vector p0 corresponds to zero demand, i.e., p0 = u’(0). It equals the 

marginal utility at zero consumption, which is vector a in the linear case. If we used our 

simple  rule  we would  obtain  an  estimated  monopoly price  as  pm =  0.5[u’(0)  +  c]. 

However, the true optimal price p* should maximize the monopoly profit [p(x) – c]’x. 

As p’(x) = u”(x), the first-order condition for the optimal x* is as p* – c + u”(x*)x* = 0. 

How far will the estimated price pm be from the true optimum p*? Given x*, we 

can always find a non-negative vector w1 ≤ x*, such that u’(x*) = u’(0) + u”(w1)x*. We 

can then write  u”(x*)x* as p* – u’(0) + [u”(x*) – u”(w1)]x*. Substituting this into the 

first-order condition for x*, we obtain:

PROPOSITION 6:  The  optimal  price  in  non-linear  MPM  with  heterogeneous 

products can be expressed as p* = pm + 0.5[u”(w1) – u”(x*)]x*. 

Proposition 6 shows that our simple rule yields a price that differs from the true 

optimum only by the last error term. If the Hessian matrix of the utility function, u”(x), 

does not vary significantly, this error term will be close to zero and our simple pricing 

rule will yield prices that are close to the true optimal prices. A small change in u”(x) 

cannot lead to a significant gap between these two prices. Interestingly, the error term is 

not clearly linked to products being substitutes or complements, which implies that even 

in the non-linear case there is no clear-cut relationship between product relations and 

monopoly prices. This is indeed confirmed by an example below.
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A similar approach can be used to show that the monopoly output xm under the 

estimated price pm is roughly half of the socially optimal level  xc when p = c. We can 

always find a vector w2 (xm ≤ w2 ≤ xc) such that u’(xc) = u’(xm) + u”(w2)(xc – xm). On the 

other  hand,  we can  find  a  non-negative  vector  w3 ≤ xm,  such  that  u’(xm)  =  u’(0)  + 

u”(w3)xm. Since u’(xc) = c and u’(xm) = 0.5[u’(0) + c], these two equations imply u”(w2)

(xc – xm) = u”(w3)xm. Then we have 

PROPOSITION 7:  The  relation  between  the  socially  optimal  output  and  the  

monopoly output under pm is: xc = 2xm + [u”(w2)]−1[u”(w3) – u”(w2)]xm. 

If u”(w3) – u”(w2) is very small and the elements of [u”(w2)]−1 are finite, xc must 

be  close  to  2xm.  These  conditions  hold  if  the  Hessian  matrix  does  not  change 

significantly and  u”(x) is  not  close  to  zero.  The  latter  is  generally true  when the 

demand for each product is significantly downward sloping, rather than horizontal. This 

does not seem to be a very restrictive requirement for a monopoly12. Again a smooth 

variation in  u”(x) should not radically change the simple relation  xc = 2xm,  which we 

find in the linear case.

Finally, the deadweight loss (DL) caused by the estimated monopoly price  pm 

remains close to half of the monopoly profit. Given the definitions of xc and xm,  DL = 

u(xc) – u(xm) – c’xc + c’xm. We can find a vector w4, xm ≤ w4 ≤ xc, and write u(xc) as u(xm) 

+  u’(xm)(xc –  xm) + 0.5(xc –  xm)’u”(w4)(xc –  xm). Substitute this into  DL we get  (pm – 

c)’(xc – xm) + 0.5(xc – xm)’u”(w4)(xc – xm). Substitute pm – c = –u”(w2)(xc – xm) into this 

function and rearrange its terms, we find the following result.  

12 This requirement may not be necessary. In the case of footnote 7, the determinant u”(x) can approach 
zero when r is close to 1. But xc is still nearly equal to 2xm so long as σ is not far from 1.
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PROPOSITION 8: The deadweight loss due to the simple monopoly price pm is 0.5πm 

+ 0.5(xc – xm)’{[u”(w4) – u”(w2)](xc – xm) – u”(w2)(xc – 2xm)}. 

In the last term, we know that both u”(w4) – u”(w2) and xc – 2xm are small when 

the Hessian matrix u”(x) does not vary significantly. Hence, the deadweight loss is close 

to half the monopoly profit, even if there are minor variations of u”(x).

Our analysis shows that in each case the error term introduced by our simple 

estimation based on the linear model is limited by the variation of the Hessian matrix. If 

we can estimate the consumer utility function, we should be able to roughly estimate 

whether our simple results offer reasonable solutions, without having to precisely solve 

the non-linear problem. Similar approaches can be used to demonstrate that our findings 

for vertically and horizontally differentiated products hold approximately with nonlinear 

demand, if the Jacobian matrix does not vary significantly.

We close this section with a closed-form example showing that the conventional 

intuition of Section 2 need not apply even in markets with non-linear demand.

Example:

Consider a two-good monopolist with zero costs facing a symmetric demand function 

pi = a − bxi
σ − rxj, i, j = 1, 2, σ > 0. The profit function is then

          π = (a − bx1
σ − rx2)x1 + (a − bx2

σ − rx1)x2. 

The first-order condition for xi implies: a − b(σ + 1)(x*)σ − 2rx* = 0. (i) 

The monopoly price is p* = a − b(x*)σ − rx* = σb(x*)σ + rx*. (ii)

In two independent markets, demand and profit are: pi = a − bxi
σ and π = (a − bxi

σ)xi. 
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The first order condition for xi is a − b(σ + 1)(x0)σ = 0, (iii)

Τhe separate price satisfies p0 = a − b(x0)σ = σb(x0)σ. (iv)

Subtracting (iv) from (ii), we get: p* − p0 = σb[(x*)σ  − (x0)σ] + rx*. (v)

Subtracting (iii) from (i), we get: b(σ + 1)[(x*)σ  − (x0)σ] = −2rx*. (vi)

Substituting (vi) into (v), we obtain: 

p* − p0 = 
1
1

σ
σ

−
+

rx*. (vii)

If σ = 1, (vii) confirms our result for the linear case. If σ < 1, (vii) implies that 

p* > p0 if and only if goods are substitutes (r > 0), in line with conventional wisdom, as 

reported e.g. in Motta (2004), see our Section 2. However, if σ > 1, (vii) implies that p* 

> p0 if and only if goods are complements (r < 0), in total violation of conventional 

wisdom. This example confirms that, while compelling at first sight, the conventional 

intuition about MPM pricing need not be valid in non-linear models either. 

7. Concluding Remarks

The paper analyzes pricing and welfare effects of MPM with linear demand and 

cost functions. Our main result is that the MPM price for each good depends only on the 

marginal cost and the inverse demand intercept of that good, the nature of any number 

of other goods being immaterial. This conclusion is at odds with much literature, old 

and  new  in  industrial  organization,  including  basic  textbooks,  stressing  the  role  of 

substitute/complement products and cross-elasticities in MPM pricing. The underlying 

oversight in the literature seems to originate from a general tendency to interpret the 
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parameters of direct demand functions as being autonomous, which unfortunately leads 

to questionable comparative statics conclusions in other settings not covered here. 

Another result  is  that  the deadweight  loss is  half  of the MPM profit.  In other 

words, relations known from the simple one-product textbook linear model generalize 

verbatim to three workhorse linear models of interdependent products: heterogeneous (a 

la Bowley or Shubik), vertically and horizontally differentiated. 

Due to their basic nature, the results presented here can be relevant to a wide range 

of contexts, covering theoretical and policy issues. Some examples are emerging areas 

in industrial organization such as bundling and tying. More broadly, the simple insights 

from this  paper could contribute  to fields as different as antitrust  theory, regulation, 

urban and spatial economics and marketing. Our welfare results are potentially useful in 

regulatory design, as a way to estimate deadweight loss in complex situations. 

While we limited our analysis mainly to linear demand, our results in Section 6 

indicate that our main insight is robust, the linear demand being special only insofar as it 

leads to the two effects of adding a substitute or complement product to an existing 

product line being clearly identified and exactly canceling out. We hope that this paper 

might lead to renewed interest in the topic of monopoly pricing, which was addressed by 

economists in the early years, but seems to have been largely ignored recently.
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Appendix A: We differentiate the profit function (2), (p – c)’(α + Ap) and get the first-

order condition  dπ/dp =  α +  A’(p –  c) +  Ap = 0. Since  A is symmetric, we have  α + 

A(2p – c) = 0. The Hessian matrix of the profit function is equal to 2A. So the second-

order condition holds since A is negative definite. Then the optimal price can be solved 

from the first-order condition, as p* = 0.5(c  – A−1α ).

If we plug –A−1α into the demand function (1), we get  x =  0. So –A−1α is the 

demand intercept vector p0. The optimal price p* can be written as 0.5(c  + p0).

Putting p* into the demand function (1), we get x* = 0.5(α + Ac). When p = c, 

we get the socially optimal output α + Ac, which is twice of the monopoly output x*. 

Appendix  B:  (i)  The  demand  function  (3)  is  clearly  linear  in  prices.  To  apply 

Proposition 1, we need to show that Jacobian matrix  ∂x/∂p is symmetric and negative 

definite. As ∂xi/∂pi+1 = 1/(qi+1 – qi) = ∂xi+1/∂pi for all i, and ∂xi/∂pj = 0 for any j ≠ i and 

j −  i > 1, the matrix is indeed symmetric. 

To show it is negative definite, we see the sum of the first row of ∂x/∂p is equal 

to –1/q1, and the sum of every other row is zero. Hence the matrix has a quasi-dominant 

diagonal and must be negative definite (McKenzie 1960, Theorem 2). 

(ii) We then need to find p0. Substituting p = q into the demand function (3), we 

get x = 0. So p0 = q, and the MPM price p *
i  = 0.5(ci + qi). We also have x(p*) = 0.5x(c) 

from Proposition 1.

(iii) To complete the proof, we need to show x(c) > 0. For x1 ≥  0, we need to 

show 2 1

2 1

c c
q q

−
−  ≥ 1

1

c
q , or 2

2

c
q  ≥ 1

1

c
q . This holds since c”(q) > 0. For xn ≥  0, we must have 

cn – cn−1 ≤  qn – qn-1. This is true given c’(q) < 1. 

For 1 < i < n, xi ≥  0 holds if 1

1

i i

i i

c c
q q

+

+

−
−  ≥ 1

1

i i

i i

c c
q q

−

−

−
− . To prove this, we write ci+1 – ci 

as (qi+1 – qi)c’(ωi) and ci – ci−1 = (qi – qi−1)c’(ωi−1), where qi−1 ≤  ωi-1 ≤  qi ≤  ωi ≤  qi+1. As 

c”(q) > 0, ωi−1 ≤  ωi, we get c’(ωi) ≥  c’(ωi−1), so xi ≥  0. 

Finally, we show that no consumer receives a negative surplus under  p*. The 

marginal consumer buying from good 1 receives a zero surplus. For i > 1, the marginal 
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consumer  θi = ( 1i ip p −− )/( 1i iq q −− ), receives a positive surplus if  θiqi ≥  pi or  piqi−1 ≥ 

pi−1qi. Using p *
i  and p *

1−i , it becomes ci/qi ≥  ci−1/qi−1, which holds given c”(q) > 0.        

Appendix C: (i) To apply Proposition 1, again we need to show that the n×n Jacobian 

matrix ∂x/∂p is symmetric and negative definite. As ∂xi/∂p1 = ∂x1/∂pi = 0.5/τ for all i > 

1, and ∂xi/∂pj = 0 for i and j ≠ 1, it is indeed symmetric.

Moreover since ∂x1/∂p1 = –0.5(n – 1)τ, ∂xi/∂pi = –1.5/τ, the sum of the first row 

of ∂x/∂p is 0, and the sum of any other row is –1/τ < 0. By McKenzie (1960) ∂x/∂p must 

be negative definite. 

(ii) One can verify that demand function (5) is zero when p1 = 2τ + v1, and pi = τ 

+ vi. So the MPM prices p *
1  = 0.5(v1 + c1 + 2τ), and p *

i  = 0.5(vi + ci + τ) for i > 1. 

We need to show x(c) > 0. For x1 ≥  0, it suffices to show τ + v1 – c1 ≥  vi – ci. For 

xi ≥  0, we need vi – ci + 3τ ≥  v1 – c1. Assumption 3 guarantees both of them. 

Finally, every marginal  consumer must  receive a non-negative surplus.  For  a 

consumer indifferent between the center and shop i, her surplus from the center is v1 – p1 

– τyi = v1 – p1 – 0.5(v1 – p1 – vi + pi + τ) = 0.25(v1 – c1 + vi – ci – 5τ). It is positive given 

Assumption 3. A marginal consumer outside of shop i receives a zero surplus.   

Appendix D: (i) Substituting the monopoly price  p* and marginal cost pricing  c into 

function –0.5 λ p’B−1p, and subtracting one from the other, we get the total utility loss as 

0.5 λ (p* – c)’B−1(p* + c). But we know λ (p* – c) = 0.5(a – λ c), and B−1(a – λ c) = 

x(c) = 2x*, so the utility loss is equal to 0.5(p* + c)’x*. On the other hand, since the 

monopoly pricing reduces the outputs by half,  the total  cost  falls by  c’x*.  Thus, the 

deadweight loss, the sum of the utility and cost changes, is equal to 0.5(p* –  c)’x*, 

which is half of the total monopoly profit.

(ii) Vertically differentiated products: We first write the twice of the total utility 

of all consumers as 2u = ∑ − 1

1

n
iq (θ 2

1+i  – θ 2
i ) + qn –  qnθ

2
n . Regrouping the summation 
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items, it  becomes  qn –  q1θ 2
1  –  ∑ n

2
θ 2

i (qi  –  qi−1).  Substituting  θ1 ≡ 1p / 1q  and  θi ≡ (

1i ip p −− )/( 1i iq q −− ), it becomes qn – θ1p1 – ∑ n
i2

θ (pi – pi−1). Regrouping the summation 

items again, it changes to qn + ∑ − 1

1

n
ip (θi+1 – θi) – θnpn. As θi+1 – θi = xi and 1 − θn = xn, 

we get 2u = i
n

i xp∑ 1  + qn – pn.

Moreover, we write qn – pn as qn – )( 12 −−∑ i
n

i pp – p1 = qn – 12
( ) n

i i iq qθ −−е – 

θ1q1. Regrouping the summation items, we get qn – pn = qn + ∑ − 1

1

n
iq (θi+1 – θi) – θnqn = 

i
n

i xq∑ 1 . Substitute this into 2u expression, we get u = 0.5
1
( )n

i i ip q x+е  = 0.5(p + q)’x. 

Social welfare (SW) u – c’x  = 0.5(p + q – 2c)’x. When p = c, we get SW(c) = 

0.5(q – c)’x(c); when p = p* = 0.5(q + c), SW* = 0.75(q – c)’x*. Given x(c) = 2x*, the 

deadweight loss SW(c) – SW* = 0.25(q – c)’x*. 

As q – c = 2(p* – c), the deadweight loss is 0.5(p* – c)’x* = 0.5π*.  

(ii) Horizontally differentiated products: The utility obtained by consumers along 

one road is ui = [v1 – 0.5τ yi]yi + [vi – 0.5τ(1 – yi)](1 – yi) + [vi – 0.5(vi – pi)zi]zi, where zi 

= (vi  – pi)/τ and yi = 0.5(v1  – p1  – vi  + pi  + τ)/τ. Substitute  yi and zi in brackets [],  ui = 

0.25(3v1 + p1 + vi  – pi – τ)yi + 0.25(3vi + pi  + v1 – p1 – τ)(1 – yi) + 0.5(vi + pi)zi, which 

simplifies to 0.5(v1 + p1)yi + 0.5(vi + pi)(1 – yi + zi) + 0.25(v1 – p1 + vi – pi – τ ). 

Note that v1 – p1 + vi  – pi  = τ(2yi + 2zi – 1), and 1 – yi + zi = xi, we write this 

utility as ui = 0.5(v1 + p1)yi + 0.5(vi + pi)xi + 0.5τ(yi + zi – 1). Replacing zi by yi + xi – 1, 

we get ui = 0.5(v1 + p1+ 2τ)yi + 0.5(vi + pi + τ)xi – τ. One-road welfare is ui – c1yi – cixi.

Recall that 
2

n
iyе = x1. The welfare from all roads is 0.5x1(v1 + p1 + 2τ – 2c1) + 

0.5 i2
( 2 )n

i i ix v p cτ+ + −е  –  nτ.  When  p =  c,  we get  the maximum total  welfare  as 

0.5x1(c)(v1 + 2τ – c1) + 0.5 i2
( )( )n

i ix c v cτ+ −е  – nτ. Since x(c) = 2x*, v1 + 2τ – c1 = 2(p

*
1  –  c1), and  vi  +  τ –  ci = 2(p *

i  –  ci),  we can write this welfare as 2x *
1 (p *

1  –  c1) + 2
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* *
i2

( )n
i ix p c−е  – nτ = 2π∗ − nτ. When p = p*, the welfare is 0.5x *

1 (1.5v1 + 3τ – 1.5c1) + 

0.75 *
i2

( )n
i ix v cτ+ −е  – nτ, which is equal to 1.5x *

1 (p *
1 – c1) + 1.5 * *

i2
( )n

i ix p c−е – nτ = 

1.5π∗ − nτ. Subtracting two welfare values, we get the deadweight loss 0.5π∗.       
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