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Abstract. A warrant is an option that entitles the holder to purchase shares of a common stock at
some prespecified price during a specified interval. The problem of pricing a perpetual
warrant (with no specified interval) of the American type (that can be exercised any time)
is one of the earliest contingent claim pricing problems in mathematical economics. The
problem was first solved by Samuelson and McKean in 1965 under the assumption of a
geometric Brownian motion of the stock price process. It is a well-documented exercise
in stochastic processes and continuous-time finance curricula. The present paper offers a
solution to this time-honored problem from an optimization point of view using linear pro-
gramming duality under a simple random walk assumption for the stock price process, thus
enabling a classroom exposition of the problem in graduate courses on linear programming
without assuming a background in stochastic processes.
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1. Introduction. A warrant is an option that entitles the holder to buy shares
of a common stock at some prespecified price (referred to as the “exercise price”)
during a specified interval. A perpetual warrant is a warrant that does not have an
expiration date. An American perpetual warrant (which can also be called a perpetual
American option) can be exercised at any time. The problem of pricing an American
perpetual warrant is to determine the fair price that an investor should be willing
to pay to acquire it. It is a fundamental problem in the fields of financial economics
and mathematical finance. The explicit solution for the pricing of warrants was given
by McKean (in the appendix of [12]) under the assumption of a geometric Brownian
motion model for the stock price process, upon a question posed by Samuelson [12]
in 1965. A textbook coverage of the solution is given in An Introduction to Stochastic
Processes by Kao [10], in Example 7.1.3, which is in turn based on Karlin and Taylor
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768 ROBERT J. VANDERBEI AND MUSTAFA Ç. PINAR

[11]. Chen [3] gives a solution for finite-time warrants. A recent account of the subject
along with developments after 1965 can be found in [13].

In this note, we offer a solution based on linear programming duality, after as-
suming that the stock price behaves as a simple random walk. The purpose is to
offer yet another application where the well-developed machinery of linear program-
ming can be brought to bear upon a time-honored problem of financial economics in
a classroom setting which does not require a background in stochastic calculus and
continuous-time finance. On the other hand, the paper can also serve researchers in
optimization and mathematical programming seeking an introduction to the field of
mathematical finance. Another interesting feature of the solution methodology is the
connection to the theory of harmonic functions as treated in the excellent book by
Dynkin and Yushkevich [6]. On several occasions, concepts familiar to the student of
harmonic functions appear in simple forms in our elementary analysis where we try
to refer the reader each time to an appropriate source.

Let Xn denote the share price of the stock at a time n periods into the future.
Obviously, Xn is a random variable, and the collection of these random variables over
time is a stochastic process. Let us assume that Xn is a random walk with absorption
at 0 on the state space E = {j∆x : j = 0, 1, 2, . . .}, where ∆x is a fixed small positive
real number. That is, if the current stock price is x ∈ E, then the price at the next
period will be either x+∆x or x−∆x with probabilities p and q = 1−p, respectively.
This model of stock price movements is close to reality in that stock prices usually
move by small amounts over sufficiently short periods of time.

In order to figure out how to price the warrant, one must answer the question,
what is the expected value, in today’s dollars, of the warrant? Naturally, the seller
of the warrant should assume that the buyer will employ an optimal strategy for
exercising the warrant. If at some future date, the stock price Xn is larger than the
exercise price S, then the holder of the warrant can buy the stock for S dollars and
immediately sell it for Xn dollars and realize a gain of Xn − S dollars. Hence, the
payoff at time n of the warrant is h(Xn) = Xn − S. If the warrant holder exercises
the option at some time τ (possibly random, but not clairvoyant), then the expected
present value would be

Exα
τh(Xτ ).

Here we have introduced a discount factor α (a number slightly less than one). This
discount factor accounts for the fact that future dollars are worth less than present
dollars. Specifically, α gives today’s value of tomorrow’s dollar. The optimal strategy
is then determined by maximizing over all nonclairvoyant random times τ :

v(x) = max
τ

Exα
τh(Xτ ).

The function v is called the value function. It tells both the buyer and the seller
of the warrant everything they need to know. To the seller, the “fair” price for the
warrant is v(x) if the current stock price is x. Since zero payoff can be obtained with
the strategy τ = +∞, the function v is nonnegative.

In each period, the holder of the warrant observes the current price x of the stock
and decides either to exercise the warrant or to keep the warrant for one more period.
The optimal choice between exercising the warrant and holding it for one more period
depends on the relative magnitudes of the payoff h(x) and the expected warrant value
one time step ahead, i.e., α (pv(x+∆x) + qv(x−∆x)). By “the principle of dynamic
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programming”1 v(x) must satisfy the equation

v(x) = max{h(x), α (pv(x+∆x) + qv(x −∆x))}

for all x ∈ E \ {0}, and the boundary condition v(0) = 0. This equation characterizes
the optimal strategy for the buyer of the warrant. The state space can be partitioned
into two sets: the set of states x where v(x) > h(x) and those where v(x) = h(x). The
first set is called the “continuation region” and the second the “exercise region” [5].
The buyer should not exercise the option at times n when Xn is in the continuation
region, that is, when v(Xn) > h(Xn). In fact, the buyer should exercise the warrant
as soon as v(Xn) = h(Xn).

Based on the implicit equation above, it is shown in probability courses (see, e.g.,
[6, Chapter 3, pp. 106–107] or [4, Chapter 7, pp. 212–213]) that v can be uniquely
characterized as the smallest (in the L1 sense) function that satisfies these inequalities:

v(x) ≥ 0, x ∈ E,

v(x) ≥ h(x), x ∈ E,

v(x) ≥ α (pv(x +∆x) + qv(x−∆x)) , x ∈ E \ {0}.

Clearly, when the price of the stock price x is less than S there is no incentive to
exercise the option—the warrant holder would lose money needlessly. Hence, we can
redefine the warrant payoff function as f(x) = (x−S)+ and replace the first two set of
inequalities above by the single set of inequalities v(x) ≥ f(x) for all x ∈ E. Recalling
the discreteness of our model’s state space, we can formulate an infinite-dimensional
linear programming problem

minimize
∞∑

j=0

vj

subject to vj ≥ fj, j = 0, 1, 2, . . . ,

vj ≥ α (pvj+1 + qvj−1) , j = 1, 2, . . . ,

where xj = j∆x, vj = v(xj), and fj = f(xj).
Let v∗j , j = 0, 1, . . . , denote the optimal solution to this linear programming

problem. Figure 1 gives an illustration of v∗(x) and f(x) corresponding to the case
where α = 0.999, p = 0.5, ∆x = 0.1, and S = 9. From the original real-world
description of the problem and Figure 1, it appears that the optimal strategy for
exercising the warrant would be not to exercise when the stock price is below some
threshold and then exercise as soon as the stock price hits the threshold value. In
other words, it seems reasonable to conjecture that under some mild assumptions
which we shall list below

1The principle of dynamic programming, a.k.a. the principle of optimality, states, “An optimal
policy has the property that whatever the initial state and the initial decision are, the remaining
decision must constitute an optimal policy with regard to the state resulting from the initial decision.”
See Bellman and Dreyfus [1].
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770 ROBERT J. VANDERBEI AND MUSTAFA Ç. PINAR

Fig. 1 Plot of v∗(x) and f(x) corresponding to the case where α = 0.999, p = 0.50, ∆x = 0.1, and
S = 9. In this case, j∗ = 112 and therefore xj∗ = 11.2.

there exists an optimal solution with the structure

v∗0 = f0,

v∗j = α(pv∗j+1 + qv∗j−1) > fj , 0 < j < j∗,

v∗j = fj > α(pv∗j+1 + qv∗j−1), j∗ ≤ j,

for some appropriately chosen j∗.
Our guess is indeed correct. Indeed, if we let

ξ− =
−1−

√
1− 4α2pq

−2αp , ξ+ =
−1 +

√
1− 4α2pq

−2αp
and assume that

1. αp ≤ 1/2 and αq ≤ 1/2,
2. S = jS∆x for some integer jS , and
3. fjS+1

(
ξjS

+ − ξjS

−
)
/
(
ξjS+1
+ − ξjS+1

−
)
> fjS ,

we can then give a closed-form formula for j∗ and the optimal values of vj :

j∗ = max

{
k : fk

ξk−1
+ − ξk−1

−
ξk
+ − ξk−

> fk−1

}
,(1.1)

vj =




0, j = 0,

fj∗
ξj
+−ξj

−
ξj∗
+ −ξj∗

−
, 0 < j < j∗,

fj , j∗ ≤ j.

(1.2)

In the problem instance of Figure 1, the optimal choice of j∗ is 112. In Figures 2 and
3, we show the consequences of choosing j∗ too small or too large for the same problem
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Fig. 2 Plot of v′(j), v∗(j), and f(j) when j′ = 102 and j∗ = 112.

instance. Suppose we were unable to correctly determine the optimal exercise point
j∗. That is, we assume that j′ determines the boundary continuation and exercise
regions but that j′ 	= j∗. In this case, the expected payoff v′(j) is given by

v′(j) =




0, j = 0,

fj′
ξj
+−ξj

−
ξj′
+ −ξj′

−
, 0 < j < j′,

fj, j′ ≤ j.

If we set j′ = 102, then we obtain the plot shown in Figure 2. When we set
j′ = 122 the resulting plot is as shown in Figure 3. In both cases the v-curves are
below the optimal v-curve obtained with the optimal choice j∗. In the first case, the v
values violate some of the inequalities vj ≥ α(pvj+1 + qvj−1), and in the second case,
some of the inequalities vj ≥ fj are violated. In the case of Figure 2, the holder of
the option erroneously underestimates the value of the warrant. This underestimation
leads to an exercise of the warrant at a share price where it is in fact still advantageous
to defer exercise. In the case of Figure 3, the incorrect valuation induces the holder to
defer exercise at stock prices where it is in fact optimal to exercise, thereby foregoing
income that could earn risk-free interest during the delay.

A function v∗ defined on 0 < j < j∗ satisfying v∗j = α(pv∗j+1 + qv∗j−1) is known
as an α-harmonic function. A function v∗ defined for all j ≥ j∗ and satisfying
v∗j > α(pv∗j+1 + qv∗j−1) is called an α-superharmonic function. For such definitions,
the reader is directed to the opening chapter of [6].
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Fig. 3 Plot of v′(j), v∗(j), and f(j) when j′ = 122 and j∗ = 112.

In the rest of this paper, we shall give a step-by-step derivation of the closed-form
formulae (1.1)–(1.2) and demonstrate the correctness of our guess at the solution using
linear programming duality and elementary techniques for the solution of second-order
difference (differential) equations. For a review of the fundamental results of linear
programming, our desktop reference is the textbook [14]. For a coverage of difference
equations that is suitable for our purposes, the reader can consult [9].

The plan is as follows. We first lay out the primal and dual linear programming
problems, and use the complementary slackness property of optimal solutions to linear
programs to simplify the claimed form of the equations leading to an optimal solution
into a pair of second-order difference equations. We compute solutions to these second-
order difference equations and show how these solutions satisfy various inequalities
defining the primal and dual problems. Along the way, we discover the few mild
assumptions that need to be made for our guess to be correct.

2. Primal Problem. Let us restate the primal linear programming problem:

minimize
∞∑

j=0

vj

subject to vj ≥ fj, j ≥ 0,

vj ≥ α (pvj+1 + qvj−1) , j ≥ 1.
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3. Dual Problem. Duality theory plays a fundamental role in linear program-
ming. The basic idea is that associated with every linear programming problem,
there is another linear programming problem, which is called the dual to the first
problem (and therefore the first problem is called the primal). The two most impor-
tant results are the so-called weak and strong duality theorems. The weak duality
theorem says that

for any set of values for the dual problem that satisfy the constraints of
the dual problem, the value of the dual objective function evaluated with
those values provides a (lower) bound on the optimal value to the primal
problem.

The strong duality theorem goes further and says that
the optimal value of the dual objective function equals the optimal value
of the primal objective function.

One of the corollaries of the strong duality theorem gives us a so-called certificate
of optimality. This corollary says that

if one can exhibit values for the primal problem that satisfy the primal
constraints and values for the dual problem that satisfy the dual constraints
and if these primal and dual values satisfy an easy-to-check property called
complementarity, then the primal values are optimal for the primal problem
(and the dual values are optimal for the dual problem).

This corollary is extremely useful in that it reduces an optimization problem to
a problem of simply checking that a few conditions are satisfied. This is how we shall
use duality in what follows. See Chapter 5 of [2] or Chapter 5 of [14] for details on
duality theory.

The dual problem is obtained by the following procedure. First, a Lagrangian
function is constructed using a nonnegative Lagrange (or dual) multiplier value for
each constraint. The Lagrangian function is then minimized with respect to the primal
variables. The resulting function value constitutes a lower bound to the optimal value
of the primal problem. Then maximizing this bound over all permissible choices of
Lagrange multipliers gives the dual problem.

In our case the dual problem is

maximize
∞∑

j=0

fjyj

subject to y0 − αqz1 = 1,

y1 + z1 − αqz2 = 1,

yj − αpzj−1 + zj − αqzj+1 = 1, j ≥ 2,

yj ≥ 0, j ≥ 0,

zj ≥ 0, j ≥ 1.

To see that this is correct, we shall derive the dual problem using the afore-
mentioned procedure. Using nonnegative multipliers yj , j = 0, 1, . . . , for the first set
of inequalities in the primal problem, and nonnegative multipliers zj , j = 1, 2, . . . , for
the second set of inequalities, we obtain the Lagrangian function

L(v,y, z) =
∞∑

j=0

vj +
∞∑

j=0

yj(fj − vj) +
∞∑

j=1

zj(αpvj+1 + αqvj−1 − vj),
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where we denote the sequences vj , yj , and zj by v, y, and z, respectively. To obtain
the dual function, g(y, z) say, we have to minimize L(v,y, z) over the unrestricted
variables vj ; i.e., we have

g(y, z) = min
v

L(v,y, z).

We can rewrite this minimization problem as

g(y, z) =
∞∑

j=0

fjyj +min
v




∞∑
j=0

yj(fj − vj) +
∞∑

j=1

zj(αpvj+1 + αqvj−1 − vj)


 .

The minimization over each vj can be performed separately. For v0 we have

min
v0

v0(1− y0 + αqz1).

Since v0 is unrestricted, we need to make the term in parentheses zero to obtain a
finite minimum (equal to zero), which gives the first equation of the dual problem.
Similarly, for v1 we have

min
v1

v1(1− y1 − z1 + αqz2),

which yields the second equation of the dual problem. Finally, for vj , j ≥ 2, we
perform the minimizations again separately to obtain the third set of equations in the
dual problem.

4. Statement of Claim. Let vj denote the optimal primal solution and yj and
zj the optimal dual solution (i.e., we are dropping the usual “stars” that denote
optimality). Suppose, as claimed, that there exists a j∗ such that

v0 = f0,

vj = α(pvj+1 + qvj−1) > fj for 0 < j < j∗,

vj = fj > α(pvj+1 + qvj−1) for j∗ ≤ j.

Now we are interested in solving the equations

v0 = f0,(4.1)

vj = α(pvj+1 + qvj−1) for 0 < j < j∗,(4.2)

vj = fj for j∗ ≤ j.(4.3)

5. Invoke Complementarity. Another useful property in linear programming is
the complementarity theorem; see, e.g., [14, pp. 67–68]. In our particular case, it
states that any optimal solution vj to the primal problem and any optimal solutions
yj and zj to the dual problem satisfy

zj(αpvj+1 + αqvj−1 − vj) = 0, j ≥ 1,(5.1)
yj(fj − vj) = 0, j ≥ 0.(5.2)
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Hence, complementarity equations (5.1) and (5.2) imply that

zj = 0, j ≥ j∗,(5.3)
yj = 0, 0 < j < j∗.(5.4)

Since any optimal solution to the dual problem is also feasible (i.e., it satisfies all the
equations of the dual problem) using (5.3), we have

yj∗ − αpzj∗−1 = 1,
yj = 1, j > j∗.

Similarly, using (5.4) we obtain

z1 − αqz2 = 1,
−αpzj−1 + zj − αqzj+1 = 1, 1 < j < j∗.

6. Second-Order Difference Equations. The problem of solving (4.1)–(4.3) from
the primal problem and the equations defining the dual problem has therefore been
reduced to a pair of second-order difference equations with Dirichlet boundary condi-
tions (i.e., boundary conditions that involve a known function) [9]. The first difference
equation (for the primal) is

vj − α(pvj+1 + qvj−1) = 0, 0 < j < j∗,(6.1)
v0 = 0,(6.2)
vj∗ = fj∗ ,(6.3)

and the second one (for the dual) is

zj − α(pzj−1 + qzj+1) = 1, 0 < j < j∗,(6.4)
z0 = 0,(6.5)
zj∗ = 0.(6.6)

Note that in (6.2) we used the fact that f0 = 0, and in (6.4) we have added a new
variable, z0, which is just fixed to zero (by (6.5)). In this way we consolidate the
difference equation for zj to a more elegant form.

7. Solve the Difference Equations. First, we solve (6.1) for vj . Suppose that
vj = ξj for some positive real number ξ. Substituting into the difference equation,
we get ξj − α(pξj+1 + qξj−1) = 0. Dividing by ξj−1, we get a quadratic equation
−αpξ2 + ξ − αq = 0 with the two roots

ξ− =
−1−

√
1− 4α2pq

−2αp , ξ+ =
−1 +

√
1− 4α2pq

−2αp ,

where we used ξ− to denote the larger root, which is greater than one, and ξ+ for the
smaller root, which is strictly between zero and one (these properties hold if and only if
α < 1). The general solution to the difference equation is therefore vj = c+ξ

j
++c−ξ

j
−.

Using the first boundary condition (6.2) and the second boundary condition (6.3), we
obtain

vj = fj∗
ξj
+ − ξj

−
ξj∗
+ − ξj∗

−
, 0 < j < j∗.(7.1)
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Now, we solve for zj in (6.4). For a particular solution, we choose zj ≡ c. Sub-
stituting into the difference equation, we get c = 1/(1 − α). The general solution,
which is the sum of the particular and the homogeneous solutions (the homogeneous
equation is identical to (6.1) except for the interchange of p and q), is given by
zj = 1

1−α + c+ζ
j
+ + c−ζ

j
−, where

ζ+ = 1/ξ− =
−1 +

√
1− 4α2pq

−2αq ,

ζ− = 1/ξ+ =
−1−

√
1− 4α2pq

−2αq .

Using the boundary conditions to eliminate the two undetermined constants, we get

zj =

(
1− ζj∗

− − 1

ζj∗
− − ζj∗

+

ζj
+ − ζj∗

+ − 1

ζj∗
+ − ζj∗

−
ζj
−

)/
(1− α), 0 < j < j∗.

To summarize, we have

vj =




0, j = 0,

fj∗
ξj
+−ξj

−
ξj∗
+ −ξj∗

−
, 0 < j < j∗,

fj , j∗ ≤ j,

zj =



(
1− ζj∗

− −1

ζj∗
− −ζj∗

+
ζj
+ − ζj∗

+ −1

ζj∗
+ −ζj∗

−
ζj
−

)/
(1− α), 0 < j < j∗,

0, j∗ ≤ j,

yj =




1 + αqz1, j = 0,

0, 0 < j < j∗,

1 + αpzj∗−1, j = j∗,

1, j∗ < j.

In Figure 4 we illustrate the behavior of optimal dual variables y and z for the sample
problem illustrated by Figure 1.

8. Check the Inequalities. All that remains is to show that the various inequal-
ities are satisfied:

yj ≥ 0, j ≥ 0,(8.1)
zj ≥ 0, j ≥ 1,(8.2)
vj ≥ fj, j ≥ 0,(8.3)
vj ≥ α(pvj+1 + qvj−1), j ≥ 1.(8.4)

8.1. Inequalities (8.2). Inequalities (8.2) follow trivially for j ≥ j∗ from the
formula given above for zj . To check them for j < j∗, we do a proof by contradiction.
So, suppose that zj < 0 for some 0 < j < j∗. Then there exists a k at which zk is
negative and a local minimum:

zk ≤ zk−1 and zk ≤ zk+1.
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Fig. 4 Plot of optimal values of y and z corresponding to the case where α = 0.999, p = 0.5,
∆x = 0.1, S = 9, j∗ = 112, and xj∗ = 11.2.

The reasoning leading to this property is as follows. If j itself is the index of a local
minimum, there is nothing else to prove. Otherwise, there are two possibilities: we
have either zj+1 > zj > zj−1 or zj−1 > zj > zj+1. In the first case we have either
zj−2 ≥ zj−1, in which case zj−1 is a local minimum, or zj−2 < zj−1. If the latter
occurs, we can repeat the same argument with the triple j − 3, j − 2, j − 1, and we
find either zj−2 to be a local minimum or zj−3 < zj−2 < zj−1. Continuing in this
fashion we are bound to encounter a local minimum either at z1 < 0 (since z0 = 0)
or earlier. In the second case, the reasoning is identical and yields a local minimum
either at zj∗−1 < 0 (since zj∗ = 0) or earlier.

On the other hand, as a consequence of the above observation we also have

zk = 1 + α(pzk−1 + qzk+1)
≥ 1 + α(pzk + qzk)
= 1 + αzk.

Rearranging, we get zk ≥ 1/(1 − α) > 0, which contradicts the assumption that zk

is negative. Hence, inequalities (8.2) hold for all j. This is a simple example of a
minimum principle as one encounters in harmonic analysis; see, e.g., [7, 8]. For con-
tinuously differentiable functions, the local version of the principle states that any
nonconstant harmonic function defined over a domain (in R

n) not containing +∞
as an interior point cannot attain a local minimum and maximum over the domain
in question. Under further technical conditions, according to the global version of
the minimum/maximum principle, the largest and the smallest values of a harmonic
function on a domain are attained only at the points of the boundary of the domain.
For superharmonic functions, which are of interest here since z is an α-superharmonic
(discrete) function, the following minimum principle is well known. Let u be a super-
harmonic function in some domain D in R

n. If, for any boundary point η ∈ ∂D and
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any ε > 0, there is a neighborhood V = V (η) such that u(x) > −ε in D ∩ V , then
either u > 0 or u ≡ 0 in D.

In our simpler, discrete setting the above analysis gave an analogue of the min-
imum principle for an α-superharmonic function z solving (6.4)–(6.6). We have es-
tablished that the function z is nonnegative for all values of j between 0 and j∗.
Furthermore, it is immediate to check that we cannot have a local minimum value
equal to zero for 1 < j < j∗ − 1; i.e., zj = 0 with zj−1 > 0, zj+1 > 0 is impossible.
It is also obvious that z cannot be identically zero. Therefore, the (global) minimum
value is zero and attained only at the two boundary points, i.e., j = 0 and j = j∗,
which is also observed in the right plot of Figure 4 (recall that z0 = 0 by (6.5)). In
the terminology of [6], z is an instance of an excessive function.

8.2. Inequalities (8.1). These follow trivially from inequalities (8.2) and the for-
mula for yj .

8.3. Inequalities (8.4). These hold trivially for j < j∗. They also hold trivially
for j > j∗, provided we assume that αp ≤ 1/2 and αq ≤ 1/2. We need to make an
additional assumption! To see this, let j = j∗ + k, k = 1, 2, . . . , and assume αp ≤ 1/2
and αq ≤ 1/2. Then

αpvj∗+k+1 + αqvj∗+k−1 = αpfj∗+k+1 + αqfj∗+k−1

≤ 1
2
fj∗+k+1 +

1
2
fj∗+k−1

=
1
2
(fj∗ + (k + 1)∆x) +

1
2
(fj∗ + (k − 1)∆x)

= fj∗ + k∆x
= fj∗+k

= vj∗+k.

The one just given suffices but is not necessary (the example of Figure 5 shows that
the condition is not necessary). A necessary and sufficient condition is obtained by
recalling that vj = fj = xj−S for j > j∗ (even for this we need to check that xj∗ > S).
It is easy to see after some simple algebraic manipulation that for j = j∗ + k and
k = 1, 2, . . . , we have

αpvj∗+k+1 + αqvj∗+k−1 ≤ vj∗+k

if and only if

(1− α)fj∗ ≥ α∆x(p− q) + k(α− 1)∆x.

Since k(α−1)∆x is negative (α < 1), the left-hand side is maximized at k = 1. Hence,
(8.4) holds with vj = fj if and only if

(1 − α)fj∗ ≥ α∆x(p − q) + (α− 1)∆x.(8.5)

Since this condition is somewhat more tedious to check (it requires the computation
of fj∗) we use the simpler sufficient conditions αp ≤ 1/2, αq ≤ 1/2.

We shall come back to inequality (8.4) for j = j∗ after we consider inequalities
(8.3).
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8.4. Inequalities (8.3). For j ≥ j∗, these are trivial. Furthermore, it follows
immediately from (7.1) that vj ≥ 0 for all j (note that the roots ξ+, ξ− satisfy ξ− > 1
and 0 < ξ+ < 1, provided that α < 1). Hence, we just need to check that vj ≥ xj −S
for j < j∗. In order to have these inequalities hold for j < j∗, we need to pick

j∗ ∈ K :=

{
k : fk

ξk−1
+ − ξk−1

−
ξk
+ − ξk−

> fk−1

}
.

Of course, we need to assume that K is nonempty. Clearly no k for which xk < S
can belong to the set (because both fk and fk−1 vanish). For convenience, then, we
assume that S ∈ E—that is, S = jS∆x for some jS . In that case, we assume that
k = jS + 1 belongs to the set K, i.e.,

fjS+1
ξjS

+ − ξjS

−
ξjS+1
+ − ξjS+1

−
> fjS .

Notice that K is a set with a finite number of elements. To see this, it suffices to
observe that for k ∈ K we have

ξk−1
+ − ξk−1

−
ξk
+ − ξk−1

− ξ−
>

fk−1

fk
,

and hence the left-hand side behaves as 1/ξ− and the right-hand side as 1 for large
k, which implies that k cannot grow without bound since ξ− > 1. Let hj = xj − S.
With such a choice and the assumption that j∗ ∈ K, we have that vj∗ = hj∗ and
vj∗−1 > hj∗−1. Suppose that vj′ < hj′ for some j′ < j∗. Then the sequence uj :=
vj − hj must have a local maximum at some point, say k, strictly between j′ and j∗.
That is, uk > uk−1 and uk > uk+1. However, we also have

uk = vk − hk

= α(pvk+1 + qvk−1)− 1
2
(hk+1 + hk−1)

≤ 1
2
(vk+1 + vk−1)− 1

2
(hk+1 + hk−1)

=
1
2
(uk+1 + uk−1)

< uk.

Clearly this is impossible. Hence, uj cannot have a local maximum, and therefore vj

cannot dip below hj .

8.5. Inequality (8.4) with j = j∗. Finally, to get inequality (8.4) for j = j∗, we
need to assume that j∗ + 1 	∈ K. That is,

fj∗+1
ξj∗
+ − ξj∗

−
ξj∗+1
+ − ξj∗+1

−
≤ fj∗ .(8.6)

To see why, let wj denote the solution to the difference equation

wj − α(pwj+1 + qwj−1) = 0, 0 < j,

w0 = 0,
wj∗ = fj∗ .
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This is the same as (6.1)–(6.3) but extended to all j. Clearly we have vj∗ = wj∗ and
vj∗−1 = wj∗−1. Hence, (8.4) at j∗ will hold if and only if vj∗+1 ≤ wj∗+1:

fj∗+1 = vj∗+1 ≤ wj∗+1 = fj∗
ξj∗+1
+ − ξj∗+1

−
ξj∗
+ − ξj∗

−
.

The resulting inequality is clearly equivalent to (8.6).
A natural consequence of our analysis above is that j∗ should be chosen as

j∗ := max

{
k : fk

ξk−1
+ − ξk−1

−
ξk
+ − ξk−

> fk−1

}
.

9. Summary. The claimed result holds, provided we make the assumptions that
1. αp ≤ 1/2 and αq ≤ 1/2,
2. S = jS∆x for some integer jS , and
3. fjS+1

(
ξjS

+ − ξjS

−
)
/
(
ξjS+1
+ − ξjS+1

−
)
> fjS .

With these assumptions, the optimal choice of j∗ is

j∗ := max

{
k : fk

ξk−1
+ − ξk−1

−
ξk
+ − ξk−

> fk−1

}
.

The result of the present paper holds even if the assumption αp ≤ 1/2 is violated.
Such a case is illustrated in Figure 5, where αp > 1/2. However, in this case, the

Fig. 5 Plot of v∗(x) and f(x) corresponding to the case where α = 0.999, p = 0.51, ∆x = 0.1, and
S = 9. In this case, j∗ = 124 and therefore xj∗ = 12.4.
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necessary and sufficient condition (8.5) holds. Low interest rates (i.e., α values very
close to one) and an upward-biased (p > 1/2) stock movement model may easily
induce a violation of the assumed upper bound of 1/2 on αp. Such cases certainly
make sense economically. The more involved necessary and sufficient condition (8.5)
can be checked for these cases, provided that assumptions 2 and 3 of section 1 hold.

We conclude the paper with two exercise suggestions. The analysis and results
presented here remain valid if, for the stock price,

(a) we use a Markov chain model with absorption at zero, where at each step
the stock price moves up by ∆x with probability p, and moves down by ∆x
with probability q (with p + q < 1), and does not change with probability
1− (p+ q) (this is a model closer to reality for the movement of stock prices
over a short time interval); and

(b) we use a geometric random walk model where the stock price at the next
period becomes xλ with probability p, and x/λ with probability 1− p, where
λ > 1 and the current price is x.

We provide some guidelines and hints below on the extension of our analysis to these
two cases.

For case (a), the analysis and results hold with a slight modification in the valu-
ation formula. Adjusting the second set of constraints in our original linear program-
ming model, and rearranging the terms of this constraint, one can see that an almost
identical model solves the valuation problem at hand, and only the right-hand side of
the second constraint set is subject to change. This feature leads to a change in the
structure of the difference equations in our original problem, which in turn leads to
a slight change in the roots of the difference equation. The formulae for v, y, and z
retain the same form except for a slight change in the specified roots.

Case (b) is slightly more involved in that the state space is constructed from some
initial price, and consequently one deals with the state space Em = {Xm

0 λj : j ∈ Z},
where Xm

0 is the initial stock price. The value function should now tend to zero when
j → −∞, whereas in the problem treated in the previous sections we had v(0) = 0.
The key to the solution lies in using this modified boundary condition to obtain a
particular solution to the second-order difference equations of section 7.
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