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Much of the work on path-dependent options assumes that the underlying asset price

follows geometric Brownian motion with constant volatility. This paper uses a more

general assumption for the asset price process that provides a better fit to the empirical

observations. We use the so-called constant elasticity of variance (CEV) diffusion model where

the volatility is a function of the underlying asset price. We derive analytical formulae for

the prices of important types of path-dependent options under this assumption. We demon-

strate that the prices of options, which depend on extrema, such as barrier and lookback

options, can be much more sensitive to the specification of the underlying price process than

standard call and put options and show that a financial institution that uses the standard

geometric Brownian motion assumption is exposed to significant pricing and hedging errors

when dealing in path-dependent options.

(Path-Dependent Options; Barrier Options; Lookback Options; Diffusion Processes; CEV Model;

Generalized Bessel Process; Radial Ornstein-Uhlenbeck Process)

1. Introduction
A standard option gives its owner the right to buy

(or sell) some asset in the future for a fixed price. The

fixed price is known as the strike price. Call options

confer the right to buy the asset, while put options

confer the right to sell the asset. Path-dependent

options represent extensions of this concept. For

example, a lookback call option confers the right to buy

an asset at its minimum price over some time period.

A barrier option resembles a standard option except

that the payoff also depends on whether or not the

asset price crosses a certain barrier level during the

option’s life. Lookback options and barrier options

are two of the most popular types of path-dependent

options.

Most of the academic literature on path-dependent

options follow the lead set by Black and Scholes (1973)

and assume that the underlying asset price follows

geometric Brownian motion with constant volatility.

This implies that the future asset prices are log-

normaly distributed and leads to tractable analytical

formulae.1 However, the evidence indicates that this

distributional assumption is not rich enough to cap-

ture the empirical observations. If the true asset price

process was geometric Brownian motion with con-

stant volatility, then the Black-Scholes formula could

be used to find out this volatility by equating the

model price of a standard option to its market price.

The volatility thus obtained is known as the implied

1Merton (1973) derives a closed-form pricing formula for down-

and-out call options. Rubinstein and Reiner (1991) extend Merton’s

result to other types of barrier options. Goldman et al. (1979),

Goldman et al. (1979), and Conze and Vishwanathan (1991)

provide closed-form pricing formulae for lookback options.
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volatility of the option. Empirically, we find that the

implied volatilities computed from market prices of

options with different strike prices are not constant

but vary with strike price. This variation is observed

across a wide range of markets and underlying assets

and is known as the implied volatility smile or frown

depending on its shape. The lognormal assumption

with constant volatility does not capture this effect.

There are different ways of extending the basic

model to incorporate this feature. The present paper

uses the constant elasticity of variance (CEV) diffusion

to model asset prices. This process, first introduced

to finance by Cox (1975), is capable of reproducing

the volatility smile observed in the empirical data.

Our paper uses this model to examine the pricing and

hedging of lookback and barrier options.

The contributions of the present paper are two-fold.

First, we derive solutions for barrier and lookback

option prices under the CEV process in closed

form. More generally, we first derive closed-form

expressions for barrier and lookback option prices

under a general time-homogeneous, one-dimensional

diffusion in terms of the two independent solutions

of the stationary Black-Scholes differential equation

with state-dependent volatility. Specializing to the

CEV process, we then derive closed-form expressions

for the stationary solutions and compute barrier and

lookback option prices under the CEV process.

Second, we use the closed-form pricing formulae to

carry out a comparative statics analysis. We demon-

strate that barrier and lookback option prices and

hedge ratios under the CEV process can deviate

dramatically from the lognormal values. Therefore,

substantial model risk exposure exists for finan-

cial institutions making markets in path-dependent

options. Strikingly, we find that deltas of up-and-

out calls, down-and-out puts, double knock-out, and

lookback options can have different signs under the

CEV and lognormal specifications. In these cases,

delta hedging with a misspecified model can produce

worse results than no hedging at all. Finally, to further

assess model risk inherent in writing these contracts,

we carry out a dynamic hedging simulation experi-

ment that quantifies the impact of model misspecifi-

cation on the outcome of dynamic hedging strategies.

Our results indicate that it is much more important

to have an accurate model specification for pricing

and hedging barrier and lookback options than for

standard options.

This paper is organized as follows. Section 2

introduces barrier and lookback options. Section 3

focuses on general valuation results. We derive a

closed-form expression for the Laplace transform of

a barrier option price in time to expiration under

a time-homogeneous, one-dimensional diffusion. The

formula involves two independent solutions of the

stationary Black-Scholes differential equation with

state-dependent volatility. Similarly, closed-form for-

mulae for lookback options are given in terms of

stationary solutions. In §4, we specialize to the CEV

diffusion and derive closed-form expressions for the

stationary solutions in terms of Whittaker and Bessel

functions. In §5, we compute barrier and lookback

option prices and sensitivities, conduct a compara-

tive statics analysis, and carry out a dynamic hedg-

ing experiment to quantify model risk due to model

misspecification faced by financial institutions mak-

ing markets in path-dependent options. Section 6 con-

cludes the paper. Proofs are collected in Appendix A.

Appendix B discusses the case of positive elasticity.

Appendix C contains explicit expressions for the inte-

grals entering the barrier option pricing formulae.

Appendix D discusses Laplace transform inversion.

2. The Contracts: Barrier and
Lookback Options

Barrier options are probably the oldest path-dependent

options. Snyder (1969) describes down-and-out stock

options as “limited risk special options.” Merton

(1973) derives a closed-form pricing formula for

down-and-out calls under the lognormal assumption.

A down-and-out call is identical to a European2 call

with the additional provision that the contract is can-

celed (knocked out) if the underlying asset price hits

a prespecified lower barrier level. The contract may

also specify a cash rebate to be received by the option

holder if cancellation occurs. The rebate is received

when the knock-out barrier is first reached.

2 European options can only be exercised on the expiration date,

while American options can be exercised on any business day

through and including expiration.
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An up-and-out call is the same, except the contract is

canceled when the underlying asset price first reaches

a prespecified upper barrier level. A cash rebate may

also be received when the barrier is first reached.

Unlike down-and-out calls which are canceled out-

of-the-money (the lower barrier is placed below the

strike price), up-and-out calls are canceled in-the-

money (the upper barrier is placed above the strike).

Generally, contracts that are canceled in-the-money

are called reverse knock-out options.

Down-and-out and up-and-out puts are similar

modifications of European put options. Knock-in

options are complementary to the knock-out options:

They pay off at expiration if and only if the under-

lying asset price does reach the prespecified barrier.

The combination of otherwise identical in and out

options is equivalent to the corresponding stan-

dard European option. Rubinstein and Reiner (1991)

derive closed-form pricing formulae for all eight

types of single-barrier options under the lognormal

assumption.

Double-barrier (double knock-out) options are canceled

when the underlying asset first reaches either the

upper or the lower barrier. A rebate may also be

received at that time. Different representations of

the closed-form pricing formula for double barrier

options under the lognormal assumption are obtained

by Kunitomo and Ikeda (1992), Geman and Yor (1995),

Pelsser (2000), and Schroder (2000).

A capped call is an up-and-out call with the cash

rebate equal to the difference between the upper bar-

rier (cap) and the strike price. It combines a European

exercise feature and an automatic exercise feature. The

automatic exercise is triggered when the index value

first exceeds the cap (Broadie and Detemple 1995).

Barrier options are one of the most popular types

of path-dependent options traded over-the-counter on

stocks, stock indexes, currencies, commodities, and

interest rates. Derman and Kani (1996) offer a detailed

discussion of their investment, hedging, and trading

applications. There are several reasons to use bar-

rier options rather than standard options. First, bar-

rier options may more closely match investor beliefs

about the future behavior of the asset. By buying a

barrier option, one can eliminate paying for those

scenarios one feels are unlikely. Second, barrier option

premiums are generally lower than those of standard

options because an additional condition has to be met

for the option holder to receive the payoff (e.g., the

lower barrier not reached for down-and-out options).

The premium reduction can be substantial, especially

when volatility is high.

Lookback options are another important example of

path-dependent options. Their payoff depends on

the maximum or minimum underlying asset price

attained during the option’s life. A standard lookback

call gives the option holder the right to buy at the low-

est price recorded during the option’s life. A standard

lookback put gives the right to sell at the highest price

recorded during the option’s life. Lookbacks were

first studied by Goldman, Sosin, and Gatto (1979)

and Goldman, Sosin, and Shepp (1979) who derived

closed-form pricing formulae under the lognormal

assumption. In addition to standard lookback options,

Conze and Vishwanathan (1991) introduce calls on

maximum and puts on minimum. A call on maximum

pays off the difference between the realized maximum

price and some prespecified strike or zero, whichever

is greater. A put on minimum pays off the difference

between the strike and the realized minimum price

or zero, whichever is greater. These options are called

fixed-strike lookbacks. In contrast, the standard lookback

options are also called floating-strike lookbacks, because

the floating terminal underlying price ST serves as the

strike price in standard lookback options.

3. General Valuation Results
We first develop some results for a general

one-dimensional diffusion and later specialize to the

CEV assumption. We take an equivalent martingale

measure (risk-neutral probability measure) Q as given

(Duffie 1996). Under Q, we suppose that the asset

price �St� t ≥ 0� is a time-homogeneous, nonnegative
diffusion process solving the stochastic differential

equation

dSt = �Stdt+	
St�StdBt� t ≥ 0� S0 = S > 0� (1)

where �Bt� t ≥ 0� is a standard Brownian

motion defined on a filtered probability space


��ℱ � �ℱt�t≥0�Q�, � is a constant (� = r − q, where

r ≥ 0 and q ≥ 0 are the constant risk-free interest

Management Science/Vol. 47, No. 7, July 2001 951
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rate and the constant dividend yield, respectively),

and 	 = 	
S� is a given local volatility function, which

is assumed continuous and strictly positive for all

S ∈ 
0���. We also assume that the local volatility
function remains bounded as S→�. This is sufficient
to insure that infinity is a natural boundary3 for the

diffusion (1). The boundary behavior at the origin

depends on the growth behavior of 	
S� as S → 0. If

	
S� remains bounded as S→ 0, then zero is a natural

boundary. If 	
S� grows as S−p with some 0< p ≤ 1/2
as S → 0, then it is an exit boundary (bankruptcy). If

	
S� grows as S−p with some p > 1/2 as S → 0, then

zero is a regular boundary point, and we specify it as

a killing boundary by adjoining a killing boundary

condition (bankruptcy).

Throughout this paper t denotes the running time

variable. We assume that all options are written at

time t = 0 and expire at time t = T > 0. Time remain-

ing to expiration is denoted by � = T − t. Suppose

the initial asset price is S and the lower and upper

barrier levels are L and U , L < S < U . Define the

first hitting time of the lower barrier �L �= inf�t ≥
0; St = L�, the first hitting time of the upper bar-

rier �U �= inf�t ≥ 0�St = U�, and the first exit time

from an interval between the two barriers �
L�U� �=
inf�t ≥ 0� St 	 
L�U�� (by convention, the infimum of
the empty set is infinity). Then a down-and-out call

with strike price K and no rebate has the payoff at

expiration 1��L>T�
ST −K�+, where 1�A� is the indica-

tor function of the event A, and x+ ≡max�x�0� is the
positive part of x. The up-and-out call has the payoff

1��U>T�
ST −K�
+. The double-barrier call has the pay-

off 1��
L�U�>T�
ST −K�
+. Rebates are fixed cash amounts

paid at times � = �L, �U , or �
L�U�, given � ≤ T .

Before attacking the problem of pricing finitely

lived barrier options with rebates and expiration

T <�, it is convenient to examine first three more
primitive securities: perpetual claims that pay one

dollar at times �L, �U , and �
L�U�, respectively, and

have no set expiration date (see Ingersoll 1987, p. 371).

The claim that pays one dollar at �
L�U� can be

decomposed into a combination of two additional

3 The boundary classification of one-dimensional diffusions due to

Feller is described in Karlin and Taylor (1981, Chapter 15) and

Borodin and Salminen (1996, Chapter 2).

claims, the first claim paying one dollar at �L, given

the lower barrier is reached first (�L < �U ), and the

second claim paying one dollar at �U , given the upper

barrier is reached first (�U < �L).

Proposition 1. Suppose the risk-neutral asset price
process is a diffusion (1) and the constant risk-free interest
rate is r > 0. Then the prices at time t= 0 of the five perpet-
ual claims described above are (the expectation ES is with
respect to the risk-neutral measure Q and the subscript S
indicates that the process (1) is starting at S0 = S):

• One dollar paid at �L:

ES
[

e−r�L1��L<��
]

= �r
S�

�r
L�
� S ≥ L� (2)

• One dollar paid at �L, given �L < �U :

ES
[

e−r�L1��L<�U �
]

= �r
S�U�

�r
L�U�
� L≤ S ≤ U� (3)

• One dollar paid at �U :

ES
[

e−r�U 1��U<�0�
]

=  r
S�

 r
U�
� S ≤ U� (4)

• One dollar paid at �U , given �U < �L:

ES
[

e−r�U 1��U<�L�
]

= �r
L�S�

�r
L�U�
� L≤ S ≤ U� (5)

• One dollar paid at �
L�U�:

ES!e
−r�
L�U� "= �r
L�S�+�r
S�U�

�r
L�U�
� L≤S≤U� (6)

where ( for any 0<A< B <�)

�r
A�B� �= �r
A� r
B�− r
A��r
B�# (7)

The functions  r
S� and �r
S� can be characterized as the

unique (up to a multiplicative constant) solutions of the

ordinary differential equation (ODE)4

1

2
	2
S�S2

d2u

dS2
+�S du

dS
− ru= 0� S ∈ 
0���� (8)

first by demanding that  r
S� is increasing in S and �r
S�

is decreasing in S, and secondly, if the origin is a regular

boundary point, posing a killing boundary condition:

 r
0+�= 0# (9)

4 In our characterization of the functions  r and �r , we follow

Borodin and Salminen (1996, pp. 18–19). The subscript r indicates

the dependence on the risk-free rate that enters the ODE (8).
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The functions  r
S� and �r
S� have the following

properties (Borodin and Salminen 1996, pp. 18–19). If

zero is an exit boundary, then

 r
0+�= 0� �r
0+� <+�# (10)

If zero is a natural boundary, then

 r
0+�= 0� �r
0+�=+�# (11)

Because we assume that 	
S� is bounded as S → �,
+� is a natural boundary and

lim
S→�

 r
S�=+�� lim
S→�

�r
S�= 0# (12)

The functions  r
S� and �r
S� are called fundamen-

tal solutions of the ODE (8). They are linearly inde-

pendent and all solutions can be expressed as their

linear combinations. Moreover, the Wronskian wr ,

defined by

�r
S�
d r
dS


S�− r
S�
d�r

dS

S�= �
S�wr� (13)

is independent of S. Here �
S� is the scale density of

the diffusion (1)

�
S�= exp
{

−
∫ S 2�dx

	2
x�x

}

# (14)

Proposition 1 expresses the prices of the five claims

in terms of the two fundamental solutions of the

stationary Black-Scholes differential equation with

the local volatility function 	
S� (note that the time

derivative term is absent from Equation (8)). For

geometric Brownian motion St = Se
�−	
2/2�t+	Bt with

constant volatility 	 , the functional form of the

fundamental solutions is (see Ingersoll 1987, p. 372,

and Carr and Picron 1999):

 r
S� = S&+� �r
S�= S&−�

&± = −&±
√

&2+ 2r
	2
� (15)

& = �

	2
− 1
2
#

In §4 we present closed-form expressions for  and �

for the CEV process.

To value cash rebates included in finitely lived

knock-out option contracts with expiration T <�, we
need to value claims that pay one dollar at times � =
�L, �U , or �L�U , given � ≤ T . That is, we need to eval-

uate expectations of the form ES!1��≤T�e
−r�".

Proposition 2. For any ' > 0, the Laplace transform

of the rebate price in time to expiration5 is equal to 1/'

times the price of the corresponding perpetual claim with

the adjusted discount rate r+':
∫ �

0
e−'TES

[

1��≤T�e
−r�]dT = 1

'
ES!e

−
r+'��"# (16)

Given the associated perpetual claim value (Proposition 1),

the rebate price is found by inverting this Laplace

transform.

Now we are ready to price terminal payoffs of

finitely lived knock-out options. First, consider the

more difficult case of double-barrier options. We need

to evaluate the discounted expectation (in this paper

we focus on calls; puts can be treated similarly)

e−rTES
[

1��
L�U�>T�
ST −K�
+]# (17)

Proposition 3. Let �
S� be the scale density (14) and

�
S�—the speed density6 of the diffusion (1)

�
S�= 2

	2
S�S2 �
S�
# (18)

For 0< K ≤A< B <� and ' > 0, define

I'
K�A�B� �=
∫ B

A

Y −K� '
Y ��
Y �dY � (19)

J'
K�A�B� �=
∫ B

A

Y −K��'
Y ��
Y �dY � (20)

where  ' and �' are the functions defined in Proposition 1

(with the risk-free rate r replaced with '). Then the Laplace

5 It is sometimes easier to solve for the Laplace transform of an

option price in time to expiration than for the option price itself.

This Laplace transform (premultiplied by ') can be interpreted as

the price of an exponentially stopped option, i.e., an option expiring

at a random independent exponential time (the first jump time of

a Poisson process with intensity ' and independent of the under-

lying asset price process). Geman and Yor (1993) use this idea

to obtain closed-from solutions for arithmetic Asian options. Carr

(1998) applies this idea to develop analytical approximations to

value American options.
6 See Karlin and Taylor (1981, p. 194) Karatzas and Shreve (1991,

p. 343) and Borodin and Salminen (1996, p. 17) for discussions of

scale and speed densities. Our definition of the speed density coin-

cides with that of Karatzas and Shreve (1991) and Borodin and

Salminen (1996) and differs from Karlin and Taylor (1981) who do

not include two in the definition.
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transform of the expectation in Equation (17) in time to

expiration is given by:

∫ �

0
e−'TES

[

1��
L�U�>T�
ST−K�
+]dT = 1

w'�'
L�U�

×



































�'
L�S�! '
U�J'
K�K�U�

−�'
U�I'
K�K�U�"� if S≤K�
�'
L�S�! '
U�J'
K�S�U�

−�'
U�I'
K�S�U�"

+�'
S�U�!�'
L�I'
K�K�S�

− '
L�J'
K�K�S�"� if S>K�

(21)

where �'
A�B� and w' are defined in Equation (7) and

Equation (13), respectively.

Then the double knock-out option price in

Equation (17) is obtained by inverting the Laplace

transform (21) and discounting at the risk-free rate.

The single-barrier down-and-out (up-and-out) option

prices are obtained by taking the limit U →� (L→ 0)

in Equation (21) and using the boundary properties

of the functions  and � given in Equations (9)–(12).

In the interest of brevity we omit the resulting pric-

ing formulae for single-barrier options. Finally, the

capped call with the strike price K and cap price U is

valued as a portfolio of an up-and-out call with the

upper barrier U and a claim that pays a cash rebate

equal to the difference 
U −K� at the first hitting time
�U , given �U ≤ T .

We now turn to lookback options. To price lookback

options we need distributions of the maximum and

minimum prices.

Lemma 1. Let Mt and mt be the maximum and mini-

mum prices recorded to date t,Mt =max0≤u≤t Su and mt =
min0≤u≤t Su. Define the functions F 
y�x� t� �=Qx
mt ≤ y�

and G
y�x� t� �=Qx
Mt ≥ y� (the probabilities are calcu-

lated with respect to the risk-neutral measure Q and the

subscript x indicates that the process is starting at S0 = x).

Then for any ' > 0

∫ �

0
e−'tF 
y�x� t�dt = 1

'

�'
x�

�'
y�
� 0< y ≤ x� (22)

∫ �

0
e−'tG
y�x� t�dt = 1

'

 '
x�

 '
y�
� 0< x ≤ y� (23)

where  ' and �' are the functions defined in Proposition 1.

The probability distributions of the maximum and

minimum are recovered by inverting the Laplace

transforms. Lookback prices are expressed in terms of

these probabilities.

Proposition 4. The prices of the standard lookback

call, the standard lookback put, the call on maximum, and

the put on minimum at some time 0 ≤ t < T during the

option’s life are:

e−r�Et!
ST −mT �
+" = e−q�St− e−r�mt

+e−r�
∫ mt

0
F 
y�St� ��dy� (24)

e−r�Et!
MT −ST �+" = e−r�Mt− e−q�St

+e−r�
∫ �

Mt

G
y�St� ��dy� (25)

e−r�Et!
MT −K�+"

=



















e−r�
∫ �

K
G
y�St� ��dy� Mt ≤ K�

e−r�Mt− e−r�K
+e−r�

∫ �

Mt

G
y�St� ��dy� Mt > K�

(26)

e−r�Et!
K−mT �
+"

=



















e−r�
∫ K

0
F 
y�St� ��dy� mt ≥ K�

e−r�K− e−r�mt

+e−r�
∫ mt

0
F 
y�St� ��dy� mt < K�

(27)

where all contracts are initiated at time zero, Et!·" ≡
E!·�ℱt", mt and Mt are the minimum and maximum prices

recorded to date t (known at time t), St is the current

underlying asset price at time t, and � = T − t is the time

remaining to expiration.
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4. The CEV Process
In this Section we specialize to the constant elasticity

of variance (CEV) process of Cox (1975)7

dSt = �Stdt+0S
1+1
t dBt� t ≥ 0� S0 = S > 0# (28)

The CEV specification (28) nests the lognormal model

of Black and Scholes (1973) and Merton (1973) (1= 0)
and the absolute (1=−1) and square-root (1=−1/2)
models of Cox and Ross (1976). For 1 > 0 (1 < 0),

local volatility 	
S� = 0S1 monotonically increases

(decreases) as the asset price increases. The two model

parameters 1 and 0 can be interpreted as the elas-

ticity of the local volatility, d	/dS = 1	/S, and the

scale parameter fixing the initial instantaneous volatil-

ity at time t = 0, 	0 = 	
S0� = 0S
1
0 , respectively. Cox

(1975) originally studied the case 1 < 0. Emanuel

and MacBeth (1982) extended his analysis to the case

1 > 0. Cox originally restricted the elasticity parame-

ter to the range −1 ≤ 1 ≤ 0. However, Reiner (1994)
and Jackwerth and Rubinstein (1998) find that typical

values of the CEV elasticity implicit in the S&P 500

stock index option prices are strongly negative and

are as low as 1 = −4. They term the corresponding

model unrestricted CEV. The unrestricted CEV pro-

cess is used to model the volatility smile effect in the

equity index options market.

The CEV diffusion has the following boundary

characterization. For 1< 0, infinity is a natural bound-

ary. For −1/2 ≤ 1 < 0, the origin is an exit boundary.

For 1 < −1/2, the origin is a regular boundary point
and is specified as a killing boundary by adjoining a

killing boundary condition. For 1= 0 (the lognormal
model), both zero and infinity are natural boundaries.

For 1> 0, the origin is a natural boundary and infinity

is an entrance boundary.8

7Our parameter 1 is defined as the elasticity of the local volatility

function. Cox’s elasticity parameter � in dSt = �Stdt+ 0S�/2t dBt is

defined as the elasticity of the instantaneous variance of the asset

price. The two parameters are related by: 1+1= �/2.
8 In §3 we assumed that 	
S� remains bounded as S → �
and, consequently, +� is a natural boundary. The CEV process

with 1 > 0 does not satisfy this assumption. This results in the

nonexistence of an equivalent martingale measure for the CEV

specification with 1> 0. To remedy the situation, one needs to reg-

ularize the process for large values. See Appendix C for details.

The change of variable zt = 
1/0�1��S−1t reduces

the CEV process without drift (� = 0) to a stan-
dard Bessel process of order 1/
21� (see Borodin and

Salminen 1996, p. 66, and Revuz and Yor 1999, p. 439,

for details on Bessel processes). The continuous part

of the risk-neutral density of ST , conditional on S0 = S,

is obtained from the well known expression for tran-

sition density of the Bessel process (see Borodin and

Salminen 1996, p. 115, and Revuz and Yor 1999,

p. 446) and is given by (3 = 1/
2�1��)

p0
T�S�ST � =
S
−21− 3

2

T S
1
2

02�1�T exp

(

−S
−21+S−21T

20212T

)

× I3

(

S−1S
−1
T

0212T

)

� (29)

where I3 is the modified Bessel function of the first

kind of order 3.

Using the result of Goldenberg (1991, p. 28), the

CEV process with drift � �= 0 is obtained from the

process without drift via a scale and time change

S

��
t = e�tS


0�
�
t�� �
t�= 1

2�1

e2�1t−1�# (30)

Then the transition density with drift is obtained

from the density (29) according to Goldenberg (1991,

Proposition 2)

p�
T�S�ST �= e−�Tp0
(

�
T ��S� e−�TST
)

# (31)

The density (31) was originally obtained by Cox

(1975) for 1 < 0 and by Emanuel and MacBeth (1982)

for 1 > 0 based on the result due to Feller (1951).

For 1< 0, the risk-neutral probability of absorption at

zero (bankruptcy), given S0 = S, is (Cox 1975)

QS
ST = 0�=G
3�4/2��

where G
3�x� is the complementary Gamma distribu-

tion function and 4 is defined in Equation (33) below.

The CEV density (31) can be expressed in terms

of the noncentral chi-square density. Then the closed-

form CEV call option pricing formula can be

expressed in terms of the complementary noncentral

chi-square distribution function (Cox 1975 for 1 < 0;

Emanuel and MacBeth 1982 for 1> 0; Schroder 1989):

C
S�K�T �=























e−qTSQ
4�n−2�y0�
−e−rTK
1−Q
y0�n� 4��� 1 > 0�

e−qTSQ
y0�n� 4�

−e−rTK
1−Q
4�n−2�y0��� 1 < 0�

(32)
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where

n = 2+ 1

�1��

4 = 2�S−21

021
e2�1T −1� � (33)

y0 =
2�K−21

021
1− e−2�1T � �

K is the strike price of the call, and Q
x�u�v� is

the complementary noncentral chi-square distribution

function with u degrees of freedom and the noncen-

trality parameter v. To compute the complementary

noncentral chi-square distribution function we use the

algorithm provided by Schroder (1989).

To value barrier and lookback options under the

CEV process, we need to know the functional form

of the fundamental solutions  ' and �' similar to

Equation (15) for geometric Brownian motion.

Proposition 5. Suppose 1 �= 0 and ' > 0. Introduce

the following notation9

x �= ���
02�1�S

−21� z �= 1

0�1�S
−1� (34)

9 = sign
�1�� m �= 1

4�1��

k �= 9

(

1

2
+ 1

41

)

− '

2��1�� 3 �= 1

2�1� # (35)

The fundamental increasing ( ') and decreasing (�') solu-

tions of the CEV ODE

1

2
02S21+2

d2u

dS2
+�S du

dS
−'u= 0� S ∈ 
0���� (36)

are (up to multiplicative constants):

 '
S� =























S1+
1
2 e

9
2 xMk�m
x�� 1 < 0� � �= 0�

S1+
1
2 e

9
2 xWk�m
x�� 1 > 0� � �= 0�

S
1
2 I3


√
2'z�� 1 < 0� �= 0�

S
1
2K3


√
2'z�� 1 > 0� �= 0�

(37)

9 If St follows the CEV diffusion (28), xt defined in Equation (34)

follows a Feller (1951) diffusion: dxt = 
bxt + c�dxt = 
bxt + c� dt −
>
√

2axt dBt , where a = 2��1�, b = −2�1 and c = ��1�
2+ 1/1�. The
process zt defined in Equation (34) follows a generalized Bessel diffu-

sion: dzt = 
d/zt−�1zt�dt−>dBt , where d = 
1+1�/21, > = sign
1�.
This process is also known as the radial Ornstein-Uhlenbeck process

(Shiga and Watanabe 1973, Eie 1983, Going-Jaeschke and Yor 1999)

and Rayleigh process (Giorno et al. 1986).

�'
S� =























S1+
1
2 e

9
2 xWk�m
x�� 1 < 0� � �= 0�

S1+
1
2 e

9
2 xMk�m
x�� 1 > 0� � �= 0�

S
1
2K3


√
2'z�� 1 < 0� �= 0�

S
1
2 I3


√
2'z�� 1 > 0� �= 0�

(38)

where Mk�m
x� and Wk�m
x� are the Whittaker functions,10

and I3
x� and K3
x� are the modified Bessel functions. The

Wronskian (13) of the functions  ' and �' with respect to

the scale density of the CEV diffusion,

�
S�= exp
(

�

021
S−21

)

�

is

w' =
{

2���@
2m+1�
02@
m−k+ 1

2 �
� � �= 0�

�1�� �= 0�
(39)

where @
x� is the Euler Gamma function.

Equations (37) and (38) are the CEV counterparts

of the solutions (15) for geometric Brownian motion.

The CEV (double) barrier option pricing formula is

obtained in the following steps. First, the functions

(37) and (38) are substituted into Equations (19) and

(20) and the integrals I' and J' are calculated. Fortu-

nately, the integrals can be calculated in closed form

and are given in Appendix C. Next, the integrals are

substituted into Equation (21). Finally, to compute

the price in Equation (17), the Laplace transform is

inverted (see Appendix D). The rebates are priced by

substituting (37) and (38) into Equations (2)–(6) and

inverting the Laplace transform (16). The lookback

options are priced by Equations (22)–(27). The outer

integrals in y in Equations (24)–(27) cannot be

evaluated in closed form and must be computed

numerically.

5. Model Risk
Armed with the pricing formulae, we are now ready

to analyze the effect of 1 on prices and hedge ratios of

10 See Abramowitz and Stegun (1972, p. 505) and Slater (1960). The

Whittaker functions are related to the confluent hypergeometric

functions available in the Mathematica computer system. Whittaker

functions also appear in similar contexts in Giorno et al. (1986) and

Going-Jaeschke and Yor (1999) in connection with the calculation

of Laplace transforms of first hitting times of generalized Bessel

processes.

956 Management Science/Vol. 47, No. 7, July 2001



DAVYDOV AND LINETSKY

Path-Dependent Options Under the CEV Process

Figure 1 European Call Prices and Black-Scholes Implied Volatilities as Functions of Strike K Under CEV Processes with Elasticities � =
0�−0�5�−1�−2�−3, and −4. Parameters: S0 = 100, �0 = � �100�= 0�25, r = 0�1, q = 0, T = 0�5

barrier and lookback options. To facilitate the compar-

ison of our analytical results with numerical results

already in the literature, we adopt the same choice

of parameters as Boyle and Tian (1999). The initial

asset price is S0 = 100, the instantaneous volatility at
this price level is 	0 = 25% per annum (i.e., the scale
parameter 0 is selected so that 	0 = 	
S0�= 0S

1
0 = 0#25

when S0 = 100), the risk-free interest rate is 10%
per annum (r = 0#1), the asset pays no dividends
(q = 0), and all options have six months to expira-
tion (T = 0#5). We employ six different values of 1 to
show its effect on option prices and hedge ratios11:

1 = 0�−0#5�−1�−2�−3�−4. The constant volatility
case (1 = 0) corresponds to the lognormal model.
The negative elasticity values are characteristic of

stock index options (Reiner 1994 and Jackwerth and

Rubinstein 1998 find that the prices of S&P 500 index

options imply values of beta as low as 1 = −4).
Following Boyle and Tian (1999), to ensure that option

prices based on different values of 1 are broadly com-

parable, the value of 0 in each model is readjusted

so that the initial instantaneous volatility is the same

across different models. Let 	0 be the instantaneous

volatility for the lognormal model. Then the value of

0 to be used for models with different 1 values is

adjusted to be 0= 	0S
−1
0 .

11We focus our discussion on the case of negative 1 because of its

empirical importance for the stock index option market. Positive 1

are characteristic of some commodity futures options with upward

sloping implied volatility smiles.

Figure 1 plots European call prices and Black-Scholes

implied volatilities12 as functions of the strike price

under the CEV processes with different values of 1.

Numerical values of prices and deltas are given in

Table 1. Examination of the data reveals that in-the-

money (out-of-the-money) calls under the CEV model

with negative 1 are worth more (less) than under the

Black-Scholes model. The larger the absolute value

of 1, the greater the price difference between CEV

option prices and Black-Scholes prices.

The Black-Scholes implied volatility of CEV calls

exhibits a typical downward sloping volatility smile

pattern (also called smirk, skew or frown), with

higher implied volatilities corresponding to lower

strikes (in-the-money calls) and lower implied

volatilities corresponding to higher strikes (out-of-the-

money calls). This is similar to the downward slop-

ing implied volatility smile pattern observed in the

S&P 500 stock index options market after the crash of

October 1987. Jackwerth and Rubinstein (1998) esti-

mate the CEV model parameters 1 and 0 implicit

in the six-month S&P 500 option prices over the

eight-year period from 1986 to 1994 using daily data.

In their pre-crash sample, implicit values of 1 are

very close to zero, as predicted by the lognormal

model. For several months after the October 1987

crash, the index option market underwent a transi-

tion with implied 1 values steadily declining from

zero into the −3 to −4 range. Since 1988, the S&P 500
options market seems to settle into a stable regime

12 Cox’s formula (32) is first used to compute the CEV prices of

options with different strikes. The Black-Scholes implied volatility

is then calculated for each option.
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Table 1 CEV Barrier Options

Beta Maximum

U L K 0 −0�5 −1 −2 −3 −4 % difference

Standard Call

N/A N/A 95 12�5880 12�6629 12�7426 12�9197 13�1314 13�3948 6�41

�0�7458� �0�7292� �0�7118� �0�6735� �0�6286� �0�5743� �23�00�

N/A N/A 100 9�5822 9�5845 9�5915 9�6206 9�6747 9�7638 1�89

�0�6448� �0�6282� �0�6113� �0�5763� �0�5380� �0�4946� �23�29�

N/A N/A 105 7�0995 7�0170 6�9403 6�8035 6�6890 6�5998 7�04

�0�5379� �0�5202� �0�5028� �0�4686� �0�4344� �0�3988� �25�86�

Down-and-out Call

N/A 90 95 10�6308 10�6013 10�5728 10�5190 10�4690 10�4227 1�96

�0�9802� �0�9800� �0�9799� �0�9797� �0�9796� �0�9796� �0�07�

N/A 90 100 8�3698 8�3042 8�2411 8�1218 8�0107 7�9070 5�53

�0�8037� �0�7982� �0�7930� �0�7833� �0�7745� �0�7664� �4�65�

N/A 90 105 6�3722 6�2554 6�1438 5�9346 5�7415 5�5625 12�71

�0�6415� �0�6300� �0�6191� �0�5989� �0�5803� �0�5632� �12�21�

Up-and-out Call

120 N/A 95 2�8628 3�1383 3�4452 4�1632 5�0367 6�0809 112�41

�−0�0450� �−0�0439� �−0�0424� �−0�0383� �−0�0340� �−0�0315� �30�00�

120 N/A 100 1�5374 1�7260 1�9379 2�4391 3�0550 3�7963 146�93

�−0�0198� �−0�0190� �−0�0178� �−0�0140� �−0�0089� �−0�0036� �81�82�

120 N/A 105 0�6711 0�7734 0�8904 1�1743 1�5331 1�9741 194�14

�−0�0071� �−0�0066� �−0�0057� �−0�0029� �0�0016� �0�0074� �204�23�

Capped Call

120 N/A 95 11�7674 11�8877 12�0132 12�2829 12�5877 12�9436 10�00

�0�6491� �0�6383� �0�6265� �0�5995� �0�5655� �0�5218� �19�62�

120 N/A 100 8�6611 8�7256 8�7923 8�9348 9�0959 9�2865 7�22

�0�5354� �0�5267� �0�5173� �0�4962� �0�4706� �0�4390� �18�02�

120 N/A 105 6�0139 6�0231 6�0312 6�0461 6�0637 6�0918 1�29

�0�4093� �0�4028� �0�3957� �0�3798� �0�3613� �0�3394� �17�09�

Double Barrier Call

120 90 95 1�7039 1�8805 2�0800 2�5529 3�1295 3�8088 123�54

�0�0655� �0�0787� �0�0939� �0�1315� �0�1795� �0�2390� �265�07�

120 90 100 0�9703 1�0958 1�2383 1�5799 2�0022 2�5059 158�24

�0�0375� �0�0461� �0�0563� �0�0820� �0�1158� �0�1588� �323�33�

120 90 105 0�4418 0�5126 0�5945 0�7960 1�0535 1�3696 210�03

�0�0172� �0�0217� �0�0272� �0�0417� �0�0616� �0�0880� �411�98�

Note. Standard, down-and-out, up-and-out, capped, and double knock-out call prices and deltas under the CEV processes with elasticities

�= 0�−0�5�−1�−2�−3, and −4. The value of delta is given in parentheses underneath the corresponding option price. The utmost right column gives the

absolute value of the percentage difference between the Black-Scholes price (delta) and the CEV price (delta) with �=−4 relative to the Black-Scholes price

(delta). The strike price K , upper barrier U and lower barrier L vary as indicated in the three left columns. Parameters used in the calculation: S0 = 100,

�0 = � �100�= 0�25, r = 0�1, q = 0, T = 0�5.

with 1 estimates largerly confined to the −3 to −4
range. The mean of their daily estimates over the

post-crash 1988–1994 period is close to −4, with the
mean at-the-money implied volatility of 17%.

Overall, we note that the differences in call option

prices and deltas with strikes close to at-the-money

level are not all that significant under different

choices of 1. The differences increase for deep
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out-of-the-money and in-the-money options. As a

result, errors resulting from misspecifying 1 when

pricing and hedging standard call options are rela-

tively small, except for deep out- or in-the-money

options.

In addition to standard call options, Table 1 reports

prices and deltas of down-and-out, up-and-out, dou-

ble knock-out and capped call options for different

values of 1. They are calculated using the analyt-

ical formulae derived in §3 and 4. This table is

the counterpart to Table 3 in Boyle and Tian (1999)

who report prices of down-and-out, up-and-out and

double knock-out calls calculated using their trino-

mial lattice with 1,000 time steps. Their trinomial

results provide good approximation to our closed-

form solutions, generally agreeing with our option

prices to three decimal places.13

The salient feature of the results is that the value

of 1 has a much greater impact on the prices of up-

and-out and double knock-out calls than on standard,

capped and down-and-out calls. The maximum per-

centage differences in the CEV prices from the log-

normal prices in our sample are 7.04% for standard

calls, 10% for capped calls, 12.71% for down-and-

out calls, 194.14% for up-and-out calls and 210.03%

for double knock-out calls. The maximum percent-

age differences in the CEV deltas from the lognor-

mal deltas are 25.86% for standard calls, 19.62% for

capped calls, 12.21% for down-and-out calls, 204.23%

for up-and-out calls and 411.98% for double knock-

out calls. Thus, a misspecified value of 1 may cause

very large pricing and hedging errors for up-and-out

and double knock-out calls. Strikingly, the up-and-out

call delta can have different signs for different values

of 1 (e.g., the up-and-out call with the strike price of

105 in Table 1). In these cases, hedging with a misspeci-

fied model is worse than not hedging at all.

Given the fact that both the lognormal and the

CEV models are calibrated so that the instantaneous

volatility at the initial price level S0 is the same

across different models, these differences are purely

the effect of the inverse relationship between volatility

and the asset price level. The reason for this extreme

13 Boyle and Tian (1999) report prices for 1 restricted to the range

[−1�0] and do not report deltas.

sensitivity to the elasticity parameter is that up-and-

out and double knock-out calls (as well as down-and-

out and double knock-out puts) are canceled when

the option is in-the-money. At the time of knockout

at the upper barrier U , the call is in-the-money by the

amount U −K ($20 in our example). A slight error

in estimating knockout probability can result in large

pricing and hedging errors as it is multiplied by the

large dollar value.

Further, Figure 2 plots prices and deltas of stan-

dard, up-and-out, down-and-out, and double knock-

out calls as functions of the underlying asset price.

The graphs confirm our observation that the prices of

up-and-out and double knock-out calls are dramati-

cally affected by the choice of 1. At the same time,

standard, capped and down-and-out calls are much

more robust to the choice of 1.

Table 2 illustrates the effect of 1 on prices and

deltas of lookback options.14 Maximum percentage

differences in the CEV model prices and deltas

from the lognormal ones are all greater for lookback

options than for the corresponding standard options.

Similar to up-and-out calls and down-and-out puts,

deltas of standard lookback calls and puts can have

different signs under the lognormal and CEV models

(e.g., lognormal lookback call delta of 0.1563 vs. CEV

delta of −0#5894 with 1=−4). Thus, lookback options
are also extremely sensitive to model misspecification.

To further assess model risk inherent in selling

barrier options, we have carried out a dynamic

hedging simulation experiment that quantifies the

impact of model misspecification on the outcome

of dynamic hedging strategies. Due to space limita-

tions the results are not included in the published

version. The description of the simulation exper-

iment can be found in the working paper ver-

sion of this article available on the web at

�http://users.iems.nwu.edu/∼linetsky/cev.pdf�. The

14 In contrast with barrier options, our exact lookback option prices

reported in Table 2 are in disagreement with the trinomial results

for lookbacks reported by Boyle and Tian (1999, in Tables 4 and 5).

The apparent cause is a subtle error in their trinomial lattice algo-

rithm for lookback options. See the correction: Boyle et al. (1999)

“Lookback Options Under the CEV Process: A Correction” on

the JFQA web site �http://depts.washington.edu/jfqa/� in “Notes,
Comments, and Corrections.”

Management Science/Vol. 47, No. 7, July 2001 959



DAVYDOV AND LINETSKY

Path-Dependent Options Under the CEV Process

Figure 2 Standard Call, Down-and-Out (DAO) Call, Up-and-Out (UAO) Call, and Double Barrier Call Prices and Deltas As Functions of the Underlying

Asset Price S0 Under the CEV Processes with Elasticities � = 0�−0�5�−1�−2�−3� and −4� Parameters: K = 100� L = 90�U = 120� �0 =
� �100�= 0�25� r = 0�1� q = 0� T = 0�5

conclusion of the experiment is the observation that

while the delta hedging strategy is fairly robust

to model misspecification for standard, capped, and

down-and-out calls, it is highly unstable for up-and-

out and double knock-out calls. For the latter con-

tracts, it is possible to do worse by delta-hedging with

a misspecified model than not hedging at all.

6. Conclusion
This paper studies the pricing and hedging of bar-

rier and lookback options under the CEV process.

The CEV model with negative elasticity exhibits con-

vex and monotonically decreasing implied volatility

smiles similar to the smiles empirically observed in

the stock index options market and, thus, allows us

to study the effect of volatility smiles on pricing and

hedging of path-dependent options.

The contributions of this study are two-fold. First,

we derive pricing formulae for barrier and look-

back options under the CEV process in closed form.

Our analytical formulae allow fast and accurate cal-

culation of prices and hedge ratios of barrier and

lookback options under the CEV process on a PC.
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Table 2 CEV Lookback Options

Beta Maximum

K 0 −0�5 −1 −2 −3 −4 % difference

Standard Call

100 9�5822 9�5845 9�5915 9�6206 9�6747 9�7638 1�89

�0�6448� �0�6282� �0�6113� �0�5763� �0�5380� �0�4946� �23�29�

105 7�0995 7�0170 6�9403 6�8035 6�6890 6�5998 7�04

�0�5379� �0�5202� �0�5028� �0�4686� �0�4344� �0�3988� �25�86�

Standard Lookback Call

N/A 15�6358 15�8791 16�1691 17�0049 18�2921 19�5628 25�12

�0�1563� �0�0955� �0�0282� �−0�1447� �−0�3744� �−0�5894� �477�10�

Call on Maximum

100 17�1582 16�6083 16�1395 15�3807 14�7987 14�3562 16�33

�1�1225� �1�0466� �0�9792� �0�8610� �0�7550� �0�6527� �41�85�

105 12�8230 12�2587 11�7747 10�9823 10�3599 9�8669 23�05

�0�9495� �0�8800� �0�8192� �0�7160� �0�6282� �0�5486� �42�23�

Standard Put

95 2�9548 3�0297 3�1094 3�2865 3�4982 3�7616 27�30

�−0�2542� �−0�2708� �−0�2882� �−0�3265� �−0�3714� �−0�4257� �67�50�

100 4�7052 4�7075 4�7144 4�7435 4�7976 4�8867 3�3�86

�−0�3552� �−0�3718� �−0�3887� �−0�4237� �−0�4620� �−0�5054� �42�29�

Standard Lookback Put

N/A 12�2812 11�7312 11�2624 10�5036 9�9217 9�4791 22�82

�0�1225� �0�0466� �−0�0208� �−0�1390� �−0�2450� �−0�3473� �383�51�

Put on Minimum

95 6�6630 6�9342 7�2510 8�1378 9�4733 10�7896 61�93

�−0�5899� �−0�6383� �−0�6936� �−0�8434� �−1�0513� �−1�2454� �111�12�

00 10�7588 11�0021 11�2921 12�1278 13�4150 14�6858 36�50

�−0�8437� �−0�9045� �−0�9718� �−1�1447� �−1�3744� �−1�5894� �88�38�

Note. Standard call, standard lookback call, call on maximum, standard put, standard lookback put and put on minimum prices and deltas under CEV

processes with elasticities � = 0�−0�5�−1�−2�−3, and −4. The value of delta is given in parentheses underneath the corresponding option price. The

utmost right column gives the absolute value of the percentage difference between the Black-Scholes price (delta) and CEV price (delta) with �=−4 relative

to the Black-Scholes price (delta). The strike price K , varies as indicated in the left column. Parameters used in the calculation: �0 = � �100�= 0�25, r = 0�1,

q = 0, T = 0�5.

Second, we apply the analytical formulae to carry

out a comparative statics analysis and demonstrate

that, in the presence of a CEV-based volatility smile,

barrier and lookback option prices and their hedge

ratios can deviate dramatically from the lognormal

values. In particular, up-and-out, double knock-out,

and lookback call prices and deltas are extremely sen-

sitive to the specification of the elasticity parameter 1.

Strikingly, we show that their deltas can have differ-

ent signs under lognormal and CEV specifications, as

well as CEV specifications with different elasticities.

Finally, we carry out a dynamic hedging simulation

experiment to quantify the impact of model misspec-

ification on the outcome of dynamic delta-hedging

strategies. We find that it is much more important

to have the accurate model specification for hedging

barrier options that are canceled in-the-money than

for standard options and barrier options that are can-

celed out-of-the-money. Notably, it is possible to do

significantly worse by delta-hedging the former con-
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tracts with a misspecified model than by not hedging

at all.

The results of this paper have important impli-

cations for financial institutions making markets in

path-dependent options. These results make a strong

case for moving beyond the simplistic geometric

Brownian motion assumption to more realistic models

incorporating volatility smiles.
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Appendix A. Proofs
Proof of Proposition 1. In our characterization of the

functions  r and �r we follow Borodin and Salminen (1996,

pp. 18–19). Equation (3) is proved as follows. The function u
S� �=
ES!e

−r�L1��L<�U �" satisfies the ODE (8) with the boundary conditions

u
L�= 1 and u
U� = 0. Any solution of (8) can be expressed as a
linear combination of the fundamental solutions  r and �r . We look

for u
S� in the form C1 r 
S�+C2�r 
S� with the boundary conditions

C1 r 
L�+C2�r 
L� = 1 and C1 r 
U�+C2�r 
U� = 0. Solving for C1
and C2 yields Equation (3). Equation (2) is obtained by taking the

limit U →� and using the boundary properties (12). Equations (4)

and (5) are proved similarly. Finally, Equation (6) follows from the

identity e−r�
L�U� = e−r�L1��L<�U �+ e
−r�U 1��U <�L�. �

Proof of Proposition 2. By Fubini’s theorem:

∫ �

0
e−'TES

[

1��≤T�e
−r�]dT = ES

[

∫ �

�
e−'TdTe−r�

]

= 1

'
ES

[

e−
r+'��
]

# �

Proof of Proposition 3. Let p
t� S�Y � be the transition density

of the diffusion �St� t ≥ 0� starting at S0 = S with two absorbing

barriers at L and U , 0 < L < S < U < �, and let G'
S�Y � be the

resolvent kernel (Green’s function) defined as the Laplace transform

of the transition density, G'
S�Y � �=
∫ �
0
e−'tp
t� S�Y �dt, ' > 0. The

Green’s function with two absorbing barriers can be expressed in

the form (see Borodin and Salminen 1996, p. 19; note that we work

with the Green’s function with respect to the Lebesgue measure,

while Boroding and Salminen—with respect to the speed measure,

and our Green’s function (40) differs from Borodin and Salminen’s

by a factor �
Y �� (a∧ b �=min�a� b�, a∨ b �=max�a� b�):

G'
S�Y �=
�
Y �

W'

A'
S∧Y �B'
S∨Y �� (40)

where the functions A'
S� and B'
S� can be characterized as the

unique (up to a multiplicative factor) solutions of the ODE (8) by

firstly demanding that A'
S� is increasing and B'
S� is decreasing

on !L�U", and secondly posing the boundary conditions A'
L�= 0
and B'
U� = 0. The W' is the Wronskian of the functions A'

and B' with respect to the scale density defined by: B'
S�A
′
'
S�−

A'
S�B
′
'
S�= �
S�W' (the prime denotes differentiation with respect

to S). The functions A'
S� and B'
S� can be uniquely (up to a mul-

tiplicative factor) expressed in terms of the fundamental solutions

 '
S� and �'
S� of the problem without barriers: A'
S�= �'
L�S�,

B'
S� = �'
S�U�, where �'
A�B� is defined in Equation (7). The

Wronskian is: W' = w'�'
L�U�, where w' is the Wronskian of �'

and  ' (13). Substituting these expressions into Equation (40), we

obtain a representation of the Green’s function with two absorbing

barriers in terms of the fundamental solutions  '
S� and �'
S� of

the problem without barriers:

G'
S�Y �=
�
Y �

w'�'
L�U�
�'
L�S∧Y ��'
S∨Y �U�# (41)

To prove Equation (21), take the Laplace transform of the expec-

tation in Equation (17) in time to expiration T . By Fubini’s

theorem:

∫ �

0
e−'TES

[

1��
L�U�>T�
ST −K�
+
]

dT

=
∫ �

0
e−'T

(

∫ U

K

Y −K�p
T�S�Y �dY

)

dT

=
∫ U

K

Y −K�

(

∫ �

0
e−'Tp
T�S�Y �dT

)

dY

=
∫ U

K

Y −K�G'
S�Y �dY # (42)

Substituting the expression (41) for the resolvent into the last inte-

gral yields Equation (21). Note that the integrals (19) and (20)

always exist because  ' and �' are continuous on any closed

interval !A�B", 0<A< B <�. �

Proof of Lemma 1. Equation (22) follows from the identity

Qx
mt ≤ y� = Qx
�y ≤ t� for y ≤ x, where �y is the first hitting

time of y, Equation (2), and Equation (16) in the limit r → 0.

Equation (23) follows from the identity Qx
Mt ≥ y�=Qx
�y ≤ t� for

y ≥ x, Equation (4), and Equation (16) in the limit r → 0. �

Proof of Proposition 4. To prove Equation (27), note

that 
K − mT �
+ =

∫ K

0
1�mT ≤y�dy, and mT = min�mt�mt�T �, where

mt�T = mint≤u≤T Su. Then by the Markov property and time

homogeneity:

Et!
K−mT �
+" =

∫ K

0
Q
mT ≤ y�ℱt�dy

=
{

∫ K

0
F 
y�St� ��dy� mt ≥ K�

K−mt +
∫ mt
0
F 
y�St� ��dy� mt < K#

To prove Equation (24), note that mT ≤ ST , mT ≤ mt , and Et!ST " =
e
r−q��St . Then,

Et!
ST −mT �
+" = Et!
ST −mt�"+Et!
mt −mT �"

= e
r−q��St −mt +
∫ mt

0
F 
y�St� ��dy�

where we used the result (27) with K =mt . Equations (26) and (25)

are proved similarly. �
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Proof of Proposition 5. First consider the case with drift � �= 0.
We look for solutions in the form u
S� = S

1
2
+1e

9
2
xw
x� for some

unknown function w
x� with x and 9 defined in Equations (34) and

(35). Substituting this functional form for u into Equation (36), we

arrive at the ODE for w

d2w

dx2
+
(

− 1
4
+ k

x
+

1
4
−m2

x2

)

w = 0� x ∈ 
0���#

This is the Whittaker’s form of the confluent hypergeometric

equation with two linearly independent solutions Mk�m
x� and

Wk�m
x� (see Abramowitz and Stegun (1972, p. 505) and Slater 1960).

Now we need to verify boundary properties of solutions (37) and

(38). First, consider the case 1 < 0. The CEV process has a natural

boundary at infinity, an exit boundary at zero for −1/2 ≤ 1 < 0,

and a regular boundary suplemented with the killing boundary

condition for 1 < −1/2. The behavior at the right natural bound-
ary is prescribed by Equation (12). The behavior at the left exit

boundary is prescribed by Equation (10). At the killing boundary

the boundary condition is (9). These boundary properties for solu-

tions (37) and (38) are verified using the asymptotic properties of

the Whittaker functions Mk�m
x� and Wk�m
x� as x→ 0 and x→�
(see Slater 1960).

Next consider the case 1 > 0. The CEV process has an entrance

boundary at infinity and a natural boundary at zero. The behav-

ior at the left natural boundary is prescribed by Equation (11), and

at the right entrance boundary—by (Borodin and Salminen 1996,

pp. 18–19): limS→�  '
S� = +�, limS→��'
S� > 0. These boundary

properties are verified using the asymptotic properties of the Whit-

taker functions (note that for 1 > 0 the change of variable x =

���/02�1��S−21 maps the origin onto infinity, and infinity onto the

origin).

The Wronskian of the Whittaker equation is (Slater 1960,

p. 26; the prime denotes differentiation in x�: Wk�m
x�M
′
k�m
x�−

Mk�m
x�W
′
k�m
x�= @
2m+1�/@
m−k+ 1

2
�, leading to the CEV Wron-

skian (39) for � �= 0.
Next consider the case without drift, �= 0. We look for solution

in the form u
S� = S
1
2 v


√
2'z� for some unknown function v
z�

with z defined in Equation (34). Substituting this functional form

into Equation (36) with �= 0, we arrive at the ODE for v

z2
d2v

dz2
+zdv

dz
− 
2'z2+32�v = 0#

This is the modified Bessel equation with two linearly indepen-

dent solutions I3

√
2'z� and K3


√
2'z� (Abramowitz and Stegun

1972, p. 374). The boundary properties of solutions (37) and

(38) are verified using the asymptotic properties of the modi-

fied Bessel functions (Abramowitz and Stegun 1972, pp. 375–378).

The Wronskian of the modified Bessel functions is (Abramowitz

and Stegun 1972, p. 375; the prime denotes differentiation in z)

K3
z�I
′
3
z�− I3
z�K ′

3
z�= 1/z, leading to the CEV Wronskian (39) for
�= 0. �

Appendix B. Emanuel and MacBeth’s (1982)
Paradox for 1 > 0

For 1 > 0, the CEV local volatility 	
S� = 0S1 is unbounded as

S → �, and +� is an entrance boundary for the diffusion. This

means that there exists a limit limS→� p
T�S�ST � = p
T��� ST � for
the transition density, and the process can be started at infinity. If

started at infinity, the process rapidly enters the state space and

reaches any interior point before time T > 0 with positive probabil-

ity (see Karlin and Taylor 1981 and Borodin and Salminen 1996).

Furthermore, Emanuel and MacBeth (1982) were the first to observe

that the mean of the CEV density (31) for 1 > 0 is less than e�TS,

as one would expect given the CEV equation of motion (28). For

1> 0, integrating ST with the density one obtains ES!ST "= e�TS
1−
G
3�4/2��� where G
3�x� is the complementary Gamma distribu-

tion function and 4 is defined in Equation (33). Thus, the mean

of ST is less than e
�TS for all S > 0 and T > 0. Therefore, the pro-

cess e−�tSt is a strict local martingale and a strict super-martingale

on the time interval !0�T " (see Elworthy et al. 1999). Consequently,

there is no equivalent martingale measure for this specification of

local volatility (see Sin 1996). From the practical point of view, this

problem can be easily avoided. Pick a large fixed number ℰ and

modify the volatility specification: 	
ℰ

S�= 0min�S1�ℰ1�. This mod-

ification is termed limited CEV (LCEV) process by Andersen and

Andreasen (1998). Roughly speaking, when the asset price crosses

over the “switching level” ℰ, the LCEV process becomes a geo-

metric Brownian motion. The LCEV volatility is bounded, +� is a

natural boundary, the mean of ST is equal to e
�TS, and the process

�e−�tSt� t ≥ 0� is a martingale on any finite time interval. A similar
regularization can be applied at small price levels for the process

with 1 < 0 to avoid absorption at zero.

Appendix C. Integrals I' and J' for the CEV
Process

First consider the case with � �= 0. The speed density (18) for the
CEV process with � �= 0 is �
Y �= 20−2Y −21−2e−9y . Using the indef-

inite integrals reported by Slater (1960), pp. 23–25, the integrals

in Equations (19) and (20) for the CEV fundamental solutions (37)

and (38) are calculated in closed form (y �= ���
02 �1�Y

−21, C �= 0
√

�1��):

C I'
K�A�B� =















































































































(

Y
1
2

2m+1 e
y
2M

k+ 1
2
�m+ 1

2

y�

− 2mKY
− 1
2

m−k− 1
2

e
y
2M

k+ 1
2
�m− 1

2

y�

)
∣

∣

∣

Y=B

Y=A
� 1 < 0� � > 0�

(

Y
1
2

2m+1 e
− y
2M

k− 1
2
�m+ 1

2

y�

+ 2mKY
− 1
2

m+k− 1
2

e−
y
2M

k− 1
2
�m− 1

2

y�

)
∣

∣

∣

Y=B

Y=A
� 1 < 0� � < 0�

(

Y
1
2 e−

y
2W

k− 1
2
�m− 1

2

y�

+KY − 1
2 e−

y
2W

k− 1
2
�m+ 1

2

y�

)
∣

∣

∣

Y=B

Y=A
� 1 > 0� � > 0�

(

Y
1
2

k−m+ 1
2

e
y
2W

k+ 1
2
�m− 1

2

y�

− KY
− 1
2

k+m+ 1
2

e
y
2W

k+ 1
2
�m+ 1

2

y�

)
∣

∣

∣

Y=B

Y=A
� 1 > 0� � < 0�
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C J'
K�A�B� =






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
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
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




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
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






















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




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
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
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
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Y
1
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2

e
y
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2

y�
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2
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2
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∣
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� 1 < 0� � > 0�
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Y
1
2 e−

y
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2
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2

y�

+KY − 1
2 e−

y
2W
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2
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2
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∣

∣

∣

Y=B

Y=A
� 1 < 0� � < 0�

(

2mY
1
2

k+m− 1
2

e−
y
2M

k− 1
2
�m− 1

2
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+ KY
− 1
2

2m+1 e
− y
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2
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2
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∣
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� 1 > 0� � > 0�
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Y=B
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Next consider the case with � = 0. The speed density for the
CEV process with � = 0 is �
Y � = 20−2Y −21−2. Using the inte-

grals reported by Prudnikov et al. 1986, p. 39, the integrals in

Equations (19) and (20) are calculated in closed form (y �= 1
0�1�Y

−1):

I'
K�A�B� =
2

0
√
2'
















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
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
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Y
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2
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√
2'y�
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√
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∣

∣

∣

∣

Y=B
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−1K3+1


√
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2
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√
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√
2'y�

)
∣

∣

∣

∣

Y=B

Y=A
� 1 < 0�

(

−Y 1
2
−1I3+1


√
2'y�

+KY − 1
2
−1I3−1


√
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Appendix D. Laplace Transform Inversion
To compute barrier and lookback option prices we need to invert

Laplace transforms in Equations (16), (21)–(23). Equations (16),

(21)–(23) have the form
∫ �
0
e−'tf 
t� dt = F 
'�, where ' > 0, F 
'� is

the known Laplace transform, and f 
t� is the original function to be

determined. All originals in Equations (16), (21)–(23) are continuous

and bounded on !0���. Then the Laplace transform converges for
all complex ' with Re
'� > 0, F 
'� is a single-valued analytic func-

tion of ' in the half-plane Re
'� > 0, and the inverse Laplace trans-

form can be calculated as the Bromwich contour integral along the

line Re
'�= c > 0. To compute the integral, we use the Euler numer-

ical integration algorithm due to Abate and Whitt (1995). This algo-

rithm was applied to option pricing problems by Fu, Madan, and

Wang (1997) and Davydov and Linetsky (2000a). Our implemen-

tation follows Appendix B in Davydov and Linetsky (2000a). We

found this algorithm very accurate for all computations in this

paper. Alternatively, the Laplace transforms for barrier and look-

back options under the CEV process can be inverted analytically,

and the results are expressed as eigenfunction expansions for

some Sturm-Liouville problems associated with the CEV process

(Davydov and Linetsky 2000b).
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