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Pricing and Resource Allocation in Caching Services with Multiple Levels of QoS 

Kartik Hosanagar+, Ramayya Krishnan+, John Chuang++ and Vidyanand Choudhary+++ 
  

Abstract 

Internet infrastructure consists of backbone networks, access networks, Content Delivery 

Networks and other cache operators. Caches are the storage centers in the supply chain for 

content delivery - the digital equivalent of warehouses. The benefits of caching to content 

publishers, namely scalable content delivery, reduction in bandwidth costs and improvements in 

response times, are well recognized. Yet, caching has not been fully embraced by content 

publishers since its use can interfere with site personalization strategies or result in loss of 

information about visitors to the site. Recent work on web caching has focused on the 

technological advances required to address these deficiencies. However, there has been no work 

on the managerial issues related to the design of incentive compatible caching services, 

appropriate pricing schemes and associated resource allocation issues. The primary question this 

paper investigates is – Why have adoption rates for caching been rapidly declining and what can 

cache operators do to respond to these changes and prevent market failure? We propose a 

framework to enable an access network provider to provision vertically differentiated caching 

services that we refer to as "QoS Caching". We demonstrate analytically how provisioning of 

such services can increase profits of cache operators as well as overall market welfare. The 

analytic models also investigate the optimal pricing and capacity allocation policies of cache 

operators. The primary contribution of the paper is to propose an efficient mechanism to align 

the incentives of cache operators and content pub lishers and prevent failure of markets for 

caching services. 

 

Keywords: Web caching, Content Delivery, Pricing, Capacity allocation, Quality of Service 

(QoS).
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1 Introduction 

e-business is a large and growing part of overall commerce conducted today1. The growth of 

content and applications on the Internet has been phenomenal and is likely to continue. These 

observations highlight the importance of Internet infrastructure as a key enabler of e-business. 

The infrastructure consists of the following players intermediating between the end user and the 

content publisher: 

1. Internet Access Providers (IAPs) such as AOL and Earthlink that provide retail- level 

Internet access to end users. 

2. Local Area Transport (LAT) service providers such as local phone companies and cable 

franchises that connect end users’ premises to the IAPs’ Points of Presence (POPs). 

3. Backbone Networks such as AT&T and UUNET that operate long-haul data networks 

and provide wholesale–level Internet access to IAPs. Backbone networks interconnect 

with one another through Network Access Points (NAPs) and bi- lateral peering points to 

form the Internet backbone. 

4. Content Delivery Networks (CDNs) such as Akamai and Digital Island (now part of 

Cable & Wireless) that deliver content on behalf of content publishers using proprietary 

networks of caching servers. 

 
Figure 1. The Internet Industry Structure 

                                                 
1 See “How big is e-commerce” (http://www.newsfactor.com/perl/story/18403.html) for some projections. 
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Figure 1 illustrates the interaction between the players on the Internet. The end users 

obtain access to the content through the access networks (IAPs). The IAPs in turn connect to the 

backbone networks and pay them for bandwidth. Content publishers such as Yahoo and CNN 

typically connect to the backbone providers or host their content at data centers of the backbone 

providers. Thus, publishers also pay the backbone networks for bandwidth consumed (either 

directly or pay their hosting providers who in turn pay backbones). Due to traffic and congestion 

on the network, latency and bandwidth costs can be high. Therefore, IAPs and CDNs often store 

local copies of content on caches located at the edge of the network. 

Each of these players in the Internet value chain plays a distinct role. The networks are 

involved in providing transport services. They help move the content, created by content 

publishers, over the Internet. Caches are the storage centers - the digital equivalent of 

warehouses. In this context, the Internet infrastructure makes up the digital supply chain for 

information goods. The content publisher creates the content, networks help move the content 

and the caches store and deliver it to the users. Our study focuses on caching because of the 

rapidly occurring transformation of these content storage and distribution centers and the critical 

impact that these changes will have on the digital supply chain and therefore to e-business. This 

is underscored in IDC's projection that the caching market would be worth $4.5 billion in 2004. 

A web cache can be conceptualized as an intermediary that stores local copies of web 

content between the origin server and the client in order to satisfy future requests for the same. If 

there is another request for the cached content (a web page), the local copy may be returned 

instead of requesting the origin server for it again. Cache performance is measured by its hit-rate, 

which denotes the fraction of requests satisfied by the cache. Caching makes use of the locality 

in web request patterns (i.e., a recently requested data object is likely to be requested again in the 

near future). By moving content to the edge of the network, caches help reduce latency for the 

end user and bandwidth costs for the IAP. A recent survey of caching from a management 

science perspective is provided by Datta et al. (2002a). 

Caching can be implemented at various locations in the network. For example, browser 

caches permit re-use on the client desktop alone. Proxy caches permit caching of data objects in 

gateways of large organizations or IAPs. Because proxy caches are located at points of 

aggregation, they are shared by a large number of users and hence demonstrate higher hit rates. 
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Thus, they are very effective in reducing latency and traffic. Vendors such as Inktomi and Cisco 

develop solutions that IAPs may use to deploy proxy caches on their servers.  

In addition, CDNs provide solutions that allow content publishers to store data objects at 

geographically dispersed servers and direct a client to an appropriate server in order to reduce 

latency and bandwidth costs and evenly distribute server load. These servers are located at the 

edge of the Internet (typically collocated with partnering IAPs around the world) and thus 

provide similar benefits as proxy caches at IAP locations. While many of the arguments 

presented in this paper apply to CDNs as well, the focus of this paper is on caching at IAP 

locations. A brief discussion on the extension to the CDN setting is provided in the concluding 

section.  

We can quantify, in dollar terms, the magnitude of bandwidth savings that can be realized 

by an IAP from caching. AOL serves 13.5 billion URLs to its users every day (AOL 2002). 

Vendors specify proxy caches to be capable of delivering hit rates between 35-75% (Web-

Caching.com 2002). Assuming a hit rate of 40% and a conservative size of 100 KB for the 

response to an average web request, this amounts to an average of 16.2 petabytes of data every 

month that AOL serves from its cache and hence need not fetch over the network. However this 

demand for content would not be spread evenly in a 24-hour period. Assuming that the bulk of 

the data is demanded in a 6-hour time frame, i.e., a conservative peak-to-average ratio of 4:1, 

AOL saves 64.8 petabytes per month or a little over 200 Gbps of bandwidth. This can be 

serviced by eighty OC 48 connections (a single OC 48 connection can handle up to 2.488 Gbps). 

Even with today’s reduced bandwidth costs, this amounts to savings of about $430 million per 

annum. These savings are AOL savings alone and do not account for consumer surplus from 

faster downloads due to caching or content publishers’ bandwidth and infrastructure savings 

from not having to serve the content from their servers. 

Proxy caches at IAP locations help the network operators (IAPs) realize bandwidth 

savings for themselves and latency reduction for the end users. They are therefore beneficiaries 

of these services. However, content publishers also derive significant benefits. Caches are crucial 

to content publishers in: 

1. Handling flash crowds: Flash crowd is the term used to refer to sudden surges in demand 

for content that can bring servers down and render web sites unreachable. Caches help in 



 4 

alleviating the problem by meeting a large fraction of the demand using locally stored 

content. 

2. Improving content delivery/response time: Response Time is a key determinant of 

consumer switching behavior on the web. According to Jupiter Research, nearly half of 

the web users have stopped using a preferred web site due to poor performance. By 

improving response time, caches can thus increase customer retention rates for web sites.  

3. Reducing bandwidth costs: Caching also reduces bandwidth costs for content publishers, 

as they do not have to deliver any data for requests satisfied from the cache.   

4. Reducing infrastructure costs and scaling content delivery globally. 

Currently, content publishers do not pay for IAP caching services. Despite these 

seemingly large benefits to content publishers, they often choose to mark their content as non-

cacheable (Chuang et al. 2002). This practice, also known as cache busting, results in slower 

response times for end users and increased costs for IAPs and the publishers themselves. The 

primary reason why publishers cache-bust is that caching results in a loss of business intelligence 

regarding visitors to websites. Accuracy of access reports and click-stream data is crucial to 

various firms for marketing and internal auditing. Caching can result in a loss of accuracy of 

access statistics because the origin server may not be informed whenever cached content is 

served. Furthermore, a variety of e-marketing techniques rely on personalization through 

cookies. Jupiter Research reported that 40% of Fortune 500 companies had migrated to dynamic 

data driven personalized content as early as 1998. Traditional caching approaches have impeded 

personalization due to the possibility of content created for one user being displayed to another. 

Support for dynamic content caching in IAP caches has been minimal. Furthermore, some 

publishers cache bust due to concerns relating to stale content being served to the end user. This 

occurs whenever changes in content at the origin server are not reflected at the cache. In 

addition, caching may potentially create new security concerns (violation of confidentiality, 

integrity or authentication). For example, several publishers with confidential data such as 

medical records cache-bust due to security concerns arising from confidential data residing in a 

foreign location that is not under their immediate control.  

Thus, there is a need to devise ways to reap the benefits of caching without incurring the 

costs of today’s “Best Effort” caching that precipitates cache-busting. These can be addressed by 

provisioning premium services that ensure comprehensive reporting, object consistency, security, 
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etc. In addition, technologies such as differential caching, push caching, dynamic content  

caching, etc. further enable publishers to derive tangible benefits from caching services. 

However, provisioning these features is in general expensive for an IAP (Maggs 2002; Stargate 

2002). These services would therefore need to be priced to provide the IAP with the right 

incentives to provision them. Much of the work done to date on Quality of Service (QoS) in 

caching has focused on the technology and has not dealt with issues of fundamental importance 

to the business of provisioning caching services - specifically, the design of incentive compatible 

services, appropriate pricing schemes and associated resource allocation issues that arise in 

operating a caching service. This is the focus of the paper. The paper is organized as follows – 

we state the research question and summarize key results in section 1.1. We review the related 

literature and present our integrated QoS framework in section 2. Section 3 presents the results of 

our empirical analysis of trace data. In section 4, we develop an analytical model for pricing and 

resource allocation. In section 5, we relax a number of assumptions and test the robustness of our 

results. We conclude the paper in section 6 with a summary of our findings and directions for 

future research. 

1.1 Research Question and Key Results 

 As noted above, adoption rates for caching has been declining because content publishers 

have generated new requirements over the last few years. These include support for 

personalization of content, business intelligence, etc. The paper analyzes whether these new 

developments might result in market failure. We then proceed to analyze whether QoS-based 

services can play a role in increasing profits of cache operators and overall market welfare. 

Through analytical models, we hope to inform caching service design and provide insights into 

optimal pricing and capacity allocation policies. 

The primary contribution of the paper is to provide prescriptions to cache operators for 

design of incentive compatible caching services and help prevent the cache-busting that is 

rampant today. Our research suggests that the design of such incentive compatible QoS-based 

services can significantly improve market welfare. However, only large IAPs would be able to 

provide such services due to the role of transaction costs and economies of scale and scope. 

Smaller IAPs will need to partner with an intermediary to provide such services. CDNs can play 

an important role in facilitating such markets, particularly for small IAPs. The models also 

provide valuable insights on the future of the caching and content delivery market. For example, 
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we find that resources will be increasingly directed towards premium services in the future. 

Further, declining bandwidth costs will have a significant nega tive impact on profits from 

caching services. 

2. QoS Framework and Literature Review 

Publisher-centric caching has generated significant interest recently (Myers et al. 2001; 

Kelly et al. 1999; Chuang and Sirbu 2000). This permits introduction of verifiable QoS and 

focuses on providing value-added services to content publishers. While caching policies were 

previously traffic driven, an IAP may adopt caching schemes based on publishers’ willingness to 

pay. Value added services such as differential caching, push caching, log reporting, maintaining 

object consistency, etc. enable preferential treatment to premium objects in a cache. The cache 

operator can thus price discriminate based on the desired level of QoS. Hereafter, we refer to 

caching with multiple levels of QoS as “QoS caching”. 

Various techniques can be used to implement QoS caching. Object placement policy 

refers to the policy used to determine when data objects move into a cache. Traditional 

placement policies entail an object being moved into the cache only when a request is made for 

it. Push caching and pre-fetching allow a publisher’s objects to be moved into the cache even 

before a request is made for it. Thus, a publisher can enter into agreements with a cache operator 

that enables her objects to be moved into the cache in anticipation of future requests. 

Since caches have a finite size, an object may have to be purged from the cache when a 

new object is moved in. The decision of which data object to replace is governed by the 

replacement policy. Replacement policies such as Least Recently Used (LRU) or Least 

Frequently Used (LFU) are commonly used to replace objects. The primary goal of replacement 

policies is to maximize the hit rate of the cache. LRU replaces objects that were least recently 

requested (assuming that they are also least likely to be requested again) and LFU replaces 

objects that were accessed least frequently.  

Object replacement policies may also be modified to include differential treatment to data 

objects through differential caching techniques such as cache reservation and priority caches. 

Cache reservation involves reservation of a predetermined space in the cache for objects from a 

specific publisher. Alternatively, priority caches may be employed to increase the lifetime of the 

premium objects. Priority caches allow the assignment of priorities to different classes of content 

and provide high priority data objects with higher hit rates. Thus, the manner in which the IAP 
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chooses to allocate the available cache space between the different service classes determines the 

QoS experienced, with regard to hit rates. Chan et al. (1999) propose a market mechanism for a 

replacement policy in which content publishers bid for space in a cache. 

Current Best Effort caches maintain consistency by the use of expiration headers that 

specify the expiration time or Time To Live (TTL) of the document. However, data sources may 

be modified before the TTL expires resulting in stale content being served. These problems can 

be circumvented by the use of invalidation schemes wherein the server sends invalidation 

messages (Yu et al. 1999) to the cache whenever content changes or by using leases (Yin et al. 

1998). The cache operator can additionally provide reports on access patterns to publishers 

(Mogul and Leach 1997). Furthermore, caches can add support to dynamically generated data 

and streaming data. The Dynamic Content Caching Protocol – DCCP (Smith et al. 1999) allows 

applications to specify the caching policies for the dynamic content generated by them. Datta et 

al. (2002b) also propose an approach to cache dynamic content at a proxy. 

Kelly et al. (1999), Lu et al. (2001) and Feldman et al. (2002) discuss different hit rates 

for different service classes through biased placement or replacement policies. Zhu and Yang 

(2001) allow different invalidation schemes to be applied to different classes of dynamic objects. 

Barnes and Pandey (1999) provide language support for content publishers to specify the cache 

management policy for their content. Chuang and Sirbu (2000) and Pierre et al. (2001) discuss 

QoS for object replication. Myers et al. (2001) and Cao et al. (1998) address the security 

concerns that arise when caches are involved in content generation. While the technical solutions 

proposed by computer scientists address individual problems, an integration of these solutions 

provides us with a framework to provision QoS. Figure 2 summarizes the dimensions along 

which QoS may be varied in order to offer a wide array of vertically differentiated services.  

 QoS Dimension Best Effort caching QoS Caching 

1 Object Placement Pull (traffic-Driven) Push, Pre-fetching 

2 Object Replacement LRU, LFU and variants Priority, Reservation 

3 Object Consistency TTL (Time To Live), If-Modified-

Since (weak) 

Invalidation, Leases (strong) 

4 Object Types  Static Dynamic, Streaming 

5 Accounting Logging Reporting 

6 Security No Yes 

Figure 2 Best Effort Caching Vs. QoS Caching 
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Provisioning QoS based services and pricing them is critical in aligning the incentives of 

the IAP and publishers. Despite the fact that publishers clearly receive benefits from caching 

today, an appropriate payment scheme does not currently exist. This has partly been due to the 

costs imposed by the best-effort nature of web caching. In addition, publishers have requirements 

that are currently not fulfilled by the IAP such as provisioning business intelligence, content 

personalization, etc. This in turn has been due to the lack of appropriate payment schemes. We 

have developed a mechanism to correct both of these deficiencies. Provisioning of premium 

services ensures that publishers who value security, business intelligence, etc will have the 

incentives to cache. Pricing these services ensures that IAPs have incentives to provide premium 

services. 

2.1 Cache Pricing and Resource Allocation - Unique Challenges 

While there are previous studies on pricing of priority services (Marchand 1974; 

Mendelson and Whang 1990; Rao and Peterson 1998), the domain of web caching poses unique 

challenges. Firstly, the subscribers of the caching service (content publishers) are not the 

generators of demand. The publishers subscribe to the service but the end users, who do not 

directly participate in the subscription, generate the demand (number of requests and hence 

objects served from the cache). In addition, the service provider – the IAP – also derives a 

positive utility from the caching service (bandwidth cost reduction). That provides the IAP with 

incentives to provide discounts. Thus, there is a strong interaction between the service provider’s 

surplus and the subscriber’s (content publisher) surplus. Furthermore, pricing and resource 

allocation are strongly coupled in the domain of web caching. The price that the IAP can charge 

depends partially on how high a hit rate it can provision for the service classes, which is 

determined by the allocation decision. The optimal allocation decision depends on the traffic 

profile in the various service classes, which is in turn determined by the pricing. 

The analytical model in this paper is related to the models in (Mussa and Rosen 1978), 

(Bhargava et al 2000) and (Maskin and Riley 1984). Mussa and Rosen (1978) consider the 

pricing of a product line by a monopoly, with buyers purchasing one good. Bhargava et al. 

(2000) study pricing strategies for intermediaries in electronic markets. Maskin and Riley (1984) 

study optimal quantity discounts in a monopolized market with asymmetric information. 

Sundararajan (2002) studies optimal pricing of information goods when both fixed fee and 

usage-based pricing are feasible. Dewan et al. (2000) study the relationship between proprietary 
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content providers and IAPs in distribution channels for information goods on the Internet. As 

mentioned above, cache QoS pricing is a problem different in structure and scope. 

QoS pricing has also been addressed in detail in the transmission domain (Gupta et al. 

1997; Cocchi et al. 1993). In the transmission domain, as in caching, pricing and resource 

allocation are strongly coupled. However, the resource allocation problems are quite different. In 

transmission, the router’s queue management and scheduling operations provide the performance 

differentiation for data packets arriving in real time. Queue management controls the length of 

the packet queues and hence determines which data packets may be dropped when buffer 

overflow occurs. The scheduling policy determines which packet to send next and hence controls 

bandwidth allocation. Hence, a constrained buffer and bandwidth are allocated in real time. The 

real time nature also implies that the pricing has to be coarser than packet level pricing as it 

would be too costly to implement in real time. On the other hand, the resource allocation 

problem in caching relates to the allocation of the available cache space between the service 

classes. The IAP has to account for the fact that its allocation decision also impacts its own 

bandwidth savings (the allocation decision may lower the overall hit rate and hence increase the 

IAP’s bandwidth costs). Data objects stay in a cache for at least a few hours, even for “one-

timer” objects that get purged soon. Hence more elaborate QoS mechanisms, such as those 

specified in figure 2, can be justified. Additionally, this also allows for object level pricing. In 

contrast, even per-flow QoS (intserv) is deemed non-scalable in transmission and the focus has 

more recently been on per-class QoS (diffserv). 

The performance objectives of QoS in caching and transmission are dissimilar as well. In 

transmission, the goal is to reduce delay, jitter and/or packet loss for performance-sensitive 

applications. To achieve end-to-end QoS, it is necessary to provide network operators with 

incentives to ensure appropriate service levels to users from different subscriber bases. Thus, 

Gupta et al. (1997) and Cocchi et al. (1993) consider a pricing policy that maximizes collective 

benefits of the system rather than the network operator’s profits. In caching, the QoS goal is to 

provide higher hit rates for objects that value caching more, provide security, etc. Resources 

need not be allocated along the path as in transmission. Allocation at the caching node alone 

suffices and this makes QoS caching easier to realize. Pricing provides a means to align the 

incentives of IAPs and publishers and thus achieve the QoS goals. Finally, in contrast to network 
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QoS pricing, the IAP would choose prices that maximize its profit rather than social welfare. All 

these aspects make cache QoS pricing and resource allocation a unique and challenging problem. 

3. Trace Analysis 

 Before we proceed to the analytical model for pricing and capacity allocation, we start 

with an empirical analysis of web traces in order to better understand the problem and calibrate 

some of the parameters for the model. In order to price the service, the IAP should be aware of 

the distribution of requests for content. For example, can we assume that requests are uniformly 

distributed or normally distributed across data objects? This is important because a publisher’s 

valuation of caching an object depends on the number of requests for that object. If the object is 

requested 10,000 times, it may be valuable to cache this object as opposed to one that is 

requested 3 times. The distribution of requests for the population of data objects thus determines 

the price that the IAP can charge. In addition, we also need to determine whether and how 

differential allocation of cache space alters the benefit from caching. That is, how does the hit 

rate (fraction of requests served from the cache) increase with cache size? For example, is it 

acceptable to assume that hit rate increases linearly with cache size? Furthermore, is the increase 

in hit rate different for popular content versus relatively unpopular data objects? The answers to 

these questions will play an important role in determining the IAP’s pricing strategy. 

To answer these questions, we study two publicly available web proxy traces from the 

World Wide Web Consortium’s web characterization repository – Boeing and DEC (Web 

Characterization Repository 2002). Trace data typically records requests for web pages made by 

end users and hence reflects the demand for content. Typical information available in a trace 

includes URL requested, time of request, object type, etc. Summary information about the two 

traces is provided below. 

Trace Date, Duration Total No. of Requests Number of Unique Objects 

Boeing Mar 99, 1 day 4,292,154 1,668,434 

DEC Sep 96, 7 days 7,866,111 2,047,000 

Table 1. Summary Information of Traces 

3.1 Pdf of Requests, R 

The number of requests for an object is denoted by R. We study traces to determine f(R), 

the probability density function (pdf) of R. Although R is a discrete variable, we shall use a 

continuous approximation in the derivation below and the rest of the paper. The use of integrals 
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can be replaced by summations to derive the discrete version of the equations. Previous studies - 

for example, Breslau, et al. (1999) -have shown that requests-rank distribution follows a zipf- like 

distribution. That is, number of requests for the ith most popular data object is R= δi/Ω , where 

Ω  and δ  are constants. However, the distribution of requests has not been studied. Based on the 

zipf relationship, we can however analytically derive an approximate functional form for f(R). 

If f(R) denotes the pdf of R, then the rank of an object that is requested R times can be 

approximated as ∫=
UBR

R

dxxfNRRank )()( , where N is the total number of objects and RUB is the 

upper bound of the number of requests for an object (may be infinity). The expression assumes 

that all objects have unique number of requests and is hence an approximation. We also know 

from the zipf- like relationship that δ/1)/()( RRRank Ω= . Thus, δ/1)/()( RdxxfN
UBR

R

Ω=∫ . Taking 

the derivative with respect to R, we get 
β

ββ
+

=
1

)(
R

c
Rf , where β = δ/1  and c =

δN
Ω

. This is the 

density function of a pareto distribution.  

 
Figure 3. Histogram of R on a log- log scale for Boeing and DEC respectively 

Figure 3 plots the histogram of R on a log- log scale for the two traces. f(R) may intuitively be 

considered as a measure of the number of objects with R requests. The distribution is modeled as 

β

ββ
+

=
1

)(
R

c
Rf  where R lies in [c1, c2]. The parametric estimates for this distribution obtained 

from Maximum Likelihood Estimation (MLE) are in Table 2. The fit for both the traces is good. 



 12 

For the purposes of the analytical model to follow, we need only note that requests follow a 

power law distribution. We shall later examine the implications of this distribution on our results.  

Trace c β  c1 c2 

Boeing 1.00 1.37 1 11479 

DEC 1.00 1.29 1 84286 

Table 2. Estimates of parameters for the distribution of R 

3.2 Cache Hit rate 

Hit Rate denotes the fraction of requests answered by the cache. For instance, if the cache 

satisfies three out of every six requests, it is said to have a hit rate of 50%. Clearly, a larger cache 

has a higher hit rate because it can store a larger number of data objects. Therefore H(S), the hit 

rate for a cache of size S, increases monotonically with S. In order to estimate the impact of 

cache size, we simulated a cache using the WisWeb cache simulator (Cao and Irani, 1997). The 

simulator simulates requests using a trace as an input and provides information on the hit rates 

for different cache sizes. We simulate an LRU caching policy, the most popularly used cache 

replacement policy. We consider cache sizes of 50% (a cache size big enough to store all objects 

in the sample is 100%), 20%, 10%, 5% and 0.5%. We test the following model for the two 

traces: )ln(.)( SkSH s= . We find that the logarithmic specification fits well for both traces. The 

results are also consistent with earlier literature such as Breslau et al. (1999). 

Trace Parameter 

Estimate (ks) 

Standard Error t Value     Pr > |t| R-Square 

Boeing 0.03644      0.00065 56.03         <.0001 0.9984 

DEC 0.04784      0.00111     43.07   <.0001 0.9973 

Table 3. Estimates from regression of H(S) on ln(S) 

3.3. Object Specific Hit rate 

The object specific hit rate, H(S,R), is the hit rate of an object with R requests in a cache 

of size S. This denotes the fraction of requests for that object that were satisfied by the cache. 

The previous sub-section estimated how the overall hit rate may vary with cache allocation. 

While the IAP cares about the overall hit rate, the content publisher is only concerned about the 

object specific hit rates for her objects. Clearly, H(S,R) increases with cache size S but also 

varies with the object popularity R. The more popular an object, greater the likelihood of it being 

requested before it is replaced from the cache. Therefore, it enjoys a higher hit rate too. Thus 
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H(S,R) also increases monotonically with R. We model the object specific hit rate as 

follows: )ln()ln(),( RSkRSH ⋅⋅= . In addition to noting the hit rates for the cache as a whole, we 

also recorded the hit rates for each data object in the trace-driven cache simulations. The 

parameter estimates are presented in table 4. Other specifications such as βSkSH s .)( =  and 

21 ..),( ββ RSkRSH =  also perform well. However, we use the chosen specification because of the 

common use of the logarithmic specification in modeling hit rates in the caching literature 

(Breslau et al. 1999). We conclude our empirical analysis with a summary of the findings. We 

found that distribution of requests follows a power law, specifically a pareto distribution. We 

found that increasing the cache size for any service class increases the hit rate in a concave 

manner, with a logarithmic relationship. The hit rate experienced by different objects varies 

across objects, with popular objects enjoying a higher hit rate. We use these observations in the 

analytical model that follows.   

Trace Parameter 

Estimate (k) 

Standard Error t Value     Pr > |t| R-Square 

Boeing 0.02296      0.00002463      932.09 <.0001 0.8281 

DEC 0.02271      0.00002672      850.17 <.0001 0.7395 

Table 4. Estimates for )ln()ln(),( RSkRSH ⋅⋅=  

We summarize here the key results from the empirical analysis: 

1. Distribution of Requests for content: The pdf of the number of requests for data objects is 

given by 
β

ββ
+

=
1

)(
R

c
Rf  (a power law relationship) 

2. Hit Rate for Cache: The hit rate of a cache varies as the logarithm of its size, S when an LRU 

replacement policy is used i.e., )ln(.)( SkSH s= . 

3. Object Specific Hit rate: The hit rate experienced by an individual data object varies as the 

logarithm of the cache size and as the logarithm of the number of requests for the object. Thus, 

popular objects are intrinsically more likely to be served from the cache (for an LRU policy). 

4 Analytical Model 

The unit of analysis in the analytical model presented in this section is an object. That is, 

we assume that the content publisher makes the caching decision by data object. This reflects the 

real world situation very well. Publishers’ decisions regarding the content they mark as 
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cacheable vary from one data object to another. Further, the publisher may care about security 

for a data object that contains confidential data but may not place a similar weight on quality 

(security, consistency, etc) on another object. Thus, it makes sense to model caching decisions by 

object, as valuations for different data objects may be different, even for the same publisher. 

We consider a monopoly pricing model in this paper. This is because users typically 

subscribe to particular IAPs and cannot switch IAPs instantaneously. Therefore, the IAP has 

monopolistic power over pub lisher’s access to users. This arises from it being the only conduit to 

any particular set of end users. A different IAP can only provide access to a different set of users 

and hence cannot be treated as a perfect substitute. In addition, large IAPs such as AOL have 

considerable market share that enables them to provide significant value to the publishers that is 

hard to replace. 

In the resource allocation section, we assume that a cache is already in place and the 

cache size, S, is therefore a fixed exogenous parameter. That is, we do not consider 

determination of the cache size in our model. There are two reasons for this. Firstly, the issue of 

optimal cache sizing has been considered in detail by Kelly and Reeves (2000). Secondly, we 

focus on the problem of an IAP, with a cache in place, making the decision of provisioning a 

premium service (QoS cache). Therefore, in our setting, the IAP needs to determine how to 

allocate the available space to the different services. 

Symbol Explanation 

q Quality level of value-added features such as reporting, consistency. 

θ  The weight a publisher places on the quality for an object (type parameter) 

S Total size of cache 

α  Fraction of cache space allocated to low quality service 

N Total number of distinct objects 

R Number of requests for an object. 

H(S) Hit rate for a cache of size S = )ln( Sk s  

H(S,R) Hit rate for object with R requests in a cache of size S = )ln().ln(. RSk  

Thc  Total Hit count or total number of times an object with R requests is served 

from cache = ),(. RSHR  

B Average Bandwidth cost for processing one object request = Bandwidth 
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cost per byte*Average size (in bytes) of object 

BIAP IAP’s average bandwidth cost for processing one object request 

η  Publisher’s benefit from faster delivery of an object to an end user. This 

may come in the form of increased sales, advertising revenue. 

P Price charged by the IAP for delivery of an object from cache. 

T Marginal cost to the IAP of billing and metering 

U Publisher’s surplus from caching the object. 

π  IAP’s expected profit 

Table 5 Glossary of terms 

We begin this section with an analysis of IAP caching services as they are provisioned 

today. As explained in section 1, IAPs maintain a best effort cache without any support for 

security, business intelligence and other value-added features. We explore why IAPs do not price 

the service, why cache-busting occurs, and study the potential loss in social welfare. In section 

4.2, we analyze the equilibrium when a premium service is introduced by the IAP. 

4.1  Single Best-effort Service 

 The content publisher has content (data objects) that is requested by an end user 

and the IAP is the conduit through which the content is delivered. Due to its unique position in 

content delivery, the IAP can provide the publisher with additional value through caching (the 

IAP derives some benefits too, namely bandwidth savings). We separate the value derived by the 

publisher from the caching service into two components – benefits derived from caching and 

costs incurred due to caching. The former represents benefits directly associated with caching 

(such as bandwidth savings and benefit from faster delivery of content). These benefits are 

derived every time an object is served from the cache (called a "hit"). The latter represents costs 

incurred due to the compromise of value added features such as personalization of content, 

security, reporting, etc. 

The cost to the publisher of compromising on security and other value-added features is 

denoted by )( Lq−θ . θ  is a type parameter that denotes the weight that the publisher attaches to 

value-added features for the specific object. This weight would clearly vary from publisher to 

publisher and even from object to object for a given publisher. For example, a data object 

containing confidential information may be associated with a high θ  whereas another not 

requiring security, reporting, etc. may correspond to an extremely low θ . We assume that θ  is 
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uniformly distributed in [0,1] across objects. We shall soon discuss the implications of this 

assumption. ( Lq− ) denotes the level of quality of the value-added features, with the negative 

sign indicating the “lack of quality” or the fact that costs are being incurred due to loss of 

security, personalization, etc. 

The publisher derives a benefit from being able to deliver his content faster to the end 

users (consumers of content). This benefit captures increased customer retention rates from faster 

delivery of content. For every object delivered from the cache, η  represents the aforementioned 

benefit to the publisher. Another important component of the benefit from caching is the 

bandwidth savings realized by the publisher. B denotes the average bandwidth cost of processing 

one object request. A piecewise separable benefit function is used, 

( )BThcqU L +⋅+−⋅= ηθ )()( , where Thc  or “Total hit count” is the count of the number of 

times the object is served from the cache. If R denotes the number of requests for an object and 

),( RSH denotes the object specific hit rate, then ),( RSRHThc = . The benefit function captures 

the tradeoff faced by the publisher – caching provides certain benefits related to bandwidth 

savings and faster content delivery but imposes costs too. 

We assume that the IAP charges a price P  for every object served from this best-effort 

cache. Thus, the net surplus to the publisher derived from caching an object of type θ  and 

demand R is ),()(),()( RSHRPBRSHRqU LL ⋅⋅−+⋅⋅+−⋅= ηθ . The publisher’s decision 

problem is to choose whether to cache or opt out (cache bust). The publisher decides to cache if 

0≥LU  and will cache-bust otherwise. To determine the number of subscribers to the service, we 

consider a publisher with an object of type iθ  who is indifferent between caching and not 

caching (gets zero surplus from the caching service). By setting UL = 0, we get 

L

L
i q

PBSkRR )(lnln −+⋅⋅
=

η
θ . Note that iθ  varies with R as shown in figure 4. Any publisher 

with an object with )(Riθθ >  is more sensitive to value-added features and hence will not 

cache. Those with lower θ s will cache because they incur lower costs from caching but derive 

the same benefits as the indifferent publisher. This is also illustrated in the figure. 
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Figure 4. Sample Indifference points (for assumed price and quality levels) 

To compute the IAP’s expected profit, we first determine the expected number of 

requests for objects that are cached by summing up the number of requests for all objects with 

iθθ ≤  (see figure 4). This is denoted by RL. Out of these RL requests for objects, )(SHRL  end up 

as hits (delivered from cache). The IAP’s expected profit is thus given by: 

)()( TBPSHR IAPL −+⋅⋅=π  

For each object served from the cache, the IAP charges a price P. In addition, the IAP 

realizes bandwidth savings, BIAP, from avoiding a request to the upstream backbone provider. 

Finally, the IAP incurs a marginal cost of metering and billing denoted by T. This represents 

costs associated with monitoring its caches, collection, customer support costs and additional 

accounting. For simplicity, we assume that these costs are linear in usage. If the IAP does not 

price the service, it incurs no such cost (i.e., T=0 whenever P=0). We sum up all requests for 

objects with iθθ ≤  and plug it into the profit function to get: 

)()ln(
)(ln

)()ln()()( 1
)(

0

2

1

TBPSk
q

kPBSk
TBPSkRdRRfdf IAPs

L
IAPs

c

c

Ri

−+⋅⋅






 −+
=−+⋅












= ∫ ∫

η
θθπ

θ

where ∫=
2

1

)(ln1

c

c

dRRRfRk  is a constant of integration. The IAP’s decision problem is  

)}({max P
P

π . Based on the first order condition, the optimal price that the IAP should charge is 

2
* IAPBTB

P
−++

=
η

. The global concavity of the profit function can be easily verified. Note 

that the IAP passes a part of its transaction cost of billing and metering to the publisher and thus 

the price charged increases with the transaction cost, T.  The indifference point associated with 
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the optimal price is 
L

IAP
i q

TBBSkRR
P

2
)(lnln

)( * −++⋅⋅
=

η
θ . Thus, the number of subscribers 

to the caching service decreases as the transaction cost, T, increases. This is illustrated below. 

 
Figure 5. Impact of transaction costs on prices and subscriptions 

When )( IAPBBT ++= η , there will be no publisher willing to pay for the caching 

services. At some transaction cost well below this level, the IAP would be better off setting the 

price to zero (transaction cost of billing, T would also be 0) and maximizing its bandwidth 

savings instead. The IAP’s profit when P*=0 is IAPs
L

BSk
q

BSkk
P ⋅

+
== ln

)(ln
)0( 1 η

π . It would 

be optimal for the IAP to set the price to zero if )()0( *PP ππ ≥= . Simplifying, if 

IAPIAP BBBBT )(2)( +−++≥ ηη , the optimal price for the IAP is P*=0. One possible 

explanation for the fact that today’s best effort service is free is that T is close to the above 

threshold. That is, the transaction cost of metering and billing may be high compared to the 

benefits that each player derives. Furthermore, the price is low if the IAP bandwidth costs are 

high. 

 To consider the impact of distributional assumptions, we solved the same model but 

introduced a skew in the distribution of object types: θθθθ 2)(;)( 2 == fF . Relative to a flat 

distribution, this distribution assumes that there are a relatively higher number of publishers who 

care about value-added features than those who do not (see figure 6). The new solution is 

3
22* IAPBTB

P
−++

=
η

. If 3 2)(
4
27

IAPIAP BBBBT +−++≥ ηη , then P*=0. It can be verified 

that for lower values of T, the new price is lower than the optimal price in case of uniformly 

distributed valuations. Generally, the net impact of the negative skew in valuations is that the 

)( IAPBB ++η
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price charged reduces if it is not already zero2. We also find that the price decreases with 

increasing IAP bandwidth costs. Higher the negative skew, greater is this decrease (the negative 

weight on BIAP is higher with the skewed distribution than the uniform distribution). If 

T
B

BIAP +





 +

=
2

η
, then P*=0. Hence, another possible explanation for the zero prices observed 

in reality is that IAP bandwidth costs are reasonably high and publisher preferences are 

negatively skewed with a large number of publishers being sensitive to value-added features. 

Even when prices are zero, several publishers will cache-bust because the cost of caching 

( Lqθ− ) dominates the benefits for these publishers. 

 
Figure 6. Negative skew in distribution of preferences 

 The model presented here highlights a number of reasons why prices may be zero today 

(high transaction costs, high bandwidth costs, skews in publisher preferences or a combination of 

these factors). The primary implication of the model is that publishers have to trade-off the 

benefits from caching with the loss of business intelligence and security, even in the absence of 

pricing. This trade-off results in cache-busting by a large number of publishers. This further 

leads to loss of surplus for end users (slower delivery of content), IAPs (higher bandwidth costs) 

and publishers (unable to reap the benefits from caching). Thus, market welfare decreases in 

general. Recent trends suggest that publishers are become increasingly sensitive to business 

intelligence and personalization as online business models have started to evolve. Thus, adoption 

                                                 
2 If ),(

1024
729

BBIAP +> η there is a small range of values with IAPIAP BBBBT )(2[ +−++∈ ηη ,  

])(
4

27
3 2

IAPIAP BBBB +−++ ηη where the price in the case of the uniform distribution is zero but non zero 

for the skewed distribution. However, the IAP bandwidth cost is so high under these settings that it turns out that the 
price for the skewed distribution is negative (the IAP pays publishers to induce them to cache). Thus, the impact of 
the skew is to reduce the price regardless. 
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rates for caching will likely continue to decline. In the next section, we explore how the 

equilibrium changes when an additional premium caching service is also provided by the IAP. 

4.2  Provisioning of Premium Service 

 In this section, we assume that the IAP provisions a premium service in addition to the 

best effort service. The premium service offers a higher quality level to the publishers. This 

higher quality is achieved by supporting dynamic content (personalization), object consistency, 

security, business intelligence, etc., and by providing premium objects with higher hit rates. 

Support for value-added features eliminates the cost incurred by the publisher due to caching. 

By using an appropriate priority scheme, the IAP can provide premium content with a 

higher hit rate. For example, Kelly et al. (1999) propose a scheme where different objects are 

assigned different weights and a server-weighted replacement policy is used to provide higher hit 

rates to objects with higher weights. Lu et al. (2001) achieve performance differentiation by 

dividing the cache space differentially between the content classes. Feldman et al. (2002) 

propose a multi- level replacement policy based on a number of interconnected LRU-based 

queues. All these authors use different techniques to achieve the same goal – providing different 

effective cache sizes to different content classes. Feldman et al. (2002) indicate how the effective 

cache sizes are related to the sizes of each queue in their two- level LRU cache. For the purposes 

of our model, it does not matter which scheme is used to achieve differential hit rates. Our model 

prescribes the optimal effective cache sizes (or equivalently, optimal hit rates for the two content 

classes). Any of these schemes may be used by the IAP to achieve the differential hit rates. In the 

rest of the paper, the terms cache size or cache space will refer to the effective cache size/space 

without any reference to the underlying priority scheme. 

4.2.1 Content Publisher’s Decision Problem 

We assume that the IAP offers two services - a Best Effort service and a premium 

service. The IAP charges a price LP  for every object served from its best-effort cache 3. The IAP 

offers a service at a higher quality level and charges a per-object price HP . We denote the level 

of value-added features for the premium service by Hq . The positive sign on the quality 

indicates a benefit to the publisher. This is because the IAP can provide the publisher with 

                                                 
3 Note that we use a per-object pricing scheme in this paper because of the prevalent pricing structure in the content 
delivery domain. The reader is referred to Mackie-Mason and Varian (1995) for a discussion on the merits of usage-
based pricing for capacitated resources on the Internet. 
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superior business intelligence than the publisher can gather on her own. For example, the IAP 

can provide valuable information about end users (type of Internet connection, user profile, etc) 

or aggregate information across publishers. The publisher’s benefit function has the same form 

as in the previous section. Thus, the publisher’s net surplus from the two services is given by: 

),()(),()( RSHRPBRSHRqU LLLLL ⋅⋅−+⋅⋅+−⋅= ηθ     (1) 

 

where SSL α=  and SSH )1( α−= . 

As discussed previously, any priority scheme for differential caching can be expressed 

using different effective cache sizes for the two services. The cache space, S, is divided into 2 

levels, with α denoting the fraction of cache space allocated to the best effort service. That is, 

Sα  is the size of the cache for best effort subscribers and the remainder of size (1-α )S is for the 

premium subscribers. To determine the number of subscribers to the service, we consider a 

publisher with object of type Lθ  who is indifferent between the Best Effort service and not 

subscribing to the service at all (gets zero surplus from the Best Effort service). Any publisher 

with Lθθ >  is more sensitive to value-added features and hence will not choose the best effort 

service to cache the object. Those objects associated with lower θ  will cache in the best effort 

service. Similarly, we consider a publisher with an object of type Hθ  who is indifferent between 

the premium service and not caching (gets zero surplus from the premium services). Objects 

associated with Hθθ >  gain more benefits from the premium service and will be cached. 

Publishers with objects of type Hθθ <  do not weigh the value-added features enough to be 

willing to pay the price PH. By setting UL = 0, we get Lθ  and by setting  UH = 0, we get Hθ .  

L

LL
L q

PBSkRR
R

))(ln(ln
)(

−+⋅
=

η
θ  and  

H

HH
H q

BPSkRR
R

))(ln(ln
)(

−−⋅
=

η
θ   (2) 

Both Lθ  and Hθ  vary with demand R and are thus curves that represent indifferent 

content publishers. We call these the “Quality Indifference Curves” (QICs) for the publishers4. A 

sample QIC, based on assumed prices and quality levels is shown in figure 7. The interesting 

                                                 
4 “Quality Indifference Curves” are not the same as indifference curves in economics. Traditional indifference 
curves denote how consumers trade-off one good for another (thus indicating the Marginal Rate of Substitution). 
QICs denote the points in space where publishers are indifferent between services. They are usually called 
indifference points in microeconomic models. Since these points vary with R, we refer to them as QICs. 

),()(),( RSHRPBRSHRqU HHHHH ⋅⋅−+⋅⋅+⋅= ηθ
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region is the intermediate one where [ ]HL θθθ ,∈ . Publishers in this region care enough about 

security, business intelligence, etc. that they will not choose the best-effort service but not so 

much that they are willing to pay the premium price. Note also that in figure 7, publishers 

subscribe to the service which provides them with the maximum surplus, an Incentive 

Compatibility (IC) constraint. Additionally, the publishers will cache a data object only if the 

surplus from doing so is positive, which is an Individual Rationality (IR) constraint. 

 
Figure 7. Sample Indifference points (for assumed price and quality levels) 

4.2.2 Properties of the Quality Indifference Curves (QICs) 

 This section presents some properties and observations regarding the QICs.  

“Well-behaved” curves: One important property that we desire from the QICs is that they never 

cross each other. If they do, then interpreting the QICs becomes difficult.  

Lemma 1: The Quality Indifference Curves never cross each other. 

Lemma 2: If the IAP prices optimally, then )()( RR LH θθ ≥ .  

 The proofs for both lemmas are provided in the appendix. We will use these lemmas in 

lemma 3 and in computing IAP profit functions in the next section. 

Segmentation Conditions 

 The market is segmented if there are customers for both the services. There exist subscribers 

to the best effort service only if Lθ >0 for some R. Similarly, there exist subscribers to the 

premium service only if Hθ <1 for some R (see figure 7). These two conditions are thus 

necessary conditions for segmentation. 



 23 

i. 1<Hθ , for some ),( 21 ccR ∈ : If },1{ RH ∀>θ , then there is no “feasible” subscriber5 who 

prefers the premium service. Thus, this condition is necessary if the IAP has customers for the 

premium service. 1<Hθ  results in the following inequality:  

11 lnln ccSk
q

BP
H

H
H ⋅

++< η     (4) 

  Equation (4) indicates that if the price is above the specified threshold, no publisher will 

choose the premium service. 

 ii. 0>Lθ , for some ),( 21 ccR ∈ : If },0{ RL ∀<θ , then there will be no subscriber for the best 

effort service. This condition can be rewritten as BPL +< η . This condition sets a simple upper 

bound for the price that the IAP can charge for the best effort service. 

Lemma 3: If the IAP chooses prices and allocation policy so that 
11 lnln ccSk

q
BP

H

H
H ⋅

++< η  

and BPL +< η , then the market will be segmented. 

 The proof is provided in the appendix. It is clear from the discussion above that these two 

conditions are necessary. Their sufficiency is established in the appendix. Note that the optimal 

prices need not satisfy these conditions. Thus, whether it is optimal to segment the market 

depends on whether the optimal prices satisfy the conditions of lemma 3. 

4.2.3 IAP’s Decision Problem 

Illustrative Example: Consider a discrete example where the population consists of 4 objects 

},,,{ 4321 oooo . The IAP receives 10 requests per unit time and this consists of 5 requests for 1o , 

3 for 2o , 1 for 3o  and 1 for 4o . Thus, the demand vector is given by }1,1,3,5{>=< R . Let us 

assume that, based on the IAP’s pricing decision, 1o  subscribes to the premium service, 2o  and 

3o  subscribe to the best-effort service and 4o  opts out. Thus, the subscription to the services is 

given by the 2-tuple (1,2) indicating that 1 object subscribed to the premium service and 2 

objects to the best-effort service. However, the IAP’s profit depends not on the subscription per 

se, but on how these objects contribute to the incoming request. The incoming request vector is 

given by the 2-tuple (5,4), indicating that 5 requests per unit time are for objects subscribed to 

the premium cache and 4 for objects subscribed to the best-effort cache. The IAPs profit is given 
                                                 
5By “feasible” subscriber, we mean a subscriber in the feasible region with θ  ∈ [0,1]. By definition, there exists no 
subscriber outside the feasible region. 
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by ])[(4])[(5 TBPSHTBPSH IAPLLIAPHH −++−+ . The IAP’s decision problem is thus to 

choose the prices LH PP ,  and the allocation LH SS ,  so as to maximize its profit. Note that the 

request vector, i.e. the 2-tuple (5,4), is itself determined by these decisions since the price 

charged influences the subscription to the two services.     <   

The IAP has a cache of size S. It allocates the space to the two services through its choice 

of α  (fraction of space allocated to the best effort service). In addition, the IAP also chooses the 

prices for the two services. As indicated in lemma 2, the IAP will not find it desirable to choose 

prices that sets the Hθ  QIC below the Lθ  QIC. Hence, we only discuss the case )()( RR LH θθ ≥ . 

To compute the IAP’s profit function, we first determine the expected number of requests for 

objects in the premium service by summing up the requests for all objects with Hθθ >  (see 

figure 5). This is denoted by RH. Similarly, the expected number of requests for “best-effort 

objects”, RL, is obtained by summing up requests for objects of type Lθθ ≤ . The IAP’s expected 

profit is given by: 

)(])[(])[( HIAPLLLIAPHHH qCTBPSHRTBPSHR −−++−+=π  

Out of the HR  requests for premium objects, )( HH SHR  end up as hits (delivered from 

cache) and similarly, )( LL SHR  are the number of objects delivered from cache for the best-

effort service. For each object served from the cache, the IAP realizes bandwidth savings, BIAP, 

and charges a fee from the publisher. The IAP incurs a marginal cost T of metering and billing. 

There is a fixed cost for the IAP to provision the value added services. This is the cost of the 

infrastructure the IAP needs in order to provide security, business intelligence, etc. The cost is 

C(qH), which is monotonically increasing in qH. 

As discussed previously, R is randomly distributed across objects and has a pdf given by 

the pareto distribution. The hit rate is given by )ln()( SkSH s= . RH is obtained by summing all 

the requests for objects in the topmost region of figure 7. RL is obtained by summing up all 

requests in the lowermost region. That is, ∫=
2

1

)()(
c

c
LL dRRRfRNR θ  and 

dRRRfRNR
c

c
HH )())(1(

2

1
∫ −= θ . This gives us: 
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where k1 is a constant of integration (see Appendix A2 for full derivation of expected profit). The 

IAP’s decision problem is ),,(max
,,

απ
α

LH
PP

PP
LH

. Following the traditional approach (for example, 

Neven and Thisse 1990) in pricing, we model the IAP’s problem as a two-stage process. In the 

first stage, we look at the pricing problem assuming that the allocation problem has been solved. 

That is, we address the pricing problem assuming that α  is an exogenous parameter that has 

already been determined and hence the IAP is only interested in pricing. In the second stage, we 

analyze the allocation problem (determining optimal α ). Note that this procedure maps well to 

reality where pricing follows production or service design. 

4.2.4 Pricing Problem 

As discussed above, we assume that α  is an exogenous parameter and focus on the pricing 

problem in this section. The first order conditions associated with the problem are as follows:  
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The first term in the derivative indicates the increase in revenue from being able to 

charge an infinitesimal amount more for the premium service. The second term captures the 

decrease in revenue from subscribers opting out of the premium service due to this small 

increase in price. 
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The interpretation is similar. The first term reflects the increased revenue from being able 

to charge more from the best-effort customers. However, some subscribers opt out of the service 

due to the increased price (second term). The interpretation of the first-order conditions and 

trade-offs associated with pricing is summarized in Table 6.  

 Impact on Premium Service Impact on Best-Effort Service 

Marginal  Subscription Revenue from Subscription Revenue from 
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Increase in: Service  Service 

HP  Decrease +/- No Impact No Impact 

LP  No Impact No Impact Decrease +/- 

Table 6. Impact of decision variables on profit 

Solving the two first-order conditions gives us: 

Lemma 4: When IAPIAP BBBBT )(2)( +−++< ηη , the optimal prices are: 
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     (6) 

When IAPIAP BBBBT )(2)( +−++≥ ηη , the optimal price for the best effort service is PL
*=0 

and PH remains the same. 

It can be verified that the Hessian is negative definite implying that the prices in equation 

6 represent a maxima. Substituting the optimal prices from lemma 4 into the segmentation 

conditions of lemma 3, the following proposition is immediate. 

Proposition 1: If 
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the IAP to segment the market.  

If transaction costs of metering and billing are exceedingly high, then a market for 

premium services may also fail. However, if the premium service provides a very high level of 

support for value-added features (qH is high), a market for premium service will exist. 

Improvements in Information technology (IT) can help facilitate increase in qH as has been 

witnessed in the last several years in caching technologies. In addition, IT can play an important 

role in reducing the transaction cost of metering and billing and help facilitate such markets for 

premium web caching services. 

The Quality Indifference Curves associated with the optimal prices of equation (6) are: 
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Special Case 

Note that the first order conditions in section 4.2.4 display no cannibalization effects. Hence, the 

optimization of PL and PH is done independently. Thus, this process may artificially push the Hθ  

QIC below the Lθ  QIC (and may incorrectly count the subscribers in the intermediate region 

twice – once as subscribers of the best effort service and once of the premium service). When 

this occurs, the optimal prices are at a boundary condition where )(RHθ = )(RLθ . The 

corresponding solution is given by 
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special case represents the case where the market is completely captured (all publishers cache 

either in best effort or premium service). This special case is not very realistic and thus we focus 

only on the interior solution in the rest of this paper. 

4.2.5 Comparative Statics 

 Based on the QICs in equation 7, we can conduct sensitivity analysis to determine how 

various parameters impact the subscriptions to the services. For example, how would 

subscriptions to a service change if technology facilitates improvements in the quality of value-

added features. Improvements in quality will increase publisher surplus. The IAP can extract the 

additional value by increasing prices. However, the net impact on subscriptions depends on 

whether the price increases outpace increase in surplus for the indifferent publishers. 

Proposition 2: If the quality of the best effort service is increased and the IAP reacts optimally 

with respect to prices, subscription to the best effort service increases and to the premium service 

is unchanged. 

Proof: From equation (7), it follows that an decrease in Lq (note that an increase in quality 

corresponds to a decrease in Lq ) causes Lθ  to increase and Hθ  is not affected. This implies that 

the number of subscribers to the best effort service increases and that to the premium service is 

unchanged. When IAPIAP BBBBT )(2)( +−++≥ ηη , the best effort service is free (PL
*=0). 

Substituting this into equation 2, we again find that  Lθ  increases with quality. Thus, 

subscription to best effort service increases with quality, irrespective of the transaction costs. 
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Proposition 3: If the quality of the premium service is increased and the IAP reacts optimally, 

subscription to the best effort service is not affected but to the premium service decreases, is 

unchanged or increases depending on whether T is less than, equal to or greater than 

IAPBB ++η . 

Proof: From equation (7), it follows that an increase in Hq  has no effect on Lθ . Thus, the 

number of subscribers to the best effort service is not affected. The impact on the premium 

service is readily verified for three cases. 

 There are two aspects worth noting in the propositions. First, there exist no 

cannibalization effects. That is, changes in quality of one service do not impact the other, unlike 

traditional vertical differentiation models. This is because of the negative quality of the low 

quality service that results in the no-subscription region being sandwiched between the premium 

and best-effort subscribers (see figure 7). Thus, changes in parameters of any service affects that 

service but the other service is shielded from experiencing any impact. In contrast, there are 

direct effects to other services from changing any service parameter in classical segmentation 

models. In addition, we observe that the direction of the impact of increasing quality is different  

for the services. For the low quality service, increase in quality consistently results in an increase 

in subscribers. This is because the IAP is unable to increase its price as the benefit from quality 

is still negative (i.e. 0<⋅− Lqθ ). Thus, publisher surplus increases, resulting in an increase in 

the subscription base. On the other hand, price increases with quality for the premium service. 

Whether the price increase outpaces the benefit from quality increase for the indifferent 

publisher at Hθ  depends on the relative magnitude of transaction costs compared to the hit-based 

benefits. The IAP may lose subscribers but earn higher margins per subscriber with low 

transaction costs. Note that proposition 3 is consistent with proposition 1. If )( IAPBBT ++> η , 

the quality of the premium service will have to be considerably high for the service to exist . 

Proposition 4: As bandwidth costs decrease, subscriptions to both the services decrease. 

Proof: As bandwidth costs drop, both B and BIAP decrease in equation (7). This causes Hθ  to 

increase and therefore subscription to the premium service drops. Simultaneously, Lθ  decreases 

implying that subscription to best effort service decreases.  

Table 7 lays out the impact of changes in quality and bandwidth costs on the subscription 

to the two services. 
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Increase in Lθ  Hθ  Subscription to 

Best Effort 

Subscription to 

Premium Service 

(- Lq ) Increases - Increases - 

Hq  - Varies - Varies 

B,BIAP Increases Decreases Increases Increases 

Table 7. Impact of quality and bandwidth on Subscription 

Equation (6) provides valuable insight into the IAP’s pricing decision. The IAP 

charges the content publisher a part of her surplus from bandwidth reduction and faster content 

delivery ( B+η ). The IAP gives back to the publisher a part of its own surplus from bandwidth 

reduction (BIAP) but also passes on a part of the transaction cost of billing. If the transaction costs 

or IAP bandwidth costs are high or there are a large number of publishers sensitive to value-

added features (negative skew in θ ), the best effort service will be free. The price for the best 

effort service is the same as in the single service case. Hence, we expect the best effort services 

to remain free even when a premium service is introduced. The IAP also charges the publisher 

for the support provided to value-added features (denoted by qH). The price charged varies 

linearly with the quality level.  This linearity is largely driven by the fact that our model assumes 

that the publisher’s surplus varies linearly with qH. Assuming a nonlinear surplus function results 

in non-linearity in pricing. For example, assuming the following surplus function: 

),()(),(2 RSThcPBRSThcCqqU HHHHHH ⋅−+⋅+−⋅= ηθ , where C is a normalization constant, 

results in the following nonlinear optimal price: 
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Space constraints prevent us from providing a detailed derivation. Interested readers may contact 

the authors. There also exists some non- linearity with regard to impact of cache sizes. Equation 

(6) indicates that the per-object price for the premium service decreases with increasing cache 

size. This is analogous to quantity discounts in conventional pricing theory. The total price 

charged to a publisher for caching an object is HH SRkRP lnln⋅⋅ , which is increasing in cache 

size. 

4.3 Space Allocation 

  In the previous section, we looked at the pricing problem assuming that the cache sizes 

SSL α=  and SSH )1( α−=  were exogenously decided. Space allocation is however a real-
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world problem faced by cache operators. Typically caches sizes are optimized based on traffic 

profiles and are never over-provisioned. This is due to diminishing returns from increasing cache 

sizes and costs dominating beyond the optimal cache size (Kelly and Reeves 2000). The cost of 

incremental upgrades at various caching nodes tends to be high, hence they are rarely resized 

unless the traffic profile changes substantially (Maggs 2002). Thus, caches are a capacitated 

resource and space allocation is an important consideration. As stated earlier, our model 

prescribes the optimal effective cache sizes for the two services. An appropriate priority scheme 

may be used to implement the same. 

We obtain the first order condition of the expected profit with respect to α , conditional 

on the prices. The equation is of the form )(αα g= , where g() is continuous over α  in [ 1,ε -ε ] 

(see Appendix A3). The equation does not yield a closed form solution, although the existence 

can be guaranteed by Brouwer’s Fixed Point Theorem (Brouwer 1910). The proof is based on the 

observation that εε ≥)(g  and )1()1( εε −≤−g . Therefore, 0)( ≥− εεg  and 

0)1()1( ≤−−− εεg . Since g() is continuous, there exists an *α  in [ 1,ε -ε ] such that 

0)( ** =− ααg . Thus, the optimal allocation of cache space is given by the solution to 

)( ** αα g= . The detailed proof is presented in the appendix. To illustrate how the IAP may 

solve the allocation problem, we consider a numerical example below. 

4.3.1 Illustrative Example 

We simulate values for the various parameters in the model. We consider an average 

publisher with bandwidth cost of 0.03c per object. This corresponds to a publisher with a T1 

connection priced at $750 per month, an average object of size 50 KB and a peak to average 

bandwidth ratio of 4:1. The IAP handles more traffic and hence would have lower bandwidth 

costs. Assuming that the IAP uses an OC-48 connection, this gives us IAP bandwidth cost of 

0.011c per object. Thus, the IAP bandwidth cost is approximately 36% that of the typical 

publisher. We assume that the publisher’s benefit from faster delivery of content is of the same 

order of magnitude as bandwidth savings, i.e., =η 0.03c. While appropriate values for Lq  and 

Hq  can be best calibrated from surveys of content publishers, one can calibrate these parameters 

by intuitively considering q⋅θ  as the dollar cost/benefit of value-added features (note that 

BRSHR ⋅⋅ ),(  is the dollar value of bandwidth savings). The publisher who is most sensitive to 

non-hit rate attributes such as security, consistency, reporting, etc ( 1=θ ) is assumed to value 
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these features an order of magnitude more than the bandwidth savings ( 3.0=Hq ). Lq  is 

assumed to be 0.4 with the implication that the cost to the most sensitive publisher of 

compromising on security, business intelligence, etc is 0.4 c per object. This choice of Lq sets the 

cost of compromising on value-added features high enough that it dominates benefits from 

bandwidth savings and faster content delivery for a large number of data objects. Finally, the 

transaction cost of billing to the IAP is set as cBBT IAP 071.0=++= η  per object. This sets the 

cost high enough that the best effort service will be free (as observed in reality today). The cache 

size is assumed to be 6 GB. All the remaining parameters are empirically derived from the 

Boeing trace. A cache at an IAP location such as AOL would be of the order of a few Terabytes 

in size. However since we use the parameters derived from the Boeing trace, which has a lower 

number of requests as well as distinct objects, we use a proportionately smaller cache size. 

Figure 8 illustrates that the IAP would find it optimal to allocate 17.32% of the cache space (or 

1.04 GB) to the lower level cache for the simulated setting (i.e., 1732.0* =α ).  
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Figure 8. Optimal allocation for the IAP 
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Figure 9. Impact of decreasing bandwidth costs 

on allocation 

One interesting question that arises from recent trends is how do decreasing bandwidth 

costs impact the allocation decision and profit. We repeat the simulations but halve the 

bandwidth costs for both the IAP and the content publisher (B = 0.015c and BIAP = 0.0055c). 

Under the new settings, it is optimal for the IAP to allocate 10.9% of the cache to the lower level. 

Figure 9 lays out the impact of lowering bandwidth costs on *α . BBC represents the base case of 

B = 0.03c and BIAP = 0.011c. In each successive simulation, we halve the bandwidth costs from 

the previous simulation (both B and BIAP are halved). We observe that the IAP finds it optimal to 

    BBC     BBC/2     BBC/4     BBC/8    BBC/16 



 32 

reduce the size of the best effort cache and increase the size of the premium cache as bandwidth 

costs decrease. 

We find that the IAP’s profit also decreases when bandwidth costs fall6. In figure 10, the 

upper curve shows the change in IAP’s profits (the data is calibrated to Boeing trace) as 

bandwidth costs decrease. The lower curve plots the IAP’s profits if it does not pursue any QoS 

caching policies. This is the current scenario wherein an IAP’s surplus from caching consists 

only of its bandwidth savings. It must be noted that these simulations do not account for other 

possible trends that might accompany reduction in bandwidth costs. For example, the reduction 

in costs might reduce access charges for end users causing a greater demand for content (both the 

type of content requested and number of requests may change). Also, there may be 

accompanying changes in response times causing changes inη  (publisher’s benefit from faster 

delivery of content). It is difficult to ascertain the exact nature or magnitude of these changes. 

However, it is possible to determine the rate at which traffic will need to go up in order to 

maintain IAP profits at the same level.  Figure 11 indicates how the total volume of traffic will 

need to rise for our trace (Boeing) in order for the IAP profits from QoS caching to remain 

constant despite declining bandwidth costs. The sub-linear relationship (note also that the x axis 

is on a log scale) indicates that such an increase may be feasible. 
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Figure 10. Impact of decreasing bandwidth 

costs on IAP Profit (in cents/day) 
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Figure 11. Increase in traffic needed to 

maintain IAP profits with declining bandwidth 

costs  

 

 
                                                 
6 This effect can also be identified by applying the envelope theorem to equation 5. 
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5. Robustness of Model 

We conclude our discussion of the model with a review of our modeling assumptions and 

the robustness of our analytical insights. In the model, we account for heterogeneity among 

objects in terms of demand but ignore size related differences. That is, we assumed that all 

objects have the same size. However, accounting for size related heterogeneity adds an 

additional dimension to the QICs without providing greater insight. While heterogeneity in 

object sizes impact the efficiency of caching algorithms and policies, they did not seem to 

critically affect the pricing strategies (especially since the pricing is usage based). By ignoring 

size differences, the model thus ignores heterogeneity in bandwidth cost B and benefit from 

faster delivery of content η . Accounting for bandwidth costs and speedup benefits for an 

average data object enables us to keep the model tractable and derive valuable broader insights. 

Bandwidth is currently priced using either a usage based model or capacity-based model. 

Examples of the former include ATM and frame relay-based services. Leased line services (T1, 

T3, and OC3) employ the capacity-based model in that a fixed monthly charge is paid for 

guaranteed bandwidth -- irrespective of whether the capacity is put to use or not. Finally, there 

are burstable T1, T3 and OC3 services which enable organizations to use up to the maximum 

capacity of the service (e.g., 1.5 Mbps in the case of T1) to handle peak loads but pay based on 

their usage pattern organized into tiers. It is clear that a single model cannot capture both usage-

based pricing and pricing for capacity irrespective of usage. Hence, we consider average 

bandwidth cost per object served from the cache (or equivalently, bandwidth cost per byte). The 

average bandwidth cost is clearly non-zero and represents publisher's bandwidth considerations 

rather well. Furthermore, recent trends in bandwidth pricing (for example, burstable packages for 

leased lines) have focused on usage-based metering. 

The model assumed that θ  is uniformly distributed across data objects. The broader 

insights of the model did not change for other well-known distributions. The net impact of a 

negative skew was to reduce the price that the IAP can charge. The model also assumed that the 

publisher surplus from value-added features, q, was linear in q. Introducing non- linearity in 

preferences also introduces non- linearity in pricing, as indicated in section 4.2. In section 5.1, we 

revisit our model and consider correlation between benefit from value-added features and 

number of requests for an object. In section 5.2, we discuss the sensitivity of the results to trace 

parameters and finally discuss the implications of publishers’ contracting costs in 5.3. 
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5.1 Correlation between benefits from value -added features and demand, R 

The publisher’s benefit function in section 4 assumed that the benefit/cost from value-

added features is independent of the number of requests for an object. The two may in fact be 

correlated. That is, the publisher may value security or business intelligence more for an object 

that is in relatively higher demand. Hence, we consider two variants of the publisher surplus 

function. The first is: RRPBRRqRU ln)(ln ⋅⋅−+⋅+′= ηθ . This surplus function is similar to 

the one  in section 4. It assumes that each object has an intrinsic requirement (or lack thereof) for 

value-added features. This is denoted by θ . For example, a publisher with an object with 

confidential data always values security more for this object than another without sensitive 

information (all else held constant). However, this function also assumes that the importance of 

value-added features increases with popularity of an object. Given two objects with the same θ , 

the publisher values the premium service higher for the relatively popular object. The impact of 

the change is that the slopes of both the QICs in figure 5 decrease. The optimal prices are given 

by:  





 −++

=
2

IAP
L

BTB
P

η
 and 






 −++

+
′

′
=

2ln2
)(

1

IAP

H

H
H

BTB
Skk

qRE
P

η
, where 

11

2

1

)(ln kdRRfRk
c

c

<⋅⋅=′ ∫ . The per-object price charged to the best effort service is not affected 

and that to the premium service changes (we will soon show that it decreases). Broader insights 

from the model continue to hold.  

Next, we let the benefit/cost from the value-added features increase at a faster rate with R 

than the hit-rate benefits by assuming: 

RSkRPBRSkRqRU LLLLL lnln)(lnln)(2 ⋅⋅⋅−+⋅⋅⋅+′′−⋅⋅= ηθ    (8) 

 

Note that this model is also similar to the model in section 4 except that it assumes that the 

benefit/cost from value-added features increases as the square of R. We had previously defined 

qH as the dollar benefit from the value-added features to the most sensitive publisher. From that 

definition, it follows that 2/ UBHH Rqq =′′ .  Similarly, it follows that 2/ UBLL Rqq =′′ . These 

transformations ensure consistency across the two models so tha t we can continue to infer each 

term in the surplus function as a dollar cost or benefit. In this new specification, as in the 

preceding case, the slopes of the 2 QICs decrease. However, the impact is strong enough to cause 

RSkRPBRSkRqRU HHHHH lnln)(lnln2 ⋅⋅⋅−+⋅⋅⋅+′′⋅= ηθ
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the QICs to slope downwards as illustrated in the figure below. Downward sloping QICs imply 

that more popular objects prefer the premium service. 
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Figure 12. Sample QICs for new model (assumed price and quality levels) 
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. Thus, the price of 

the premium service decreases from that in section 4. The broader insights from the model in 

section 4 (such as propositions 1-3, impact on profit and allocation, etc) are not altered. We can 

expect reality to lie between the cases of complete independence (figure 5) and strong correlation 

(figure 12). Thus, the net impact of assuming a correlation between number of requests and 

benefit from value-added features is that slope of the QICs and the magnitude of price for 

premium service may change.  Both the variants considered in this sub-section suggest that the 

broader insights from the model in section 4 do not change with correlation assumptions. 
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5.2 Sensitivity to Trace Parameters  

The results from the numerical analysis in section 4.3.1 are based on parameters obtained from 

the trace analysis (specifically Boeing trace). In this section, we highlight the sensitivity of the 

results to the trace parameters. We first highlight the results of the trace analysis - The pdf of the 

number of requests for data objects is given by 
β

ββ
+

=
1

)(
R

c
Rf  (a power law relationship); The hit 

rate of a cache when an LRU replacement policy is used is )ln(.)( SkSH s= ; Hit rate 

experienced by an individual data object is RSkRSH lnln),( ⋅⋅= . 

 Since various studies (Breslau et al. 1999) have shown that requests-rank relationship for 

requests follows a zipf distribution, our calibrated distribution (pareto) is likely to hold. What 

may vary from one trace to another is the parameter β  and the upper bound on the number of 

requests, RUB (c is a function of β and RUB). Traces that are favorable for caching are those with 

low β  and high RUB. These traces have a relatively higher number of popular objects and popular 

objects tend to be extremely popular (see figure 13). We consider the impact of trace parameters 

on the results by considering two traces, which we shall call regular (high β , low RUB) and 

favorable (low β , high RUB). For the analytical model and numerical analysis presented in 

section 4, the results are as follows: 

)()( ** regPfavP LL = ; )()( ** regPfavP HH < ; and )()( ** regfav αα > . For content publisher surplus 

functions of the form presented in the previous subsection (equation 8), the results are as follows 

- )()( ** regPfavP LL = ; )()( ** regPfavP HH > ; and )()( ** regfav αα < . The direction of the effects 

shown in figures 8-11 remain for all traces irrespective of the surplus functions.  

 
Figure 13. Two traces with different properties 
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 When the rela tive density of popular objects increases, the IAP has incentives to provide 

more resources to publishers of such objects. Figure 7 indicates that for a given value of θ , 

popular objects are more likely to be in the best effort service. The IAP thus allocates a larger 

fraction of the cache space to the best effort service to ensure that a large fraction of the data 

objects continue to be cached. This reduces the surplus for premium objects and thus it reduces 

PH to compensate for the same.  

 In contrast, when the benefit function is as in equation 8, the indifference points are as 

shown in figure 12. Popular objects are more likely to be in the premium service because surplus 

from value-added features increases with R at a faster rate than hit rate benefits. When the 

relative density of popular objects increases, the IAP caters to the ir publishers by increasing the 

fraction of space allocated to the premium service.  Since the surplus of the publishers increases, 

the IAP is able to charge higher per-object prices as well. Thus, the impact on the allocation and 

price depends on how popularity of data objects impacts the trade-off between hit rate benefits 

and value-added benefits. The bottom line is that sensitivity to value-added features will have to 

increase at a very high rate with R (faster than RR ln⋅ ) for prices and cache size of premium 

service to increase, else we expect both to decrease when relative density of popular objects 

increases. 

 In the cache simulations, we found that that hit rate varies as the logarithm of the cache 

size with an LRU replacement policy. This drives the result that the total price charged increases 

as the logarithm of the cache size for any service level (or per object price decreases as the 

inverse logarithm of cache size). The concavity of hit rate Vs. cache size is expected to hold for 

other replacement policies and thus total price is expected to increase non- linearly (concavely) 

with cache size irrespective of the replacement policy.  

5.3 Contracting Costs for Content Publishers  

The model presented in section 4 incorporates transaction costs of contracting for the IAP 

but not for the publisher. The model incorporating publisher transaction costs is relatively 

tedious and hence we only highlight the key insights from the model here. Including a 

transaction cost of contracting for publishers reduces their surplus from the service. The net 

result is that publishers only have incentives to contract with large IAPs. IAPs with large 

subscriber bases would handle a large number of requests for the publisher’s content and thus 

benefits from the service can outweigh the contracting costs. On the other hand, smaller IAPs 
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will find it difficult to attract publishers because the contracting costs may outweigh the 

publisher’s benefit from the service. Thus, we expect that such QoS services can be rolled out 

successfully by large IAPs only. For smaller IAPs, an aggregator can play an important role in 

reducing the transaction costs for publishers. Content Delivery Networks (CDNs) can play an 

important role as the aggregators that facilitate such markets. Publishers will only need to 

contract with one CDN, which in turn can contract with a large number of IAPs. Thus, whether 

an IAP markets QoS caching services independently or through an aggregator may depend on 

transaction costs of contracting and economies of scale and scope.  

6. Conclusions  

Quality of Service (QoS) is the leading performance consideration in e-business today. 

We introduce a framework to structure and analyze the QoS issues in web caching in an 

integrated manner. If designed prudently, QoS caching would move content delivery almost 

entirely to the edge. This could change the structure of the digital supply chain and have 

significant impact on e-business infrastructure. For example, it could move “intelligent” 

processing of collateral information – of great interest to e-marketing – to the edge of the 

network as well. When combined with our conceptual view of content delivery as a digital 

supply chain for information goods, this suggests that content publishers would gradually 

become “manufacturers” of content and caches would handle the storage and “retailing” of 

content. This is a significant reinvention of content delivery, as it exists today.  

There exists no previous research in the area of cache QoS pricing and capacity 

allocation. While IAPs currently deploy caches, they do not charge publishers for these services 

because of the best effort nature of these services. Best effort caching worked well as a caching 

paradigm a few years back. As electronic markets have matured over the last couple of years, 

publishers have developed new requirements (such as personalization, business intelligence) 

which current caching services do not meet. The best effort nature of caching is thus contributing 

to significant cache-busting by publishers. Our paper proposes a QoS framework wherein an IAP 

can provision value-added services to respond to the new needs of publishers and thus realize 

more efficient markets. QoS-based caching can help prevent a lot of the cache-busting that is 

prevalent today. In addition to increasing publisher welfare, appropriate pricing of these services 

can ensure that IAPs are also better off. Thus, this aligns the incentives of publishers and IAPs 

and increases overall market welfare. We have introduced a framework to determine optimal 
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pricing strategies for an IAP provisioning best effort and premium caching services. We also 

address the capacity allocation issues that arise from the provisioning of these services. 

We find that value-added services would allow cache operators to price discriminate 

effectively. Additionally, we find that subscriptions to both the services would drop with falling 

bandwidth costs. This effect can be mitigated by either provisioning superior value-added 

services or through increased broadband penetration. The former allows the IAP to charge higher 

prices. Increased broadband penetration would likely increase Internet usage by end users as well 

as the volume of traffic on the Internet, thus reinforcing the value of caching and increasing 

adoption. For example, consider the fact that @Home (a broadband ISP now part of Comcast) 

had 0.3% of Internet subscribers but constituted 5% of Internet traffic.  

Our analysis has shown that recent changes in publisher preferences diminish the role of 

best effort caching services. Declining bandwidth costs further reduce their relevance. Thus, 

managers are better off directing their resources towards provisioning value-added services. This 

finding is also corroborated by recent articles in the business press (Mears 2002). Resources may 

be diverted towards serving the maximum number of data objects from the premium cache. 

Services like Akamai’s Edgesuite that enable delivery of entire sites from the edge caches, 

bundled with business intelligence and content targeting, may well become the norm. This is an 

indication of the impending metamorphosis of the content delivery value chain.  
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Appendix A1 

Proof of Lemma 1  

Equating Lθ  and Hθ  leads to the following equation: 
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. The former is the simple and uninteresting case 

where 1=R  (the object has only 1 request). The latter implies that Lθ = Hθ  for all R in [ 21 ,cc ]. 

That is, if Lθ  and Hθ  ever meet then they are always equal (market is exactly captured), thus 

ensuring that the two QICs never cross each other. The quality indifference curves are therefore 

always “well-behaved”.   

Proof of Lemma 2 

Let us assume that the converse is true. That is, )()( RR LH θθ <  for the optimal prices. In this 

case, the entire market is captured for the prices chosen (i.e., everyone derives positive utility 

from at least 1 service). In fact, the region ),( LH θθθ ∈  represents subscribers that derive a 

positive surplus from both the services. We define LHθ  as the object whose publisher is 

indifferent between caching it in the premium service or the best effort service. By setting 

HL UU = , we get: 
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θ . Thus, LHθ  is a weighted average of Lθ  and Hθ  implying that 

the LHθ  QIC lies in between the other two QICs. Publishers with objects of type LHθθ >  will 

join the premium service because they weigh the value-added features more. Those with LHθθ <  

will choose the best effort service. 

 Publishers in the region ),( LHH θθ  all subscribe to the best effort service and yet derive 

positive surplus from joining the premium service. Similarly, publishers in the region ),( LLH θθ  

all subscribe to the premium service and yet derive positive surplus from joining the best effort 

service. Under this scenario, the IAP can increase the prices of the two services by the same 
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amount which causes Hθ  to move up and Lθ  to move down, without impacting LHθ . The IAP can 

charge more without impacting its subscriptions and thus increase its profits. Hence, the original 

prices cannot be optimal.  

Proof of Lemma 3 

 Lemma 2 establishes that )()( RR LH θθ ≥ . Now, if 0)( >RLθ , we know that all 

publishers located between [ Lθ,0 ] will subscribe to the best effort service because they derive a 

positive surplus from it but negative surplus from the premium service (see figure 7). Thus, 

0)( >RLθ  for some value of R guarantees the existence of subscribers for the best effort service. 

Thus, the condition is sufficient. Similarly, publishers with Hθθ >  will derive a positive surplus 

from the premium service. Since LH θθ ≥ , all these publishers will also derive a negative surplus 

from the best effort service. Thus, publishers located between [ 1,Hθ ] will all subscribe to the 

premium service. Thus, if 1<Hθ  for some R, then it is guaranteed that the premium service also 

has some subscriber. It follows that the market is segmented. 

Appendix A2 - IAP Profit Function 

The IAP’s expected profit consists of revenues from charging for the 2 services and 

bandwidth savings from the cache. As explained in section 4.2.3, this is given by: 

)(])[(])[( HIAPLLLIAPHHH qCBPSHRBPSHR −+++=π  , where RH is the expected number of 

requests for objects in the premium service, and RL is the expected number of requests for objects 

in the best-effort service. RH and RL are obtained by summing up requests for objects of type 

Hθθ >  and Lθθ ≤  respectively. The number of objects requested R times is given by Nf(R). 

Thus, these objects constitute a total of NRf(R) requests. The fraction of these requests that are 

for content in the best effort service is (R))df(
(R)

0
L

L
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=∫ . Thus, the total number of requests for 

content in the best effort service is given by summing )()( RRfRN Lθ  for all values of R. Thus, 
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Similarly, 
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expected value of R. Substituting these expressions for HR  and LR  into the profit function, we 

get:  
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Appendix A3 – Space Allocation 

We look at the allocation decision contingent on the equilibrium prices derived in section 4.2. 

The IAP profit evaluated at ),( **
HL PP  is given by 
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The FOC indicates that if the IAP increases α  infinitesimally, both the hit rate and subscrip tion 

to the best effort service goes up (first term), hit rate of the premium service decreases (second 

term), subscriptions to the premium service decreases (third term) but the per-object price for the 
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premium service is increased by the IAP (fourth term). Although, the per-object price increases, 

it can be shown that the total price paid by any publisher decreases with α , as expected. 

Let us denote the 4 terms in the derivative as A, B, C and D respectively. Note that all 

these terms are functions of α . Then, the first order condition may be rewritten as: 

A + B + C + D = 0; That is, )(ααα gDCBA =++++= . 

α
α

∂
∂ )(g

 is defined for all α  in [0,1] except α =0 and α =1. Thus, we restrict our attention to the 

interval ]1,[ εε − . ε  is arbitrarily small, hence εα =*  is interpreted as a non existent lower- level 

cache (i.e., =*α 0) and similarly )1(* εα −=  is interpreted as a non-existent premium cache. 

)(αg is continuous in ]1,[ εε −  and the interval ]1,[ εε −  is compact and convex.  Therefore, the 

existence of a solution is guaranteed by Brouwer’s Fixed Point Theorem (Brouwer 1910). 
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