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Abstract: Extensive literature is available for modeling and simulating local electricity markets,
often called P2P electricity markets, and for pricing local energy transactions in energy communities.
Market models and pricing mechanisms provide simulation tools to better understand how these
new markets behave, helping to design their main rules for real applications, and assessing the
financial compensations of the internal energy transactions. As such, pricing mechanisms are often
needed in energy management systems when centralized management approaches are preferred to
market-based ones. First, this paper highlights the links between local electricity markets, pricing
mechanisms for local electricity transactions, and other approaches to sharing the collective benefits
of participating in transactive energy communities. Then, a standard nomenclature is defined to
review some of the main pricing mechanisms for local energy transactions, an innovative pricing
mechanism based on the economic principles of a post-delivery pool market is proposed, and other
relevant approaches for local electricity market simulation such as Nash equilibrium or agent-based
simulation are also revisited. The revision was based on systematic searches in common research
databases and on the authors’ experience in European and national projects, including local industrial
applications for the past five years. A qualitative assessment of the reviewed methods is also provided,
and the research challenges are highlighted. This review is intended to serve as a practical guide
to pricing mechanisms and market simulation procedures for practical designs of internal financial
compensation to share the collective benefits of energy communities.

Keywords: energy communities; self-consumption; local electricity markets; energy management;
transactions pricing; benefits sharing

1. Introduction

The decarbonization of the energy system relies on an efficient combination of strate-
gies and technologies, leading to the more efficient use of energy on the consumer end
and to the empowerment of the final users [1,2]. Among those strategies is the decentral-
ization of the energy system, as it is considered in the European Union (EU) regulations
and the national energy and climate plans (NECPs) targets [3]. In these plans, the final
consumer is presented as an essential participant in the future electricity market, where
they should adopt an engaged and active role [4]. In this setting, final consumers can
become self-generators (prosumers) of renewable energy [5], for example, by installing
rooftop panels, managing their storage and other load flexibilities, and even participating
in local collective self-consumption (CSC) and energy communities’ structures, where local
electricity markets (LEM) mechanisms can help them to sell their energy surplus or find
local supply to their needs. Renewable energy communities (RECs), consisting of the
association of prosumers and consumers for producing, consuming, storing, and selling
renewable energy, are becoming a promising regulatory tool and organizational structure
to promote distributed renewable energy sources (RES) and local energy exchanges [6,7],
and to incentivize final consumers to adopt these more active and efficient energy roles.
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REC members can sell their electricity surplus to other REC consumers at competitive
prices, obtaining an economic benefit compared to feed-in tariff revenues or to direct
trading in wholesale electricity markets, which impose considerable entry barriers to
their participants [8]. LEM or peer-to-peer (P2P) energy markets appear as feasible local
market structures to organize the energy exchanges inside these communities, where the
peers freely negotiate the energy exchanges with each other. The development of local
markets will contribute to integrating renewable energies at different grid levels, locally
improving the energy balance, and, thereby, contributing to the decarbonization strategy of
European countries.

These new market structures can host two different profiles of participants, passive
consumers, willing to consume renewable energy, and active consumers (prosumers),
who produce their renewable energy and share their surplus with their peers, usually
in exchange for a financial compensation [9]. In addition to the benefits that LEMs offer
consumers, they provide efficient economic signals to adapt their consumption according
to the energy price and the local availability of renewable energy supply by accordingly
managing their flexibility. Since energy is generated close to where it is consumed, these
LEM also contribute to the larger reliability and resilience of the grid, and in most cases, to
reduce energy losses [8].

Therefore, driven by the social aspects previously mentioned and the European energy
strategy, with an increasing focus on the role of final consumers, there has been progressive
growth of RECs and LEMs at an academic level, in pilot demonstrations, and, more recently,
in actual implementations. However, internal transaction and financial compensation
mechanisms in RECs are still being designed and studied, with few actual implementations
of LEM, and concerns and challenges must be addressed. Energy sharing will only develop
with the proper economic compensation to those that generate and share their energy
with those consuming. However, trading or compensation mechanisms must be simple
to implement and generally easy to understand and participate in, and the benefits that
participants derive from collective self-consumption must be sufficiently fair compared to
what they would derive by behaving individually. Several alternatives can be considered,
from pure markets with high levels of flexibility, but also complexity that may disincentivize
participation, to centralized management approaches, easing participation, but where the
collective benefits must be fairly and transparently shared among the REC members. For
example, Shapley approaches [10,11] are often considered in the literature as one of the best
approaches to sharing benefits. Still, their conceptual and computational complexity lead to
resorting to simple and applicable approaches, often based on ad hoc pricing mechanisms as
those described in this review, but still providing fair compensations among REC members.
Other approaches use deep learning methods to optimize operations in environments [12].

To date, several local energy projects are in development around the world. However,
LEM is still at an early stage where the leading technologies and solutions are still being
tested until the products reach a more advanced technology readiness level and the en-
gagement of the final consumers increases. Some examples of LEM projects worldwide,
especially in areas where electricity trading is deregulated, were reviewed in [13]. Most
of these examples rely on market-based pricing mechanisms. In the United Kingdom,
Piclo [14] is developing an electricity trading platform where business consumers can
select and directly buy electricity from local renewable suppliers. In the Netherlands,
Vanderbron [15] is another electricity trading platform where consumers can directly buy
electricity from local independent producers. In Germany, the Sonnen Community is a
community whose members entirely cover their energy needs on sunny days from their
RES and batteries [16]. Among existing pilot projects, the Brooklyn Microgrid project
(BMG project) stands out as the first project worldwide where the members of an energy
community could trade locally generated energy with their neighbors over a blockchain
platform [17]. In this project, an electrical microgrid was built in addition to the existing dis-
tribution network. The energy exchanges inside the community are carried out within the
distribution grid, while the physical microgrid is only used for emergencies. Furthermore,
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community interaction is carried out on a private blockchain platform. There, consumers
constantly bid on their price limits and preferred consumed energy resources, whereas
prosumers bid on their minimum energy selling price. Regularly, the energy transactions
are cleared, and energy exchanges are allocated to the participants trying to maximize their
economic benefit. From [17], it is concluded that the rate of participation in the BMG project
and the positive social acceptance prove the market potential of local energy communities
based on distributed RES generation.

The revision of the literature of this work was conducted based on systematic searches
in common research databases using relevant keywords in the current field, but also
on the authors experience in European and national projects related to local energy and
flexibility markets where previous specific revisions had already been undertaken (such
as, for example, [18–22]), also including local industrial applications for the past five years.
However, since there is a huge amount of related literature and works, additional criteria
have been used to select those papers and works more directly related to the objective
of this revision. From the literature reviewed, ref. [23] provides the most comprehensive
review on LEM to date. It analyses price formation mechanisms and classifies them into
single auction, double auction, negotiation and equilibrium-based, and system-determined
mechanisms. These mechanisms are also related to market designs, such as forward
markets, real time, and others, such as those settled after delivery or post-delivery [24].
However, it needs to detail the reviewed price mechanisms, missing the opportunity
to set a standard nomenclature and mathematical formulation. Common mathematical
formulation for LEM proposals has been provided in some other review papers. For
example, ref. [25] analyzed LEM simulation methods and algorithms related to market
mechanisms. However, it did not focus on specific price formation mechanisms. A review
and simulation of auction mechanisms were provided in [26], but relevant aspects of
LEM design were ignored. In [27], a framework to test and validate single and multi-unit
auctions was proposed for an actual microgrid application, but a comprehensive review of
other pricing mechanisms still needs to be included.

Therefore, to our knowledge, no paper to date has provided a comprehensive set of
pricing mechanisms related to different market and energy-sharing compensation designs
to help researchers in practical cases. In this sense, this paper provides a practical compre-
hensive revision of the main local electricity pricing mechanisms proposed in the literature
for computing the price to compensate for the internal energy transactions within energy
communities. Its main contributions are:

• A systematic and practical review of pricing mechanisms for the financial compensa-
tions of energy trades within energy communities and LEM, providing a quick and
straightforward guide so readers can easily identify them and assess their pros and
cons. Since local transaction prices are very much related to LEM simulations, a brief
review of the main LEM simulation approaches is also provided.

• A uniform mathematical formulation of the pricing mechanisms with a standard
nomenclature so that they can be better understood and compared.

• A conceptual approach to collective benefits sharing that highlights and explains
the links among the different alternatives, including LEM, pricing algorithms, and
other approaches.

• A practical taxonomy of the pricing mechanisms identified and reviewed.
• The proposal of a new pricing mechanism developed by the authors based on [24]

that uses the peers’ opportunity costs and their actual energy delivery, and combines
simplicity with market-based principles to provide fair and easy-to-explain financial
compensation to the energy transactions.

• A qualitative comparison among the pricing mechanisms reviewed, to help researchers
and LEM project developers solve price formation issues for local transaction compen-
sations, both in theoretical and applied fields.

The paper is organized as follows. Section 2 presents the self-consumption framework
proposed for pricing mechanisms, which are reviewed in Section 3 for market-based and
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centralized algorithms, and in Section 4 for simulation purposes. Section 5 concludes
this work.

2. Collective Self-Consumption Framework and Nomenclature

The economics of local electricity trading [8] are based on:

• Energy cost savings, since the energy injected back to the grid is typically paid at a
lower price (feed-in or selling tariffs) than the retail price (supply, retail, or buying
tariffs), so prosumers can profit from locally selling or buying energy.

• Grid cost savings, since energy flows decrease due to local generation and supply
matching, and access tariffs for self-consumption are very often only applied to the grid
voltage levels used, saving higher voltages grid tariffs. In addition, some regulations
(as in Portugal [6]) include additional grid access tariff discounts for the energy locally
shared to incentivize the energy decentralization process. Note, however, that tariff
redesign may be an issue in guaranteeing long-term power system sustainability.

• Flexibility provision, since new global or local grid services may be provided in the
future by aggregated prosumers to balance responsible parties (BRP), transmission
system operators (TSO) or distribution system operators (DSO), leading to additional
revenue streams.

Figure 1 represents the energy exchanges among the participants in a LEM and with
their respective retailers. As an example, it highlights the prices prosumers 1 and 2 face,
PBm,h being the retail price prosumer m pays to buy main grid electricity from its retailer
for the interval settlement period (ISP) h (which could be an hour or a 15 min interval, as
seems to be the standard for self-consumption), PSn,h the price paid by the retailer to the
prosumer n for the electricity sold back to main grid, and Pn,m,h the price paid by prosumer
n to m for buying local supply.
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The internal transactions are profitable to all LEM participants if:

PSn,h < pn,m,h < PBm,h (1)

Note that other criteria, such as preferences or products differentiation, as described
in [28], are not being considered here. In the simplest case, where there is a unique internal
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trading price ph and all prosumers face the same tariffs PSh and PBh, which is a very
common assumption of many related works, Equation (1) becomes:

PSh < ph < PBh (2)

Let dqn,h be the energy bought (deficit) and eqn,h the energy injected (surplus) by a
LEM participant n in an ISP h, i.e.:

dqn,h = max(0, Dn,h − en,h)
eqn,h = max(0, en,h − Dn,h)

dqh = ∑
n

dqn,h

eqh = ∑
n

eqn,h

(3)

where Dn,h is the consumption of participant n and en,h is its self-generation, and where the
total energies injected, eqh, and consumed, dqh, by the all the energy community members
at ISP h are given by the last two summations of Equation (3).

Variables dqn,h and eqn,h can be decomposed into the energy exchanged with the grid
(dqgn,h and eqgn,h, respectively) or within the LEM (dqln,h and eqln,h, respectively), i.e.:

dqn,h = dqgn,h + dqln,h
eqn,h = eqgn,h + eqln,h

(4)

The energy dqln,h bought (or the energy eqln,h sold) by each participant in the LEM is
then the sum of the energy em,n,h he sells from (or the energy em,n,h he buys to) all the LEM
participants:

dqln,h = ∑
m 6=n

em,n,h

eqln,h = ∑
m 6=n

en,m,h
(5)

Therefore, the total energies internally exchanged, either injected or consumed in the
LEM, satisfy:

dqlh = ∑
n

dqln,h = ∑
n

eqln,h = eqlh (6)

Finally, the energy balance constraint of each participant sets that its consumption Dn,h
must be supplied by its self-generation en,h, plus the energy dqn,h obtained from the LEM or
from the main grid, and minus the energy eqn,h injected back to the LEM or to the grid, that
is:

dqn,h + en,h = Dn,h + eqn,h (7)

3. Collective Benefits Sharing and Pricing Local Electricity Transactions

• Collective benefits sharing is essential to go from individual to collective
self-consumption structures, such as energy communities. Indeed, members must see
a benefit from joining these structures, which may depend on the existing regulation
and subsidies, on the complementarity among the potential members, and on the
existence of a fair and straightforward mechanism to share the additional benefits
that the community organization may provide to the members, which, as referred to
in [29], is a complex issue. Figure 2 shows the main implicit or explicit ways to share
these collective benefits among members of a REC.
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mization approach (A), with an internal local market (B), or with a constraint centralized optimization
that guarantees all individual benefit from belonging to the REC (C).

Some approaches (Figure 2A) have proposed centralized optimal management of
the REC individual and collective resources, and have proposed to use benefits-sharing
mechanisms based on the Shapley value [10,11], or its simplified version, of the marginal
contribution of each member [30]. However, these approaches are mathematically and
computationally complex, hard to explain to potential REC’s members, and therefore, may
be a serious drawback for member engagement.

Market mechanisms (Figure 2B) do not require collective optimizations [24,31]. Indeed,
collective benefits generate and are implicitly shared according to the bidding strategies
of the REC members, either in bilateral transactions or in a pool system. Hence, the
responsibility of fair participation in the collective benefits falls on the bidding decisions of
the market participants. While this simplifies the management of the REC, the complexity
falls on the side of the REC members, which could also be a barrier to their engagement
when the collective benefits do not significantly outweigh the individual ones.

The approach followed in [29] (Figure 2C) proposes a centralized optimization of
a REC, but with a constraint to guarantee that the individual benefits that result from
the collective optimization (called stage 2) are always equal to or greater than those that
would have resulted from the individual optimal behavior (called stage 1). However,
although in the collective optimization formulation internal transactions sum zero and do
not appear in the objective function, the internal transactions compensations to compute
the REC members benefit and guarantee that the individual benefit of stage 1 does require
the computation of an internal transactions price. In this sense, ref. [29] did not test
different price approaches, but showed how the fairness of the internal price was essential
to guarantee, with this multiple stages approach, that efficient energy sharing takes place
within the community. Otherwise, when the computed price does not fairly compensate the
REC members, the constraint from stage 1 significantly reduces the internal transactions and
the benefits of associating, which means that selecting an appropriate pricing mechanism
becomes essential for an efficient collective self-consumption.
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In this sense, pricing local electricity transactions may have, therefore, two
distinct objectives:

• Setting an actual price for the settlement of the local transactions to determine the finan-
cial compensations between sellers and buyers, with direct application in centralized
REC energy management systems, as shown in Figure 2 or in [29].

• Simulating local electricity markets to understand and validate their designs, and to
forecast their behavior for flexible resources management and for optimal strategic
bidding. Indeed, centralized management approaches can also be understood as
simulation algorithms to assess the behavior a local electricity markets [29].

Figure 3 shows the classification proposed for the main pricing mechanisms. On the
left side are the LEM pricing procedures for transaction settlement, including those market-
based (either bilateral, pool, or a combination of both) and those based on ad hoc pricing
algorithms. While market-based approaches depend on the specific market design, pricing
algorithms typically intend to compute a price with sensible economic signals that are
either based on collective benefits sharing, or try to reproduce, to some extent, the behavior
of actual market prices, such as bill-sharing (BS), mid-market-rate (MMR), or side-demand
ratio (SDR). In this case, we added a pricing algorithm based on the clearing of the post-
delivery pool market proposed, based on the bilateral post-delivery of [24], and described
later in Section 3.1.1 as a significant improvement over the other methodologies described.
As already explained, pricing algorithms are often used to determine a transaction price
when centralized optimizations are run to compute the setpoints of flexible resources, as
in [29], to share the collective benefits derived from the central dispatch.
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On the right side of Figure 3 are the LEM simulation approaches, such as market equi-
librium computations, agent-based simulation algorithms, or the same pricing algorithms
of the left side when used for simulation purposes.

3.1. Market-Based LEM Price Computation

In competitive electricity markets [32], bilateral contracts often coexist with a pool-
based market:

• In the bilateral clearing, typically, pairs of selling and buying bids are cleared as
soon as they are compatible (buying price more significant than the selling price
and compatible energy constraints), which means that each transaction is differently
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priced according to the bids involved. In these cases, no market price exists, and only
averages can be computed [33,34].

• In pool-based markets (as is the case of EU wholesale day ahead markets), the ag-
gregated supply and demand curves are built from the individual bids, and their
intersection determines the energy traded and the market price applied to all transac-
tions, and the supply and demand bids accepted.

• In general, a combination of bilateral and pool clearing can coexist, which typically
implies two processes, a first one for bilateral trading, and a final pool where the
energy, not yet negotiated during the bilateral negotiations, can still be offered to
the pool.

In the case of competitive pool-based markets, the market price is computed by build-
ing the aggregated supply and demand curves from the bids submitted by the participants
to buy and sell energy, and the equilibrium price is given by the marginal or opportunity
cost of the last supply bid cleared, when the energy supply equals the final consumers’
demand. Competition implies that bid prices should be based on the opportunity costs
of the participants [32], and LEM participants will sell or buy depending on their energy
needs. In wholesale markets with high penetration of RES with zero marginal costs, this
might bring issues regarding low energy equilibrium prices that may not properly remuner-
ate long-run capital costs, which very often implies the need for additional remuneration
mechanisms, such as flexibility or capacity markets. However, in LEMs, even if the local
generation is from RES with null marginal cost, rational prosumers will only locally buy
and sell energy if the LEM price is between its supply and feed-in prices, as in Equation (1),
meaning that, instead of marginal generation costs, prosumers face the opportunity costs
of not trading their surplus and supplied energy with their retailers or aggregators. In
addition, prosumers do not typically have energy schedules agreed with their retailers
and aggregators, which act as their BRP on the Wholesale Market (WS), so LEM trades do
not have delivery commitments, effectively allowing prosumers to trade energy even after
delivery, as proposed in [24].

As can be seen, prosumers 1 to 5, with a surplus of energy, will only be willing to sell
their surplus in the LEM if the market price ph is higher than the price they get from their
retailer (feed-in-tariff PSn,h. On the other hand, prosumers 1 to 3 that need supply, will
only buy energy in the LEM if its price is lower than its retailer selling price PBn,h. Under
these incentives, supply and demand curves can be defined as in Figure 4, and the market
equilibrium price ph is reached where the curves cross each other, revealing the price that
provides the optimal economic signal to the LEM participants. Note that, for example, in
case prosumer 5 had no supply to offer, the demand would not be locally supplied, and the
market price should be set, instead, by the last supplied demand PB3,h, to properly reflect
the current supply scarcity and give the right signal to potential investors in new local
generation capacity. Supply prices larger than PB3,h force prosumer 3 to procure energy
from its retailer that sells to him more cheaply, generating a local excess supply.

In practice, markets do not usually operate under perfect competition [32]. For in-
stance, information exchange is a relevant challenge in the design of LEM, since prosumers
might be inclined to keep their opportunity cost. In addition, small prosumers may also not
be willing to invest in advanced technologies to operate with complex trading strategies.
Overall, LEM design and simulation tools should provide efficient price signal incentives
close to the theoretical equilibrium price. Figure 4 shows an example of the aggregated
demand and supply curves of a LEM under perfect competition, with perfect information
and with no entry and exit costs.
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3.1.1. Post-Delivery LEM Pool Market

We propose a post-delivery pool market based on a fair local market design approach
that is easy to implement. In this proposal, the aggregated selling and buying curves
can be built after delivery by using, for each prosumer: (1) the energy produced and the
corresponding retailer buying price to make its selling bid, and (2) the energy consumed and
the corresponding retailer selling price to make its buying bids. Note that a prosumer will
only have either a buying or a selling bid per interval settlement period h. The equilibrium
is computed as shown in Figure 4. This post-delivery pool market is simple, it does not
require participants’ forecasts and previous commitments, and still provides the right
economic signals to their participants, based on their opportunity costs. Therefore, the
advantages of such a proposal include the following:

• Reduced trading costs, since peers do not have to forecast production and consumption
nor design bidding strategies, since they only need to inform the price at which they
are willing to buy and sell energy and the energy that comes from the contracts they
assign with their retailers and aggregators.

• Works as a market to settle the differences of other markets, so it could be the last
round after a previous round of bilateral trading, since it can be integrated with other
LEM forward mechanisms, including flexibility markets as described in [35].

3.2. Pricing Algorithms

Pricing algorithms compute local transaction prices based on different ad hoc criteria,
usually based on structural or dynamic information of the participants, also considering
their opportunity costs. These prices can be used to settle the energy transactions that may
result from energy bids or optimal central dispatches of REC flexible resources, as in [29].
Depending on the algorithm selected, the computed price may be known in advance, or
only after the energy is delivered as it is for the Bill Sharing (BS), Supply, and Demand
Ratio (SDR) [36], and our proposal of post-delivery pool-based pricing algorithms. We next
describe these algorithms and compare them in Section 3.2.6.

3.2.1. Bill Sharing (BS)

BS is a method that shares the total energy bill of the REC among its participants,
depending on their energy consumption or generation contribution to the total [37]. Every-
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one pays the same price pbh for the energy consumed and receives the same price psh for
the energy exported. In case all REC members have the same supply and feed-in tariffs,
and these tariffs have no time discrimination, then these prices are given, for each ISP, by
sharing the total cost of the REC purchases among those purchasing, and the total incomes
of the REC sales among those buying:

ps = PS·max(0,∑n,h(en,h−Dn,h))
∑h eqh

pb = PB·max(0,∑n,h(Dn,h−en,h))
∑h dqh

(8)

Then, for each REC member, the total energy consumed (bought) dqn,h is priced at pbh
and the energy injected (surplus) eqn,h is priced at psh.

If supply and feed-in tariffs depend on the ISP h, then the following extension is
straight forward:

psh = PSh·
max(0,∑n(en,h−Dn,h))

eqh

pbh = PBh·
max(0,∑n(Dn,h−en,h))

dqh

(9)

In case REC members have different retail prices, and assuming that retailers selling
prices are always higher than the feed-in tariffs they apply to the energy sold back to the
grid (otherwise arbitrages could take place if regulation allows), these expressions can be
extended by using the minimum retailer selling price and the maximum retailer buying
price considering all REC members:

psh = minn(PSn,h)·
max(0,∑n(en,h−Dn,h))

eqh

pbh = maxn(PBn,h)·
max(0,∑n(Dn,h−en,h))

dqh

(10)

Note that the BS method, as described in [37], does not remunerate the REC members
that are producing and sharing their energy with other consuming members. If no other
payments are arranged for the local transactions, producers share it for free, since neces-
sarily psh < PSn,h or pbh < PBn,h. In other words, either the consumers pay less for the
energy consumed or the producers get less for the energy produced. Therefore, additional
internal mechanisms are needed to provide the right economy for local investments and
remuneration of the generation resources, since, as it was proposed, this method does not
seem to provide fair benefit sharing.

3.2.2. Mid-Market Rate (MMR) and Intermediate-Market Rate (IMR)

The MMR pricing mechanism assumes that the internal energy price ph is the average
between the energy buying and selling reference prices. MMR is proposed either to directly
determine the bilateral transactions prices between peers [38] or to be a bid reference for
these transactions [39]. MMR price ph is computed as the average between the energy
buying and selling prices to the grid [37], so that the benefit is somehow equally shared
among buyers and sellers. When all REC members have the same supply and feed-in tariffs,
this price per ISP is given by:

ph =
PBh + PSh

2
(11)

If different prosumers have different retail prices, these expressions can be extended by
using the minimum retailer selling price and the maximum retailer buying price considering
all REC members.

ph =
minn(PBn,h) + maxn(PSn,h)

2
(12)

We also propose the IMR as a convex linear combination of the minimum retailer
selling price and the maximum retailer buying price:

ph = α·minn(PBn,h) + (1− α)·maxn(PSn,h) α ∈ [0, 1] (13)
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This combination approximates the internal price closer to the retailer selling prices,
or to the retailer buying prices.

3.2.3. Supply-Demand Ratio (SDR)

The SDR pricing mechanisms is based on the computation of sdrh [40,41], which is the
ratio between the energy available for self-consumption, offered by those prosumers with
energy surplus, and the energy demanded by those needing supply:

sdrh =
eqh
dqh

(14)

When sdrh > 1 the REC has a surplus that must be sold to the grid. When sdrh = 1,
the energy generated in the REC is the same as the energy demanded, and so, there is
no energy exchange with the grid. When 0 < sdrh < 1, there is a deficit of energy in the
REC, and it is necessary to buy energy from the grid. Finally, when sdrh = 0 all the energy
consumed is bought from the grid, as there is no energy available in the REC.

The SDR pricing mechanism is inspired by the fundamental law of economics that
assumes an inverse relationship between the price and sdrh [40]: the higher sdrh is (more
energy internally available), the lower the transactions price should be, and the lower sdrh
is (less energy available), the higher the LEM price should be. Then, as in [40], assuming
same supply and feed-in tariffs for all REC members:

• If sdrh > 1 (more local generation than consumption in the REC), the price ph is the same
as the selling price PSh to the grid. Effectively, if ph was lower, prosumers would not
internally sell the energy but directly to the grid at PSh. Therefore, all the consumers
buy their energy in the LEM at the selling price to the grid:

ph = PSh (15)

• If 0 < sdrh < 1 (less local generation than consumption in the REC). The internal energy
price is inversely proportional to sdrh. Therefore,

ph =
1

a·sdrh + b
(16)

To calculate the coefficients a and b, the boundary conditions of sdrh are used:

• If sdrh = 0, there is no surplus in the REC and all the energy is bought from the grid,
and therefore ph = PBh.

• If sdrh = 1, the local generation and demand in the REC are equal, so there is no
energy exchange with the grid. Thus, the internal energy price is the lowest possible,
i.e., ph = PBh.

By substituting these two points into Equation (16), the following equation
set is obtained: {

PBh = 1
b

PSh = 1
a+b

→
{

a = PBh−PSh
PBh ·PSh

b = 1
PBh

(17)

Therefore, the internal SDR energy price is given by:

ph =
PBh·PSh

(PBh − PSh)·sdrh + PSh
(18)

Since consumers will buy their supply from both the grid and locally in the REC, the
resulting energy buying price PBh is the weighted average between the amount of energy
purchased from the grid and within the REC, i.e.,

dqh·pbh = eqn,h·ph + (dqn − eqn)·PBh (19)
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And therefore:
pbh = ph·sdrh + PBh·(1− sdrh) (20)

In summary, the internal energy price and average buying price in the REC are defined
as a function of sdrh as follows:

ph =

{
PBh ·PSh

(PBh−PSh)·sdrh+PSh
, 0 < sdrh < 1

PSh, sdrh ≥ 1

pbh =

{
λpsh·sdrh + PBh·(1− sdrh), i f 0 < sdrh < 1

PSh, sdrh ≥ 1

(21)

Note that these prices not only depend on the energy selling and buying prices from
the grid, but also on the generation and demand in the community. Figure 5 represents the
relationship between these prices and sdrh.
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If different selling and buying retailers prices exist, PBh can be replaced by maxn(PBn,h)
and PSh by minn(PSn,h).

3.2.4. SDR Compensated

According to Equation (21), when there is generation surplus in the REC (sdrh > 1),
prosumers obtain the same benefit by either selling their surplus to the grid or within the
REC. To incentivize prosumers to sell in the REC, a compensation factor λ such that 0 < λ <
PBh − PSh was proposed in [42], so that the benefit of those consuming when there is an
excess of local generation is also shared among those prosumers contributing to this local
excess. When this compensation is included, the internal energy price and the average
buying price become:

ph =

{ PBh ·(PSh+λ)
(PBh−PSh−λ)·sdrh+PSh+λ

, 0 < sdrh < 1

PSh +
λ

sdrh
, sdrh ≥ 1

pbh =

{
λpsh·sdrh + PBh·(1− sdrh), i f 0 < sdrh < 1

PSh + λ, sdrh ≥ 1

(22)

Figure 6 represents the relationship between these prices, sdrh and the compensation
factor λ.
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Despite the compensation that increases the internal energy price, consuming members
still make a profit compared to buying from the grid and will still be willing to pay for
their energy ph, lower than PBh. In addition, generating members will still be paid for their
energy more than PSh. This ensures that all REC members obtain an economic benefit by
staying in the community.

Again, if different selling and buying retailers prices exist, PBh can be replaced by
minn(PBn,h) and PSh by maxn(PSn,h).

3.2.5. Post-Delivery Pool-Based Pricing Algorithm

This method is based on the post-delivery market concept of [24], already described
in Section 3.1.1, which is an application of auction theory, and finds LEM equilibrium
prices [43]. It consists of computing the internal transaction price as the clearing price of a
post-delivery pool market, where supply bids are built using the real metered production
(for those REC members with net generation) and demand bids using the real metered
consumptions (for those REC members with net consumption). Bid prices can be the
opportunity costs of the participants to buy or sell, and the market price, as described in
Section 3.1, is given by the intersection of the aggregated supply and demand curves. In
practice, for simulation purposes, consumption and generation forecasts could be used
instead of the measured quantities. While this method set ups a competitive LEM, we
also propose it to price the REC transactions that may result from a centrally optimized
management approach. Indeed, post-delivery pool simulation is an improvement regard-
ing SDR approaches, since it computes the marginal price of a local market, instead of
using arbitrary, even if sensible, criteria to compute ad hoc prices. The pool remunerates
participants according to the marginal costs and benefits, effectively pricing the energy for
its intrinsic opportunity costs.

When flexible dispatchable resources are present in the community, the computation
of their optimal schedule may require transaction price forecasts, as for example in [29].
Since the post-delivery pool price is determined after delivery, this generates a circular
problem, since the flexible resources will modify the actual delivery and the pool price. In
these cases, we propose a simple iterative resource scheduling algorithm to estimate both
the optimal flexible resource schedules and the transaction prices, as shown in Figure 7.
Alternatively, a collective welfare maximization may be formulated to simulate, in one
optimization step, the dispatch of the flexible resources and the market price.
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3.2.6. Comparison of the Pricing Algorithms

In [36,44] the performance of some of these pricing mechanisms is assessed by measur-
ing how they respond to price signals and how the collective benefits are distributed to the
participants. The work in [29] also assesses the transaction price’s impact on the fairness
of collective benefits sharing. From this previous works, and assessing selected relevant
attributes (as for example does [45] for market designs), some relevant conclusions are first
derived, and the qualitative assessment is also proposed in Table 1:

• According to [40], BS performance is poor, since it only averages the participants’
electricity bill. Hence, the incentives for demand response are low. For real REC
applications, potential members need to understand how prices are defined, or, oth-
erwise, they will not join the REC. The BS algorithm may appear to be conceptually
simple, but the price computation is not easily traceable since it requires calculating the
community’s aggregated costs. In addition, it must be complemented with transaction
compensation, increasing its complexity compared to other approaches.

• MR and IMR perform better than BS and slightly worse than SDR when price signals
from the retailer fluctuate during the day [36]. MR and IMR are also simple to explain
since they can be understood as sharing the benefit that results from the selling and
buying price spread. However, they disregard the actual contribution of local load
balance in the price formation, meaning that participants have less incentives to
manage load and flexibility [41].

• SDR-based mechanisms perform better, since they provide a dynamic internal price
that changes depending on the energy availability in the community, and thus, provide
good incentives for demand response and better economic signals with more efficient
results [41]. Indeed, these methods perform well since they try to reproduce a market-
like behavior by setting a dependency on the price with the participants’ opportunity
costs and with the available demand and supply.

• The post-delivery pool provides the best economical results to our understanding,
since it is based on an optimal market equilibrium, where the prices reflect the actual
opportunity costs of the REC for each ISP. In addition, its computation is simple and
well-understood in economic theory, and easy to explain and justify to potential REC
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members. This mechanism, however, can have higher price fluctuations, since prices
vary between the retailers’ buying and selling prices.

Table 1. Qualitative comparison of pricing mechanisms.

Pricing Algorithm Conceptual
Simplicity

Computation
Simplicity

Price Signals
Relevance

Efficiency
Economic

Signal
Price Volatility Sharing

Fairness

BS − −−− −− −− + +

MR ++ ++ − −− +++ −
IMR ++ ++ − − ++ −
SDR + + + + − ++

Corrected SDR + + + ++ −− ++

Post-delivery pool + + +++ +++ −−− +++

Based on the assessment above, Table 1 compares the pricing mechanisms based on
relevant qualitative attributes by assigning positive and negative marks to each one. The
attributes analyzed are the following:

• Conceptual simplicity: refers to how easy it may be for prosumers to understand and
accept the price methodology.

• Computation simplicity: measures how easy it is to compute the price, including how
affordable and practical is to access input data.

• External price signals relevance: refers to how well the price reflects the real costs and
external price signals.

• Economic signal efficiency: measures how the price provides the proper economic sig-
nal. The closer the prices are to the opportunity costs, the more efficient the mechanism.

• Price volatility: measures how volatile the prices computed by the mechanism are.
• Sharing fairness: measures to what extent the pricing mechanism accounts for the

contribution to each member to the REC benefit. Methods considering supply and
demand dynamics or aggregated costs tend to be fairer.

4. Simulation of LEM

LEM can be simulated (or even operated) by defining energy sharing mechanisms
to determine the transactions, such as (1) sharing the energy surplus among the partici-
pants consuming based on proportionality or other complex arbitrary criteria, and (2) by
computing a transaction price based on the pricing algorithms already described, which
is a prevalent approach due to its simplicity. These approaches, which may lack depth
regarding agents’ behavior and fully economic soundness, are however simple tools which
may provide sensible conclusions with lower effort, being acceptable solutions to more
practical approaches.

However, more accurate simulations can be performed when the participants’ behav-
ior is represented to compute a market equilibrium. In this case, two main traditional
approaches can be found in the literature, those based on game theory, where a system of
simultaneous optimization of the individual participants’ benefit must be formulated and
solved, and those based on agent-based systems, where iterative algorithms try to reach the
market equilibrium by adapting the market agents bids according to pre-defined learning
strategies to optimize their objectives.

4.1. Game Theory Approaches

Game theory (GT) is especially suited to simulate LEM and how the actions of one
agent influence all others. Reference [46] provides a review of GT models and highlights
some fundamental properties of GT LEM simulation techniques:
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• Frequency of play: games can happen once or repeatedly.
• Chronology: actions can be simultaneous or sequential amongst players.
• Awareness of players: regarding perfect and imperfect information.
• Knowledge of players: whether the information is complete or incomplete.

GT models can also be divided into two main groups: cooperative game theory and
non-cooperative game theory [43,47]. In cooperative game theory, players are considered a
unit, and their actions are oriented to maximize the benefit of the group. In LEM simulations,
participants must access incentives to justify their presence in the community. The benefit
of the community is shared among them according to different rules. Some examples of
cooperative game theory have been provided in [48–51]. Reference [48] showed a LEM
where a group of prosumers prioritized cooperation and willingly sold their surplus energy
on the local market first to gain further profit. The authors in [51] simulated a P2P LEM
through a cooperative game that distributed the benefit according to each participant’s
contribution. A Shapley value rule was used to find the transaction prices. Reference [11]
compared the benefit sharing in an energy community with investment decisions to other
sharing approaches.

In non-cooperative games, participants try to maximize their benefit leading to a
collective result that is often only optimal if some economic assumptions, such as perfect
competition, hold. These GT models are based on the Nash equilibrium and find individual
stable solutions where participants have no advantage in changing their strategies, consider-
ing others’ strategies fixed. Some examples of P2P non-cooperative GT models are [52,53].

Reference [52], for example, proposes a non-cooperative equilibrium approach with
the following characteristics:

• The LEM has no single internal price, and the prices of each resulting bilateral transac-
tion are dual variables from the optimization problem.

• Not all generation is necessarily traded in the LEM. Participants might not reach an
agreement and any untraded energy is sold (bought) to (from) the grid.

The main inputs, following the nomenclature defined in Section 2, are the price PBn,h
of the energy bought from the grid, the price PSn,h of the energy sold back to the grid, the
bilateral trading costs βn,m imposed by n to m, representing the interest from participant n
to sell energy to participant m in [€/kWh]. This trading coefficient represents participants’
preferences such as social values, distance, emissions of the provider, etc., so the following
local trading cost is proposed:

C̃n(en) = ∑
h,m 6=n

βn,m·(en,m,h − em,n,h) (23)

The main outputs are the bilateral trading price pn,m,h between participants n and m,
which is the dual variable of the trading reciprocity constraint en,m,h = em,n,h, and the
congestion price pcn,m,h, which is the dual variable of the capacity trading constraint
en,m,h ≤ En,m. Both dual variables are fundamental to determine the nodal price captured
by each participant n.

Considering the cost defined in (23), in [28], a multi-bilateral economic dispatch
problem with product differentiation was formulated to model a P2P market.

In addition, using this same cost, ref. [52] formulated a non-cooperative game problem
with product differentiation, storage capabilities, demand response, and grid restrictions.
If Un(dn) is the utility of the final demand dn (considering batteries and its response), the
objective function used in both [28,52] works follows, subject to Equations (1)–(7):

maxΠn(dn, en) = Un(dn)− C̃n(en) (24)

4.2. Agent-Based (AB) Simulation Models

In agent-based models to simulate LEM, each virtual market agent bids on a simulation
environment while trying to maximize its benefit or other similar goal [54]. Market agents
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provide buying and selling bids of their demand and generation, as well as their energy
prices, after which a coordinator, for example, in a pool market as in [55], determines
the final internal energy price. In a pure P2P LEM, any form of a centralized approach
to compute an internal price is excluded, and peers must bilaterally communicate their
buying and selling bids to generate transactions with their own agreed prices. This may
lead to significant computational needs due to the number of iterations, especially for
large-scale LEM.

In P2P agent-based simulations, proposals search for ways to reduce the amount of
exchanged information to reduce the computational overhead [56]. However, some agent-
based P2P simulations solve this overhead issue by escaping from a pure P2P problem
with the creation of a coordinator agent which facilitates the optimization problems while
simulating some P2P behavior, as in [57]. In addition, pool-based approaches allow some
degree of centralization, simplifying the simulation. This is the case of the work in [55],
which uses the agent-based simulation example we describe next.

Simulation of AB Model

Figure 8 presents an overview of a pool-based AB model where agents (prosumer,
coordinator, and retailer) interact through two main modules, as simulated in [55]. A
centralized pricing module operated by the Coordinator Agent interacts with decision-
making models simulated for each agent. The retailer is a passive agent that only buys and
sells the energy not traded on the LEM.
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The main characteristics of this approach are:

• There is an energy coordinator in the LEM who runs the pricing model.
• A centralized common internal energy price is established for the community, so all

participants trade their energy at the same price in the LEM.
• It is assumed that the amount of energy a participant exchanges with the grid is

proportionally divided among all participants.

This approach presents a multiagent-based model for a LEM with the possibility of
demand response and battery storage capabilities, in which there are three types of agents:

• Prosumer Agents. Who decide how to schedule their consumption from load demand
considering PV generation. They may locally buy or sell energy.

• Coordinator Agent. A community representative who determines the internal price
and trades with the participants and with the community’s retailer assuring its energy
balance.
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• Retailer Agent. A typical retailer who buys and sells any surplus or supply required
by the coordinator. The retailers’ prices are not considered dynamic.

The decision-making model simulates each prosumer agents’ bids on the local market
in response to the price signals sent by the coordinator pricing model. Agents’ energy bids
may be given by the generation capabilities, or vary due to demand response and storage
systems. The decision-making model can also include price bids from the prosumer agent
to the coordinator, and is generally formulated as follows:

minC̃n(dn, cn, en) = ∑
h

pn,h·ebidn,h(dn,h, cn,h, en,h) (25)

s.t.
ebidn,h = dn,h + cn,h − en,h (26)

The above equations are iteratively used, and each agent minimizes its costs of trading
with the coordinator by adapting the net energy ebidk

n,h it offers or buys at each iteration k
in response to the price signals pk

n,h sent by the coordinator. The energy ebidk
n,h is therefore

computed considering the demand dk
n,h (which can be elastic), the consumption of the

battery ck
n,d (if it exists) and the self-generation ek

n,d. In the first iteration, the coordinators
might use a mid-market price given by:

p1
n,h =

PBh + PSh
2

(27)

Subsequently, the coordinator agent runs a pricing algorithm to propose the internal
energy trading prices pk+1

n,h using the price signals from the grid, PBh and PSh, and the
prosumers’ energy bids ebidk

n,h as inputs, as in Equation (28):{
pk+1

n,h

}
n
= pricing_method

(
PBh, PSh,

{
ebidk

n,h

}
n

)
(28)

The pricing method function can be any of those described in Section 3.2. In particular,
ref. [55] used the SDR algorithm to compute the LEM, by computing sdrk+1

h as a function of
the supply and demand given by ebidk

n,h as follows:

sdrk+1
h =

∑n: eqn,h>0 ebidk
n,h

∑n: dqn,h>0 ebidk
n,h

(29)

Iterations last until the energy bids and the internal energy price converge. To guaran-
tee convergence, ref. [55] applied two different techniques: step length control and learning
process involvement, and a last-defense mechanism in case it was not achieved.

5. Conclusions

This paper presents a general mathematical view of the main pricing mechanisms
found in the literature for transactions within renewable energy communities, whether
based on pricing algorithms, market clearing rules, game theory, or agent-based simulation.
Pricing mechanisms can be used to set the internal price for the local transactions of an
energy community, or to simulate the behavior of local markets.

When pricing mechanisms are used to compute the prices of the internal compensation
from those that consume to those that locally generate, several criteria such as conceptual
simplicity and fairness become essential. In this sense, those methods that are more closed
to market-based approaches, that consider both the existing demand and supply and the
opportunity costs of the participants, seem to provide better economic signals. Among
them, those based on the demand-supply ratio, and overall, the authors’ proposal of a post-
delivery pool market simulation seem to outperform the rest of the alternatives. In addition,
the demand-supply ratio is based on sensible but somehow arbitrary criteria, while the
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post-delivery pool is just a market simulation according to basic economic principles. In
this sense, it is easy to understand and, in addition, effortless to compute and verify by the
community members.

When pricing mechanisms are used for simulation, simplicity is not an issue, and more
complex approaches can be used. Agent-based systems are usually used only for simulation
purposes, but the adaptation of the agents’ strategy is not always straightforward and may
fail to represent a real market behavior, and the resulting dynamics are often not represen-
tative of real market dynamics and can present convergence issues. Nash equilibriums can
be an alternative, although in the literature they are often used as a clearing mechanism of
a local market. In this case, even if they may allow more flexible clearing mechanisms by
including participants’ preferences, arbitrary costs need to be defined and the mathematical
complexity becomes an issue indeed. In this sense, the post-delivery pool proposed by the
authors is also a proper market equilibrium based on the participants’ opportunity costs,
and can also be used to clear a local market.

The systematic analysis and comparison of the different methods is a research chal-
lenge, which can be extended to the assessment of the market designs for local markets.
The use of arbitrary data or different design principles can make comparison significantly
difficult, and very often fairness and simplicity criteria are ignored to incorporate additional
flexibility in terms of product or counterpart preferences. However, renewable energy
community implementations are still pilot projects, and real implementations are scarce
due to regulatory and administrative barriers or inefficiencies, but also due to the low
engagement of potential members. In this sense, again, simplicity and fairness, combined
with low-cost solutions, seem essential to further develop self-consumption structures.
The authors are currently assessing, with quantitative case examples, how the different
pricing mechanisms behave in terms of collective benefits sharing when compared to the
individual optimum. Methods based on the Shapley value or on the marginal contributions
are also being considered, but rather as possible benchmarks for comparison.
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Nomenclature

Indexes
n, m Participants in the local electricity market
h Interval settlement period or ISP
Parameters
Dn,h Energy consumption of participant n at ISP h [kWh]
PB, PBh, PBn,h Price of the electricity bought from the grid (retailer) [€/kWh]
PS, PSh, PSn,h Price of the electricity sold to the grid (feed-in-tariff) [€/kWh]
λ Compensating factor in SDR approaches [€/kWh]
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βn,m Bilateral trading imposed by participant n to participant m [€/kWh]
En,m Bilateral trading capacity from participant n to participant m [kW]
Variables
en,h Energy generated by participant n [kWh]
dqh, dqn,h Energy deficit (bought from the LEM or the grid) [kWh]
dqgn,h Energy bought from the grid by participant n [kWh]
dqln,h Energy bought in the LEM by participant n [kWh]
eqh, eqn,h Energy surplus (sold in the LEM or to the grid) [kWh]
eqgn,h Energy sold to the grid by participant n [kWh]
eqln,h Energy sold in the LEM by participant n [kWh]
p, ph, pn,h Electricity price of the LEM [€/kWh]
pb, pbh Electricity price of the energy bought [€/kWh]
ps, psh Electricity price of the energy sold [€/kWh]
sdrh Supply-Demand Ratio [pu]
en, en,m,h Energy sold by participant n and sold to participant m [kWh]
dn, dn,h Demand of participant n when it is elastic
pn,m,h Bilateral price of the electricity sold by participant n to m [€/kWh]
pcn,m,h Congestion price of the electricity sold by participant n to m [€/kWh]
cn, cn,h Energy from the battery [kWh]
ebidn,h Electricity bid [kWh]
Functions
Un Utility function of participant n
C̃n Trading cost function of participant n
Πn Welfare function of participant n
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