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In the newsvendor problem, a decision maker facing random demand for a perishable product decides how much of it to stock for a
single selling period. This simple problem with its intuitively appealing solution is a crucial building block of stochastic inventory
theory, which comprises a vast literature focusing on operational efficiency. Typically in this literature, market parameters such as
demand and selling price are cxogenous. However, incorporating these factors into the model can provide an excellent vehicle for
examining how operational problems interact with marketing issues to influence decision making at the firm level. In this paper we
examine an extension of the newsvendor problem in which stocking quantity and selling price are set simultaneously. We provide a
comprehensive review that synthesizes existing results for the single period problem and develop additional results to enrich the
existing knowledge base. We also review and develop insight into a dynamic inventory extension of this problem, and motivate the

applicability of such models.

The newsvendor problem has a rich history that has
been traced back to the economist Edgeworth (1888),
who applied a variant to a bank cash-flow problem. How-
ever, it was not until the 1950s that this problem, like many
other OR/MS models seeded by the war effort, became a
topic of serious and extensive study by academicians. In its
essential formulation, a decision maker facing random de-
mand for a product that becomes obsolete at the end of a
single period must decide how many units of the product
to stock in order to maximize expected profit. The optimal
solution to this problem is characterized by a balance be-
tween the expected cost of understocking and the expected
cost of overstocking.

This simple problem, with its intuitively appealing opti-
mal solution, is a crucial building block of a significant
literature on stochastic inventory theory. Porteus (1990)
provides an excellent review. Typically, the focus of this
extensive literature is on operational efficiency to minimize
expected cost. Demand or market parameters often are
taken to be exogenous.

Whitin (1955) was the first to formulate a newsvendor
model with price effects. In his model, selling price and
stocking quantity are set simultaneously. Whitin adapted
the newsvendor model to include a probability distribution
of demand that depends on the unit selling price, where
price is a decision variable rather than an external param-

eter. He established a sequential procedure for determin-
ing first the optimal stocking quantity as a function of price
and then the corresponding optimal price. Mills (1959,
1962) refined the formulation by explicitly specifying mean
demand as a function of the selling price. Yet, unlike the
version of the newsvendor problem in which selling price is
exogenous, this more strategic variant has received limited
attention since the 1950s. This parallels in many ways the
observation that since the 1950s, the practice of operations
has emphasized functional efficiency at the expense of
cross-functional effectiveness.

We believe that the newsvendor problem, because of its
simple but elegant structure, can provide an excellent ve-
hicle for examining how operational problems interact
with marketing issues to influence decision-making at the
firm level. The importance of such analysis is reinforced by
the increasing prevalence of time-based competition (Stalk
and Hout 1990) because as time-based competition inten-
sifies, product life-cycles shrink so that more and more
products acquire the attributes of fashion or seasonal
goods. Consequently, we apply the newsvendor framework
in Section 1 to analyze a firm who jointly sets a selling
price and a stocking quantity prior to facing random de-
mand in a single period. We review the history of the
problem, generalize existing results, and provide a more
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integrated framework for investigating alternative formula-
tions of the problem. Then, in Section 2 we review and
provide additional insight into the dynamic inventory ex-
tension of the model presented in Section 1. We conclude
this paper with a discussion to motivate and encourage the
applications of the types of models presented in the first
two sections.

1. THE SINGLE PERIOD PROBLEM

Consider a price-setting firm that stocks a single product,
faces a random price-dependent demand function, and has
the objective of determining jointly a stocking quantity, g,
and selling price, p, to maximize expected profit. Random-
ness in demand is price independent and can be modeled
either in an additive or a multiplicative fashion. Specifi-
cally, demand is defined as D(p, €) = y(p) + € in the
additive case (Mills 1959) and D(p, €) = y(p)e in the
multiplicative case (Karlin and Carr 1962), where y(p) is a
decreasing function that captures the dependency between
demand and price, and € is a random variable defined on
the range [4, B]. Since different forms of y(p) combine
more naturally with different forms of D(p, €), we let
y(p) = a — bp(a > 0, b > 0) in the additive case, but let
y(p) = ap~®(a > 0, b > 1) in the multiplicative case. Both
representations of y(p) are common in the economics lit-
erature, with the former representing a linear demand
curve and the latter representing an iso-elastic demand
curve. One interpretation of this model is that the shape of
the demand curve is deterministic while the scaling param-
eter representing the size of market is random. In order to
assure that positive demand is possible for some range of
p, we require that 4 > —a in the additive case and A > 0
in the multiplicative case. However, from a practical stand-
point, if a is large relative to the variance of €, unbounded
probability distributions such as the normal provide ade-
quate approximations. For general purposes, we let F(-)
represent the cumulative distribution function of €, and
f(-) the probability density function. Likewise, we define u
and o as the mean and standard deviation of €, respectively.

1.1. Additive Demand Case

In the additive demand case, D(p, €) = y(p) + €, where
y(p) = a — bp. At the beginning of the selling period, ¢
units are stocked for a cost of cq. If demand during the
period does not exceed g, then the revenue is pD(p, €) and
each of the ¢ — D(p, €) leftovers is disposed at the unit
cost 4. Note that & may be negative (2 = —c), in which
case it represents a per-unit salvage value. Alternatively, if
demand exceeds g, then the revenue is pq, and each of the
D(p, €) — g shortages is assessed the per-unit penalty cost
s. The profit for the period, Il(g, p), is the difference
between sales revenue and the sum of the costs:

Il(q, p)

_ {PD(Pa €) —cq —hlg - D(p, )], D(p, €e)=gq,
pq — cq — s[D(p, €) — q], D(p, €) >gq.

A convenient expression for this profit function is obtained
by substituting D(p, €) = y(p) + € and, consistent with
Ernst (1970) and Thowsen (1975), defining z = g — y(p):

1(z, p)

{P[}’(P) + el —cly(p) +z] - hlz - €],
ply(p) + 21 = cly(p) + z] — sle = 2],

This transformation of variables provides an alternative
interpretation of the stocking decision: If the choice of z is
larger than the realized value of e, then leftovers occur; if
the choice of z is smaller than the realized value of ¢, then
shortages occur. The corresponding optimal stocking and
pricing policy is to stock g* = y(p*) + z* units to sell at
the unit price p*, where z* and p* maximize expected
profit.
Expected profit is:

€2z,

€>z.

E[ll(z, p)] = J (ply(p) + u) — hlz — u]) f(u) du

B
+ J (ply(p) +z] = s[u — z]) f(u) du

—cly(p) + z].

Defining A(z) = [% (z — u)f(u) du and O(z) = [® (u —
z) f(u) du, we can write:

E[Il(z, p)] = ¥(p) — L(z, p), M
where

V(p)=(p - olylp) + ul, @
and

Liz,p)=(c+h)A(z) +(p +5 — c)O(2). 3)

Equation (2) represents the riskless profit function
(Mills 1959), the profit for a given price in the certainty-
equivalent problem in which e is replaced by . Equation
(3) is the loss function (Silver and Peterson 1985), which
assesses an overage cost (¢ + h) for each of the A(z)
expected leftovers when z is chosen too high and an under-
age cost (p + s — ¢) for each of the ®(z) expected short-
ages when z is chosen too low. Expected profit is expressed
by (1): the riskless profit, which would occur in the absence
of uncertainty, less the expected loss that occurs as a result
of the presence of uncertainty.

The objective is to maximize expected profit:

Ma)gpr’nize E[ll(z, p)]. 4)

Consider, then, the first and second partial derivatives of
E[I1(z, p)] taken with respect to z and p:

E"E[L;ZZ’_P,)] = (c+h) +(p+s+1-F2)] ()
tﬂ%%ﬁﬂz_@+s+Mﬂa, (©)
GE[TI(z,

,%;,p,)l =2b(p°—p) - O(2),

=S eeee———— |
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where p? = ‘iggiﬂ’ 7
02E[I(z,
[ (f pl_ ®)
op~

The term p° denotes the optimal riskless price, which is the
price that maximizes W(p).

Notice from (6) that E[II(z, p)] is concave in z for a
given p. Thus, it is possible to reduce (4) to an optimiza-
tion problem over the single variable p by first solving for
the optimal value of z as a function of p and then substi-
tuting the result back into E[II(z, p)]. This method was
introduced by Whitin (1955) and yields the familiar fractile
rule for determining z, [1 — F(z*)] = (¢ + h)/(p + s +
h)), which is the standard newsvendor result when p is
fixed (Porteus 1990). Similarly, from (8), E[II(z, p)] is
concave in p for a given z, thereby validating Zabel’s
(1970) method of first optimizing p for a given z, and then
searching over the resulting optimal trajectory to maximize
E[lI(z, p*)]. Both sequential procedures yield the same
conclusions, but only the latter approach is presented here.

Lemma 1 follows directly from (7) and (8):

Lemma 1. For a fixed z, the optimal price is determined
uniquely as a function of z:

O(z)
* = = pl0 - =
pr=plz)=p b

Since O(z) is nonnegative, p* < p". This relationship
was demonstrated first by Mills (1959).

Substituting p* = p(z) into (4), the optimization prob-
lem becomes a maximization over the single variable z:

Maximize E[TI(z, p(z))].

Therefore, the effort required to compute the optimal
stocking and pricing policy depends on the shape of
E[Il(z, p(z))]. However, as Theorem 1 demonstrates,
E[II(z, p(z))] might have multiple points that satisfy the
first-order optimality condition, depending on the parame-
ters of the problem.

Theorem 1. The single-period optimal stocking and pricing
policy for the additive demand case is to stock qg* = y(p™)
+ z* units to sell at the unit price p*, where p* is specified
by Lemma 1 and z* is determined according to the follow-
ing:

(a) If F(-) is an arbitrary distribution function, then an
exhaustive search over all values of z in the region
[A4, B] will determine z*.

(b) If F(-) is a distribution function satisfying the condi-
tion 2r(z)* + dr(z)/dz > 0 for A < z < B, where (")
= fC)/[1 — F()] is the hazard rate, then z* is the
largest z in the region [A, B] that satisfies dE[II(z,
p(z))dz = 0.

(¢) If the condition for (b) is met AND a — b(c — 2s) +
A > 0, then z* is the unique z in the region [A, B]
that satisfies dE[I1(z, p(z))}/dz = 0.
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Proof. See the appendix.

The second condition in (c) guarantees that E[II(z,
p(z))] is unimodal in z when F(-) is a distribution function
satisfying 2r(-)* + r'(-) > 0. Ernst (1970) reached a similar
conclusion under the more restrictive assumption that F(-)
is a member of the PF, family of distributions and Young
(1978) expanded the set of applicable distributions to in-
clude the log-normal. However, our articulation of Theo-
rem 1 generalizes the conditions for which the optimal
solution to the single period problem can be identified
analytically because PF, distributions and the log-normal
distribution have nondecreasing hazard rates (Barlow and
Proschan 1975), and all nondecreasing hazard rate distri-
butions satisfy the condition in (b).

1.2. Muitiplicative Demand Case

In the multiplicative demand case, D(p, €) = y(p)e, where
y(p) = ap°. Analogous results for this section also apply
when y(p) = ae ”, another representation of demand
common in the economics literature, but we omit the par-
allel analysis in order not to distract from the presentation.
By substituting D(p, €) = y(p)e and z = g/y(p), the single
period profit function can be written conveniently as:

py(ple —cy(p)z — hy(p)lz — €],
py(p)z —cy(p)z — sy(p)le — z],
Although we define z differently for the multiplicative de-
mand case than we do for the additive demand case, the
effect is the same: If z is larger than the realized value of ¢,
leftovers occur; if z is smaller, shortages occur. This sug-
gests that although z is defined primarily for mathematical
convenience depending on the uncertainty structure of the
demand curve, a consistent managerial interpretation for z
exists. We provide one such interpretation in Section 1.3.

Analogous to the additive demand case, the optimal
stocking and pricing policy is to stock g* = y(p*)z* units
to sell at the unit price p*, where z* and p* jointly maxi-
mize expected profit. And, as in the additive demand case,
expected profit can be written as follows:

€<z,

(z, p) = {

€>z.

E[ll(z, p)] = ¥(p) — L(z, p). (9)
But, now

Vip)=(p-cypu, (10)
and

L(z,p)=y(p)lc + h)A(z) + (p +s —c)O(z)]. (11)

Consequently, expected profit again is interpreted as risk-
less profit, ¥(p), less an expected loss due to uncertainty,
L(z, p). However, in this case A(z)y(p) represents expected
leftovers and ©(z)y(p) represents expected shortages.

To maximize E[II(z, p)], we follow the same sequential
procedure detailed in the previous section. First, the opti-
mal selling price is established as a function of z (p* =
p(2)). Then that price is substituted back into the expected
profit function, thereby reducing the problem to a maximi-
zation over a single variable.

g
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Lemma 2. For a fixed z, the optimal price is determined
uniquely as a function of z:
(c + )A(z) is@(gl]

m = 0(z) ’

- — 0 b [
pr=Epla)=p '+ 5

where p® = bfbf—fi.

Proof. See the appendix.

By assumption, b > 1 and 4 > 0. In addition, it can be
shown that ©(z) is nonincreasing in z, which implies that
— 0(z) = u — O(A4) = A > 0. Therefore, p* = p°, where
p" denotes the optimal riskless price. This relationship,
which was demonstrated first by Karlin and Carr (1962), is
opposite of the corresponding relationship found to be
true by Mills (1959) for the additive demand case. We
address this issue in Section 1.3. Also note that in the
multiplicative demand case, p° does not depend in any way
on the characterization of €, whereas in the additive de-
mand case, p° is a linear function of the mean of e.

As in the additive model, the shape of E[Il(z, p(z))]
depends on the parameters of the problem.

Theorem 2. The single-period optimal stocking and pricing
policy for the multiplicative demand case is to stock q* =
y(p*)z* units to sell at the unit price p*, where p* is
specified by Lemma 2 and z* is determined according to
the following:

{a) If F() is an arbitrary distribution function, then an
exhaustive search over all values of z in the region
[A4, B] will determine z*.

(b) If F() is a distribution function satisfying the condi-
tion 2r(z)* + dr(z)/dz > O forA <z < B,and b =
2, then z* is the unique z in the region [A, B] that
satisfies dE[I1(z, p(z))}/dz = 0.

Proof. Sece the appendix.

Once again, our articulation of this theorem provides a
slight generalization of the existing literature. Zabel (1970)
first demonstrated the uniqueness of z* in the multiplica-
tive demand case of the single period problem, but he
assumed that s = 0 and considered only two special forms
for F(-): the exponential distribution and the uniform dis-
tribution. Earlier, Nevins (1966) reached a similar conclu-
sion regarding z* for the case when F(-) is a normal
distribution when he performed a simulation experiment.
Young (1978) extended the result to cases in which F(:)
either is a log-normal distribution or a member of the PF,
family of distributions. However, assuming that the prod-
uct is elastic enough (i.e., that b = 2), our proof requires
only that F(-) is such that 27(:)* -+ #'(-) > 0, which is more
general yet.

1.3. Unified Framework for Additive and
Multiplicative Demand Cases

A basic difference between the additive and the multiplica-
tive representations of demand is the manner in which the

pricing decision contributes to demand uncertainty. To
demonstrate, let E[ - | and VAR] - | denote the expecta-
tion and variance operators, respectively; and consider the
first and second moments of the random variable, D(p, €):

y(p) + p if additive demand case,

E[D(p, e)] = {y(pm

if multiplicative demand case,

and

VAR[D(p, €)]

if additive demand case,

o2
- { y(p)2e¢? if multiplicative demand case.

Thus, the variance of demand is independent of price in
the additive demand case but is a decreasing function of
price in the multiplicative demand case. However, the de-
mand coefficient of variation, VVVAR[D(p, €)[/E[D(p, €)],
is an increasing function of price in the additive demand
case, while it is independent of price in the multiplicative
demand case.

This distinction is important because it establishes an
analytical basis for explaining differences in structure that
arise in the results of the joint stocking and pricing prob-
lem when the two modeling alternatives for demand are
analyzed. Recall that Mills (1959) defined as a benchmark
the riskless price, which represents the optimal selling
price for the special situation in which there is no variation
of demand from its mean. Given this definition, Mills
found that p* < p° if randomness in demand is modeled
within an additive context; but Karlin and Carr (1962)
found that p* = p" if randomness in demand is modeled
within a multiplicative context.

Young (1978) verified both of these results by analyzing
a mode] that combines both additive and multiplicative
effects, defining the demand function as D(p, €) = y,(p)e
+ y»(p). This formulation corresponds to the additive de-
mand case when y,(p) = 1 and to the multiplicative de-
mand case when y,(p) = 0. Given this specification,
demand variance is y,(p)’c® and demand coefficient of
variation is y,(p)a/[y;(p)n + y-(p)]. Using these two mea-
sures of uncertainty, we identify three possibilities:

(i) variance is decreasing in p while coefficient of varia-
tion is increasing in p;
(ii) variance is decreasing in p while coefficient of varia-
tion is nonincreasing in p; and
(iif) variance is nondecreasing in p while coefficient of
variation is increasing in p.

The fourth alternative, a situation in which variance is
nondecreasing in p while coefficient of variation is nonin-
creasing in p, is not possible under the assumption that
expected demand is decreasing in p.

Young analyzed two of these three possibilities, con-
cluding that p* = p" if (ii) is satisfied; but p* < p if (iii) is
satisfied. Since the multiplicative demand case satisfies (ii)
and the additive demand case satisfies (iii), his results are
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consistent with both Mills" and Karlin and Carr’s. Curi-
ously, Young omits a prescription for a scenario in which
(i) is satisfied; and although he identified how the relation-
ship between p* and p° depends on the method in which
randomness is incorporated in demand, he did not provide
an explanation for the apparent contradiction between the
results of the additive and multiplicative demand cases.
We next offer one possible explanation.

In a deterministic setting (assuming € = w), there is no
risk of overstocking or understocking and the optimal
course of action is to choose the riskless price. With uncer-
tainty, there is the risk of overstocking or understocking,
but pricing provides an opportunity to reduce that risk.
Given that variance and coefficient of variation represent
two common measures of uncertainty, ideally price could
be used to decrease both. Unfortunately, that is not possi-
ble in either the additive or the multiplicative demand
case. But, in the additive demand case, it is possible to
decrease the demand coefficient of variation without ad-
versely affecting the demand variance by choosing a lower
price; and in the multiplicative case, it is possible to de-
crease the demand variance without adversely affecting the
demand coefficient of variation by choosing a higher price.
Consequently, from this perspective, it is intuitive that p*
< pY in the additive demand case while p* = p" in the
multiplicative demand case. Note that this intuitive expla-
nation leaves unresolved the relationship between p* and
p" for a scenario in which demand variance is decreasing in
price while the demand coefficient of variation is increas-
ing in price. We conjecture that in such a case either the
price dependency of demand variance or of demand coef-
ficient of variation will take precedence, thereby ensuring a
determinable direction for the relationship. We leave this
conjecture as a possible direction for continued research.

Although we provide this explanation to justify why the
pricing strategy appears to differ depending on how ran-
domness is incorporated into the demand function, one of
our goals for this paper is to develop a unified framework
for understanding the results of the joint stocking and pric-
ing problem, regardless of the form of demand uncer-
tainty. Our intent is to develop consistent insight for both
the additive and the multiplicative demand cases. We pro-
ceed by developing two key ideas. First, we provide a man-
agerial significant interpretation for z, demonstrating that
although z is defined differently for zach of the two cases,
its meaning is consistent for both: z represents a stocking
factor that we define as a surrogate for safety factor Silver
and Peterson (1985). Then, we define a new pricing bench-
mark that we refer to as the base price. Our notion of this
base price extends Mills’ idea of the riskless price, al-
though we feel that the base price is more amenable to
environments in which demand is uncertain because it
takes into account the fact that expected sales differ from
expected demand when uncertainty exists. In the special
case in which there is no variation in demand, base price
and riskless price are equivalent. We develop the concept
of base price because it establishes a new frame of refer-
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ence that is convenient for resolving the contradiction in
optimal pricing strategies that occurs as a result of the choice
between the additive and the multiplicative models. We find
that, in general, the optimal pricing strategy is to charge a
premium over the base price, where the amount of the pre-
mium depends on the risk of overstocking or understocking.
But, since demand variance is independent of price in the
additive demand case, it turns out that the premium asso-
ciated with the optimal selling price is zero for that case.

From Equations (1)-(3) and (9)-(11), expected profit
for the single period can be expressed as:

E[II(z, p)] = (p — ¢)E[D(p, €)] (12)
~ {(c + h) E[Leftovers(z, p)]
+ (p — ¢ + s) E[Shortages(z, p)1},

which we interpreted as the difference between riskless
profit and the loss function. This expression is convenient
for analysis when p is fixed because then the objective of
finding the stocking quantity that maximizes expected
profit simplifies to the equivalent problem of finding the
stocking quantity that minimizes the loss function. Conse-
quently, it is common in the literature on the newsvendor
problem. However, since price is not fixed in the joint
stocking and pricing problem, we find it more insightful to
apply the identity, E[Sales] = E[Demand] — E[Shortages],
and express the profit function as follows:

E[I(z, p)] = (p — c) E[Sales(z, p)] (13)
~{(c + h)E[Leftovers(z, p)]
+ sE[Shortages(z, p)]}.

We interpret (13) similarly to (12): Expected profit is
the difference between the total contribution expected
from sales and the expected loss resulting from the inevi-
table occurrence of either leftovers or shortages. This form
of the profit function allows us to develop the notion of
base price as a pricing strategy benchmark, which, together
with the concept of stocking factor as a decision variable,
provides an interpretive framework that is consistent for
both the additive and the multiplicative demand cases.

1.3.1. Stocking Factor. Silver and Peterson (1985) define
safety factor, SF, as the number of standard deviations that
stocking quantity deviates from expected demand:

_9 _ELD(p, €]

= SD[D(p, &)] ’

where SD[D(p, €)] = \’[{/WAwR[iD(p, el. (14)

This definition provides the basis for the following theorem.

Theorem 3. For both the additive and the multiplicative
demand cases, the variable z represents the stocking factor,
defined as follows:

z = u + SFo.
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Proof. First consider the additive demand case: E[D(p, €)]
= y(p) + p, VAR[D(p, €)] = 6%, and z = g — y(p). Thus,
from (14):
z=(E[D(p, )] + SF-SD[D(p, €)]) ~ y(p)
= (y(p) + 1 + SFo) —y(p) = u + SFo.
Similarly, for the multiplicative demand case: E[D(p, €)]
= y(p)u, VAR[D(p, €)] = y(p)’¢”, and z = g/y(p). Thus:
E[D(p, €)] + SF-SD[D(p, €)]
Z =
y(p)

_ypp + SE(p)o _
y(p)

u + SFo. [

The stocking factor interpretation of z also applies to
Young’s specification of demand, which includes both ad-
ditive and multiplicative effects. Given Young’s definition
of D(p, €), the mean and standard deviation of demand is

E[D(p, €)] = yi(p)u + ya(p) and SD[D(p, €)] = y:(p)o,
respectively. Correspondingly, we define z = [g — y,(p)}/
y1(p), which implies that:

, _E[D(p, &)] + SF-SD[D(p, €)] = y2(p)
y1(p)

_npp + SEy(plo _
yi(p)

w + SFo,

thereby completing the illustration.

Finally, we note that for the additive demand case, z also
can be interpreted as a surrogate for safety stock, since safety
stock is defined as the deviation of stocking quantity from
expected demand (i.e., safety stock = g — E[D(p, €)] =z —
). However, this interpretation of z does not hold for the
multiplicative demand case; hence, it is less appealing than
the stocking factor interpretation. Given that z represents the
stocking factor, the joint stocking and pricing problem can be
transformed into an equivalent optimization problem in
which the joint decision can be interpreted as having to
choose a selling price and a stocking factor, rather than a
selling price and a stocking quantity, regardless of whether
the problem is formulated as the additive demand or the
multiplicative demand case. This is important because sub-
stituting z for ¢ provides analytical tractability. Theorem 3,
then, merely ensures that one need not sacrifice manage-
rial understanding for mathematical convenience.

1.3.2. Base Price. For a given value of z, we define base
price, pp(z), as the price that maximizes the function J(z,
p) = (p — ¢)E[Sales(z, p)], which represents the expected
sales contribution.

Lemma 3. For both the additive and the multiplicative de-
mand cases, pg(2) is the unique value of p, given z, that
satisfies:

. (_ E[Sales(z, p)]
p=c dE[Sales(z, p)]/ap)'

Proof. By definition, py(z) maximizes J(z, p) = (p — ¢)E-
[Sales(z, p)]. Therefore, it satisfies the following first or-
der, optimality condition:

?l(azl;_m = E[Sales(z, p)]+(p —c) @W -0
= ___E[Sales(z, p)] °
wp=ct ( JE[Sales(z, P)]/ép)'

To demonstrate that the value of p that satisfies this equa-
tion is unique and corresponds to the maximum of J(z, p),
consider the additive and the multiplicative demand cases
separately.

For the additive demand case,

E[Sales(z, p)] = E[D(p, €)] ~ E[Shortages(z, p)]
=y(p) + p— 0(z),

where y(p) = a — bp; and consequently, dE[Sales(z, p)]/
dp = —b. Thus,

HED )+ u- 0@~ bp- o)
=a +bc+p—-0(z) - 2bp,

which is a linearly decreasing function of p. Notice also
that 8J(z, p)/ap > 0 for small values of p since p — 8(z)
= A > —a. This means that aJ(z, p)/dp crosses zero ex-
actly once, thereby changing its sign from positive to neg-
ative. Therefore, the unique p satisfying the equation dJ(z,
p)/dp = 0 corresponds to the maximum of J(z, p).

For the multiplicative demand case,

E[Sales(z, p)] = E[D(p, €)] — E{Shortages(z, p)]
=y(pln —y(p)O(z) = y(p)lun — O(2)],

where y(p) = ap~®; and consequently,

aE[Sales(z, p))/op = ~bap * " [u — O(2)].

Thus,

J(z, L ,
%pm:y(m[u—(@(n]—baz) P u-0(2)(p—c)

=a(p—0(2)p > [bc - (b - 1pl

For p < o, the term in [ ] determines the sign of daJ(z,
p)/dp. Since the term in | ] is linearly decreasing in p, the
logic applied in the additive demand case also applies
here. [

From Lemmas 1 and 3, we observe that for a given z in
the additive demand case, p” = p* = pp(z). However,
from Lemmas 2 and 3, we observe that for a given z in the
multiplicative demand case, p* = p® = pg(z). We summa-
rize these observations in the next theorem.

Theorem 4. For both the additive and the multiplicative
demand cases, p* = pg(z). Thus, given z, p* is interpreted
as the sum of the base price and a premium.

Since the premium component of p* is zero in the addi-
tive demand case, we focus on the multiplicative demand
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case in order to develop an economic interpretation. From
Lemma 2:

Premium = p* — pg(z) =p* — p°

) [(C + h)A(z) + s@(z)]
b1 p—0(z)

or, multiplying both the numerator and denominator by
y(p), we can write:

’

. _ b
Premlum—b_1

) [(c + h) E[Leftovers(z, p)}] + sE[Shortages(z, p)]]
E[Sales(z, p)] )

Thus, the idea behind the per-unit premium is to recoup,
on a per-sale basis, the total expected cost resulting from
the management of inventory that is used as a buffer
against uncertainty in demand. That is, the premium in
selling price is based on a formula that takes the total
expected leftover cost ((¢ + /) E[Leftovers(z, p)]), adds to
it the total expected shortage cost due to penalties in ex-
cess of the net margin lost (sE[Shortages(z, p)]), and then
spreads the sum over total expected sales. The quotient
then is adjusted by b/(b — 1), which is a weighting that is
specific to the form of the demand function and is related
to its price elasticity.

We conclude that the premium charged depends wholly
on how the selling price affects expected leftovers and
shortages beyond the effect that is incorporated in the
stocking factor, which itself depends on the selling price.
Since, for a given z, expected leftovers and expected short-
ages are constant in the additive demand case, the effect is
like that of a fixed cost and consequently, nothing is passed
to the customer in the form of a premium. However, since
for a given z, expected leftovers and expected shortages
still depend on p in the multiplicative demand case, the
effect is like that of a marginal cost and consequently, that
cost is passed to the customer in the form of a premium.
Intuitively, in the additive demand case, the stocking factor
serves as the only means available to guard against the risk
of having leftovers or shortages. In the multiplicative de-
mand case, a price increase provides an additional hedge.

1.4. The Value of Information

As the results above demonstrate, sctting prices in addi-
tion to selecting stocking quantities provides more refine-
ment in terms of managing the effect of uncertainty. It
therefore is natural to consider the economic impact of
uncertainty. We provide one such estimate by computing
the expected value of perfect information for the additive
demand case, omitting a similar calculation for the multi-
plicative demand case.

We define perfect information to mean that the value of
€ is known before the pricing and stocking decisions are
made. In such a case, D(p, €) is a deterministic function,
which implies that there is no risk of leftovers or shortages.
Correspondingly, the optimal selling price is p, =
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argmax{(p — ¢)D(p, €)} and the optimal stocking quan-
tity is g, = D(p., €). The expected value of perfect infor-
mation is defined as the difference between the expected
optimal profit in the case with perfect information and the
expected optimal profit in the case with uncertainty.

Theorem 5. The expected increase in profit that results
from obtaining perfect information in the additive demand
case is given by:

E[value of perfect information]

2+ @ *)2
:L“#27+L(Z*,p*)-

Proof. See the appendix.

The first term in the expression for the expected value of
perfect information represents the increase in expected net
revenue that results from selling expected demand at the
optimal perfect information price (p,.) rather than selling
the expected demand at the optimal imperfect information
price (p*). The second term denotes the savings from the
elimination of operating costs associated with uncertainty.
Note that if selling price is fixed at p, the E[value of per-
fect information] = L(z*, p), which indicates the cost of
uncertainty associated with a stock-setting/non-price-
setting firm. If stocking quantity is set after demand is
observed, then E[value of perfect information] = ¢°/4b,
which indicates the cost of uncertainty associated with a
price-setting/non-stock-setting firm. Just as uncertainty
links the selling price and the stocking quantity decisions
in a single-period setting, the prospect of learning more
about the demand function provides a link between peri-
ods in a multiple-period setting. However, such an exten-
sion is beyond the scope of this paper. We refer the reader
to Petruzzi and Dada (1997) for further development of
learning in this context and focus next on a more natural
multiple-period extension of the single-period problem.

2. THE MULTIPLE PERIOD PROBLEM

In Section 1, we reviewed and developed new insight into
the joint stocking and pricing problem under demand un-
certainty. In brief, the results prescribe optimal buffer lev-
els in the form of a stocking factor and a pricing premium
to hedge against the risk of uncertainty. A natural exten-
sion of this problem is a corresponding management situ-
ation involving multiple periods, where units left over from
one period are available to meet demands in subsequent
periods. Conceptually, this extension affects the determina-
tion of the optimal buffer levels because the existence of
multiple selling opportunities changes the economic risks
associated with understocking and overstocking. We re-
view and develop insight into this extension next.
Applying the notation from Section 1 and defining « as
a discounting factor, a generic formulation of the multiple
period problem can be written as follows. This formulation
assumes that unmet demand is lost because that is the
predominant case considered in the literature, but it is

g
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Table 1
Specifications for D(p, €), Leftovers (z, p) and
Shortages (z, p)

Additive Multiplicative

Demand Demand
D(p, €) y(p) t e y(pe
Leftovers(z, p) [z— €7 p)lz — €*
Shortages(z, p) [e —2]" y(p)le = z]"

straightforward to adapt the model to include backorders.
Let

G,(x) = maximum discounted expected profit over a
t-period horizon, given that x is the initial
inventory on-hand,

and let

]t(za p) EE[H(27 p)]

+ a[[ G,—(Leftovers(z, p)} f(u) du

A

B
+J G,_1(0) fu) du], (15)

z

where, recall, E{II(z, p)] is given by (12) and denotes the
single-period expected profit given that z is the stocking
factor, p is the selling price, and c is the per-unit stocking
cost for each unit stocked. Then,

G, (x) = max; ,{J,(z, p) + cx}. (16)

The term cx reflects the savings from not having to pay the
per-unit stocking cost for units left over from the previous
period—a cost that is included in J,(z, p). Specific forms
for D(p, €), Leftovers(z, p), and Shortages(z, p) depend
on whether demand uncertainty is expressed as additive or
multiplicative. Table I itemizes these expressions for each
of the two cases.

To develop the form of the optimal policy for this prob-
lem, define (z,, p,) as the unconstrained optimal decision
vector for period ¢. Assuming (z,, p,) is an interior point,
then it satisfies:

a(z,p)|  _oldz,p)

oz Iy op

-, =0. (17)

i

oo

iz
P
If (z,, p,) is a feasible alternative in period ¢, then it is
optimal. But, typically the formulation given by (16) is
interpreted to include the constraint g(z, p) = x, where x
is the beginning inventory, left over from the previous
period, and ¢(z, p) is the stocking quantity (i.e., g(z, p) =
y(p) + z if demand uncertainty is modeled as additive
and ¢(z, p) = y(p)z if demand uncertainty is modeled as
multiplicative). A constraint such as this is common in
stochastic inventory theory and reflects an implicit as-
sumption that disposal is costly. In other words, the con-
straint implies that if at the beginning of an arbitrary
period ¢, the amount of stock left over from the previous
period, x, is greater than the ideal stocking quantity for

period ¢, say g,, then it is too restrictive simply to discard
the excess x — g, and begin the period with the ideal
stocking amount q,.

Under the implicit assumption of costly disposal, the
primary focus of the limited research done on this problem
has been to establish sufficient conditions for which J,(z, p)
is guaranteed to have a unique interior point maximum for
all t. Under such circumstances, the optimal stocking pol-
icy takes the familiar form:

*_{LI(ZHP:) ifQ(Zr’Pr)zx,
q: = .
X otherwise,

(18)

where (z,, p,) is the unique maximum of J(z, p). The
corresponding optimal pricing policy is

*_{pr ifg(z,, p:) = x,
P p.(x) otherwise,

(19)

where p,(x) = argmax,{J(z(x, p), p)} and z(x, p) reflects
the binding constraint ¢} = x; that is, z(x, p) = x — y(p) in
the additive demand case and z(x, p) = x/y(p) in the
multiplicative demand case. Ernst (1970) was the first to
establish such sufficiency conditions. He demonstrated
that, for each ¢, (17) has a unique solution that indeed
corresponds to the maximum of J,(z, p) when the following
are satisfied:

(i) demand uncertainty is modeled as additive;
(i) s = 05
(ili) a + A > bc; and
(iv) € is drawn from a continuous member of the PF,
family of densities.

The proof follows from (15) and (16) using a standard
induction argument. In a similar analysis, Zabel (1972)
expanded Ernst’s result by providing an alternative set of
conditions. He followed Ernst’s precedence in assuming (i)
and (ii), and he required that € be drawn from either an
exponential or a uniform p.d.f.,, which is more restrictive
than (iv), but he demonstrated the desired result for the
more general case in which y(p) is concave rather than
linear and the marginal cost of stocking an additional unit
is nondecreasing rather than constant. Thowsen (1975) ex-
tended both Ernst’s and Zabel’s list to include the case of
a convex holding cost function. To our knowledge, similar
conditions have not been identified for the multiplicative
demand case, although Zabel (1972) identifies some of the
analytical roadblocks that creep into such an analysis.

Understandably, finding sufficient conditions for which
J.(z, p) is guaranteed to have a unique interior point max-
imum for all ¢ is not an easy endeavor. From (15), J(z, p)
represents the combined immediate and discounted future
payoffs associated with the decisions made in period r.
Theorems 1 and 2 from Section 1 allude to the difficulty in
assessing the immediate payoff of these decisions even
without considering future effects; when the future is in-
cluded, the analysis is all that more difficuit.

It is not our intent to reproduce here the work of previ-
ous authors, nor is it necessarily our intent to expand on
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the conditions under which the analysis of the multiple
period problem is tractable. Instead, we choose to revisit
the implicit costly disposal assumption, argue why the as-
sumption ought not to apply to the case of a price-setting
firm, and demonstrate the resulting simplicity of the prob-
lem, both in terms of tractability and computation, when
the implicit assumption is revised.

What if disposal were not costly? Indeed, what if in-
stead, a salvage market existed such that unwanted excess
inventory could be disposed for revenue? Taking this con-
cept one step further, suppose that the salvage market is
such that each leftover remaining at the end of a period
can be sold for ac (or equivalently, each can be sold im-
mediately at the beginning of the subsequent period, prior
to the new order being placed, for ¢). This assumption
provides the underpinning for Veinott’s (1965) seminal re-
sult indicating that a myopic policy is optimal for the anal-
ogous dynamic problem in which selling price is
exogenous. The same result prevails when selling price is a
decision variable: the multiple-period problem reduces to
a sequence of identical single-period problems.

To demonstrate, consider that if such a salvage market
exists, then it can be interpreted as a second supply source
of the product. This is because one management decision
at the beginning of a new period is the determination of
how many of the leftovers from the previous period should
be sold to the salvage market for a per-unit revenue of c.
Or equivalently, this decision question can be stated as:
How many of the leftovers should not be sold to the
salvage market, understanding that the cost for each unit
not sold is ¢ due to lost revenue? Thus, at the beginning
of a new period, the stocking decision is determined as
the sum of the number of units not sold in the salvage
market (for an implicit per-unit cost of ¢) and the number
of units explicitly purchased/produced (for a per unit cost
of ¢). Since the per-unit cost of the product is the same
regardless of the source, the two sources can be thought of
as a single source and the activity sequence at the begin-
ning of a period can be interpreted simply as follows: First,
all leftovers are salvaged for ¢ each and then the total
stocking quantity for the new period is purchased/pro-
duced for ¢ each. Therefore, if a salvage market exists in
which units can be sold for their purchase price, then we
can write:

G.(x) = cx + G,(0). (20)

If we assume further that the salvage market continues
to exist even at the end of the problem horizon, then
(20) holds for all ¢, including ¢ = 0. Alternatively, if the
horizon is infinite, then (20) always holds, but the sub-
script no longer is necessary. From (15), then, this implies
for all «:

I(z,p) = E[I(z, p)] + aE[G,-;(0)], 1)

where E[I1(z, p)] is the same as E|TI(z, p)], as given by
(12), except that the parameter # = A — «ac is substituted
for &.
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From (21), J,(z, p) is maximized at (2, p), which is inde-
pendent of time and maximizes E[I1(z, p)]. Thus, under
the assumptions made in this section regarding the exis-
tence of a salvage market, the solution to the dynamic
inventory problem for a price-setting firm is stationary and
myopic, which implies that it can be determined by the
techniques presented in Section 1. Moreover, Theorems 1
and 2 continue 10 apply. Interestingly, although these con-
clusions require the existence of a salvage market, in prac-
tice this market actually is not required. Since the policy is
stationary and demand is nonnegative, the number of left-
overs remaining from a given period always will be no
greater than the desired stocking level for the subsequent
period. Consequently, the action taken at the beginning of
a new period always will be to purchase additional units in
order to bring the stocking level up fo the base stock; never
will it be necessary to salvage units in order to bring the
stocking level down to the base stock. The mere assump-
tion of the existence of a salvage market as described here
is sufficient for ensuring the uselessness of its existence.

In the discussion above, we tacitly assumed that the ini-
tial inventory on hand at the start of the problem horizon
is smaller than the first period’s desired stocking quantity.
If that were not the case, then in fact the optimality of a
stationary myopic policy would require the use of a salvage
market at the beginning of the first period. But, were such
a contingency to occur, the firm could create its own sal-
vage market simply by marking down the price temporarily
at the beginning of the period, thereby stimulating new
demand only for as long as there continued to be an over-
stock. The temporary sale would continue until the desired
stocking quantity was reached, at which time the desired
selling price, that is, the selling price associated with the
desired stocking quantity, would be charged once again.
The trick is to establish a femporary sales price: If there is
an overstock situation, rather than discounting the selling
price for the entire quantity stocked at the beginning of a
period, which is a consequence of the optimal policy given
by (18) and (19), the selling price need be discounted only
for a designated portion of the entire stocking quantity.

Under reasonable technical assumptions such as the
market being large enough, such a policy can be, and often
is, used in practice. A simple example is the popular “kick-
off” sale advertised by retailers at the beginning of new
selling seasons, particularly at the start of the important
Christmas retail season. Such promotions might take the
following form: The first n customers who purchase Prod-
uct X will receive a Y% discount off the regular selling
price. Granted, competitive factors beyond the scope of
this paper also may play an integral role in developing
promotions of this type; but nevertheless, one effect of
such a sale is the creation of a salvage market for as many
as n units. (In reality, the size of the salvage market might
be less than n because the demand of the product associ-
ated with the regular selling price most likely will be can-
nibalized as a result of the sale price.) Another example in
which a temporary sales price is used widely is the “early
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bird special.” Although a primary motivation for this pop-
ular sale is to shift demand to fit a fixed capacity level
better, the effect is the same. Over the course of a given
evening, a restaurant might have available more aggregate
units of its product (say, seat-hours) than the total evening
demand for that product; however, by offering a discount
on the first n seat-hours that it sells, the restaurant effec-
tively creates a salvage market in which it can sell a unit
that otherwise it would not have been able to sell. We
consider early bird sales to be a salvage market because
the restaurant still sells the same number of seat hours at
the regular price that it would have sold in the absence of
the early bird special. Thus, the early bird sales are not in
lieu of higher-priced sales of the same product. Instead,
they are in lieu of not making a sale at all. Apparently,
universities are adopting a similar mentality in selling a
unit of their product: an admission slot. In a recent article
in Smart Money magazine about how financial aid packages
can attract potential incoming students, Amy Virshup
(1997) writes: “...colleges, like airlines, discovered that
selling a seat at a discount is better than not selling it at all.”

3. APPLICABILITY OF MODELS

In this paper, we reviewed the literature on incorporating
pricing into the newsvendor model. In the single-period
model, a comparison with the benchmark deterministic
model reveals that the structure of the optimal policy de-
pends on how uncertainty is introduced in the model. If un-
certainty enters in an additive form, then the optimal price is
no higher than that in the deterministic model; alternatively,
if uncertainty enters in a multiplicative form, the optimal
price is no lower than that in the deterministic model. We
reconcile this apparent contradiction by introducing the
notion of a base price and demonstrating that the optimal
price can be interpreted as the base price plus a premium.

In multiple period versions of the problem, the pricing
and stocking decision in each period is linked to successive
periods through leftover inventory. In stark contrast to the
research on the single-period model, the literature on mul-
tiple period models does not provide structural results of
the optimal policy that yield managerial insight; rather the
emphasis has been on technical properties that speed up
computation of optimal policies. We believe that the diffi-
culty in obtaining structural results can be traced to the
assumption that leftovers cannot be disposed. We show
how revising this assumption and allowing for the possibil-
ity of salvaging leftovers is sufficient to yield a stationary
myopic policy for the multiple period problem; but the
revised assumption appears innocuous because such a
market is never really needed when the optimal policy is
used. Consequently, all results and managerial insight
available for the single-period model apply directly to the
multiple-period model.

Although we believe that the practical implementation
of the models developed in this paper are motivated pri-
marily by the simplicity, usefulness, and applicability of the

single-period results, we also believe that the full adoption
of such models first requires overcoming challenges in in-
tegrating sales tracking systems with inventory systems,
and then incorporating the price sensitivities of various
classes of customers. However, it appears that the first step
in this process is well underway: Ongoing innovations in
information technology are increasing the potential for
practical implementation of newsvendor-like problems
that exploit improved knowledge regarding inventory avail-
ability and demand uncertainty.

For example, consider a retailer who sells a seasonal good.
Most textbooks in operations research or management sci-
ence would consider the decision problem in the context of a
single period. However, if this retailer has a point-of-sales
(POS) system that tracks sales electronically, it can determine
if demand is being depleted at an adequate rate. In the event
that sales are slower than expected, then rather than wait
until the end of the season to mark down the product, the
retailer can run a temporary promotion to bring remaining
inventory in line with the target for the rest of the season.
Effectively, the retailer dynamically can revise downward its
estimate of the demand curve, Therefore, it can revise down-
ward its target inventory level and offer a sale such as that
discussed at the end of Section 2 in order to create a salvage
market for any excess inventory. Moreover, the retailer can
be viewed as implementing a form of yield management
because inventory (capacity) is fixed at the beginning of
the season and temporary markdowns keep remaining ca-
pacity in line with estimates of remaining demand.

Recent models along these lines that adapt prices during
the season include work by Federgruen and Heching
(1997) and Gallego and van Ryzin (1994). An empirical
analysis is reported by Gallego et al. (1997). Their discus-
sion indicates the potential benefit of implementing
newsvendor-like models. Hence, variants of the newsven-
dor model like those described in this paper, along with
continuing developments in information technology, offer
promising opportunities for researchers to collaborate with
practitioners to improve the efficacy of industrial pricing
policies and inventory management.

APPENDIX

Proof of Theorem 1. From the chain rule and Lemma 1:

dE[II(z, p(2))]
dz

= —(c+h)+ [p0+s+h—@2(bi)][1~F(z)].

To identify values of z that satisfy this first-order opti-
mality condition, let R(z) = dE[Il(z, p(z))])/dz and con-
sider finding the zeros of R(z):

dR(z) _ d [dj[n(z,p(z))]]

dz dz dz

= -——e{zb(pus +h) - O(z) - _F(z)},

r(z)
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where r(-) = f(-)/[1 — F(')] denotes the hazard rate (Bar-
low and Proschan 1975). Also,

dR(z) (4R It
dz? f(z) dz 2b

Ao -rens

d2R(z):
Z2 dR(z)/dz=0

L @O F@I
2br(z)

If F(-) is a distribution satisfying the condition 2r(z)* +
dr(z)/dz > 0, then it follows that R(z) either is monotone
or unimodal, implying that R(z) = JdE[Il(z, p(z))}/dz has
at most two roots. Further, R(B) = —(c + h) < 0. There-
fore, if R(z) has only one root, it indicates a change of sign
for R(z) from positive to negative, and thus it corresponds
to a local maximum of E[II(z, p(z))]; if it has two roots,
the larger of the two corresponds to a local maximum and
the smaller of the two corresponds to a local minimum of
E[MI(z, p(2))]. In either case, E[Il(z, p(z))] has only one
local maximum, identified either as the unique value of z
that satisfies R(z) = dE[I1(z, p(z)))/dz = 0 or as the larger
of two values of z that satisfies R(z) = 0. And since E[II(z,
p(z))] is unimodal if R(z) has only one root (still assuming
that 2r(z)* + dr(z)/dz > 0), a sufficient condition for uni-
modality of E[Il(z, p(z))] is R(A) > 0 or, equivalently,
2bR(A) > 0, where:

f(z) [1 F(Z)][dr(z)/dz]}
)" r(z)?

=
dr(z)}

2bR(A) = —2b(c + h) + [2b(p°+ 5+ h) — B(A)]
[1 - F(4)]
= ~2b(c+h)+[(a+bc+pu)+2b(s+h)

—(n—4)]
=a-—blc—2s) +A. ]
Proof of Lemma 2. For the multiplicative demand case, p"
is defined as the p that maximizes ¥(p) = (p — c)y(p)u
= (p — ¢)(ap~®)u. Hence, consider:
a¥(p)
dp

=lap ™ = b(p —clap ™" u
= —(b — 1Vapb-1[, - _bc_
= —(b - l)ap [p b 1]%
Since (b — 1)ap "' > 0 for p < x, the function ¥(p) is
increasing for 0 < p < bc/(b — 1) and is decreasing for
be/(b — 1) < p < . Therefore, ¥'(p) reaches its maxi-
mum at p° = be/(b — 1).

Next, recall from (9)—(11):

E[ll(z, p)] =y(p)(p —c)p — (c + h)A(2)
—(p+s5—-0)0(2)].

Thus:
dE[I1
[5Jﬂ b - )22 [~ 0(2)]
b (c + WA(2) +5s0O(z2)
'&N+b—l[ L= 0z) }"p}
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Since p — O(z) = A > 0, E[1l(z, p)] is increasing if and
only if the term in { } is positive. Therefore, given z,
E[II(z, p)] reaches its maximum at

0 b [(c +h)A(z) +sO(2)
b-1 p— 0(z)

Proof of Theorem 2. This proof is similar to that of Theo-
rem 1. From (9)—(11):

dE[Il(z, p(2))]

| o

=y(p(z)[1 - F(z)][p(z) +s+h - %]

Define R(z) = (p(z) + s + h) — (¢ + h)/[1 — F(2)].
Then, since y(p(z2))[1 — F(z)] > 0 for all values of z other
than the boundary value z = B, R(z) identifies the behav-
ior of E[Il(z, p(z))] as follows: EII(z, p(z))] is increasing
for any z that satisfies R(z) > 0, decreasing for any z that
satisfles R(z) < 0, and has a local optimum for any z that
satisfies R(z) = 0. Thus, analyzing R(z) is sufficient for
determining the shape of E[I1(z, p(2))].

First, notice, using Lemma 2, that R(B) < 0 and R(A) > 0:

c+h

R(B) = (p(B) +s + h) - 11— —» <0,
R(A) = (p(A) +s+h) — (c + h)
b b [s(p—A)

:b—cl+b—1{ A ]”_C

S B
—b__l[c+s(bA 1)]>0.
The last inequality follows because b > 1 and u > A4.

Next, recall that r(-) = f(-)/[1 — F(-)] and consider how
R(z) behaves in z:

dR(z) dp(z) B (c + h)r(z)
dz = dz 1—-F(z) °
and

d’R(z) dp(z) +h)[dr(z)/dz+ r(z)? ]

dz* dz? 1-Flz) 1-F(z)]’
where, from Lemma 2:
dp(2)

dz

__b [(c + W[F(z)z — A(2)] - s{1 = F(Z)]F-]

b—-1 [w = 8(2)]° ’

and
d P(Z) b (_Cili)_2_+ S

Tz b~1ﬂ)[m—®uné

_2[1 - F(2)] dp(2)
w—0(z) dz

_ b (c+h(z)
Th—1 p—0(z)
_[2[1 - F(z)] dp(z)
[ r— 0(z) * ()} )
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Thus, by substitution:

dR(z) [i);z r(z)
I I WY
2r(z)2 + dr(z)/dzjl
1—F(z2)
2[1 — F(2)] dR(z)
_[u—®@7+””} dz

d*R(z)|
71 < ()
dz* dR(z)jdz=0

if2r(z)2+ dr(z)/dz >0 and b = 2.

This last inequality means that R(z) is unimodal in z,
first increasing and then decreasing. Therefore, given that
2r(2)? + dr(z)/dz > 0 and b = 2, E[TI(z, p(z))] reaches its
maximum at the unique value of z # B that satisfies

dE[I(z, p(2))}/dz = y(p(z))[1 = F(2)]R(z) = 0. []

Proof of Theorem 5. First consider the profit if a value for
€ were revealed before the optimal stocking and pricing
decisions were made. In the additive demand case, the
optimal stocking quantity then would equal the known de-
mand, y(p) + €, and the optimal selling price, p,, would
maximize the function fl(p) =(p — )[y(p) + €

_atbcte_ g, €~ pn
Pe=""3 A TR

Therefore, the optimal expected profit for a firm operating
with perfect information is:

E[M(p)] = E[(pc = ) (y(pe) + €)]
E 27 2
=(p’—c)a—-bp’+ )+ ~~[£—4]—}—)—M~
2
— 0 o
=Y(p") + ib-

Next, consider E[11(z*, p*)]. From (1), (2), and Theo-
rem 1:
E[IL(z*, p*)] = ¥(p*) — L(z*, p™")
=(p* —oly(p™) + n] = L(z*, p*)
o)
4b

The expected increase in profit that results from obtain-
ing perfect information is the difference between E[II(p,)]
and EII(z*, p*)]:

=w(pY) - - L(z*,p*).

E[value of perfect information]

o2+ 9(z%)? . .
—-‘—T—-f-L(Z . P ). D
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