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Abstract: We consider a pricing problem in directed, uncapacitated networks. Tariffs must be defined by an operator, the leader,
for a subset of m arcs, the tariff arcs. Costs of all other arcs in the network are assumed to be given. There are n clients, the followers,
and after the tariffs have been determined, the clients route their demands independent of each other on paths with minimal total cost.
The problem is to find tariffs that maximize the operator’s revenue. Motivated by applications in telecommunication networks, we
consider a restricted version of this problem, assuming that each client utilizes at most one of the operator’s tariff arcs. The problem
is equivalent to pricing bridges that clients can use in order to cross a river. We prove that this problem is APX-hard. Moreover,
we analyze the effect of uniform pricing, proving that it yields both an m–approximation and a (1 + ln D)-approximation. Here, D
is upper bounded by the total demand of all clients. In addition, we consider the problem under the additional restriction that the
operator must not reject any of the clients. We prove that this problem does not admit approximation algorithms with any reasonable
performance guarantee, unless P = NP, and we prove the existence of an n-approximation algorithm. © 2007 Wiley Periodicals, Inc.
Naval Research Logistics 54: 411–420, 2007
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1. INTRODUCTION

The pricing problem that we study is a Stackelberg game
that involves two non-cooperative groups, an operator that
sets tariffs, the leader of the Stackelberg game, and clients
that must pay these tariffs, the followers of the Stackelberg
game. More precisely, we assume that a network is given,
and a subset of the arcs, the tariff arcs, are owned by an oper-
ator. The operator can determine tariffs on these tariff arcs,
while the costs for utilizing all other arcs are assumed to be
given. Each client wishes to route a certain demand on a path
connecting two vertices. We assume that after the tariffs have
been announced, each client selfishly selects a path with min-
imum total cost to route her demand. Thus, before the clients
select their paths, the operator must set the tariffs, which
she does in order to maximize her total revenue. In order to
avoid non-boundedness, we assume that clients always have
the alternative of routing on a path without using any of the
operators arcs.

Correspondence to: M. Uetz (m.uetz@ke.unimaas.nl)

Note that this problem is different in two aspects from
the network congestion problems studied recently, e.g., by
Roughgarden and Tardos [12] and Cole, Dodis, and Rough-
garden [4, 5]. First, we assume that there is no congestion,
hence, the clients do not influence each other. They choose
minimum cost paths to route their demands, independent of
each other. A game theoretic setting is only present due to
the fact that there exists an operator trying to maximize the
total revenue, and the clients effectively minimize the total
revenue by choosing minimum cost paths. Second, due to the
fact that the pricing takes place before the clients choose their
paths, we are faced with a Stackelberg game. Note that the
second phase of this Stackelberg game is indeed trivial, since
the clients are independent of each other.

1.1. Model

In order to clarify the relation to previous work, we first for-
mulate the general network pricing problem and then discuss
the restricted version considered in this paper.

© 2007 Wiley Periodicals, Inc.
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An instance of the general network pricing problem is a
directed graph G = (N , A), where the arc set A is parti-
tioned into a set of m tariff arcs T ⊆ A and a set of fixed
cost arcs F = A \ T . There are n clients (or commodities)
k ∈ {1, . . . , n}, and each client k has a demand dk that must be
routed from source node sk to target node tk .1 Without loss of
generality, we assume that all demand values dk are scaled to
be integral. The tariff for the utilization of any tariff arc a ∈ T

must be determined by the operator; it is denoted by τ a . The
tariff for the utilization of any fixed cost arc is assumed to be
given for all fixed cost arcs. The clients route their demands
from source to destination through a path with minimal total
cost, where the total per unit cost of a path is defined as the
sum of the tariffs and fixed costs on the arcs of the path.
Whenever the client has a choice among multiple paths with
the same total cost but with different revenues for the oper-
ator, we assume that the client takes the path that is most
profitable to the operator. (This can always be achieved with
arbitrary precision by reducing tariffs by some small value ε.)
We assume that an (sk , tk)-path exists consisting only of fixed
cost arcs for every client k ∈ {1, . . . , n}, since the problem
is otherwise unbounded. Without going into further details,
we mention that this problem is a classical Stackelberg game
that can be modeled as a bilinear bilevel program [10].

We next describe a simple transformation of the given
graph G that allows one to restrict to very specific graphs
(although probably losing certain graph properties, such as
planarity). When we replace all shortest paths that only con-
sist of fixed cost arcs by direct arcs and possibly introduce
additional dummy arcs with zero or infinite cost, respectively,
we obtain a shortest path graph model as described by Bouh-
tou et al. [3]. After this transformation, we can assume that all
tariff arcs are pairwise disjoint, and there exists a direct arc
from the source node sk to the tail node of any tariff arc a and
a direct arc from the head node of any tariff arc a to any target
node tk . Moreover, there exists a fixed cost arc (sk , tk) for all
clients k = 1, . . . , n, and the fixed cost for that arc, which we
denote by uk , represents the cheapest possible (sk , tk)-path
(in the original graph) without using any of the tariff arcs.
In other words, uk represents the highest acceptable total per
unit price for client k.

The additional assumption in the problem considered in
this paper, to which we refer as the river tariff pricing prob-
lem (RTP), is the following: Independent of the tariffs, we
assume that any client routes her demand on a path that
includes at most one tariff arc. In Section 1.2, we discuss
practical applications for this model, motivated by problems

1 Note that we abuse standard notation from Graph Theory, since
m denotes the number of tariff arcs, and n denotes the number of
clients in the given digraph G = (N , A). This because the actual
number of nodes and arcs of G are of minor interest for the present
paper.

Figure 1. River tariff pricing problem (RTP) with n = 2 clients
and m = 3 tariff arcs.

in telecommunication networks. In the shortest path graph
model, this restriction is equivalent to the deletion of any
backward-arc that might exist between head nodes of tariff
arcs and tail nodes of other tariff arcs. Figure 1 illustrates the
shortest path graph model of an instance of the river tariff
pricing problem with three tariff arcs and two clients. The
tariff arcs ai , i ∈ {1, 2, 3}, are the dashed arcs in the net-
work. We may also assume without loss of generality that all
fixed cost arcs incident with the target nodes tk have zero cost,
because otherwise we can just add their costs to the fixed cost
arcs incident with source nodes sk . Therefore, let us denote
by cka the cost of the arc that connects customer k to tariff
arc a. The value uk − cka then represents client k’s highest
acceptable tariff for utilizing tariff arc a. It can as well be
interpreted as client k’s valuation for tariff arc a. Note that
the only difference to the general network pricing problem
described previously is the non-existence of backward arcs
in the shortest path graph model.

To summarize, the parameters that define an instance of a
river tariff pricing problem are the number of tariff arcs m, the
number of clients n, their demand values dk , k ∈ {1, . . . , n},
and the costs for fixed cost arcs. We have cka as the cost of the
fixed cost arcs that connect customers k to tariff arcs a, and
uk as the cost of arc (sk , tk), the highest acceptable cost for
client k. Due to the fact that any path taken by a client involves
exactly one fixed cost arc with non-zero cost, we may assume
without loss of generality that the costs cka of these fixed cost
arcs are integral. Moreover, due to the integrality of the costs
of the fixed cost arcs, it follows that any solution utilizing
non-integral tariffs can be straightforwardly improved. Note
that this might not be true for the general network pricing
problem, where a path chosen by a client can consist of more
than one tariff arc.

1.2. Applications

The present study of the river tariff pricing problem as
described above is motivated by practical interest from the

Naval Research Logistics DOI 10.1002/nav



Bouhtou et al.: Pricing Bridges to Cross a River 413

Figure 2. International interconnections market.

telecommunications industry; it was carried out within a joint
research project initiated by France Télécom and Maastricht
University.

An instance of the problem arises, for example, when
considering the international interconnections market, where
several operators offer telecom connections to a particu-
lar country. Focusing on the market for entering a particu-
lar country—France, in our example—France Télécom asks
what tariffs it should use for its proprietary connections into
the country such as to maximize revenue. There are several
other operators competing with France Télécom by offering
similar services. For a schematic illustration see Figure 2.
Here, the dashed lines depict the connections offered by the
operator (tariff arcs) and the solid lines depict the connections
offered by the competitors (fixed cost arcs). It is a common
practice that once the data of a client enter the local network
of the destination country these data will be transmitted to
the destination point without leaving and reentering the local
network. So, given the set of clients willing to transmit their
data to France and the prices of the competitors, the operator
would like to determine prices for the tariff arcs such as to
maximize her total revenue, therefore facing an instance of
the river tariff pricing problem.

Another telecom application for the problem at hand is
point-to-point markets, where an operator is offering band-
width capacity between two points A and B. Other operators
are active in this market as well. Their prices for bandwidth
capacity are known. Clients can choose between different
levels of Quality of Service (QoS) from each operator, and
clients have a preference for the QoS-levels. We can model
this problem as an instance of the river tariff pricing problem,
too. Figure 3 shows a small example with two customers, rep-
resented by two commodities (s1, t1) and (s2, t2). The operator
has three QoS levels, represented by the subnetwork between

the nodes qis and qit , where i ∈ {1, 2, 3}. In this example, cus-
tomer (s1, t1) is interested in two QoS levels, namely QoS1
and QoS2, whereas customer (s2, t2) is interested in QoS2
and QoS3. The preference of each customer k with regard to
each QoS level is determined by the cost of the edge from
the source sk to the node qis , i ∈ {1, 2, 3}, with smaller cost
indicating a higher preference for the QoS level. The prices of
other operators for the same QoS level is given by the cost on
the (fixed cost) arcs (qis , qit ), i ∈ {1, 2, 3}. The revenue for the
operator for each QoS level i, i ∈ {1, 2, 3}, is then determined
by setting appropriate tariffs on the tariff arcs (dashed arcs).

1.3. Related Work

A formulation of the general network pricing problem is
the bilinear bilevel program described by Labbé, Marcotte,
and Savard [10]. They show, among other things, that already
the problem with a single client is strongly NP-hard, given
that also non-negative tariffs are allowed. Roch, Marcotte,
and Savard [11] prove NP-hardness for the same problem
with non-negative tariffs, and propose a polynomial time
(1+1/2 ln m)-approximation algorithm for the problem with
a single client, where m is the number of tariff arcs. This result
implies also a O(n log m)-approximation for the case of mul-
tiple clients. In the present paper, we consider the problem
restricted to the case where each client utilizes at most one
tariff arc, and we consider the case of multiple clients.

In fact, the problem at hand can equivalently be interpreted
as a pricing problem for multiple products, where the tariff
arcs a ∈ T correspond to different products and each client
k is interested in buying dk units of one product. Since we
consider uncapacitated networks, products are available in
unlimited amount (e.g., bulk or digital goods). Whenever
there is an arc between a client k and a tariff arc a in the
river tariff pricing problem, the interpretation is that client k

is interested in buying product a. If she decides to buy prod-
uct a, she incurs a per-unit shipment cost of cka , in addition to
the per-unit cost of τ a for product a. The fixed cost uk of the
fixed cost arc (sk , tk) is simply interpreted as the maximum

Figure 3. Point-to-point markets.

Naval Research Logistics DOI 10.1002/nav
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total (per unit) price a client k is willing to pay to purchase
any of the products. In other words, uk −cka represents client
k’s valuation for product a.

After this discussion, we can exhibit a close relation of
the river tariff pricing problem considered in this paper to
other papers that address multi-product pricing problems.
Recently, two groups of researchers, independently of each
other, reported several results for such problems. Aggarwal
et al. [1], among other things, consider a multi-product pric-
ing problem where any client k has different budgets bka for
different products a, which are available in unlimited amount.
The operator must determine prices for the products in order
to maximize the total revenue, under the assumption that a
client buys (one unit of) the cheapest product among the prod-
ucts she can afford. Aggarwal et al. [1] prove APX-hardness
of this problem, together with a (1 + ln n)-approximation
algorithm. Note that, despite the obvious similarities, the
multi-product pricing problem is conceptually different from
the river tariff pricing problem considered in this paper. In
the river tariff pricing problem problem, clients choose the
product with minimum total per unit cost, also taking into
account the shipment costs cka , rather than the cheapest
product among all affordable products.

Guruswami et al. [8] consider a profit-maximizing envy-
free pricing problem. Clients have different valuations for
different products, and each product is available in limited
amount. The operator must determine prices for the products
and allocate the products to clients such that, again, total rev-
enue is maximized, and given the pricing, no client would
prefer to be assigned a different product. Here, the clients
measure their preferences in terms of the difference between
their valuation and the purchase price. If the price is higher
than the clients’ valuation, then the client does not purchase
the product. In fact, the profit-maximizing envy-free pricing
problem with unlimited supply of products is equivalent to
the river tariff pricing problem considered here. Guruswami
et al. [8] independently prove APX-hardness of the problem
and derive a (2 ln n)-approximation algorithm for the case of
unit demand of clients and with limited supply of products.

1.4. Our Results

In this paper, we derive several results concerning com-
plexity and approximability of the river tariff pricing prob-
lem. In Section 2.1, by a reduction from the Max-2-Sat-3
problem, we show that the river tariff pricing problem is APX-
hard, even if each client is connected to at most two tariff arcs.
Hence, the problem does not admit a polynomial time approx-
imation scheme, unless P = NP. This result coincides with
the APX-hardness result of Guruswami et al. [8], obtained
independently. The quality of uniform tariff pricing policies,
where all arcs are priced with the same tariff, is analyzed in
Section 2.2. The problem to find an optimal uniform tariff is

solvable in polynomial time by simple enumeration. We show
that uniform tariff pricing is an m-approximation, and this is
tight. Using a simple geometric argument, we also show that
uniform tariff pricing is a (1 + ln D)-approximation, which
is tight up to a constant factor. Here, D is the total demand
that is served by the operator in an optimal solution, which is
clearly upper bounded by the total demand. Hence, whenever
the clients have unit demand, our result yields a (1 + ln n)-
approximation. In Section 2.3, we empirically analyze and
discuss the quality of uniform tariff pricing policies using
instances of international interconnection markets provided
by France Télécom.

In Section 3, we consider another variant of the problem,
namely where the operator is not allowed to reject any client.
We refer to that variant as all-service river tariff pricing prob-
lem, or all-service RTP. Note that rejecting clients might
increase the total revenue, since some clients might exist that
can only be served at a low price, while others would be will-
ing to pay much more. We show, by a reduction from the
Independent Set problem, that the all-service RTP problem
does not allow approximation to within a factor O(m1−ε) or
O(n1/2−ε), unless P = NP. (Recall that m is the number of
tariff arcs and n is the number of clients.) On the positive side,
we can show that the problem admits an n-approximation.

2. RIVER TARIFF PRICING: COMPLEXITY
AND APPROXIMATION

We first discuss the computational complexity of the river
tariff pricing problem. Subsequently, we derive bounds on
the quality of uniform tariff pricing policies, where all tariffs
are required to be identical, and finally, we briefly discuss
these result on the basis of problem instances from France
Télécom.

2.1. Complexity

In a conference version of this paper [7], we proved that
the river tariff pricing problem is (strongly) NP-hard by a
reduction from 3-Satisfiability. Here we present a modifi-
cation of that reduction that yields a stronger result, namely
APX-hardness of the river tariff pricing problem. Thereby, we
can exclude the existence of a polynomial time approxima-
tion scheme, unless P = NP. Note that this result coincides
with the APX-hardness of the profit maximization problem
considered by Guruswami et al. [8]. Also note that Roch, Mar-
cotte, and Savard [11] show that the general network pricing
problem is strongly NP-hard, even when restricted to a sin-
gle client. Their reduction works for tariff pricing problems
where paths are allowed to use (and indeed, must use) several
tariff arcs. In a certain sense, the problem that we consider
here is “dual” to theirs, as we restrict to a single tariff arc, but
allow for more than one client.

Naval Research Logistics DOI 10.1002/nav
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THEOREM 1 (see also Guruswami et al. [8]): The river
tariff pricing problem is APX-hard, even when each client is
connected to at most two tariff arcs and if the costs of the
fixed cost arcs are restricted to be 0, 1, or 2.

PROOF: We use an approximation preserving reduction
from Max-2-Sat-3: Given a set of boolean variables X =
{x1, . . . , xn} and a collection C of clauses over X such that
each clause consists of at most two variables and each vari-
able occurs in at most 3 clauses, the question is to find a truth
assignment that satisfies the maximum number of clauses.
This problem is known to be APX-hard, see, e.g., [2].

For each variable xi , i ∈ {1, . . . , n} of the Max-2-Sat-3
instance, we construct a constant-size subnetwork as shown in
Figure 4. Each of these subnetworks has three clients with unit
demand. For each variable xi , let the origin–destination pairs
of these clients be denoted by {sij , tij }, j ∈ {1, 2, 3}. More-
over, each subnetwork has two tariff arcs, one denoted by ai

representing the truth assignment xi = 1 and one denoted by
āi representing xi = 0.

An upper bound on the cost of routing commodities 1 and
3 is given by fixed cost arcs (si1, ti1) and (si3, ti3), each with
cost 2. For commodity 2, the upper bound on the cost is given
by a fixed cost arc (si2, ti2), with cost 1.

Next, for each clause Ck , k ∈ {1, . . . , m}, we create a
clause-commodity k with origin destination pairs {sk , tk},
with unit demand. Whenever a variable xi (x̄i , respectively)
appears in clause Ck , we connect sk to si1 (si3, respectively),
and ti1 (ti3, respectively) to tk , using arcs of zero cost. In addi-
tion, we introduce a fixed cost arc (sk , tk) with cost 1, defining
an upper bound of 1 for the cost of routing clause-commodity
k. The so-defined instance of the river tariff pricing problem
has 2n tariff arcs, 3n + m commodities (or clients) and at
most 7m + 11n fixed cost arcs, hence, the transformation is
indeed polynomial.

We claim that an optimal solution of this instance of the
river tariff pricing problem yields a revenue of 4n+ r , where
r denotes the maximum number of satisfied clauses in the

Figure 4. Subnetwork for variable xi , i ∈ {1, . . . , n}.

Max-2-Sat-3 instance. Indeed, when given a truth assign-
ment specifying xi , we set the tariff of arc ai (āi) to 1 and the
tariff of arc āi (ai) to 2 if xi is true (if xi is false). By observing
that the maximal revenue for each subnetwork equals 4 and
that we obtain 1 for each clause-commodity corresponding
to a satisfied clause (by routing its demand via the tariff arc
with a tariff of 1), we find a solution with value 4n + r .

Conversely, we now argue that in an optimal solution each
subnetwork contains one tariff arc with tariff 1 and the other
tariff arc with tariff 2. Indeed, note that it does not make sense
to use any other values for the tariffs. Further, if both tariffs
equal 2, we can decrease one tariff to 1 without lowering the
revenue. Moreover, if in some subnetwork both tariffs equal
1, there is one tariff arc through which at most one clause com-
modity is routed (this follows from the fact that each variable
occurs at most three times in all clauses). When raising this
tariff from 1 to 2, we are compensated for this loss of at most
1 by the corresponding commodity in the subnetwork, which
brings an additional revenue of 1.

Thus, we conclude that the tariff arcs with value 1 define
a valid truth assignment, and the corresponding revenue is
at most 4n + r . Hence, an inapproximability gap for Max-
2-Sat-3 translates to an inapproximability gap for the river
tariff pricing problem. �

Observe that we have delineated a borderline between easy
and hard instances of the river tariff pricing problem, since if
each client is connected to at most one arc the problem is triv-
ial, while in the described reduction each client is connected
to at most two tariff arcs. Guruswami et al. [8] indepen-
dently presented another reduction from a restricted version
of the vertex cover problem, yielding exactly the same
conclusions.

2.2. The Quality of Uniform Tariff Pricing

The uniform tariff pricing problem (UTP) is the same as the
general tariff pricing problem, with the additional restriction
that all tariffs are required to be identical. An optimal uni-
form tariff can be found in time O(nm) by just enumerating
all tariffs of the form uk − cka , k = 1, . . . , n, a = 1, . . . , m.
Clearly, any uniform price other than that cannot be optimal,
since the tariffs could be increased by some positive amount
without losing any client.

We next analyze the loss that can be experienced by adopt-
ing such a uniform tariff pricing policy for the river tariff
pricing problem. Therefore, denote by �UTP the revenue
for an optimal uniform tariff pricing and by �RTP the rev-
enue for an optimal non-uniform tariff pricing. By definition,
�UTP ≤ �RTP.

LEMMA 1: If an optimal solution to the river tariff pricing
problem with revenue �RTP utilizes at most r different tariffs,

Naval Research Logistics DOI 10.1002/nav
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Figure 5. Staircase function f (x) with inscribed maximal
rectangle.

then �UTP ≥ �RTP/r , where �UTP is the optimal revenue for
the case with the uniform tariff restriction.

PROOF: Consider an optimal solution to the river tariff
pricing problem with non-uniform tariffs τ 1 ≤ · · · ≤ τm,
and let Di be the total demand on an arc ai with tariff τ i ,
i ∈ {1, . . . , m}. By D = ∑n

k=1 Dk we denote the total
demand served by the operator. Then the revenue created
by this solution is the area under the following “staircase”
function f : [0, D] → [0, ∞[, depicted in Figure 5.

f (x) = τ i for all x with
∑
j<i

Dj ≤ x

<
∑
j≤i

Dj , i ∈ {1, . . . , m}. (1)

Consider any of the rectangles inscribed under the graph
of function f (x), with area Ti := τ i ·∑j≥i Dj . Then it holds
that �UTP ≥ Ti for all i ∈ {1, . . . , m}, since the area of any
such rectangle is a lower bound for the revenue yielded by
the optimal uniform tariff �UTP. (Note that this does not hold
for the general network pricing problem.) Hence, if only r

different tariffs are utilized, we consider the r (inclusion-)
maximal rectangles under function f , say Ti1 , . . . , Tir , and
get r · �UTP ≥ ∑r

j=1 Tij ≥ �RTP. �

Since r ≤ m, Lemma 1 yields the following theorem.
Tightness of the result will be shown below, using Example 1.

THEOREM 2: Uniform tariff pricing is anm-approximation
for the river tariff pricing problem.

We next derive an another bound on the quality of uniform
tariff pricing policies, developing further the same geometric
argument.

THEOREM 3: Uniform tariff pricing is a (1 + ln D)-
approximation for the river tariff pricing problem, where

D ≤ ∑n
k=1 dk is the total demand that is served by the

operator in an optimal solution.

PROOF: Consider an optimal non-uniform tariff pricing
and recall the definition of the corresponding staircase func-
tion f in (1), as well as the inscribed rectangles, with areas
Ti = τ i · ∑

j≥i Dj . Let � be the index of the maximal area
rectangle among all Ti , with area T�. Let x� := ∑

j≥� Dj =
T�/τ �. Moreover, denote by τmax the maximal tariff utilized
in that optimal solution. We show

�UTP ≥ �RTP

1 + ln(Dτmax/T�)
. (2)

Then, the result follows from (2) because, by definition,
T� ≥ τmax. To prove (2), let

g(x) := T�

D − x
for x ∈ [0, D) . (3)

We claim that g(x) ≥ f (x) for x ∈ [0, D). To see this, take
any x with

∑
j<i Dj ≤ x <

∑
j≤i Dj , then f (x) = τ i by

definition. Furthermore, the following holds

g(x) = T�

D − x
≥ T�

D − ∑
j<i Dj

= T�∑
j≥i Dj

= T�

Ti/τ i

≥ τ i = f (x),

where the first inequality follows by choice of x, and the last
follows because � is the index of the largest rectangle.

Hence, the area under the function g(x), 0 ≤ x ≤ D, is a
valid upper bound for the area under the staircase function,
which equals �RTP, see Figure 6. To compute the area under
the function g(x), 0 ≤ x ≤ D, we partition it into three
parts, namely the rectangle T� itself, the area under g(x) on
the domain x ∈ [0, D − x�], and the area to the right of g(x)

Figure 6. Illustration for the proof of Theorem 3.

Naval Research Logistics DOI 10.1002/nav
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for g(x) ∈ [τ �, τmax]. The latter is the integral of the function
D−g−1(τ ) = T�/τ on the domain [τ �, τmax]. We thus obtain
the following.

�RTP ≤ T� +
∫ D−x�

0

T�

D − x
dx +

∫ τ max

τ �

T�

τ
dτ

= T�[1 + ln D + ln τmax − ln τ � − ln x�]
= T� [1 + ln(Dτmax/T�)] .

Then, (2) follows from the above because T� ≤ �UTP. �

In the case of unit demands of the clients, that is, if dk = 1
for all clients k = 1, . . . , n, we obtain the following.

COROLLARY 1: Whenever clients have unit demands,
uniform tariff pricing is a (1 + ln n)-approximation for the
river tariff pricing problem.

Finally, let us show tightness of the bounds in Theorems 2
and 3.

EXAMPLE 1: Givenn = m clients andm tariff arcs. Every
client is operating her own subnetwork with one tariff arc,
thus, the entire network consists of m disjoint subnetworks
and each of them contains one client and one tariff arc. Fix
b > 1 and let the demand of client k in subnetwork k be
given by dk = bk − bk−1, k ∈ {1, . . . , m}. This way, the total
demand equals bm − 1. Moreover, the maximal revenue for
subnetwork k is limited by a fixed cost arc (sk , tk), with cost
uk = b2m−k . Hence, the maximal tariff τmax equals b2m−1.
See Figure 7 for an example with n = m = 4. �

In the optimal solution, the tariff for each subnetwork k

is set to its maximal value, b2m−k . Each subnetwork there-
fore contributes a revenue of b2m − b2m−1, and �RTP =
m(b2m − b2m−1). The optimal uniform pricing consists in
setting the tariff on all tariff arcs to bm. This way, every unit
of demand creates a profit of bm, yielding a total revenue
of b2m − bm. Other uniform tariffs would be values b2m−k ,

k ∈ {1, . . . , m−1}. This yields a total revenue of b2m−b2m−k ,
which is less. Therefore, we obtain

�UTP/�RTP = b2m − bm

m(b2m − b2m−1)

≤ b2m

m(b2m − b2m−1)
= 1

m
· b

b − 1
.

Now, observe that in the optimal solution m different tariffs
are utilized. Lemma 1 (Theorem 2, respectively) suggests
that uniform pricing provides an m-approximation. Exam-
ple 1 proves that this is the best possible, since b can be
chosen arbitrarily large.

Moreover, Theorem 3 suggests that uniform pricing is a
(1 + ln D)-approximation. In Example 1, we have D =
(bm − 1) and thus (1 + ln D) = 1 + ln(bm − 1) ≤ 1 +m ln b.
Hence, Theorem 3 yields that uniform pricing is a O(m)-
approximation on this example. The same Example 1 shows
that O(m) is indeed best possible. The above discussion leads
to the following result:

THEOREM 4: For uniform tariff pricing, the performance
bound of Theorem 2 is the best possible, and the performance
bound of Theorem 3 is the best possible up to a constant factor.

2.3. Discussion

Note that claim (2) in the proof of Theorem 3 confirms the
following intuition: If the staircase function f (x) approxi-
mates the straight line x �→ (τmax/D) ·x, geometric intuition
suggests that uniform tariff pricing yields a 2-approximation,
since the size of the largest rectangle inscribed under f (x)

would be of exactly half of the area under f (x). In that case,
T� approximately equals Dτmax/4, and our analysis indeed
yields an approximation ratio of (1 + ln 4) ≈ 2.4 for uni-
form tariff pricing, the additional 0.4 being caused by the
difference between the functions g(x) and f (x).

Note also that the worst case example, Example 1, cru-
cially hinges on a staircase function f (x) that approximates
a hyperbola; in particular it requires exponential prices. Thus,
it can be conjectured that the empirical performance of uni-
form tariff pricing policies on practical instances, where the

Figure 7. The analysis of uniform pricing is tight.
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Figure 8. Uniform pricing on France Télécom instances.

price range is subexponential, outperforms the theoretical
bounds we have found. Our experiments, using data from the
France Télécom interconnections market, are summarized in
Figure 8 and they corroborate this conjecture.

The table on the left in Figure 8 shows data for six instances
that represent telecommunication networks for the interna-
tional interconnections market, as described in Section 1.2.
We compare the optimal solution values for uniform tar-
iffs �UTP and non-uniform tariffs �RTP. The optimal non-
uniform solution is calculated using the model and mixed
integer programming formulation described by Bouhtou
et al. [3]. The value of �UTP is calculated using the same
formulation, requiring that all tariffs be equal. We do not com-
pare the actual computation times here, but are only interested
in effectiveness of the optimal uniform pricing. The table
gives a brief description of each network, stating the number
of nodes |N |, arcs |A|, tariff arcs m, and clients n. The opti-
mal non-uniform and uniform solution values are displayed in
the columns �RTP and �UTP. The final column is the approx-
imation ratio. The graph on the right in Figure 8 shows the
staircase function f (x) for the optimal non-uniform solution,
as well as the best uniform solution, for instance RTN4.

3. ALL-SERVICE RIVER TARIFF PRICING

In this section, we consider the following variation of the
river tariff pricing problem. The operator must set tariffs in
order to capture the demand of all clients; that is, tariffs must
be such that no client k is forced to use the arc (sk , tk). We refer
to this problem as the all-service river tariff pricing problem.

It follows from trivial examples that the maximal revenue
for the all-service problem can be an arbitrary factor away
from the maximal revenue without the all-service constraint.
Hence, we have an arbitrarily high “cost of regulation”, where
the regulation consists of the fact that we force the operator to
serve all clients. Note that in case uk < cka for some clients
k and tariff arcs a, the operator might even be forced to use
negative tariffs, up to the extreme case where the optimal
revenue becomes negative. In such a situation, the notion of
approximation algorithms is senseless. Hence, with respect to

approximability, we consider the special case where uk ≥ cka

for all clients k and tariff arcs a. We show that even for
this restriction, the maximal revenue for the all-service river
tariff pricing problem cannot be approximated within any
reasonable bound.

THEOREM 5: For any ε > 0, the existence of a polyno-
mial time approximation algorithm for the all-service river
tariff pricing problem with n clients and m tariff arcs with
worst case ratio O(m1−ε) or O(n1/2−ε) implies P = NP.

PROOF: We use an approximation preserving reduction
from Independent Set [6] to the all-service problem. The
Independent Set problem asks for finding in a graph G =
(V , E) a maximum cardinality subset V ′ ⊆ V such that no
two vertices in V ′ are connected by an edge. The trans-
formation works as follows. For every vertex v ∈ V we
introduce a client with origin–destination pair {sv , tv} and
demand dv = |E|, and a corresponding tariff arc av . We con-
nect the source sv to the tail of the tariff arc av and the head of
av to the destination tv , using zero cost fixed cost arcs. More-
over, there is a fixed cost arc (sv , tv) with cost (|V |+1) for all
vertices v ∈ V . For every edge e ∈ E we introduce a client
with origin–destination pair {se, te} and unit demand. The
upper bound on the cost of routing this demand is given by
the fixed cost arc (se, te) with cost 1. For all edges e ∈ E and
all vertices v ∈ V with v ∈ e, we furthermore introduce fixed
cost arcs (se, tail(av)) and (head(av), te), with zero cost. This
transformation results in an instance of the all-service prob-
lem with |V | tariff arcs, and |V | + |E| clients. Figure 9 gives
an example of such a transformation for a graph G = (V , E)

with 3 nodes and 2 edges.
We claim that G has an independent set of cardinality at

least k if and only if there exists a tariff policy for the all-
service problem with a total revenue of |V ||E|(k + 1) + |E|.

First, assume that G has an independent set V ′ of cardinal-
ity k. For all v ∈ V ′, set the tariff on the corresponding tariff
arc av to |V | + 1 and all other tariffs to 1. By the definition
of an independent set, for any edge e = (v, u) ∈ E at least
one of the vertices, v or u, is not in V ′. Therefore, the tariff
of at least one of the tariff arcs, av or au, is 1. All clients
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Figure 9. Reduction of Independent Set to the all-service pricing problem.

corresponding to an edge e can thus be served, using one of
the tariff arcs av or au. The clients (sv , tv) corresponding to
the vertices v ∈ V are also served, since the upper bound of
|V | + 1 is not exceeded with the so-defined tariffs. Hence,
all demands are served. The revenue consists of |E| from all
clients corresponding to the edges E of G, |E|(|V | + 1)k

from the clients corresponding to the independent set V ′ and
|E|(|V | − k) from the clients corresponding to V \ V ′. That
yields a total revenue of |E||V |(k + 1) + |E|.

Conversely, assume that there exists a set of tariffs that cap-
tures all demands, such that the revenue is |E||V |(k+1)+|E|.
We will show that this implies that the graph G has an inde-
pendent set of cardinality at least k. Since all demands are cap-
tured at this tariff pricing policy, for any edge e = (v, u) ∈ E,
the tariff on at least one of the arcs, av or au, is 1. Consider the
set of vertices V ′ := {v ∈ V : tav

> 1}. By definition, no pair
of nodes v, u ∈ V ′ is connected by an edge. Hence, V ′ is an
independent set in G. Let k′ := |V ′|. The revenue is equal to
|E|+|E|(|V |−k′)+|E|(|V |+1)k′ = |E||V |(k′ +1)+|E|,
which by assumption is at least as large as |E||V |(k+1)+|E|.
This implies that k′ ≥ k and thus that V ′ is an independent
set in G of cardinality k′ ≥ k.

Now, let us assume that we have an α-approximation
algorithm A for the all-service problem, with α ≥ 1. Con-
sider any instance G = (V , E) of Independent Set and
the all-service problem resulting from the above reduction.
We can assume that both the optimal solution and the solu-
tion produced by A only utilize tariff values 1 or |V | + 1,
because any tariff greater than 1 and not equal to |V | + 1
can be turned into |V | + 1 with a revenue gain. So �RTP =
|E||V |(k+1)+|E| for some k, and�A = |E||V |(k′+1)+|E|
for some k′. The first part of the proof yields that the max-
imal independent set of G has size k, and algorithm A
can be used to find an independent set of size at least k′.
Moreover,

1

α
≤ |E||V |(k′ + 1) + |E|

|E||V |(k + 1) + |E| = 1 + 1
|V | + k′

1 + 1
|V | + k

≤ 2 + k′

1 + k
;

hence, k′ ≥ (k+1)/α−2. In other words, we have an O(α)–
approximation algorithm for the Independent Set problem.

It follows from Zuckerman [13], who recently improved a
previous result from Håstad [9], that the Independent Set
problem cannot have a polynomial time approximation algo-
rithm with worst case guarantee |V |1−ε for any ε > 0, unless
P = NP. Since the number of tariff arcs m in our transfor-
mation equals |V |, the first claim of the theorem follows.
Since the number of clients n in our transformation equals
|V | + |E| ∈ O(|V |2), the second claim follows. �

Note that this inapproximability result shows that, for the
all-service RTP, we cannot even expect a performance guar-
antee logarithmic in the total demand D, like the one we
obtained before. On the positive side, however, we can show
the following.

THEOREM 6: There exists an n-approximation algorithm
for the all-service river tariff pricing problem.

PROOF: In an optimal solution, at least one client con-
tributes to the total revenue at least �RTP/n, and this contri-
bution is achieved by utilizing a specific tariff arc at a certain
tariff. The proof now works by enumeration over all m·n
possibilities for a client using a specific arc. So assume that
a tariff arc b and a client k are fixed. We claim that we can
compute the maximum tariff τ b on arc b, together with tariffs
on all the other arcs, such that client k indeed utilizes arc b

and all other clients are served. Taking the maximum over all
m·n possibilities for a client using a specific arc, the revenue
of this solution is obviously at least �RTP/n.

The computation of this maximum tariff τ b on arc b,
together with tariffs on all the other arcs, such that client
k indeed utilized arc b and all other clients are served, can be
achieved by binary search over the possible tariffs τ on arc b.
Denote by cka the fixed cost for client k when utilizing arc a,
and recall that uk denotes the maximum total (per unit) cost
for client k. Given that client k utilizes arc b, the maximum
tariff on arc b is uk − ckb, which determines the interval for
the binary search. Given some tariff τ on arc b, in order to
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make sure that client k utilizes arc b, we just define the tariffs
on all other tariff arcs a as τ a = τ + ckb − cka . It is straight-
forward to verify whether this yields a feasible solution with
all clients served or not. �
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