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Abstract: We investigate closed-loop supply chains (CLSCs) under four reverse channel 

structures where a central planner, a manufacturer (M), a retailer (R) or a third party (T), 

respectively, serves as the collector of used product and demand depends on R's marketing 

effort. We derive supply chain profitability under both the centralized and decentralized 

CLSCs and furnish the optimal marketing effort, collection rate and pricing decisions for the 

supply chain members. We then extend the base models along two directions: the first 

extension incorporates R’s distributional fairness concerns into the M collection model and 

the second extension considers potential recycle cost advantages by R and T compared to the 

M collection model. 
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1 Introduction  

It has been a global trend to recycle end-of-use products and produce remanufactured 

goods so that manufacturers can reduce their environmental footprint and extract residual 

values in used products (Agrawal, Atasu, and Ittersum 2015). As the world’s largest 

manufacturer, China recorded a $2.9 trillion value added in manufacturing in 2014 (Levinson 

2017). To meet China’s major strategic development needs, its State Council outlined a 

“Made in China 2025” Program in May 2015 to promote its manufacturing industry. Different 

priorities such as improving manufacturing innovation, integrating information technology 

and industry, and enforcing green manufacturing have been identified to help transform China 

from a manufacturing giant into a real power. In April 2015, Chinese National Development 

and Reform Commission (NDRC) issued a Circular Economy Promotion Plan for 2015. The 

document details actions and targets to use resources more efficiently and to better manage 

resources and waste in industry, agriculture and municipalities1. 

Thanks to increasing environmental consciousness, sustainability concerns, and stringent 

recycling regulations in recent years, both businesses and academia have been paying more 

attention to managing closed-loop supply chains (CLSCs). Agrawal, Atasu, and Ittersum. 

(2015) employ behavioral experiments to study whether and how the presence of 

remanufactured products and the identity of the remanufacturer influence the perceived value 

of new products. Their results show that the presence of third-party remanufactured products 

has a positive effect on the perceived value of the new product. 

In practice, the collection rate reflects the collector’s effort in collecting used products, 

so this paper adopts the collection rate as an indicator of the collector’s effort. On the other 

hand, the retailer can increase the sales of products by boosting brand reputation and engaging 

in promotion and advertising campaigns. These activities signify the retailer’s marketing 

effort. It is understandable that demand depends on the marketing effort. 

This paper explores a closed-loop supply chain (CLSC) with a manufacturer (M), a 

retailer (R) and, possibly, a third-party (T), where the market demand is sensitive to the retail 

                                           
1http://chinawaterrisk.org/notices/chinas-circular-economy-plans-for-2015/ (Accessed on May 

18, 2016). 

http://chinawaterrisk.org/notices/chinas-circular-economy-plans-for-2015/
http://chinawaterrisk.org/notices/chinas-circular-economy-plans-for-2015/
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price and marketing effort. To make the presentation gender neutral, we shall denote M as 

him, R as her, and T as it. M decides his wholesale price, R chooses her marketing effort and 

retail price while the collection rate is determined by a central planner, M, R or T in four 

different models depending on who is responsible for collecting used products. Game 

theoretic models are established for a centralized CLSC (model I) and decentralized CLSCs 

under three structures, manufacturer (M) collection (model II), retail (R) collection (model 

III), and third-party (T) collection (model IV). Key research questions are: (1) What are the 

optimal pricing decisions, marketing effort and collection rate and profits under different 

structures? (2) How do the marketing effort coefficient in the demand function and the unit 

transfer price from M to the collector affect profits and channel strategies? (3) What is the 

best collection structure in terms of profitability, marketing effort level, and collection rate? 

(4) How do R’s fairness concerns affect the optimal marketing effort, collection rate, and 

supply chain performance?  

This paper follows Savaskan, Bhattacharya, and Van Wassenhove (2004) to consider 

four collection scenarios: a central planner, M, R or T collects used products. We characterize 

and compare equilibrium strategies of the four scenarios. In the centralized CLSC, the central 

planner decides the retail price, marketing effort and collection rate. In the decentralized 

CLSC, we formulate a Stackelberg game model, where M serves as the leader, setting his 

optimal wholesale price, R/T as the follower, determining her/its optimal decisions given his 

wholesale price. 

The rest of this paper is organized as follows. Section 2 reviews the relevant literature to 

put the research in context. The model settings and equilibria are presented in Section 3. 

Section 4 conducts comparative studies among the four model structures and examines how 

model parameters affect marketing and collection efforts as well as profitability. Section 5 

extends base models along two directions: the first extension incorporates R’s distributional 

fairness concerns into model II and the second extension considers potential recycle cost 

advantages by R and T compared to the M collection model. Concluding remarks are made in 

Section 6. 

2 Related Literature 
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Many researchers in supply chain management study CLSCs from different angles. 

Savaskan, Bhattacharya, and Van Wassenhove (2004) investigate four collection models 

where the collector can be a central planner, a manufacturer, a retailer, or a third party. This 

research expands their model by considering marketing effort dependent demand and the 

retailer’s fairness concerns as well as collection cost advantage by R and T. Savaskan and 

Van Wassenhove (2006) examine the interaction between decisions in the forward and 

reverse logistics channels with competing retailers. Our paper differs by focusing on 

collection channel selection and optimal pricing decisions where demand depends on both 

retail price and marketing effort. 

2.1. Optimal pricing decisions in CLSCs 

The first stream of relevant research mainly focuses on remanufacturing problems. 

Ferrer and Swaminathan (2006) study new and remanufactured products in monopolistic and 

duopolistic scenarios. Atasu, Sarvary, and Van Wassenhove (2008) investigate 

remanufacturing as a marketing strategy. The second stream of studies aims to consider 

different pricing issues in CLSCs. For example, De Giovanni and Zaccour (2014) introduce a 

two-period CLSC game and compare the equilibrium strategies. Chuang, Wang, and Zhao 

(2014) establish CLSC models for a high-tech product characterized by a short lifecycle and 

volatile demand. De Giovanni (2014) examines a CLSC with a manufacturer and a retailer 

who invest in green advertising to build up goodwill dynamics. Yoo, Kim, and Park (2015) 

consider pricing and return policies under various supply contracts in a CLSC. Shi et al. (2015) 

explore the reverse collection channel selection problem under responsibility sharing in a 

CLSC. Giri and Sharma (2015) consider a closed-loop serial supply chain for a single and 

multiple manufacturing-remanufacturing cycles by using sequential and global optimizations. 

Abbey et al. (2015) empirically examine consumer perceptions of remanufactured consumer 

products in CLSCs. Ma et al. (2016) investigate interactions among a single manufacturer, a 

single retailer and two recyclers and focus on how cooperative strategies affect CLSC 

decision-making. Xiong, Zhao, and Zhou (2016) analyze the performance of 

manufacturer-remanufacturing and supplier-remanufacturing in a decentralized CLSC. 

Moreover, Yoo and Kim (2016) study the interaction between new and refurbished items in a 



5 

 

three-stage CLSC. Esmaeili, Allameh and Tajvidi (2016) investigate the short- and long-term 

behaviour of agents in implementing appropriate collection strategies in a two-stage CLSC. 

Saha, Sarmah and Moon (2016) study a reward-driven policy for acquiring used products 

earmarked for remanufacturing in a CLSC. Zheng et al. (2017) address the impact of forward 

channel competition and power structure on a dual-channel CLSC.  

Other related works can be found in Amin and Zhang (2012), Chen and Chang (2013), 

Jena and Sarmah (2014), Das and Dutta (2015), and Han et al. (2017).  

2.2 Optimal pricing decision with fairness concerns  

Most studies focus on distributional fairness concerns in the newsvendor problem or 

wholesale price contract (Cui, Raju, and Zhang 2007; Caliskan-Demirag, Chen, and Li 2010; 

Yang et al. 2013; Katok, Olsen, and Pavlov 2014; Du et al. 2014; Wu and Niederhoff 2014). 

More specifically, Cui, Raju, and Zhang (2007) investigate how fairness may affect channel 

coordination with linear demand. Then, Caliskan-Demirag, Chen, and Li (2010) provide an 

extension of Cui, Raju, and Zhang (2007) to explore supply chain coordination with nonlinear 

demand. Yang et al. (2013) extend Cui, Raju, and Zhang (2007) to study the cooperative 

advertising problem. Katok, Olsen, and Pavlov (2014) examine the performance of wholesale 

pricing when the supply chain members’ fairness concerns are private information. Du et al. 

(2014) study the newsvendor problem for a dyadic supply chain in which both the supplier 

and the retailer have status-seeking preference with fairness concerns. Wu and Niederhoff 

(2014) investigate the impact of fairness concerns on supply chain performance in a two-party 

newsvendor setting. Some other papers are concerned with peer-induced fairness (Ho and Su, 

2009; Nie and Du, 2016). For instance, Ho and Su (2009) consider peer-induced fairness in 

games. Nie and Du (2016) explore the impact of distributional and peer-induced fairness on 

decision-making of a two-stage supply chain with one supplier and two retailers.  

Our paper differs from the above literature in two aspects: 

(i) Most of the aforesaid studies only consider customer return rate of used products. This 

research investigates the case that the retailer’s marketing effort enhances market demand, 

and studies the joint effect of marketing effort and return rate on the profitability of the 
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retailer, the manufacturer and the CLSC. We also examine an extension of incorporating 

collection cost advantage by R and T compared to the M collection model.  

(ii) Existing papers on fairness concerns have analyzed pricing decision and contract 

coordination issues in classical forward supply chains. In this research, we introduce 

distributional fairness into the CLSC model and explore its impact on the optimal 

collection and marketing decisions as well as supply chain performance.  

Next, we will address our model assumptions and the four CLSC models. 

3 Model Settings and Equilibrium Analysis 

We consider a demand function depending on the retail price and marketing effort:  

                          ( , )D p e a kp e= − +                           (1) 

where a measures the market size, k is the price elasticity of demand, e is her marketing effort, 

p is the retail price. The total marketing effort cost is ηe2/2, where η is the marketing cost 

coefficient (Mukhopadhyay, Su, and Ghose 2009; Wu, 2013). The parameter γ measures the 

impact of marketing effort on demand. The market demand can be fulfilled in the selling 

period.  

τ is introduced as a decision variable to gauge the used-product collection rate that 

reflects the collection effort and signifies the reverse channel performance. The total 

collection cost is given by C(τ)=CLτ
2+AτD(p,e), where CL is a scale parameter (Savaskan, 

Bhattacharya, and Van Wassenhove 2004; Chuang, Wang, and Zhao 2014).  

For the sake of clarity, the following notations are listed in Table 1 and are used to 

formulate our CLSC models. 

 

Table 1. The Notations in the CLSC Models 

Parameter   

cm 

cr 

 

∆=cm-cr 

A 

 

 

 

c 

C(τ) 

ηe2/2 

b 

The unit cost of manufacturing a new product 

The remanufacturing cost, and without loss of generality, it is assumed that 

cm>cr 

The unit cost savings from remanufacturing 

A variable unit cost of collecting and handling one unit of the used product. 

The fixed payment per unit is less than the savings generated from 

remanufacturing, i.e., A<∆ (See Savaskan, Bhattacharya, and Van Wassenhove 

2004) 

The average unit production cost, c=(1-τ)cm+τcr=cm-∆τ 

Total collection cost 

The cost of marketing effort, where η is the marketing cost coefficient
 

The unit transfer price from the manufacturer to the collector for each 
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μ 

α0 

Decision 

variables 

p 

w 

 

 

e  

Superscript/

Subscripts 

( )i* 

Πi  

 

( )i** 

collected used product (See Savaskan et al., 2004) 

The retailer’s equitable payoff parameter 

The retailer’s disadvantageous inequality parameter 

 

 

The retail price of the product 

The wholesale price of the product, p≥w 

The collection rate, i.e., the ratio of products remanufactured from collected 

used products 

The marketing effort level 

 

 

Optimal values for different models (i=I,II,III,IV,V) 

Profit for the supply chain (i=SC), the retailer (i=R), the manufacturer (i=M), 

and the third-party (i=3P) 

Optimal values for different models (i=III, IV) in section 5.2 

 

We will consider the following four cases depending on who collects used products. 

Firstly, we will investigate the centralized CLSC case where a central planner is responsible 

for collection (model I) and, then, study the case that M collects used products (model II); 

next, we consider R as the collector (model III); lastly, T is modeled as the collector (model 

IV). 

3.1 The Centralized System (model I) 

In the centralized CLSC model, a central planner determines the retail price, marketing 

and collection efforts. This ideal case is examined here to furnish a benchmark for the other 

three more realistic decentralized models. The profit of the centralized CLSC can be 

expressed as follows: 

( )( ) ( )2 2

2
SC m La kp e p c C A a kp e e


     = − + − +  − − − + −        (2) 

After taking the first-order derivative of ΠSC with respect to p, e and τ, we have  

( )Δ      SC
mk p c e k p a A k

p
=0  − + − + − + +


=


               (3) 

( )     0 C
m

S γ Δτ p c
e

A e  


= − −


+ =−                       (4) 

( ) ( )2 0SC
Leγ kp a Δ C τ A eγ kp a


− + − − −


= +


=


             (5) 

For notational convenience, let 22 , , .mF k G a kc J A = − = − =  −  
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Lemma 1. If 0F   and 
2 22 0LC F k J−  , the profit function SC is strictly concave 

in p , e  and  . 

Proof. See Appendix. 

Combining Eqs. (3)-(5) yields Proposition 1. 

Proposition 1. The solutions of the first-order conditions for the centralized case are 

derived as follows: 

2 2

*

2

I

L

JkηG

C F k J


−
= ,

2 2

* 2

2 L

I LγC G

C F k J
e

−
= ,

2 2

* 2

2

L

L

I ηkC G

C F k J
D

−
= , 

2 2
*

2

2 2

2 2 2 2

2

L mI L m L

L

A aηk AΔaηk Δ aηk ηkC c γ C c
p

aηC

C F k J

− + − + −
=

− +
,

2
*

2 22

L

L

I

SC

ηC G

C F k J−
 = . 

To ensure that all equilibrium values are meaningful, we give following 

assumption 1.   

Assumption 1. The scale parameter CL given in the collection cost function is large 

enough that τI* < 1. More specifically,    

2 2

2
L

JkηG+k J
C

F


 . 

This assumption follows the same line of thinking in Savaskan, Bhattacharya, and Van 

Wassenhove (2004). As the numerator of τI* in Proposition 1 is nonnegative given the 

basic model setting in Table 1, considering the assumption 2 22 0LC F k J−   in 

Lemma 1, it is guaranteed that 0 < τI* < 1. 

 

3.2 The manufacturer collects used products (model II) 

In model II, R determines the marketing effort and retail price, and M collects used 

products from the market. In this case, her profit is expressed as follows: 

2( )( e)
2

R p w a kp e


 = − − + −                        (6) 

After taking the first-order derivative of R  with respect to p  and e , we can derive 

that: 

( ) 0R γe kp p
p

a w k− + −= −


=


                             (7) 

( ) 0R w e
e

p  −


−


= =


                                 (8) 
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The Hessian matrix of R  is: 

2 2

2

2 2

2

2
( , )

R R

R R

kp p e
H p e

e p e



 

    
 

−     = =    −     
 
   

 

Since 
2

2
2 0R k

p

 
= − 


, if 

2( , ) 2 0H p e k F = − =  , then the Hessian matrix of 

R  is negative definite. From Eqs. (7) and (8), we derive that 

( )*( , )II
γ kw

F
w

a
e 

− +
=                      (9) 

*
2

( , )II ηkw γ w
p

aη
w

+

F


−
=                  (10) 

His decision problem is to select w and τ to maximize his profit. 

( )

( ) ( )

2

,

2

( )( )

( ). .

M m L
w

m L

Max w c a kp e C A a kp

ηk a kw ηk

e

w c C A
a kw

F F


    

  

 = − +  − + − − − +

= − + −
−


−

−

           (11) 

After taking the first-order derivative of M  with respect to w  and  , we obtain 

( )2
0M mηk Akτ Δkτ kw kc a

w F


= =



− − + +
                      (12) 

( ) ( )
0L

M
Δηk kw a Aηk kw a

2
F

C τ
F

− + −
=

+
−


−


=               (13) 

The Hessian matrix of M  is: 

2 2 2

2

2 2 2

2

2

( )

2

,

2

M M

M M
L

Jk

w w F
H w

Jk
C

w

F

F

ηk 






 

      
−   

     = =
      

− −   
    

−

. 

As 
2 2

2

2
0M k

w F

  −
= 


, if 

2
2 2

2
( , ) [4 ] 0L

k
H w C F k J

F


 = −  , the Hessian matrix of 

M is negative definite. Combining Eqs. (12) and (13) results in   

*

2 24 L

II ηkGJ

C F k J


−
=                            (14) 

( )

( )2 2

2

*
2

4

2

L m

L

II
J aaηk C kc F

C F k J
w

k
= −

− +

−
                  (15) 
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 Substituting Eqs. (14) and (15) into Eqs. (9) and (10), we obtain the optimal marketing 

effort (eII*) and optimal retail price (pII*). Then, we substitute eII*, pII*, τII* and wII* into Eqs. (6) 

and (11) and derive the optimal profits of R and M. The following proposition summarizes 

the equilibrium result.  

Proposition 2. Under the M collection case, his optimal wholesale price (wII*) and 

used-product collection rate (II*), her optimal retail price (pII*) and marketing effort (eII*), the 

optimal demand (DII*), and the individual and supply chain profits are derived as follows 

( )

( )2 2

2

*

4

2 2

II L m

L

C kc aηk

C F k J

a J
w

k

F



+ −
=

−
, *

2 24 L

II ηkJG

C F k J


−
= ,         

( ) ( )
( )2

2

24

2 2 3
II*

2 2 2

L m L

L

aηk kC c γ ηk C γ ηk

C F k
p

J k

J a

−

−
−

+ −
=

+
,

2 2

2

4

L

L

II* GC γ

C F k J
e

−
= ,

2 2

* 2

4

I L

L

I ηkC G

C F k J
D

−
= ,

2
*

2 24

L

L

II

M

ηC

C F

G

k J
=

−
 ,

( )
*

2 24

2 2

L

2

I

L

I

R

2ηC G F

C F k J−
 = , 

( )

( )

2 2

2

* * *

2

2

6

4

II II II

SC M R

L L

2

L

C F k J ηC

C F

G

k J





−

−
 = + = . 

3.3 The Retailer Collects Used Products (model III) 

  In model III, R is responsible for both marketing effort and collection of used products. Her 

decision problem is   

( )2 2

, ,
( )( ) ( )

2
R L

p e
Max p w a kp e b a kp e e C A a kp e




      = − − + + − + − − − − + ,   (16) 

 By taking the first-order derivative of Eq. (16) with respect to p , e  and  , we 

derive  

( )   0     R γe kp a p w
p

k b k A k 


= − − − +


− =+                      (17) 

( )   0 R p w b e A
e

   − + − −


= =


                         (18) 

( ) ( ) 0L
R b eγ kp a 2C τ A eγ kp a


− + −


− −= +


=


                   (19) 

The Hessian matrix of R  is 
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( )

( )

( ) ( )

2 2 2

2

2 2 2

2

2 2 2

2

2

( , , )

2

R R R

R R R

L

R R R

p p e p
k b A k

H p e b A
e p e e

b A k b A C

p e




   




  

      
 
      − − − 

        
= = − −   

       
− − − −        

 
      

 

 Since 
2

2
2 0R k

p

 
= − 


, 

2 2

2

2 2 2

2

( , , )

R R

R R

p p e
H p e F

e p e



   

  
= =
   

  

. For 2 ( , , ) 0H p e    to 

hold, we need 0F  .  

( )

2 2 2

2

2 2 2
22

3 2

2 2 2

2

( , , ) 2

R R R

R R R
L

R R R

p p e p

H p e C F k b A
e p e e

p e



 


  

     

    

     
= = − + −
    

     

    

. For 3 ( , , ) 0H p e    

to hold, we need ( )
222 0LC F k b A− + −  . Under this condition, ( ), ,H p e   is negative 

definite. Combining Eqs. (17)-(19), we derive that  

( ) ( )

( )
22

*( )
2

III

L

b A k a kw

C k b
w

AF




 −−

− −
=                   (20) 

( )

( )
22

* )
2

(
L

L

III
2γC a kw

w
C

e
F k b A

−

− −
=                     (21) 

( ) ( )
( )

2

2

2

2

2
( )

2

L

L

III*
aηk C ηb kw γ w+aηA

k A
p w

C bF 

+
=

−

− −

−

−
              (22) 

Then, M’s decision problem can be stated as 

( )( ) ( )M m
w

Max w c a kp e b a kp e    = − +  − + − − +          (23) 

After substituting Eqs. (20)-(22) into Eq. (23), M’s problem becomes  

( )( ) ( )
( )

( )

2 2 2

2

2 2

2

2
2

2 4 2

2

m

L L

M

L

L
w

Δ b A b kη kw a
w c ηkC a kw

A ηk Abηk b η

k b

k ηkC γ C

C
M

AF
ax



 − − − + 
− + − 

− + − + 

− −
 =      (24) 

After taking the first-order derivative of Eq. (24) with respect to w , we obtain  
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( )( )
( ) ( )( )

( ) ( )( ) ( )( )

3

2
22

2 2 2 2

2
{ 2 2

2 4 8 2 2 2 2 }

2

2 0

L
m m

L

m L L m L

M ηkC
A b c w A bc wΔ ηk

C k

η A a AΔa c w C

F A b

ab b Δ k C aη γ c w k aγ C

w 
− − − − +

+ − + − + − − + −

−

+ − +

−


=



=



 ,                            

( )( )

( )( )

22 2

2
22

2

4 2

2

L L

L

M
ηk C C F J

F b

b A k

kAw C







− −

=
−

−


−
.    

Under the assumption ( ) 22 0LC F J b A k − −   in Lemma 1, we have 
2

2
0

 




M

w
. 

Thus, the objective function in Eq. (24) is concave in w. Thus, M’s first-order condition 

characterizes the unique best response, 

( )( )
2 3 3 2 3 2 2

2

* 1

2
{ 2m m m

L

III A ηk c Abηk c b ηk c A aη
F J

w
2 C k η b A

k
k

− + +
− + −

=  

2 2 2 2 2 2 22 2 4 2 4 2 }L m L m L LAΔaηk Δabηk ab ηk ηk C c γ kC c aηkC aγ C− + − − + − + .      (25) 

Substituting Eq. (25) into Eqs. (20)-(22), we obtain the optimal collection rate (τIII*), 

optimal marketing effort (eIII*) and optimal retail price (pIII*). Then, we substitute τIII*, eIII* and 

pIII* into Eqs. (16) and (23) and derive the optimal profits of R and M. The following 

proposition 3 summarizes the optimal solutions in R collection model.  

Proposition 3. Under the R collection case, M’s optimal wholesale price (wIII*), R’s 

optimal retail price (pIII*), marketing effort (eIII*), used-product collection rate (III*), the 

optimal demand (DIII*) and individual and supply chain profits are as follows 

( )( )
2 3 3 2 3 2 2

2

* 1

2
{ 2m m m

L

III A ηk c Abηk c b ηk c A aη
F J

w
2 C k η b A

k
k

− + +
− + −

=  

2 2 2 2 2 2 22 2 4 2 4 2 }L m L m L LAΔaηk Δabηk ab ηk ηk C c γ kC c aηkC aγ C− + − − + − + , 

( )( )

2 2 2 2 2 2 2

2

*
23

2

L m L m L L

L

III A aηk AΔaηk Aabηk Δabηk ηk C c γ kC c aηkC a

F J b AC
p

γ C

k k η

− − + −

− +

+ +
=

−

−
, 

( )2

*

2

LII

L

I GC γ

C JF k b A
e


=

− −
, 

( )

( )2

1
.

2 2

III*

L

G b A k

k JC AF b

η



=

− −

−
,    

( )
*

22

L

L

III GηkC

C F k J A
D

b
=

− −
,

( )

2

2

* 1

22

L

L

III

M

G ηC

C F k J b A
 =

− −
,

( )( )
( )( )

22 2

2
2

*
2

24

L L
III

R

L

ηC G C F k η

k J

b

C AF b

A



− −

− −
 = ,

( )( )( )

( )( )
*

2

2

*

2

2

*
6 2 3

24

L LIII II

L

I III

SC M R

G ηC C F

C F

k b A A b

k J b A





− −
 = +

 − +

− −
 = . 
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Observation 1. Because M’s profit increases in b, the optimal transfer price b should be set at 

b =   under the R collection case.  

Proof. See Appendix. 

Savaskan et al. (2004) derive the same result when the demand function assumes a 

simpler form of D=φ-βp. Thus, this observation confirms that our generalized demand 

function does not affect the value of the optimal transfer price (b) when R serves as the 

collector. 

3.4 The Third-party (T) Collection Model (model IV) 

In reality, many OEM manufacturers prefer to outsource the collection of used products 

to independent third parties to exploit their specialization in the recycling process (Savaskan, 

Bhattacharya, and Van Wassenhove 2004). In this model, we assume that M is the 

Stackelberg leader whereas R and T are the followers. The decision sequence is as follows. M 

first determines his wholesale price ( w ), T decides its collection rate ( ), and R chooses her 

retail price ( p ) and marketing effort ( e ). Next, we use backward induction to solve the 

aforesaid problem. For a given w, the two followers’ problems are given by  

2

,
( )( )

2
R

p e
Max p w a kp e e


 = − − + −                         (26) 

( )2

3 ( )P LMax b a kp e C A a kp e


     = − + − − − +        (27) 

Similar to model II, R  is strictly jointly concave in p and e. Based on the R’s reaction 

functions in Eqs. (9) and (10), we have 

( )*( , )IV
γ kw

F
w

a
e 

− +
=                        (28) 

2

( , )IV* ηkw γ w
p

aη
w

+

F


−
=                       (29) 

Substituting Eqs. (28) and (29) into Eq. (27), T’s problem is converted to  

( ) ( )
3

2
     

LP
F

M
b A k w a

x C τa
k






− − +
−=               (30) 

   Taking the first- and second-order derivatives of 3P  with respect to  , we have 

( ) ( )3 2 L
P

b A ηk kw a
C

F




− − +
−


=


, 

2

3

2
2 0P

LC


−
 

= 


. Thus, T’s optimal response 

function is 
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( )( )*( )
2

IV

L

ηk kw a b A

FC
w

− + −
=                     (31) 

For a given p , e  and  , M’s problem is given by 

( ( ))( )M m
w

Max w c b a kp e  = − +  − − +                  (32) 

By substituting Eqs. (28)-(29) and (31) into Eq. (32), the above problem becomes  

( )( )( )
( )

1

2
m

L

M
w

ηk kw

Ma

a b A Δ b
w c ηk kw a

FC
x

F

 − + − + − 
− + − + 

− 
 =             (33) 

 Solving the first-order condition of Eq. (33) yields the following equation that the 

optimal wholesale price must satisfy 

( )

2 2 2 2 2 2 2 2

2 2

*

2 2 2 2

2 2

4 2

IV L m L m L L

L L

AΔaηk Aabηk Δabηk ab ηk ηk C c γ kC c aηkC aγ C

k AΔηk Abηk Δbηk b ηk ηkC γ C
w

− − + + − + −

− − + + −
=   (34)                                    

Substituting Eq. (34) into (28)-(29) and (31), then, into Eqs. (26), (27) and (33), we 

derive the following result. 

Proposition 4. Under the T collection case, M’s optimal wholesale price (wIV*), R’s 

retail price (pIV*) and marketing effort (eIV*), T’s used-product collection rate (IV*), the 

optimal demand (DIV*) and individual and supply chain profits are as follows 

( ) ( )( )

( )( )( )

2 2 2

*

2

22

2 2
IV L m m

L

C ηk c γ kc aηk aγ ak η b A b

k C F k η b A b
w

− + − − −  −

− −  −
= , 

( ) ( )( )

( )( )( )

2 2 2 2

2

*
3

2

IV L m m

L

aC ηk c γ kc aηk aγ k η b A b

k C F k η b A b
p

− + − − − 
=

−

− −  −
, 

( )( )
*

22

L

L

IV GC γ

C F k A
e

η b b− −  −
= ,

( )

( )( )( )
*

22 2

IV

L

G b A ηk

C F k η b A b


− −
=

 −

−
, 

( )( )
*

22

L

L

IVD
GηkC

C F k η b A b− −  −
= ,

( )( )( )

2 2

2
2

*

2

1

2

LIV

L

R

G ηC F

C F k η b A b− −  −
 = ,

 

( )

( )( )( )

2 2 2 2

2
2

3

2

1

4

IV*

L

P

LC b A G η k

C F k η b A b−


−

−  −
= ,

( )( )( )

2

2

*

2 2

IV

M
L

L

C ηG

C F k η b A b
=

−


−  −
, 

( )( )
( )( )( )

2 2 2

2
2

*

2 2 4 2

2

3

4

L L

L

IV

SC

C ηG C F k η A AΔ Ab Δb b

C F k η b A b

6 + − − +

− −

+

 −
 = . 
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Now, we make the following observation regarding the optimal b value in the T 

collection model. 

Observation 2. M’s profit function is maximized at 
2

b
A

=
+ 

. 

Proof. See Appendix. 

Savaskan et al. (2004) establish the optimal transfer price (b) as a function of Δ and the 

variable unit collection cost with their simplified demand function under the T collection 

model. Observation 2 furnishes a parallel optimal transfer price under our marketing- 

-effort-dependent demand function. 

4 Comparative Analysis 

4.1 Comparisons of the Four Closed-loop Supply Chain Models 

We shall carry out comparative analyses of the optimal collection rate and marketing 

effort as well as supply chain performance under the four different CLSC models.  

Proposition 5. The optimal product return rates are related as * * * *IV II III I      . 

Proof. See Appendix. 

Proposition 5 confirms an interesting finding in Savaskan, Bhattacharya, and Van 

Wassenhove (2004) under our generalized demand function: The closer the collector is to the 

market, the more efficient the collection rate is. More specifically, Proposition 5 indicates that 

the collection effort level under model I is always the best compared to the other three 

decentralized cases. This result is natural as all decisions are fully coordinated in this 

centralized case. For the three decentralized cases, the collection effort level under R 

collection (model III) is the best, followed by M collection and, lastly, T collection. In the T 

collection model, the only way that T can influence market demand to enhance its 

profitability is to invest in the collection rate. On the other hand, in the M collection model, M 

can not only decide on the collection rate directly, but also strategically set his wholesale 

price with a second-degree impact on the collection rate. As such, the M collection model 

realizes a higher collection rate than the T collection model. Along the same line, in the R 

collection model, R has more tools at her disposal to enhance market demand and her 

profitability: setting the retail price and investing in the collection and marketing efforts 

conditional upon M’s wholesale price decision. With the second-degree impact on the 

collection rate by her retail price and marketing effort decisions, the R collection channel is 

able to achieve higher collection efficiency than the M collection model.  
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Proposition 6. The optimal marketing efforts are related as * * * *IV II III Ie e e e   . 

Proof. See Appendix. 

Proposition 6 establishes a definite relationship for the optimal marketing effort among 

the centralized (model I), M collection (model II), R collection (model III) and T collection 

(model IV) cases. It is natural for model I to outperform the three decentralized cases as it is 

the fully coordinated scenario. The reason that the marketing investment in model III 

outperforms model II is due to the fact that R directly benefits from her marketing effort in 

enhancing demand when R is responsible for collecting used products in model III, but this 

benefit is only secondary when M makes collection effort decision in model II. In the T 

collection case, the optimal marketing effort level is less than the other three cases due to the 

fact that both M and T will share the increased sales and profits arising from the R’s 

marketing efforts while only M claims part of the increased sales and profits in model II & III. 

As such, R is least enthusiastic in exerting marketing efforts under model IV.  

Next, we compare the optimal individual and supply chain profits for different models. 

Proposition 7. If b=Δ in model III and b=(A+Δ)/2 in model IV, we have  

(1) The optimal profits of the supply chain in the four models are related as 

* * * *IV II III I

SC SC SC SC    ;  

(2) For the three decentralized cases, M’s profits are related as * * *IV II III

M M M   ; 

(3) For the three decentralized cases, R’s profits are related as * * *IV II III

R R R   . 

Proof. See Appendix. 

Proposition 7 indicates that the channel profit achieves the best level when the system is 

fully coordinated (model I). For the three decentralized cases, both individual and channel 

profits attain the highest when R is the collector (model III), followed by the case when M 

serves as the collector (model II), and lastly the lowest individual and channel profits are 

achieved when T is responsible for collection (model IV). This result resonates the conclusion 

on optimal marketing effort in Proposition 6. A higher marketing effort leads to higher market 

demand, thereby enhancing profitability. As the optimal marketing effort reaches the highest 

level in model III, followed by model II and IV in the three decentralized cases, it is 

understandable that both individual and channel profits follow suit.  
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4.2 Impact of Model Parameters on Effort Decisions and Profits 

Next, we will study the impact of the demand coefficient γ and the unit transfer price (b) 

on the collection and marketing efforts, and profits of the CLSC.  

4.2.1 Impact of the Demand Coefficient γ 

Recall that the demand coefficient γ measures how sensitive market demand responds to 

the marketing effort. The higher the γ, the more sensitive the demand.  

Proposition 8. In model I, II, III and IV, the optimal collection rate, the optimal marketing 

effort, and the channel profit of the CLSC increase in γ.  

Proof. See Appendix. 

Proposition 8 demonstrates that the optimal collection rate, marketing effort level, and 

channel profit all increase when the market demand becomes more sensitive to marketing 

effort for all of the four CLSC cases. This result is sensible: when market demand is more 

responsive, the central planner (the centralized case) or R (the three decentralized cases) is 

incentivized to exert more marketing effort. The spillover effect will induce the collector to 

make a better collection rate, thereby enhancing channel profitability. 

4.2.2 Effect of the Transfer Price b 

Now, we examine the impact of the unit transfer price (b) on the collection rate and 

marketing effort, as well as the profits of the CLSC. Since b is the unit transfer price from M 

to R/T when R/T is the collector of used products, it is irrelevant when the central 

planner/manufacturer is responsible for collection. Therefore, the discussion below is 

confined to models III and IV only. Given that the meanings of b and ,  it is sensible to 

have 0 b    in the following discussions. 

Proposition 9. (1) In model III, the collection rate, marketing effort, individual and channel 

profits increase in b. 

(2) In model IV, the collection rate increases in b; 

(3) In model IV, the marketing effort and M’s profit increase in b if 0 ( ) / 2b A  +  , and 

decrease in b if ( ) / 2A b+      . 

Proof. See Appendix. 

Recall that b is the unit transfer price from M to the collector due to the savings from 

remanufacturing. Proposition 9 (1) shows that the collection rate and marketing effort, as well 

as individual and channel profits increase in b when R is the collector as long as M controls 

the unit transfer price to within his optimal level  b =  (See Observation 1). This result is 
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natural as R directly benefits from a higher transfer price, which apparently motivates her to 

exert more collection and marketing efforts, thereby enhancing her profitability. The spillover 

effect of R’s collection and marketing effort decisions is eventually translated into a higher 

profit for M and the whole supply chain. 

In model IV, T is responsible for collecting used products, it is sensible that the 

collection rate increases when M transfers more savings to T (a larger b). For the meaningful 

model parameter range ( 0 b   ), R’s marketing effort and M’s profit first increase in b 

when it is small and, then, decrease in b when it is sufficiently large. Recall that T’s collection 

rate always increases in b. When this transfer price increases within a reasonable range 

( 0 ( ) / 2b A  +  ), R has the motivation to exert more marketing effort and M actually 

attains a higher profit as a result of the heightened collection rate and marketing effort. 

However, when the transfer price increases beyond the threshold (A+Δ)/2, the imbalanced 

transfer dampens R’s motive for marketing the product and eventually hurts M’s profit.  

4.2.3 Effect of the Marketing Effort Cost Coefficient (η) 

Now, we will study the impact of the marketing effort cost coefficient (η) on the 

collection rate and marketing effort, and profits of the CLSC.  

Proposition 10. In model I, II, III and IV, the optimal collection rate, marketing effort, and 

individual and channel profits of the CLSC decrease in η. 

Loosely speaking, this proposition is the converse of Proposition 8 and it shows the other 

side of the coin. As η is the quadratic cost coefficient, the marketing cost increases faster at a 

higher η. This curbs the central planner (model I) or R (the other three decentralized cases) 

from investing in marketing effort, resulting in a lower collection rate and driving down 

individual and channel profitability. 

Proof. See Appendix. 

5 Extensions 

In this section, we shall consider two extensions for the base model. The first 

extension entertains the idea that R is concerned with distributional fairness. Model II 

is taken as an example for this extension where M collects used products with R 

having distributional fairness concerns. It trivial to extend the same fairness concerns 

to the other two models, III and IV.  

5.1 The Manufacturer Collects Used Products with the Retailer Concerning 

Fairness (Model V) 
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5.1.1 Model Description 

In this case, R will maximize a utility function (see Eq. (35) below) that accounts for 

both her profit and her fairness concerns when R makes her price and marketing effort 

decisions (Cui, Raju, and Zhang 2007; Caliskan-Demirag, Chen, and Li 2010; Yang et al. 

2013; Katok, Olsen, and Pavlov 2014; Nie and Du 2016). 

Now, we analyze the case where R cares about profit distributional fairness as reflected 

in the disadvantageous inequality (i.e., 0M R −  ). In general, her utility function can be 

expressed as  

0( , ) ( )R R M RU p w   +=  −  −                  (35) 

where 
2( , ) ( )( e) ,

2
R p e p w a kp e


 = − − + − α0 is her disadvantageous inequality parameter 

( 00 1  ). μ>0 is her equitable payoff parameter and captures her fairness concerns with 

the expected profit distribution scheme between herself and M and is exogenous to our model.  

We can rewrite R’s objective function as follows: 

( )

( )

2 2

0
,

2

2

2

max ( , ) ( )( e) { [( )( )
2

] [( )( e) ]}
2

. . [( )( )

] [( )( e) ] 0
2

R m L
p e

m L

U p e p w a kp e w c a kp e C

A a kp e p w a kp e

s t w c a kp e C

A a kp e p w a kp e


     


  

   


  

= − − + − − − +  − + −

− − + − − − + −

− +  − + −

− − + − − − + − 

(36) 

The profit of the manufacturer is:   

( )2

,
( )( )M m L

w
Max w c a kp e C A a kp e


     = − +  − + − − − + .           (37) 

The following Proposition summarizes both parties’ optimal solutions. 

Proposition 11. If there exists the R’s disadvantageous inequality aversion, i.e., 

( ) ( ) ( )( )2 2

0 0 0 0 0 0 0 01 ( (14 1 ) 2 1 3) 1L Lα C α μα α ηk+ J α μα αC αF Fμ −+ + + + ++ + , 

then the optimal used product collection rate (τV*), wholesale price (wV*), demand (DV*), 

marketing effort (eV*), retail price (pV*), the R’s profit ( *V

R ), and M’s profit ( *V

M ) are given 

by 

( )

( )
0*

2 2

0 0 0

1

(1 )4 1

V

L

α JGηk
=

C α μα αF ηk J


+

+ + − +
, 

( )( )( )

( )( )( )

2 2

0 0*

2 2

0 0

2 4

4 4

1

1

L m L mV

L L

aηk J C c α kμC α c
w

k k ηJ C α

F a k F

F μ FC α

+
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− +

− −+

−
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Proof. This proof is similar to that of Proposition 2 and is thus omitted here. 

Now, we investigate the impact of her disadvantageous inequality parameter α0 on the 

optimal marketing effort, collection rate as well as individual and channel profits. Then, we 

derive the following proposition.  

Proposition 12. (1) The optimal collection rate, marketing effort, and the M’s profit all 

decrease in α0; 

(2) If 2 24 3 0LC k ηF J−  , then the R’s profit increases in α0. 

Proof. See Appendix. 

Note that α0 measures how sensitive R is concerned with the fairness of profit 

distributions. In the presence of her disadvantageous inequality ( 0M R −  ), a higher α0 

corresponds to a more sensitive retailer. It is natural that R will make less marketing effort 

when R feels more strongly about the unfair distribution of profit between M and herself. This 

will drive down market demand and lead to a lower collection rate and profit for M.  

For R, as long as 2 24 3 0LC k ηF J−  , which is a slightly stronger condition than that in 

Lemma 1, her profit will always increase in α0. This is quite understandable as her fairness 

concerns will force M to give up some profit to appease R.  

5.1.2 Numerical Studies  

Next, numerical studies are carried out to investigate the impact of R’s disadvantageous 

inequality parameter α0 on the marketing effort, collection rate as well as individual and 

channel profits. 

To examine the effect of α0 on the optimal marketing effort and the supply chain profits, 

we allow α0 to vary in the range of [0, 0.25]. By assuming a=360, A=10, CL=300, η=4, k=5, 

Δ=15, μ=0.8, γ=2 and cm=20, Figs. 1-3 validate Proposition 12. More specifically, Fig. 1 

visually depicts a declining marketing effort level when parameter α0 increases. Fig. 2 shows a 

similar declining trend for M’s collection rate when α0 increases. Fig. 3, on the other hand, 



21 

 

displays how individual and channel profits change with α0. With R’s concerns with 

distributional fairness, R’s profit increases, but M’s profit drops when α0 increases. This trend 

helps to close in the gap of R’s disadvantageous inequality when R feels more strongly about 

the distributional fairness. It is worth noting that the system profit suffers slightly in this 

numerical experiment due to R’s non-economic fairness concerns. 

  

 

Figure 1. The effect of parameter α0 on the 

optimal marketing effort 

 

 

Figure 2. The effect of parameter α0 on the 

optimal collection rate 

 

Figure 3. The effect of parameter α0 on individual and channel profits in Model V 

 

Next, we shall consider another extension to examine the impact of different collection 

efficiencies when M, R, or T serves as the collector of used products.    

0 0.05 0.1 0.15 0.2 0.25
7.6

7.61

7.62

7.63

7.64

7.65

7.66

7.67

7.68

7.69

Retailer's disadvantageous inequality parameter (
0
)

M
ar

k
et

in
g

 e
ff

o
rt

 l
ev

el
 (

e)

 

 

Model V

Model II

0 0.05 0.1 0.15 0.2 0.25
0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

Retailer's disadvantageous inequality parameter (
0
)

T
h

e 
co

ll
ec

ti
o

n
 r

at
e 

(
)

 

 

Model V

Model II

0 0.05 0.1 0.15 0.2 0.25
1000

1500

2000

2500

3000

3500

Retailer's disadvantageous inequality parameter (
0
)

P
ro

fi
ts

 

 

Retailer's profits

Manufacturer's profits

Supply chain's profits



22 

 

5.2 Three Decentralized Collection Models with Heterogeneous Collection Costs 

In this extension, we investigate the case when M, R, and T with different recycle costs, 

respectively, serve as the collector, where M as the collector is taken as the benchmark with a 

variable collection cost parameter A. As R is closer to the consumer and T tends to be more 

professional in collecting used products, a parameter 0≤λ≤1 is introduced to gauge potential 

cost advantages with a variable collection cost of A  if R or T serves as the collector.  

5.2.1 R Collection Model with λA as the Variable Collection Cost Parameter 

We can derive the relevant equilibrium values as follows: 
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After taking the first-order derivative of III**

M  with respect to b, we derive that  
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Because the manufacturer’s profit increases in b, the optimal transfer price b should be 

set at b=Δ under the R collection case, which is identical to Observation 1.   

5.2.2 T Collection Model with λA as the Variable Collection Cost Parameter  

Similarly, we derive the equilibrium values for this extension model as follows: 
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After taking the first-order derivative of IV**

M with respect to b, we derive that  
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Solving the equation 
** 0IV

M b  =  results in 
1 1

2 2
Aλb = +  . This result is consistent 

with Observation 2 with A being replaced with A .  

After substituting 
1 1

2 2
Aλb = +   into IV**

SC , we can derive that  
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SC  with respect to λ, we can derive that  
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This result shows that the supply chain’s profit decrease in λ.  

5.2.3 Impact of λ on the Supply Chain Profitability for the Three Decentralized Models     

Now, by setting a=360, A=10, CL=300, η=4, k=5, Δ=15, γ=2, and cm=2, we examine the 

impact of λ on the supply chain profitability. If there does not exist any cost advantage for R 

or T to collect used products, i.e., λ = 1, Fig. 4 confirms the conclusion in Proposition 7(1), 

* * *IV II III

SC SC SC   . On the other hand, when the cost advantage of R and T collection models 

increases (i.e., when λ decreases), the supply chain profitability for the R collection model 

(model III) and T collection model (model IV) increases. When λ is sufficiently small (λ is 

less than about 0.8 as shown in Figure 4), the supply chain profitability for the T collection 
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model (model IV) surpasses that for the M collection model (model II). Fig. 4 also 

demonstrates that, in terms of supply chain profitability enhancement, the R collection model 

(model III) is more sensitive to the cost advantage parameter λ than the T collection model 

(model IV).  

 
Figure 4. Comparison among the Models II, III and IV 

 

6 Conclusions 

CLSC studies have received increasing attention in recent years. We address the optimal 

pricing strategies in CLSCs where market demand is influenced by R's marketing effort. In 

the centralized case, a central planner is responsible for all decisions. In the three 

decentralized cases where M, R and T are, respectively, modeled as the collector. In terms of 

decisions, M sets a wholesale price, R takes care of the marketing effort and retail price, and 

the collector determines the collection rate. Game theoretic models are established to 

characterize the interactions among the supply chain members. In the decentralized cases 

where M is not the collector, M is modeled as the Stackelberg leader and R and T are treated 

as followers.  

We derive the optimal pricing strategies for the CLSC members under different 

collection structures. We then compare the collection rate and marketing effort (Propositions 

5 and 6) in the four models, and find that the centralized model achieves the highest collection 

and marketing efforts, followed by R collection and, then, M collection, and lastly T 

collection model. We also compare the channel profits in the four models (I, II, III, IV) as 

well as the profits of R and M in the decentralized cases (models II, III and IV).  

We next examine the influence of the demand coefficient (γ) on optimal decisions and 
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well as individual and channel profits all increase when market demand becomes more 

sensitive to the marketing effort (a higher γ) (Proposition 8). Our further study on the impact 

of the unit transfer price b reveals that the collection rate, marketing effort, and individual and 

channel profits all increase in b when R serves as the collector (Proposition 9(1)). When T 

serves as the collector in model IV, its collection rate always increases in b. The marketing 

effort and M’s profit increase in the unit transfer price b when it is within a reasonable range, 

but decrease in b when it is excessive.  

Subsequently, we extend model II to consider a fairness-concerned R. On the one hand, 

the optimal collection rate, marketing effort, and M’s profit decrease in R’s disadvantageous 

inequality parameter α0. On the other hand, R’s profit increases in α0 under certain conditions, 

helping to close in the gap between the two supply chain members’ profits when R is a 

stronger proponent of fair distributions (a larger α0). We also extend the base models to 

accommodate potential collection cost advantages by R and T compared to the M collection 

model. We find that: (1) The supply chain always attains the highest profit under the R 

collection model and the T collection model achieves a higher profit than the M collection 

model when the collection cost advantage is large enough (or a small enough λ); (2) In terms 

of supply chain profitability enhancement, the R collection model (model III) is more 

sensitive to the cost advantage parameter λ than the T collection model (model IV). 

One worthy future research opportunity is to consider cost sharing of marketing effort 

and collection rate between M and R/T. As illustrated in the numerical studies, R’s fairness 

concerns lead to a channel efficiency loss. So, another possible direction is to examine the 

contract design issue in coordinating the CLSC with a fairness-concerned R. 
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Appendix A. Proofs in Sections 3, 4 and 5 

Proof of Lemma 1. The Hessian matrix of SC is 
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Proof of Observation 1. After taking the first-order derivative of *III

M  with respect to b , 

we can derive that   
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M G η k C J

C F k J b Ab − −


=





.  

As *III

M  increases in b , the optimal transfer price b should be set at its upper bound  .■ 

Proof of Observation 2. Taking the first-order derivative of *IV

M  with respect to b , we 

have  

( )

( )( )( )

2 2 2

2
2

* 2

22

I

L

M L
V C k η G A Δ b

C F k η b Ab b

− −
= −

− −  −

+
. Solving the equation * 0IV

M b  = results in 

its root, i.e., 
1 1

2 2

* Ab +=  .■ 

Proof of Proposition 5. (1) We can show that:  

( )( )2 2 2

* *

2

2
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4 2

L

L

II I

L

C FηkJ

C F k J C F k J

G

 
 

−


− −
− = , i.e., * *II I  ;  

(2) If b=Δ, we can find that:  

( )
*
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2
0

2 2

III I

L

kηG

C F k J

J


  = − 

−
− , thus * *III I  ;  

(3) If b =  , we can prove that  

( )( )
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2
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2 22
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422 L L

III* II* k J ηkG

C F C F kk J J




 


=

−


−
− , i.e., * *III II  .  

(4) Now, we compare the values *IV  with *III  and *II  as follows, 

( )

( )( )( ) ( )( )( )

32

2
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IV III
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C F k η C F

k b A

b A b k A b A







−

− −  − −  − −
− . 

Thus, we have * *IV III  . 

  If b=(A+Δ)/2, we can prove that  

( )

*

2 2
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2 21
2

4

2
0

42

L
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IV I
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I - C FJηkG

C F k ηJ C F k J
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 
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− 

−

= . Thus, we have * *IV II  .  

After combining the above results, we complete the proof of Proposition 5.■ 

Proof of Proposition 6. In order to compare the optimal marketing effort level in model III 

with that in model I, we can find that  
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III I GC γ

C F
e e

k J

−
= 

−
−  if b=Δ, thus * *III Ie e ;  

Comparing the optimal marketing effort level in model III with that in model II, we have 

( )( )2 2
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* 0
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L

L L

III II* C γ

C

k
e

C F

J G

F kk J
e

J
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 
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−−
−  if b=Δ, thus * *III IIe e . 

Now, we compare the values *IVe  with *IIe  and find that:  

( )

2

2 2

*
2

2 2

0
1

422
4

L

L L

IV II* k ηGC γJ

C F k ηJ C F k

e e

J

=



− 
 

− − 
 

−  if b=(A+Δ)/2, thus we have 

* *IV IIe e .

 
After combining the above results, we complete the proof of Proposition 6.■ 

Proof of Proposition 7. We can prove that   
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If b =  , we have  
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   If b =  , we can prove that  
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If b =  , we have  
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Therefore, we have II* III*

M M   and * *II III

R R  . 
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If b=(A+Δ)/2, we have 
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 After combining the above results, we complete the proof of Proposition 7.■ 

Proof of Proposition 8. (1) Taking the first-order derivative of τ and e with respect to γ for 

models I, II, III and IV leads to  
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(ii) Taking the first derivative of *I

SC , *II

SC , *III

SC  and *IV

SC  with respect to γ results in 
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If b=Δ, we have  
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If b=(A+Δ)/2, we have  
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. Combining the above 

results proves Proposition 8.■ 

Proof of Proposition 9.  

(1) Recall that 0F  , A<Δ , b    and the optimal values of  , e , R  and M  in 

four models are positive. We can prove that 
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After taking the first-order derivative of 
*III

M  and 
*III

SC  with respect to b, we can 

derive that  
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 (2) We can confirm that 
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(3) Taking the first-order derivative of 
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M  with respect to b, we have  
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From Observation 2,   
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of Proposition 9.■ 

Proof of Proposition 10. Recall that 0F  , A<Δ , b    and the optimal values of  , e , 

R  and M  in four models are positve. Taking the first derivative of *I , *II , *III  and 

*IV  with respect to η, we can obtain that  
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 (2) Taking the first derivative of *Ie , *IIe , *IIIe  and *IVe , we can obtain that  
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If b=Δ, we have  
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Proposition 10.■ 

Proof of Proposition 12.  Recall that 0F  , A<Δ and the optimal values of  , e , R  

and M  in model V are positive. Taking the first derivative of *V , *Ve and *V

R  with 

respect to α0, we can derive: 
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Taking the first derivative of *V

M  with respect to α0, we can derive: 
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Combining the above results completes the proof of Proposition 12.■ 
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