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Abstract. We present a new methodology based on maturity randomization to price discretely monitored
arithmetic Asian options when the underlying asset evolves according to a generic Lévy process. Our
randomization technique considers the option expiry to be a random variable distributed according
to a geometric distribution of a parameter independent of the underlying process. This allows one to
transform the pricing backward procedure into a set of independent integral equations. Numerical
procedures for a fast and accurate solution of the pricing problem are provided.
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1. Introduction. This paper introduces a new numerical approach for pricing discretely
monitored arithmetic Asian options under Lévy processes. Asian options have become very
popular instruments for hedging transactions whose costs are related to the average price of
the underlying asset, being much cheaper than the corresponding options on the underlying
asset and less subject to price manipulations near settlement.

An extensive literature deals with the pricing problem under continuous monitoring, pro-
viding analytical solutions, such as in Geman and Yor [21]. A review can be found in Boyle
and Potapchik [7]. In the discrete monitoring case, where the arithmetic mean is updated
only at prefixed points in time, the pricing of Asian options is not an easy task, and even in
the Black–Scholes setting no analytical solution is available. Several approaches have been
proposed to tackle this problem: Monte Carlo simulations [34], partial integro-differential
equation approaches [36], lattices [15], and approximations of the distribution of the average
[27]. However, the recent literature on option pricing considers extensions of the Gaussian
framework in order to overcome the limits of the Black–Scholes setting, such as the volatility
smile in the implied volatility curve. In this sense a recent approach is represented by the Lévy
framework, a compromise between flexibility in modeling the smile and analytical tractability
(see [14] and [35]).

Recent contributions to Asian option pricing in the exponential Lévy setting are Albrecher
[2], Albrecher and Predota [3], Benhamou [6], Černý and Kyriakou [11], Fusai and Meucci
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[20], and Iseger and Oldenkamp [23]. Albrecher [2] and Albrecher and Predota [3] explore
approximations of the arithmetic option price based on the moments of the average, but in
general it is not clear which approximate distribution to choose, and the approximation error
is difficult to evaluate.

The fast Fourier transform (FFT) approach was introduced by Carverhill and Clewlow
[10] in the Black–Scholes framework. Their forward density convolution algorithm requires a
large discretization grid, resulting in slow convergence. Benhamou [6] extends the algorithm of
Clewlow and Carverhill to some non-lognormal density and improves the numerical efficiency
by recentering the density at each monitoring date, thus reducing the size of the grid. In
the Lévy setting, Fusai and Meucci [20] solve the valuation problem by recursive Gaussian
quadrature and derive a formula for the moments to check accuracy. Černý and Kyriakou [11]
introduce a fast and accurate algorithm, using a backward price convolution, and provide an
analytical upper bound for the pricing error due to truncations. Finally, Iseger and Oldenkamp
[23] propose an algorithm based on the Laplace inversion technique.

This paper extends the randomization technique introduced in Fusai, Abrahams, and
Sgarra [17] to Lévy processes and the pricing of Asian options. The implementation of other
path-dependent options such as barrier and lookback can be found in [18] and [19].

In the randomization technique we consider the option expiry to be a random variable
distributed according to a geometric distribution of the parameter q, independent of the un-
derlying process. This allows us to transform the usual backward procedure into a set of
independent integral equations parametrized by q. These integral equations in general do
not allow an analytical solution; thus a contribution of this paper is to devise an accurate
numerical solution based on a quadrature formula. Thereafter, the option price can be ob-
tained as a weighted sum of the solutions of N + 1 integral equations, with N the number
of monitoring dates. Therefore, this procedure appears to have a computational cost that is
linear in the number of monitoring dates, just as other numerical methods presented in the
literature. However, exploiting an accelerating technique for alternating sums, we can make
the computational cost nearly independent of the number of monitoring dates. Finally, given
that the integral equations can be solved independently, we can exploit distributed computing.

Extensive numerical experiments are conducted to compare our results with Monte Carlo
simulations and other pricing methods presented in the literature.

The paper is organized as follows: Section 2 models the underlying process. Section 3
summarizes the recursive algorithm, introduced in [10], for the valuation of arithmetic Asian
options. Sections 4 and 5 introduce the numerical procedure, and section 6 presents the
numerical results. Section 7 presents the conclusions.

2. The exponential Lévy model. The risk-neutral process for the stock price (St)t≥0 is
assumed to be described by

S(t) = S(0)exp ((r − d+ g) t+ L(t)) ,

where r is the continuously compounded interest rate, d is the dividend yield, Lt is a Lévy
process, and g is the so-called compensator chosen to ensure that the discounted price process
is a martingale. The Lévy process is fully identified by its characteristic exponent ψ (ω) =
logE

(
eiωL1

)
, where i =

√−1. Following [35], under the mean-correcting martingale measure,
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we set g = −ψ(−i). For a discussion on the choice of martingale measure in the setting of
exponential Lévy models, see [12] and [22].

We are interested in pricing arithmetic Asian options under a discrete monitoring rule;
that is, prices contributing to the arithmetic average are observed at equally spaced monitoring
dates t0 = 0, t1 = Δ, . . . , tn = nΔ, . . . , tN = NΔ = T . The log-return on a time interval of
length Δ is defined by

(2.1) Zn ≡ log
Sn
Sn−1

= (r − d+ g)Δ + Ln − Ln−1,

where Sn = S(nΔ) and the Lévy increments Ln−Ln−1 = L(nΔ)−L((n−1)Δ) are independent
and identically distributed. It follows that Zn has a characteristic function that does not
depend on the monitoring time index n,

φZ (ω) = e(ψ(ω)+iω(r−d+g))Δ,

and its density fZ can be obtained by numerical inversion of the characteristic function using
the FFT or the fractional FFT, as explained in [13].

3. Recursion for arithmetic Asian options. The starting point of our numerical approach
is based on a recursive formulation for the Asian option price. In [16], floating and fixed strike
Asian options, within the framework of exponential Lévy models, are proved to be related by
a symmetry result; moreover, a put-call parity result holds (see section 3.3). In section 3.1 we
present a general price recursion for Asian options, while in section 3.2 we introduce a density
recursion.

3.1. Price recursion. Under the unified framework of [36], the payoff of an arithmetic
Asian option depends on the following path-dependent random variable:

(3.1) IN ≡
N∑
n=0

λnSn,

where λn are deterministic. For example, the payoff of an Asian call option is given by

V (SN , IN ;N) ≡ (IN − cSN )
+ ,

where (·)+ is the positive part function.
By suitable choices of {λn}Nn=0 and c, we can describe a wide class of Asian options. In

particular, standard cases are

(3.2) λ0 =
γ

N + γ
− K

S0
; λn =

1

N + γ
, n = 1, . . . , N ; c = 0

for fixed strike call options and

(3.3) λ0 = − αγ

N + γ
; λn = − α

N + γ
, n = 1, . . . , N ; c = −1

for floating strike calls, where γ = 1 if S0 is included in the average and 0 otherwise, and α is
a coefficient of partiality for the floating strike case.
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For pricing purposes, we can combine (2.1) and (3.1) and observe that

(3.4) In+1 = In + λn+1Sne
Zn+1 , n = 0, . . . , N − 1.

Therefore, using (3.4) and the standard backward pricing procedure, we obtain the following
recursion for the option price:

V(SN , IN ;N) = (IN − cSN )
+,

V (Sn, In;n) = e−rΔ
∫ +∞

−∞
fZ (s)V (Sne

s, In+λn+1Sne
s;n+ 1) ds

for n = N − 1, . . . , 0.
Since the return distribution is independent of the current stock level and the payoff func-

tion is a homogeneous function of the spot price, then the price function itself is a homogeneous
function of degree one (see [24] for further details). Thus, we can write

V (Sn, In;n) = Sn V

(
1,
In
Sn

;n

)
.

If we set x = In/Sn, we can define

vn(x) ≡ V (1, x;n) ,

where we have omitted the dependence of x on n. The function v satisfies the recursion

vN (x) = (x− c)+ ,

vn(x) = e−rΔ
∫ +∞

−∞
fZ (s) esvn+1

(
xe−s + λn+1

)
ds, n = N − 1 . . . , 0.

Notice that if x = 0, then vn(0) = e−dΔvn+1(λn+1). Otherwise, by a change of variables in
the integration (y = xe−s + λn+1, i.e., log (x/ (y − λn+1)) = s), we obtain

(3.5) vn(x) =

⎧⎪⎨⎪⎩
e−rΔ

∫ +∞
λn+1

fZ

(
log
(

x
y−λn+1

))
x

(y−λn+1)
2 vn+1(y) dy if x > 0,

−e−rΔ ∫ λn+1

−∞ fZ

(
log
(

x
y−λn+1

))
x

(y−λn+1)
2 vn+1(y) dy if x < 0

for n = N − 1, . . . , 0. The desired option price will be S0v0(λ0) . Notice that if x ≥ 0, c ≤ 0,
and λn > 0 for n = 1, . . . , N, then

(3.6) vn (x) = e−r(N−n)Δ
[
x+

N−n−1∑
i=0

λN−ie(N−n−i)(r−d)Δ − ce(N−n)(r−d)Δ
]

for n = N, . . . , 0. See Appendix A.
Summing up, for a fixed strike call option, being λn = λ := 1/(N+γ) > 0, for n = 1, . . . , N ,

the recursion will be

vN (x) = (x)+ ,

vn(x) =

⎧⎪⎨⎪⎩
e−r(N−n)Δ

[
x+ λe(r−d)Δ 1−e(N−n)(r−d)Δ

1−e(r−d)Δ

]
if x ≥ 0,

−e−rΔ ∫ λ−∞ fZ

(
log
(

x
y−λ
))

x
(y−λ)2 vn+1(y) dy if x < 0

(3.7)

for n = N − 1, . . . , 0.
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For a floating strike call option, being λn = λ := −α/(N + γ) < 0, for n = 1, . . . , N , we
always have x < 0; thus the recursion can be written as

vN (x) = (x+ 1)+ ,

vn(x) = −e−rΔ
∫ λ

−∞
fZ

(
log

(
x

y − λ

))
x

(y − λ)2
vn+1(y) dy(3.8)

for n = N − 1, . . . , 0

3.2. Density recursion. We can also perform a recursion on the density, as in [20]. In
fact, if λn > 0 for n = 1, . . . , N , and c = 0, we can factorize expression (3.1) as follows:1

IN = S0
[
λ0 + eZ1

(
λ1 + eZ2

(· · · (λN−1 + λNe
ZN
)))]

.

Letting lN ≡ λNe
ZN and defining recursively the quantities

ln ≡ eZn
(
λn + ln+1

)
, n = N − 1, . . . , 1,

we obtain
IN = S0 (λ0 + l1) .

The density of l1 or, equivalently, the density of B1 ≡ log (l1) turns out to be the key variable
in pricing Asian options. Since Zn and ln+1 are independent, the density of Bn ≡ log (ln) =
Zn + log (λn + ln+1) is the convolution of the density fZ of Zn and that of log

(
λn + eBn+1

)
.

In particular, Bn is well defined, being λn > 0, for n = 1, . . . , N. With a change of variables,
we obtain that the density of Bn, which we denote with gn, satisfies the recursion

(3.9) gn (x) =

∫ +∞

−∞
fZ (x− log (λn + ey)) gn+1 (y) dy, n = N − 1, . . . , 1,

where the initial condition gN can be obtained by numerically inverting the characteristic
function φBN

(ω) ≡ φZ (ω) eiω log(λN ).
Once the density g1 has been computed, call option prices can be obtained by the following

additional numerical integration:

(3.10) e−rNΔ

∫ +∞

−∞
S0 (λ0 + ex)+ g1 (x) dx.

3.3. Put-call parity and symmetry for Asian options. In the previous section we showed
a recursion to price Asian call option (C) with arithmetic average and discrete monitoring
dates. The corresponding put price (P ) can be computed by the following put-call parity
condition: since

(IN − cSN )
+ − (cSN − IN )

+ = IN − cSN ,

it holds that

C(S0, I0; 0) − P (S0, I0; 0) = e−rNΔ
E0(IN − cSN )

= S0

(
N∑
n=0

e−rΔ(N−n)λn − c

)
.

1This factorization first appeared in Carverhill and Clewlow [10] and is due to an insight by Stewart Hodges.
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Given the price of a fixed strike call option, we can easily compute the price of the corre-
sponding put option using the put-call parity above. There exists also a symmetry relation-
ship between fixed and floating options. This symmetry is possible by exploiting a change of
numéraire and a time reversal of the Lévy process that does not affect the underlying Lévy
structure but only the Lévy triplet. This is discussed in [16]. The equivalent result is not
valid for in-progress Asian options.

3.4. Remarks.
Remark 1. If the density recursion is considered, the option Greeks for an Asian fixed call

option can be easily computed from (3.10):

Delta = e−rNΔ

∫ +∞

d1

(
γ

N + γ
+ ex

)
g1(x)dx, Gamma = e−rNΔ K2

S3
0e
d1
g1(d1),

with d1 = log(K/S0 − γ/(N + γ)) if K/S0 − γ/(N + γ) > 0, and

Delta = e−rNΔ

∫ +∞

−∞

(
γ

N + γ
+ ex

)
g1(x)dx, Gamma = 0

otherwise. We stress that if the price recursion is considered, these Greeks can be computed
only by finite difference.

Finally, an analytical formula for the moments of the arithmetic average is available:

(3.11) E0

{
IkN

}
≡ (S0)

k
k∑
j=0

(
k

j

)
λk−j0 E0

{
lj1

}
,

where

E0

{
ljn
}
= E0

{(
eZn (λn + ln+1)

)j}
= φZ (−ij)

j∑
q=0

(
j

q

)
λj−qn E0 {(ln+1)

q}

for n = N − 1, . . . , 1, and the recursion starts with E0

{
ljN

}
= λjNφZ (−ik) .

Remark 2. In order to avoid nonsmoothness of the initial condition vN (x), we observe that

vN−1 (x) = e−rΔ
∫ +∞

−∞
fZ (s) esvN

(
xe−s + λN

)
ds

= e−rΔ
∫ +∞

−∞
fZ(s) ((λN − c)es + x)+ ds.

In the fixed strike call option case, since λN > 0 and c = 0, we obtain

(3.12) vN−1 (x) =

⎧⎨⎩ λN C
pv
(
1,− x

λN
,Δ
)

if x < 0,

e−rΔ
[
x+ λNe

(r−d)Δ] if x ≥ 0,

where Cpv is the price of the plain vanilla call option with spot price 1, strike − x
λN

, and
maturity Δ. Otherwise, for floating strike call options, if λN + 1 > 0 and x < 0, we obtain

(3.13) vN−1 (x) = (1 + λN )C
pv

(
1,− x

1 + λN
,Δ

)
.
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The plain vanilla option prices can be computed by exploiting the Carr–Madan formula [9].
Thus recursions (3.7) and (3.8) can start at N − 2 with initial condition (3.12) and (3.13),
respectively.

Remark 3. Černý and Kyriakou [11] introduce a recursive pricing algorithm for the fixed
strike Asian call option, suggesting the recursion [11, Theorem 3.1]

qN−1 (x) =

∫ +∞

−∞
fZ(s)

(
ex+s + λ0

)+
ds,(3.14)

qn(x) =

∫ +∞

−∞
fZ(s) qn+1

(
log
(
ex+s + λN−n−1

))
ds

for n = N − 2, . . . , 0 and the fixed strike call option price turns out to be

e−rNΔS0 q0 (log (λN )) .

By a change of variables in the above integral, we obtain a recursion similar to (3.8):

qn(x) =

∫ +∞

log(λN−n−1)
fZ (log (ey − λN−n−1)− x)

ey

ey − λN−n−1
qn+1(y) dy

for n = N − 2, . . . , 0. The maturity randomization procedure that we will introduce in the
following section can be applied to this recursion as well, with comparable numerical results
in terms of accuracy and computational cost. Černý and Kyriakou introduce their recursion
considering the reverse filtration, because of the Markovian properties of the obtained pro-
cesses (see [11, Proposition 2.1]). In fact, the essential difference between the two approaches
is that Černý and Kyriakou, starting from a generalized version of the Caverhill–Clewlow–
Hodges factorization, introduce a new process which is Markov in the reverse filtration. Our
price recursion is based on a change of measure that makes the process In/Sn Markov in the
natural filtration.

4. The maturity randomization algorithm. In this section, we show how the above re-
cursions can be solved by exploiting the so-called z-transform when λn = λ for n = 1, . . . , N ;
i.e., they do not depend on n. In practice this is the standard situation previously considered
in the literature and in the market.

We start summarizing recursive equations (3.5) and (3.9) for an Asian call price into

h (x, k) =

∫
Ω
K (x, y) h (y, k − 1) dy, k = 1, . . . ,M,(4.1)

h (x, 0) = φ (x) .

For ease of exposition, we will consider only fixed and floating Asian options. The price
recursions (3.7) and (3.8) are equivalent to (4.1), if x < 0, by setting

h (x, k) = vN−k (x) ; K (x, y) = −e−rΔfZ
(
log

(
x

y − λ

))
x

(y − λ)2
;

φ (x) = (x− c)+ ; Ω = (−∞, λ) ; M = N.
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Notice that if recursion (3.7) is considered, the value of h(x, k), k = 1, . . . ,M, is known
analytically for x ≥ 0. See Remark 4 for further details.

In a similar way, for recursion (3.9), we set

h (x, k) = gN−k (x) ; K (x, y) = fZ(x− log (λ+ ey)) ;

φ (x) = fBN
(x) ; Ω = (−∞,+∞) ; M = N − 1.

In these expressions the density fBN
(x) is obtained by numerically inverting the characteristic

function of BN using, for example, the FFT algorithm.2

The z-transform is a standard technique for solving difference equations, and it also has
a nice probabilistic interpretation. The approach is very similar to the Laplace transform
technique initially adopted by Geman and Yor [21] to solve the pricing problem of Asian
options with continuous monitoring. There the maturity was randomized according to an
exponential distribution. Instead, here, since we are considering a discretely monitored option,
we deal with the z-transform that is equivalent to randomizing the option expiry according to
a geometric distribution.

The randomization technique consists in making the expiry date T be random according
to a geometric distribution of the parameter q and then defining

H (x, q) := (1− q)
+∞∑
k=0

qkh (x, k) .

If we multiply both sides of (4.1) by (1− q) qk and then sum over k, k≥ 1, interchanging
the order of integration and summation and finally adding (1 − q)φ(x) to both sides, we get
that the function H (x, q) satisfies the integral equation

(4.2) H (x, q) = q

∫
Ω
K (x, y)H (y, q) dy + (1− q)φ (x) .

Therefore a recursive integral equation for h (x, n) has been transformed into an integral
equation for H (x, q).

Remark 4. For fixed Asian options, if we consider the price recursion, the integral equation
becomes

H (x, q) = q

∫ 0

−∞
K (x, y)H (y, q) dy + (1− q)φ̃ (x) ,

with

(4.3) φ̃ (x) = φ (x) +
q

1− q

∫ λ

0
K (x, y)H (y, q) dy,

where, if y ≥ 0,

H (y, q) = (1− q)

(
y

1− qe−rΔ
+

e(r−d)Δ

(N + γ)(1− e(r−d)Δ)

(
1

1− qe−rΔ
− 1

1− qe−dΔ

))
.

2In our numerical experiments, we implemented the fractional FFT algorithm with 217 points.
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The unknown function h (x, n) can be obtained by derandomizing function H(x, q) ex-
ploiting the complex inversion integral

(4.4) h (x, n) =
1

2πρn

∫ 2π

0

H
(
x, ρeiu

)
1− ρeiu

e−inudu

for n = 0, 1, . . . . In particular, we approximate numerically (4.4) using (see [1])

(4.5) h̃ (x, n)=

H(x,ρ)
1−ρ +(−1)n H(x,−ρ)

1+ρ +2
∑n−1

j=1 (−1)j Re

(
H(x,ρeijπ/n)
1−ρeijπ/n

)
2nρn

,

where Re(·) denotes the real part function and ρ is set equal to 10−4/M (see section 5.3).
In conclusion, our procedure consists of the following steps:
1. solve (4.2) when q is equal to qj = ρeijπ/n, j = 0, . . . , n;

2. approximate the desired quantity h(x,M) by h̃(x,M) as in (4.5).

5. Implementation. This section aims to describe how the randomization algorithm can
be efficiently implemented. In particular, section 5.1 deals with the numerical solution of the
integral equation (4.2), while section 5.2 presents a fast way to compute h̃ (x,N) in (4.5).
Finally, section 5.3 deals with the approximation error.

5.1. The Reichel approach for integral equations. In order to solve the integral equation
(4.2), we have to

1. truncate the domain Ω to a finite one ΩT = (a, b), as discussed in section 5.3.2,
2. discretize the integral equation (4.2) by applying an appropriate quadrature formula;

see [4] and [32].
If the chosen quadrature rule provides nodes xi and weights wi, i = 1, . . . ,m, (4.2) is

approximated by

H (xi, q) = q
m∑
j=1

wjK (xi, xj)H (xj , q) + (1− q)φ (xi) , i = 1, . . . ,m,

and thus we obtain the linear system

(5.1) (Im − qKmDm)Hm = Φm,

where the following hold:
• Im is the identity matrix of size m;
• Km is the square matrix with elements Kij = K(xi, xj), i, j = 1, . . . ,m;
• Dm is the diagonal matrix containing the weights wi, i = 1, . . . ,m;
• Hm is the unknown solution vector, Hi = H(xi, q) , i = 1, . . . ,m;
• Φm is the right-hand side vector, Φi = (1− q)φ (xi) , i = 1, . . . ,m.

Gaussian elimination (GE) or iterative methods are standard procedures for the numerical
solution of (5.1). However, these algorithms are computationally demanding. For example, GE
has a cost proportional to 2m3/3, whereas a standard iterative method such as the generalized
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minimal residual (GMRes) method has a cost proportional tom2iter, where iter is the number
of iterations necessary for the method to converge. Therefore, in order to speed up the solution
of the above linear system, we consider an algorithm due to Reichel [33], who proposes a fast
solution method for the one-dimensional Fredholm integral equation (4.2) on ΩT = (a, b) for
any q ∈ C. The idea consists in discretizing the integral equation using a Nystrom quadrature
rule based on the m nodes

xj =
1

2

(
(b+ a) + (b− a) cos

(
π (j − 1)

m− 1

))
, j = 1, . . . ,m,

and the corresponding weights

wj =
π

m− 1
sin

(
π (j − 1)

m− 1

)
, j = 1, . . . ,m.

Therefore, we obtain a linear system of the form (5.1), but as proved in [33], the matrix Km

can be well approximated by a matrix K′
m of rank much smaller than m, returning the new

linear system

(5.2)
(
Im − qK′

mDm

)
V′
m = Φm.

Thus V′
m is an approximation to Vm.

In addition, Reichel proposes an iterative algorithm for the solution of (5.2), exploiting a
suitable preconditioner [33, section 4]. This algorithm is based on the solution of an l+1×l+1
linear system rather than m×m, provided that the conditions

(5.3) c1m
δ ≤ l ≤ c2m

2/3, m > m1,

are satisfied for some constants m1, 0 < c1 < c2 < +∞, and 0 < δ < 2
3 . In our numerical

experiments we set l = m2/3, and thus conditions (5.3) hold. Referring to the original Reichel
paper [33] for implementation details, we stress that the number of floating point operations
(flops) used for this method is O(m2). This means evident advantages with respect to the
GMRes method. This is shown in the numerical experiments presented in section 6.2.

Remark 5. Notice that the same domain is used for all integral equations, independently
of the value of q. Thus, the construction of matrices and vectors necessary for the Reichel
iterative algorithm can be performed only once, always with O(m2) flops.

5.2. Euler acceleration. Euler summation is a convergence-acceleration technique well
suited for evaluating alternating series, such as the one appearing in (4.5), which can be
written as

h̃ (x,M) =
1

ρM

M∑
j=0

(−1)jaj H
(
x, ρeijπ/M

)
.

The idea of the Euler acceleration technique is to approximate the above sum with

h̃ (x,M) ≈ h̃ne,me (x,M) :=
1

2meρM

me∑
j=0

(
me

j

)
bne+j (x,M) ,
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where

bk (x,M) =
k∑
j=0

(−1)jajH
(
x, ρeijπ/M

)
,

with ne and me suitably chosen, such that ne+me < M . For further details see [29] and [31].
Since the Euler summation works only if ne +me < M , we can apply this technique only

when more than ne +me monitoring dates are considered. Notice that in this case we need
the values of H

(
x, ρeijπ/N

)
for j = 0, . . . , ne + me; that is, we need to solve ne + me + 1

integral equations (4.2) instead of M +1 as in (4.5). Given that the choices of ne and me can
be done independently of M , this accelerating technique makes our method very competitive
when pricing with a large number of monitoring dates is required.

5.3. Approximation error. The approximation error will arise mainly from three sources:
the z-transform inversion error and its Euler acceleration; the domain truncation; and the
numerical solution of the integral equations. We now discuss the different contributions.

5.3.1. Z-transform error. The numerical approximation error of (4.4) by (4.5) depends
on the free parameter ρ, according to the following discussion. Abate and Whitt [1] provide
an error bound to their discretization formula:∣∣∣h (x,M)− h̃ (x,M)

∣∣∣ ≤ Cρ2M

1− ρ2M
.

For practical purposes, this error bound, when ρ2M is small, is approximately equal to ρ2M .
Hence, to have an accuracy of 10−2γ , say, we require ρ = 10−γ/M . Note that in practice it is
important to adjust ρ in this way for each value of M , so that ρM stays small but bounded
away from zero asM → ∞. Otherwise small computational errors in the numerical evaluation
of the denominator in (4.5) are magnified and will lead to gross errors in the evaluation of
h (x,M). In all our numerical experiments we set γ = 4 and ρ = 10−γ/M (which gives accuracy
10−8).

If the Euler acceleration technique is considered, we also have to take into account the
error |h̃(x,M) − h̃ne,me(x,M)|. A bound of this error is provided in [29, Theorem 1]. In our
numerical experiments, setting ne = 12 and me = 10 appears to guarantee sufficient accuracy
at a low computational cost, as discussed in section 6.

5.3.2. Truncation error. The error due to the truncation of the domain Ω in (4.2) to a
finite set ΩT can be made arbitrary small. We recall the following:

• Ω = (−∞, λ) for the floating strike price recursion (3.8);
• Ω = (−∞, 0) for the fixed strike price recursion (3.7) (see Remark 4);
• Ω = (−∞,+∞) for the fixed strike density recursion (3.9).

Numerical experiments show that the choice of ΩT cannot be done in a naive way. In fact,
to keep the truncation error small, we need a large ΩT , but this implies the use of a large
number of quadrature nodes and thus a high computational cost. On the other hand, if ΩT
is too small, the accuracy is not great enough.

In our numerical experiments, for the fixed strike case based on density recursion, the do-
main of the integral equation is truncated by exploiting the moment bound (see [30] for further
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details). This bound is based on the arithmetic average’s moments, computed according to
(3.11), and allows us to obtain a tight bound on the tail probabilities. Numerical experiments
have shown that a 10−8 tolerance is enough.

When price recursions are considered, the moment bound is no longer useful. In this
case numerical experiments show that the best choice is to consider bounds that decrease
in absolute value with respect to the number of monitoring dates. More precisely, we set
heuristically ΩT = (−β, λ) (ΩT = (−β, 0)) for the floating (fixed) strike price recursion,
with β = 3

2 + 30
N . This choice seems to provide a robust bound across all the considered

distributions. In fact, our numerical experiments show that this domain truncation does not
affect the accuracy up to the fourth decimal digit of the price estimates.

5.3.3. Numerical solution error. To compute the numerical approximation of the option
price, we approximate h̃(x,M) in (4.5) (or its Euler acceleration) replacing the exact solution
of the jth integral equation, H(x, qj), with its numerical approximation, Hm(x, qj), computed
with m quadrature nodes, as discussed in section 5.1. Let us consider (4.5). The error in a
quadrature node x is controlled by

E(x) =
1

MρM

∣∣∣∣∣∣
M∑
j=0

(−1)j

1− ρeijπ/M
(H(x, qj)−Hm(x, qj))

∣∣∣∣∣∣ .
A similar discussion holds if the Euler acceleration technique is considered.

The error terms |H(x, qj)−Hm(x, qj)| , j = 1, . . . ,M, can be made arbitrary small by
increasing the quadrature nodes m, since

||H(·, q) −Hm(·, q)||L∞(ΩT ) ≤ C(q)m−δ,

where δ > 0 depends on the quadrature rule considered (see [32] and [33, Theorem 4.1] for the
Reichel algorithm). More precisely, the speed of convergence of ||H(·, q)−Hm(·, q)||L∞(ΩT ) to
zero can be determined by using results on the speed of convergence of the integration rule
when it is applied to the integral

∫
ΩT

K(·, y)dy, as discussed in [4, Chapter 4]. Thus, when
Nystrom–Gaussian quadrature rules are considered, δ depends on the regularity of K and
thus on the transition density function fZ .

6. Numerical results. All the numerical experiments were performed in MATLAB R2007a
using a personal computer equipped with 4GB of RAM and an Intel Core 2 Quad Q6600
(2400MHz) processor. Table 1 lists the parametric Lévy processes used in our numerical
experiments and their associated characteristic exponents.

The Gaussian model (G) is the benchmark assumption: The ensuing process is a purely
diffusive Brownian motion, which gives rise to the geometric Brownian motion process for the
price of the underlying asset. The jump diffusion (JD) model, introduced by Merton [28], and
the double exponential (DE) model, introduced by Kou [25], are jump diffusion processes that
account for the presence of fat tails in the empirical distribution of the underlying asset. The
normal-inverse Gaussian (NIG) and the CGMY models, introduced in [5] and [8], respectively,
are pure jump processes with finite variation that can display both finite and infinite activity.
They are subordinate Brownian motions; in other words, they can be interpreted as Brownian
motions subject to a stochastic time change that is related to the level of activity in the
market. For further details, see [35].
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Table 1
Characteristic exponents of some parametric Lévy processes.

Model ψ (ω)

CGMY CΓ (−Y )
(
(M − iω)Y −MY + (G+ iω)Y −GY

)
DE − 1

2
σ2ω2 + λ

(
(1−p)η2
η2+iω

+ pη1
η1+iω

− 1
)

G −σ2

2
ω2

NIG −δ
(√

α2 − (β + iω)2 −
√
α2 − β2

)

JD − 1
2
σ2ω2 + λ

(
eiωα− 1

2
ω2δ2 − 1

)

Table 2
Fixed strike Asian options: A comparison with Černý and Kyriakou [11]. Parameters: r = 0.04, d = 0,

T = 1, S0 = 100, N = 50, and K = 100. γ = 1 in (3.2).

Model Parameters m l Price (D) Price (P) Benchmark

G σ = 0.3 1000 100 7.69860 7.69826 7.69859
2000 159 7.69860 7.69851
3000 209 7.69859 7.69860
4000 252 7.69859 7.69859

CGMY C = 0.6509 1000 100 7.32360 7.34134 7.34742
G = 5.853 2000 159 7.34754 7.34765
M = 18.27 3000 209 7.34747 7.34783
Y = 0.8 4000 252 7.34745 7.34741

NIG δ = 0.7543 1000 100 7.33836 7.34182 7.34265
α = 12.3407 2000 159 7.34268 7.34305
β = −5.8831 3000 209 7.34265 7.34262

4000 252 7.34265 7.34265

6.1. Accuracy. First of all, in Table 2, with reference to the fixed strike Asian option,
we compare our pricing procedures, considering as a benchmark the numerical results in [11,
Table 7]. We denote with P and D the cases in which recursions (3.7) (or (3.8) for the floating
case) and (3.9) are considered, respectively. The additional numerical integration (3.10) and
the integral in (4.3) were performed with a Gauss–Legendre quadrature formula withm+1000
and m + 2500 nodes, respectively. The values of the function at the quadrature nodes are
computed using cubic spline interpolation, which is favored with respect to linear interpolation
because it captures the curvature of the integrand function.

In order to show the convergence of the Greeks (see Remark 1), in Table 3 we report
the call price, as well as the Greeks Delta and Gamma, for different values of the volatility.
The Greeks for the D algorithm are computed according to Remark 1, while for the method
based on the pricing recursion (P) we use a finite difference approximation. As expected, the
algorithm performs better for high volatilities (see also Table 2); however, convergence for low
volatilities is still acceptable.

In Table 4 we consider as a benchmark3 the results provided in [26] for floating strike call
options, where a recursive integration, in the Gaussian framework, is proposed. Moreover,

3Notice that the benchmark is provided by the author with only the first three decimal digits.
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Table 3
Fixed strike Asian options. Parameters as in Černý and Kyriakou [11]: r = 0.04, d = 0, T = 1, S0 = 100,

N = 50, and K = 100. γ = 1 in (3.2).

Model Parameters m Price (D) Delta Gamma Price (P) Delta Gamma

G σ=0.1 1000 3.33938 0.63256 0.063895 3.33782 0.57794 0.052021
2000 3.33779 0.63253 0.063895 3.33684 0.61364 0.060358
3000 3.33790 0.63253 0.063895 3.33768 0.62368 0.062318
4000 3.33801 0.63253 0.063895 3.33792 0.62740 0.063028

NIG δ=0.2515 1000 3.11511 0.58111 0.045751 3.34075 0.58858 0.052682
α=37.0242 2000 3.26557 0.66207 0.062430 3.31039 0.63889 0.060243
β=−17.6537 3000 3.31746 0.67366 0.063385 3.31642 0.65749 0.062172

4000 3.32034 0.67390 0.063379 3.31986 0.66424 0.062825

G σ=0.5 1000 12.09153 0.56140 0.013326 12.09101 0.55798 0.013221
2000 12.09153 0.56140 0.013326 12.09140 0.56053 0.013300
3000 12.09153 0.56140 0.013326 12.09147 0.56101 0.013315
4000 12.09153 0.56140 0.013326 12.09152 0.56138 0.013320

NIG δ=0.12573 1000 11.23577 0.59073 0.014782 11.23612 0.58439 0.014672
α=7.4046 2000 11.23576 0.59072 0.014782 11.23606 0.58911 0.014756
β=−3.5302 3000 11.23576 0.59072 0.014782 11.23606 0.59001 0.014771

4000 11.23576 0.59072 0.014782 11.23580 0.59032 0.014776

Table 4
Floating strike Asian options: A comparison with Lim [26]. Parameters: σ = 0.2, r = 0.1, d = 0, λ = 1,

T = 182
265

, S0 = 100, N = 91, and K = 100. α = γ = 1 in (3.3).

Model m Price (P) Benchmark

G 1000 3.91980 4.565
2000 4.56533
3000 4.56517
4000 4.56516

Table 5 shows the behavior of our algorithm considering different monitoring dates under a
jump diffusion distribution with the parameters proposed in [20]. Notice that in this table we
denote with P-CM the P algorithm implemented, considering the Carr–Madan formula in the
right-hand side of (4.2) (see Remark 2), computed with 216 points. All the price estimates
fall into the confidence interval estimated using the 1,000,000 control variate Monte Carlo
simulations reported in [20].

From these numerical results it seems that our algorithm with the density recursion (D)
provides price estimates for the fixed strike case with an accuracy of

• at least three decimal digits if m = 2000,
• at least four decimal digits if m = 3000,

while the algorithm based on price recursions (3.8) and (3.7) seems to provide a slower conver-
gence to the true price. This speed of convergence could be slower for low volatility levels, as
shown in Table 3. Moreover, considering the Carr–Madan formula as the initial condition to
eliminate the nonsmoothness of the payoff (see Remark 2) does not seem to provide great ad-
vantages in terms of accuracy and computational cost. Only for the floating strike case, with
few monitoring dates, do the numerical experiments not reported here show better accuracy
if the Carr–Madan formula is used.
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Table 5
Fixed and floating strike Asian options: Jump diffusion distribution. Parameters: r = 0.0367, d = 0,

TΔ = 1, S0 = 100, σ = 0.126349, λ = 0.174814, α = −0.390078, and δ = 0.338796. α = γ = 1 in (3.2) and
(3.3).

N m Fixed strike (D) Fixed strike (P-CM) Floating strike (P-CM)

12 1000 5.01130 5.01118 5.11719
2000 5.01129 5.01127 5.11719
3000 5.01129 5.01130 5.11719
4000 5.01129 5.01129 5.11719

25 1000 5.03920 5.03922 5.14707
2000 5.03916 5.03907 5.14755
3000 5.03916 5.03909 5.14755
4000 5.03916 5.03912 5.14755

50 1000 5.05306 5.05326 5.14780
2000 5.05299 5.05270 5.16267
3000 5.05299 5.05307 5.16246
4000 5.05299 5.05304 5.16246

100 1000 5.06017 5.05989 3.52697
2000 5.06015 5.05997 5.17561
3000 5.06015 5.06025 5.17013
4000 5.06015 5.06015 5.17011

Table 6
Fixed strike Asian options: A comparison with Fusai and Meucci [20]. Parameters: r = 0.0367, d = 0,

T = 1, S0 = 100, N = 250, and K = 100. γ = 1 in (3.2).

Model Parameters m Price (D) Price (P) CI

G σ = 0.17801 1000 4.95265 4.97341 4.783-5.121
2000 4.95212 4.95072
3000 4.95212 4.95266
4000 4.95212 4.95242

DE σ = 0.120381 1000 4.73740 4.80054 4.837-5.301
λ = 0.330966 2000 5.07019 5.06934
p = 0.2071 3000 5.07019 5.07130

η1 = 9.65997, η2 = 3.13868 4000 5.07019 5.07013

JD σ = 0.126349 1000 4.82410 4.91492 4.820-5.308
λ = 0.174814 2000 5.06452 5.06308
α = −0.390078 3000 5.06452 5.06514
δ = 0.338796 4000 5.06452 5.06493

In order to investigate the convergence of our pricing procedure when a large number of
monitoring dates is considered, in Table 6 we report the price estimates obtained with 250
monitoring dates and the same parameters as Fusai and Meucci [20]. Our price estimates fall
within the Monte Carlo confidence intervals (CI) provided therein.

Finally, in Figure 1 we plot the error for the algorithm based on the density recursion.
The reference values are computed with 8000 quadrature nodes and solving the linear systems
by the GMRes algorithm. From this figure, it is clear that the error due to the numerical
solution of the integral equations by the Reichel algorithm (see section 5.3.3) rapidly reaches
the 10−8 accuracy. This is the maximum accuracy we can achieve by using the z-transform
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Figure 1. Pricing error in loglog scale for double exponential (left) and jump diffusion (right) distributions.
Parameters as in Fusai and Meucci [20]: r = 0.0367, d = 0, T = 1, S0 = K = 1, and N = 100.

Table 7
Fixed strike Asian option—CPU time (in seconds). Parameters as in Černý and Kyriakou [11]. γ = 1 in

(3.2).

CPU time (D) CPU time (P)

N m = 1000 2000 3000 4000 m = 1000 2000 3000 4000

12 2.76 11.26 30.40 65.95 4.17 14.78 35.85 72.65
50 5.15 17.59 41.98 83.56 5.81 20.15 47.50 89.43
100 7.59 22.51 48.50 94.32 7.73 22.50 48.92 91.50
250 14.45 38.32 73.32 121.65 10.81 31.93 53.39 95.80

(see section 5.3.1). If the algorithm based on the price recursion is considered, we obtain
slower convergence rates, as is clear from the above tables.

6.2. Computational cost. This section deals with the computational cost of our algo-
rithm. Tables 7–8 report the CPU time necessary for pricing fixed and floating strike options,
respectively, and the Gaussian model with parameters as in [11].

These tables and Figure 2 show that the computational cost of our algorithm grows less
than linearly with respect to the number of monitoring dates, since the number of linear
systems to be solved is bounded by ne +me +1 (see section 5.2), while all existing numerical
algorithms have a cost at least linear. Moreover, if the number of monitoring dates is greater
than ne+me, the increase in the cost depends only on the number of iterations necessary for
the convergence of the Reichel algorithm (see Table 9). We recall that the recursion methods
such as the ones proposed in [11] and [20] have a computational cost linear with respect to
the number of monitoring dates. Notice that when the number of monitoring dates increases,
the pricing procedure (D), that is, the one with the recursion on the density, is the slowest
one. This is due to the spectral properties of the matrix Im−KmDm in (5.1) (see Table 10).4

In order to appreciate the benefits of the Reichel algorithm, in Table 11 we compare it with
the option price estimates obtained by solving the linear systems with Gaussian elimination
and the GMRes iterative method. We consider as a test case the CGMY model with the
parameters proposed in [11] (see also Table 2). The Reichel algorithm appears to be the

4We recall that the number of iterations necessary for the convergence of an iterative method depends on
the condition number of the linear system matrix.
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Table 8
Floating strike Asian option and CPU time (in seconds). Parameters as in Černý and Kyriakou [11].

α = γ = 1 in (3.3).

N m = 1000 2000 3000 4000

12 2.56 12.18 34.46 70.76
50 3.60 15.70 41.62 81.84
100 4.07 16.70 43.21 82.14
250 5.90 18.59 47.17 87.54
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Figure 2. CPU time and the number of monitoring dates. Parameters as in Černý and Kyriakou [11].
m = 4000. α = γ = 1 in (3.2) and (3.3).

Table 9
Maximum number of iterations for the solution of a linear system using the Reichel procedure. Parameters

as in Černý and Kyriakou [11]. α = γ = 1 in (3.2) and (3.3).

Fixed strike (D) Floating strike (P)

N m = 1000 2000 3000 4000 m = 1000 2000 3000 4000

12 3 2 1 1 2 2 1 1
50 12 6 4 3 3 2 2 2
100 24 13 8 7 6 3 3 3
250 60 35 24 17 16 7 6 5



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

400 GIANLUCA FUSAI, DANIELE MARAZZINA, AND MARINA MARENA

Table 10
Condition number of the matrix Im − KmDm, computed in MATLAB with the condest command. Pa-

rameters as in Černý and Kyriakou [11].

Fixed strike (D) Floating strike (P)

N m = 2000 3000 4000 m = 2000 3000 4000

12 334 335 335 205 204 204
50 1374 1379 1381 604 611 617
100 3540 2805 2788 1344 1363 1346

Table 11
Fixed strike Asian option price and CPU time. Parameters as in Černý and Kyriakou [11]. γ = 1 in (3.2).

Benchmark price: 7.34742. T = 50.

Reichel GMRes Gaussian elimination

m Price (D) CPU Price (D) CPU Price (D) CPU

1000 7.32360 7.76 7.30692 21.76 7.30692 14.87
2000 7.34754 22.40 7.34747 61.07 7.34747 93.68
3000 7.34747 51.96 7.34746 122.71 7.34746 298.00
4000 7.34745 99.67 7.34745 205.93 7.34745 680.06

Table 12
Floating strike Asian option and CPU time (in seconds) using grid computing. Parameters as in Černý

and Kyriakou [11]. α = γ = 1 in (3.3).

N m = 1000 m = 2000 m = 3000 m = 4000

100 2.33 8.44 20.11 45.42
250 2.45 8.66 20.59 45.97

fastest one; moreover, increasing m, the differences between the prices computed with the
three different solvers become negligible.

Finally, since the integral equations parametrized by q can be solved independently, our
pricing method is suitable for parallelization. More precisely, we can exploit a grid archi-
tecture5 composed of a set of six personal computers (the grid nodes), each equipped with
4GB of RAM and an Intel Core 2 Quad Q6600 (2400MHz) processor. Table 12 reports the
maximum CPU time recorded by the grid nodes for the floating strike case, considering the
same distribution and parameters as in Table 8. From this table it is clear that the benefits
of our procedure are maximized using a distributed grid environment. Notice that we cannot
obtain greater advantages from our grid, since the construction of the matrices and vectors
necessary for the Reichel procedure cannot be parallelized (see Remark 5).

7. Conclusions. This paper has shown how to price discretely monitored Asian options
in an exponential Lévy setting, introducing a new method based on the randomization of the
option expiry. The starting point of our method comprises recursive formulas for floating
and fixed strike options. Our procedure transforms the pricing problem into a set of integral
equations that are solved using appropriate quadrature rules and linear system solvers. In

5We acknowledge the support of Avanade Italy and especially Roberto Chinelli, Laura Mariano, Raffaele
Sgherri, and Ljubomir Konjic for kindly and freely providing the Department SEMeQ with the grid AGA
(Avanade Grid Architecture).
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particular, the Reichel algorithm for the fast solution of the one-dimensional Fredholm integral
equation performs well. By applying Euler summation, numerical experiments show that,
without losing accuracy, our method has a cost that is nearly independent of the number
of monitoring dates, different from other existing algorithms, if a recursion on the price is
considered, while it grows less than linearly if our algorithm is applied to the recursion on
the density, limitedly to the fixed strike case. In addition, the algorithm is suitable for
parallelization.

Appendix A. Proof of expression (3.6).
Theorem A.1. Assume that x ≥ 0, c ≤ 0, and λn > 0 for n = 1, . . . , N . Then it holds that

vn (x) = e−r(N−n)Δ
[
x+

N−n−1∑
i=0

λN−ie(N−n−i)(r−d)Δ − ce(N−n)(r−d)Δ
]

for n = 0, . . . , N .
Proof. If x ≥ 0, i.e., In

Sn
≥ 0, λn > 0 for n = 1, . . . , N, and c ≤ 0, the payoff is equal to

(IN − cSN )
+ = IN − cSN =

N∑
i=0

λiSi − cSN .

Thus it holds that

V (SN−1, IN−1;N − 1) = e−rΔEN−1

[
N−1∑
i=0

λiSi + (λN − c)SN

]

= e−rΔ
[
N−1∑
i=0

λiSi + λNSN−1e
(r−d)Δ − cSN−1e

(r−d)Δ
]
,

and, in general,

V (SN−n, IN−n;N − n)

= e−nrΔ
[
N−n∑
i=0

λiSi + SN−n

(
n−1∑
i=0

λN−ie(n−i)(r−d)Δ − cen(r−d)Δ
)]

= e−nrΔSN−n

[∑N−n
i=0 λiSi
SN−n

+

n−1∑
i=0

λN−ie(n−i)(r−d)Δ − cen(r−d)Δ
]
.

Since, by definition, it holds that

V (SN−n, IN−n;N − n) = SN−n vN−n
(
IN−n
SN−n

)
,

we have

vN−n (x) = e−rnΔ
[
x+

n−1∑
i=0

λN−ie(n−i)(r−d)Δ − cen(r−d)Δ
]
,
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which can be rewritten as

vn (x) = e−r(N−n)Δ
[
x+

N−n−1∑
i=0

λN−ie(N−n−i)(r−d)Δ − ce(N−n)(r−d)Δ
]
.
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[35] W. Schoutens, Lévy Processes in Finance, Wiley Ser. Probab. Stat., Wiley-Interscience, New York,

2003.
[36] J. Vecer and M. Xu, Pricing Asian options in a semimartingale model, Quant. Finance, 4 (2004),

pp. 170–175.


