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Abstract In this paper we derive analytic formulas for electricity derivatives under

assumption that electricity spot prices follow a 3-regime Markov regime-switching

model with independent spikes and drops and periodic transition matrix. Since the

classical derivatives pricing methodology cannot be used in the case of non-storable

commodities, we employ the concept of the risk premium. The obtained theoretical

results are then used for the European Energy Exchange data analysis. We calculate

the risk premium in the case of the calibrated 3-regime MRS model. We find a time

varying structure of the risk premium and an evidence for a negative risk premium (or

positive forward premium), especially at short times before delivery. Finally, we use

the obtained risk premium to calculate prices of European options written on spot, as

well as, forward prices.

Keywords Regime-switching model · Electricity spot price · Derivatives pricing ·
Risk premium

1 Introduction

Deregulation of electricity markets has led to a substantial increase in risk borne by

market participants. The often unexpected extreme spot price changes caused by non-

storable nature of electricity range even two orders of magnitude and can cause severe

financial problems to the utilities that buy electricity in the wholesale market and

deliver it to consumers at fixed prices. The utilities and other power market companies

need to hedge against this price risk. A straightforward way to do it is to use derivatives,
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2 J. Janczura

like forwards and options. It is exactly the aim of this paper to price commonly traded

electricity derivatives.

Before calculating a price of a derivative, a proper model for the underlying asset

has to be chosen. There are two approaches common for the electricity market. The

first one is to start with specifying the forward price dynamics (see e.g. Clewlow

and Strickland 1999; Benth and Koekebakker 2008; Bjerksund et al. 2010). Such

approach is useful if only derivatives written on forwards are to be considered and a

link between forward and spot prices is not important for modeling issues. Obviously,

the spot price can always be derived using the fact that the forward and spot prices

should coincide at the forward settlement. However, the complexity of the spot price

dynamics is then usually neglected. The second approach is based on defining the spot

price dynamics first (see e.g. Lucia and Schwartz 2002; Miltersen 2003; Benth et al.

2003; Bierbrauer and Menn 2007) and then modeling a link between the forward and

spot markets. Usually, a convenience yield or risk premium notion is used (Benth et

al. 2008a; Geman 2005; Weron 2006; Benth and Sgarra 2012; Haerdle and Lopez-

Cabrera 2012; Longstaff and Wang 2004; Lucia and Torro 2008; Benth et al. 2008b;

Benth and Meyer-Brandis 2009). Using such an approach allows to price derivatives

written both on the spot and the forward price. Moreover, a relation between spot and

forward prices is taken into account and the lack of forward price data is no more

a limitation. Here, we use the latter approach and describe the spot price dynamics

by a Markov regime-switching (MRS) model with independent spikes and drops and

periodic transition matrix that was proposed by Janczura and Weron (2010). For other

applications of MRS models to electricity prices see e.g. Deng (1998), Ethier and

Mount (1998), Huisman and Jong (2003), Huisman and Mahieu (2003), Kholodnyi

(2005), De Jong (2006), Haldrup and Nielsen (2006), Mount et al. (2006), Becker et al.

(2007), Huisman (2008), Kanamura and Ohashi (2008), Karakatsani and Bunn (2008),

Mari (2008), Weron (2009), Erlwein et al. (2010), Haldrup et al. (2010), Dempster et

al. (2013).

After specifying a model we have to choose derivatives pricing methodology. Clas-

sical approach used in financial and commodities markets is based on the no-arbitrage

assumption and construction of a strategy replicating a future payoff (or equivalently

finding a martingale measure, Musiela and Rutkowski 1997). However, such approach

fails in case of electricity due to very limited storage possibilities. Therefore, instead

of using a martingale approach, we employ a concept of the risk premium/market

price of risk and find such pricing measure that yields the observed forward market

prices. With such methodology we are able to derive forward prices from the spot

price model that coincide with the actual quotations and also to find explicit formu-

las for premiums of European options written on spot, as well as, on forward prices

within the assumed 3-regime MRS model. The theoretical results are then used for

the European Energy Exchange (EEX) data analysis. We calculate the risk premium

and find a time varying structure of the risk premium, which increases with increasing

time to delivery. Moreover, we obtain a strong evidence for a negative risk premium

(or positive forward premium) in the EEX market, especially at short times before

delivery.

The paper is structured as follows. In Sect. 2 we introduce the Markov regime-

switching model used for electricity spot price dynamics. Next, in Sect. 3 we explain
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Pricing electricity derivatives 3

why the classical derivatives pricing approach fails in case of electricity derivatives

and, as a solution, we describe the ‘risk premium’ approach in case of the considered

model. The obtained results are then used to derive analytical formulas for prices of

electricity derivatives in Sect. 4. Finally, in Sect. 5 we use the obtained theoretical

results to price derivatives using the European Energy Exchange (EEX) data and in

Sect. 6 we conclude. All of the computations in the empirical part of the paper were

conducted in Matlab 2009.

2 The model

Let us first recall the main stylized facts about electricity prices. Electricity prices

highly depend on the actual demand/consumption. Obviously, the latter is varying

during a year due to the changing weather conditions and throughout the week or day

due to the business cycle. The same long-term (yearly) and short-term (weekly/daily)

seasonality is recorded for electricity prices. The second apparent feature is the very

high volatility of electricity prices and unexpected, usually transient, dramatic price

changes called spikes or jumps. The spot price may rise for a few hours to even two

orders of magnitude of the standard prices and then fall back to the normal level. What

makes electricity market completely different from other financial or commodities

markets is that the electricity prices may, as well, abruptly fall down yielding negative

values. Finally, electricity prices are mean-reverting, meaning that in long time period

they move back to some equilibrium level.

Seasonality is usually removed from the analyzed prices prior to modeling by fit-

ting some periodic function like sine (Cartea and Figueroa 2005; De Jong 2006) or

piecewise constants (Lucia and Schwartz 2002). Alternatively, some smoothing tech-

nique like wavelets or moving average can be used (Weron 2009; Nowotarski et al.

2013). The mean-reverting property is typically modeled with some mean-reverting

processes, like e.g. AR(1) time series or the Vasicek (1977) model. The most chal-

lenging for modeling, and at the same time the most important for risk management,

are the price spikes. One approach is to incorporate a jump component into a standard

mean-reverting diffusion model (Deng 1998; Cartea and Figueroa 2005; Weron 2008).

However, in the resulting jump-diffusion models there is a problem of how the price

after a spike revert back to the normal level. Nor an immediate negative jump, nor

mean-reversion pulling back the prices to the normal level, yields a flexible tool for

modeling consecutive spikes. Another possibility are the Markov regime-switching

(MRS) models in which the prices might stay in the excited (spike) regime with some

probability. Hence, MRS models allow for modeling consecutive spikes in a very nat-

ural way and seem to be a reasonable choice for electricity price dynamics. To our best

knowledge MRS models were first applied to electricity prices by Ethier and Mount

(1998) who used an AR(1) time series with parameters depending on the actual regime.

A MRS model with independent spikes was later introduced by Huisman and Jong

(2003) and De Jong (2006). Numerous attempts improving statistical properties of the

model (see e.g. Huisman and Mahieu 2003; Haldrup and Nielsen 2006; Weron 2009;

Dempster et al. 2013) or including some exogenous factors (see e.g. Huisman 2008;

Kanamura and Ohashi 2008; Karakatsani and Bunn 2008) were later proposed. Here,

we focus on a 3-regime model with independent spikes and drops introduced recently
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4 J. Janczura

by Janczura and Weron (2010), who found it superior to other MRS models. It allows

for modeling consecutive spikes and drops as independent variables, being flexible

enough to capture different statistical properties of spikes and drops, which are a

consequence of different driving factors. Moreover, it takes into account the seasonal

intensity of the occurrences of extreme observations. Finally, the model not only

reproduces the stylized facts about electricity prices, but also it’s goodness of fit was

statistically confirmed for different markets, see Janczura and Weron (2010) for more

details, and is also confirmed for the data studied in this paper.

Having in mind the above mentioned features of electricity, we let the electricity

spot price be given by

Pt = gt + X t , (1)

where gt is a deterministic seasonal component and X t follows a 3-regime MRS model

with independent spikes and drops. Namely,

X t =

⎧

⎨

⎩

X t,b if R⌊t⌋ = b,

X⌊t⌋,s if R⌊t⌋ = s,

X⌊t⌋,d if R⌊t⌋ = d,

(2)

where b denotes the base regime (describing the ‘normal’ prices), s the spike regime

(representing the sudden upward price jumps), while d stands for the drop regime

(responsible for the sudden price drops). Further, ⌊t⌋ denotes the integer part of t, Rk

is a discrete-time Markov chain defined by a time-varying (periodic) transition matrix

P(k)

P(k) = (pi j (k)) =

⎛

⎝

pbb(k) pbs(k) pbd(k)

psb(k) pss(k) psd(k)

pdb(k) pds(k) pdd(k)

⎞

⎠, (3)

where pi j (k) is the probability of switching from state i at time k to state j at time

k +1 for k ∈ {0, 1, 2, . . .}. The process Rt describes the actual state of the market, i.e.

normal (base regime, denoted by ‘b’) behavior, spike (denoted by ‘s’) or drop (denoted

by ‘d’), and is an unobserved random variable. The base regime dynamics is given by

the Vasicek (1977) model:

d X t,b = (α − β X t,b)dt + σbdWt , (4)

having unique mean-reverting solution of the form:

X t,b = X0,be−βt +
α

β

(

1 − e−βt
)

+ σb

t
∫

0

e−β(t−u)dWu, (5)

where Wt is a Wiener process (or Brownian motion), β is the speed of mean-reversion,
α
β

is the long-time equilibrium level and σb is the volatility. Note that, for simplicity,
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Pricing electricity derivatives 5

we use a constant volatility for the base regime. Assuming time varying σb would

make the estimation of the MRS model computationally intractable and might also

lead to overparametrization. However, with the assumed model specification, the shifts

in volatility observed in electricity prices can still be modeled by switching between

regimes having different volatilities. The spike regime values (X0,s, X1,s, X2,s, . . .)

constitute an i.i.d. sample from the cs-shifted log-normal distribution, i.e. :

ln(Xk,s − cs) ∼ N (µs, σ
2
s ), Xk,s > cs, (6)

while the drop regime values (X0,d , X1,d , X2,d , . . .) form an i.i.d. sample from the

inverted cd -shifted log-normal distribution defined as:

ln(−Xk,d + cd) ∼ N (µd , σ 2
d ), Xk,d < cd . (7)

The log-normal distribution seems to be a good choice for modeling extreme obser-

vations like spikes or drops, as it has heavier tails than the Gaussian one, but still all

moments are finite. Moreover the statistical goodness of fit of such distribution choice

is confirmed in the empirical part of the paper, see Table 3. Obviously, for different

data other distribution choice might be relevant. However, in such a case all of the

following results can be easily adapted.

Observe, that in the model defined by (2) the price process can jump to a different

regime only at discrete time points t = 0, 1, 2, . . .. This is motivated by the fact,

that, even though the price is a result of continuous bidding, electricity spot price is

typically settled for contracts with some delivery period, usually an hour. Hence, the

change in electricity spot price dynamics may occur only in discrete time points.

Finally, let (Ω,F , Q) be a probability space with filtration Ft generated by the

processes X t and R⌊t⌋ and assume a constant continuously compounded interest rate r .

It should be noted that the market interest rates are seldom constant over a period of

time. In the literature there are different approaches for dealing with this issue like a

deterministic interest rate being a function of time or stochastic interest rate models

( see e.g. Vasicek 1977 or Heath et al. 1992). However, finding a deterministic function

that will accurately describe future interest rates behavior is usually problematic, while

the more advanced approaches often make derivatives pricing analytically intractable.

On the other hand, interest rates in stable economies are not very volatile, especially

over short periods of time, for example a change in a yearly LIBOR rate during the

pricing period considered in the empirical example of Sect. 5 was only 0.06 %. Hence,

for simplicity, we assume a constant interest rate.

3 The risk premium

The classical option pricing approach is based on the no-arbitrage assumption, which

implies that the fair price of a derivative is the discounted expected future payoff

under a martingale measure. If the market is complete, i.e. any contingent claim can

be replicated with a self-financing strategy (it is attainable), there exists a unique

martingale measure. However, due to non-storability of electricity a derivative written
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on the spot electricity price cannot be replicated with a portfolio consisting of the

underlying instrument and a financing debt account. As a consequence, the market

is incomplete. Moreover, since electricity cannot be traded in the usual way (once

purchased has to be consumed), the only tradable asset in the spot market is the bank

account (Benth et al. 2003). Recall that here we assume a continuously compounded

constant interest rate r . Obviously, the discounted value of the bank account is a

martingale under any measure equivalent to the actual (also called the objective or

statistical) measure Q. Therefore, the spot market is arbitrage-free but there is no

unique martingale measure. An additional criterion has to be used in order to select a

pricing measure.

Here we use an approach based on the concept of the risk premium (see e.g. Benth

and Sgarra 2012; Benth et al. 2008a; Geman 2005; Weron 2006), which is defined as a

reward for investing into a risky asset instead of a risk-free one. In such methodology

a risk-free asset is usually a derivative, while a risky asset is an underlying instrument.

In the paper we consider a risk-free forward electricity contract and risky electricity

spot price, i.e. the risk premium RP is defined as the difference between the expected

spot price in the future time T and the price of a forward contract with delivery at

time T

RP(T ) = E(PT |F0) − f T
0 , (8)

where f T
0 is the market price at time 0 (now—the moment of pricing) of a forward

contract expiring at time T . In such a case, the forward contract does not bring risk

to it’s owner, since the whole specification is agreed on the moment of entering a

contract and, compared to the spot price, does not depend on unknown future market

quotations.

Observe that, the definition (8) is based on the forward looking approach, as the risk

premium is calculated using the forecast of the spot price. The risk premium defined in

such a way is called in the literature (see e.g. Lucia and Torro 2008; Benth et al. 2008b;

Karakatsani and Bunn 2005) the ex-ante risk premium. On the other hand, the risk

premium is also often defined using the ex-post (historical) approach and calculated

as the difference between the forward price and the realized spot price at the time of

the forward contract delivery (see e.g. Geman and Vasciek 2001; Longstaff and Wang

2004). However, for the purpose of the paper we use the ex-ante risk premium. This is

motivated by the fact, that for the valuation of a derivative with some future maturity

time, the estimate of the future risk premium, rather than the realized one, should be

used.

It should be noted that some authors (see e.g. Eydeland and Wolyniec 2003) define

the risk premium as the forward premium, i.e. as the difference between the forward

price and the expected spot price, being equal to −RP(T ). Moreover, in the classical

financial and commodities setup there exists a notion of the convenience yield, which

relates the current prices of forward contracts with the current spot prices using the

storage theory (first introduced by Kaldor 1939), i.e. f T
0 = P0e(r−y)T , where y is

called the convenience yield. For commodities this relation is a consequence of the

cost of carry relationship which means that the forward price must exceed the spot

price by the cost of carrying the physical commodity, determined by the storage costs
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Pricing electricity derivatives 7

and the interest lost, until the expiry date of the contract (Weron 2006). However, in

the case of non-storable commodities, like electricity, the storage theory rarely makes

sense and the link between the current spot price and the forward prices is much more

complex. Hence, instead we use the risk premium notion.

The idea of the ‘risk premium’ approach in derivatives valuation is to choose a

martingale measure that is consistent with the prices of forward contracts quoted in

the market. A similar approach is used in the weather (Benth and Benth 2007; Haerdle

and Lopez-Cabrera 2012) or interest rate derivatives context and is based on calibrating

the model to the initial yield curve (see e.g. Hull and White 1993; Bjork 1997).

Recall, that the arbitrage-free price of a forward contract should be equal to the

expected future spot price under a pricing measure, namely

f T
0 = Eλ(PT |F0), (9)

where f T
0 is the price at time 0 (now) of a forward contract with a delivery at time

T, PT is the electricity spot price and Eλ(·) is the expected value with respect to the

pricing probability measure Qλ, equivalent to the actual measure Q. In an incomplete

market relation (9) does not yield a unique forward price, as it is dependent on the

choice of Qλ. Here we choose Qλ such that relation (9) is consistent with market data,

i.e. Eλ(PT |F0) is calibrated to the quotations of forward contracts. In other words,

we choose the pricing measure that is used by the market. In the following we will

assume that the measure Qλ is the probability measure under which the drift of the

base regime process is parametrized by a function λ(T ) chosen so that Eλ(PT |F0)

yields the market forward price f T
0 . The function λ(T ) is called the market price of

risk, which can be seen as a drift adjustment in the dynamics of an asset to reflect

how investors are compensated for bearing risk when holding the asset (Benth et al.

2008b).

Before we find the measure Qλ, we give a brief explanation of how to calcu-

late the risk premium in the 3-regime model (1)–(7). Assume, that the forward

price f T
0 is given for any maturity T and the spot price model parameters θ =

(α, β, σb, µs, σs, cs, µd , σd , cd , P) are known.

Let p
(t)
i j = P(R⌊t⌋ = j |R0 = i) denote the probability of switching from state i

at time 0 to state j at time ⌊t⌋. For a constant probability matrix P it is given by the

i j th element of the ⌊t⌋th power of the transition matrix, i.e. p
(t)
i j =

(

P⌊t⌋)
i j

. For a

time-varying probability matrix it is given by p
(t)
i j =

(

∏⌊t⌋
k=0 P(k)

)

i j
.

In order to simplify the derivation, in the following we assume that P(R0 = b) = 1

or equivalently X0 = X0,b a.s., i.e. at time 0 the process X t is in the base regime with

probability 1.

Now, we can derive a formula for the risk premium. Observe that

E(XT |F0) = P(R⌊T ⌋ =b|R0 = b)E(XT,b|F0)+P(R⌊T ⌋ = s|R0 = b)E(X⌊T ⌋,s |F0)

+ P(R⌊T ⌋ = d|R0 = b)E(X⌊T ⌋,d |F0). (10)

Recall, that X⌊T ⌋,s and X⌊T ⌋,d are random variables independent of F0. Hence,

E(X⌊T ⌋, j |F0) = E(X⌊T ⌋, j ) for j = s, d. Moreover, from the assumption of X0 =
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X0,b we have that E(XT,b|F0) = E(XT,b|X0,b). Hence,

E(XT |F0) = p
(T )
bb E(XT,b|X0,b) + p

(T )
bs E(X⌊T ⌋,s) + p

(T )
bd E(X⌊T ⌋,d). (11)

As a consequence, from (1), (5) and (11), the risk premium in the 3-regime MRS

model defined by Eqs. (2)–(7) is given by:

RP(T ) = p
(T )
bb

[

x0e−βT +
α

β

(

1 − e−βT
)

]

+ p
(T )
bs

(

eµs+ 1
2 σ 2

s + cs

)

+p
(T )
bd

(

−eµd+ 1
2 σ 2

d + cd

)

+ gT − f T
0 , (12)

where x0 is the stochastic part of the price observed at time 0 and f T
0 is the market

forward price.

Remark 1 Observe that, if assumption that X0 = X0,b is not satisfied we have:

E(XT,b|F0) = I{R0=b}E(XT,b|X0,b) (13)

+
∞
∑

k=1

I{R0 �=b,R−1 �=b,R−2 �=b,...,R−k+1 �=b,R−k=b}E(XT,b|X−k+1,b),

where a negative time index is used for the historical (i.e. before the moment of

valuation t = 0) values of the process and for u < T E(XT,b|Xu,b) = Xu,be−β(T −u)+
α
β

(

1 − e−β(T −u)
)

. Note, that formula (13) is a consequence of the fact that the base

regime values become latent if a spike or drop occurs. Moreover,

P(R⌊T ⌋ = j |F0)=
∑

i∈{b,s,d}
I{R0=i} P(R⌊T ⌋ = j |R0 = i)=

∑

i∈{b,s,d}
I{R0=i} p

(T )
i j . (14)

Thus, the risk premium calculation and all of the following results can be generalized

to the case R0 �= b.

4 Electricity derivatives pricing

4.1 Options written on the electricity spot price

Now, we turn to pricing of a European call option written on the electricity spot price.

Recall, that the European option is a contract that gives the buyer the right to buy/sell

the underlying commodity at some future date t (called maturity) at a certain price K

(called the strike price). First, we find the pricing measure Qλ. Like Merton (1976)

in the context of jump-diffusion processes we assume that the dynamics of spikes and

drops are the same in the actual and pricing measures. Similar simplification was used

e.g. by De Jong and Huisman (2002) or Weron (2008). It allows to avoid estimating

jointly the market prices of risk related to the base, spike and drop regime from very

limited data. On the other hand, in the obtained formulas for derivatives prices the
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parts related to different regimes are easily separated and, as suggested by De Jong

and Huisman (2002), the spike/drop part can be multiplied by some factor to increase/

decrease the price of the spike/drop risk. Nevertheless, finding such a pricing measure

that would also allow for a change in spikes and drops distribution is a challenging

problem. A promising approach was used by Benth and Sgarra (2012), who applied

the Escher transform theory in order to derive the market price of risk. Unfortunately,

the Escher transform technique is applicable only for Levy processes, while the MRS

model analyzed in this paper does not have independent increments and hence is not

a Levy process.

We start the valuation of derivatives from finding the spot price dynamics under

λ parametrization. Let λ(u) be a deterministic function square-integrable on u ∈
[0, Tmax ], where Tmax is a time horizon long enough to contain all maturities of

derivatives quoted in the market, and introduce a new process W λ
t :

W λ
t = Wt +

t
∫

0

λ(u)

σb

du, (15)

where σb is the volatility of the base regime. From the Girsanov theorem (see Girsanov

1960) we have that W λ
t is a Wiener process under a new measure Qλ defined as a

Radon–Nikodym derivative (Nikodym 1930)

d Qλ

d Q
= exp

⎡

⎣−
Tmax
∫

0

λ(u)

σb

dWu −
1

2

Tmax
∫

0

(

λ(u)

σb

)2

du

⎤

⎦ (16)

with the filtration F
W
t , being the natural filtration of the process Wt .

Now, the base regime process X t,b can be rewritten as:

d X t,b = [α − λ(t) − β X t,b]dt + σbdW λ
t (17)

and the expected future spot price is given by:

Eλ(Pt |F0) = p
(t)
bb

⎡

⎣X0e−βt +
α

β

(

1 − e−βt
)

−
t

∫

0

e−β(t−u)λ(u)du

⎤

⎦

+p
(t)
bs

(

eµs+ 1
2 σ 2

s + cs

)

+ p
(t)
bd

(

−eµd+ 1
2 σ 2

d + cd

)

+ gt . (18)

The function λ(T ) can be calibrated to the market forward prices so that

Eλ(PT |F0) = f T
0 , e.g. by using some fitting procedure (like the least squares min-

imization). Alternatively, one can find the risk premium and then use the relation

between the market price of risk λ(T ) and the risk premium:

p
(T )
bb

T
∫

0

e−β(T −u)λ(u)du = RP(T ), (19)
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which is a simple consequence of the fact that RP(T ) = E(PT |F0) − Eλ(PT |F0),

formula (18) and Ito’s lemma.

Now, the price of a European call option written on the electricity spot price can be

derived.

Option price formula If the electricity spot price Pt is given by the MRS model defined

by Eqs. (1)–(7), then the price of a European call option written on Pt with strike price

K and maturity T is equal to:

CT (K ) = e−rT
[

p
(T )
bb CT,b(K ) + p

(T )
bs CT,s(K ) + p

(T )
bd CT,d(K )

]

, (20)

where

CT,b(K ) =
s

√
2π

exp

(

−
(K ′ − m)2

2s2

)

+ (m − K ′)

[

1 − Φ

(

K ′ − m

s

)]

, (21)

CT,s(K ) = I{K ′>cs }

{

exp

(

µs +
σ 2

s

2

)[

1 − Φ

(

log(K ′ − cs) − µs − σ 2
s

σs

)]

− (K ′ − cs)

[

1 − FL N (µs ,σ 2
s )(K ′ − cs)

]

}

+ I{K ′≤cs }

[

exp

(

µs +
σ 2

s

2

)

+ cs − K ′
]

(22)

and

CT,d(K ) = I{K ′<cd }

{

− exp

(

µd +
σ 2

d

2

)

Φ

[

log(cd − K ′) − µd − σ 2
d

σd

]

+(cd − K ′)FL N (µd ,σ 2
d )(cd − K ′)

}

. (23)

Further, K ′ = K −gT , m = X0e−βT + α
β

(

1 − e−βT
)

−
∫ T

0 e−β(T −u)λ(u)du, s2 =
σ 2

b

2β

(

1 − e−2βT
)

and FL N (µ,σ 2) is the cumulative distribution function of the log-

normal distribution with parameters µ and σ 2. Note that, in order to make the expo-

sition of the paper clear, the price derivation is moved to the “Appendix”.

Here, we assume that the option is settled in an infinitesimal period of time

[T, T + ∆]. However, in practice, the electricity spot price usually corresponds to

a delivery during some period of time (e.g. an hour, a day) and, hence, the maturity of

the option should be specified on the same time-scale. On the other hand, the analyzed

spot price quotations usually represent some delivery period. For instance, if the con-

sidered data is quoted daily, as it will be in the empirical example of Sect. 5, then the

maturity of the option would be also given in daily time-scale and would correspond

to daily delivery.
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Pricing electricity derivatives 11

4.2 Electricity forward contracts

Probably, the most popular electricity derivatives are the forward contracts. Recall that

a forward contract is an agreement to buy (sell) a certain amount of the underlying

(here MWh of electricity) at a specified future date. Settlement of the contract can

be specified in two ways: with physical delivery of electricity or with only financial

clearing. Both types of settlement are in the following called delivery. Denote the

price at time t of a forward contract with a delivery at time T by f T
t . Since the cost

of entering a forward contract is equal to zero, the expected future payoff under the

pricing measure should fulfill:

Eλ(PT − f T
t |Ft ) = 0, (24)

what implies that

f T
t = Eλ(PT |Ft ). (25)

Observe, that now we define the price of a forward contract at any future date t .

This is motivated by the fact that the valuation at time 0 of an option written on

a forward contract requires the knowledge about the forward price dynamics at the

option’s maturity t .

Forward price formula If the electricity spot price Pt is given by the MRS model

defined by Eqs. (1)–(7), then the price at time t of a forward contract written on Pt

with a delivery at time T is given by the following formula

f T
t = P(R⌊T ⌋ = b|Ft )

[

Eλ(X t,b|Ft )e
−β(T −t) +

α

β

(

1 − e−β(T −t)
)

−
T
∫

t

e−β(T −u)λ(u)du

]

+ P(R⌊T ⌋ = s|Ft )(e
µs+ 1

2 σ 2
s + cs)

+P(R⌊T ⌋ = d|Ft )(cd − eµd+ 1
2 σ 2

d ) + gT , (26)

where P(R⌊T ⌋ = i |Ft ) =
∑

j∈{b,s,d} P(R⌊T ⌋ = i |R⌊t⌋ = j)I{R⌊t⌋= j}.

Note that in the above formula Eλ(X t,b|Ft ) is used, since this expectation depends

on the state process value at time t . Namely, if Rt = b then Eλ(X t,b|Ft ) = X t,b =
X t . On the other hand, if at time t a spike or a drop occurred then Eλ(X t,b|Ft ) =
Eλ(X t,b|Ft−1) and again this expectation is dependent on Rt−1 value. A general

formula for Eλ(X t,b|Ft ) can be found using the same derivations as in Remark 1.

When deriving the forward price dynamics, we have to remember that the properties

of the obtained model should comply with the observed market prices. One of the most

pronounced features of the market forward prices is the observed term structure of

volatility, called the Samuelson effect. Precisely, the volatility of the forward prices is

quite low for distant delivery periods, however, it increases rapidly with approaching
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12 J. Janczura

maturity of the contracts. Here, the forward price volatility is described by the part

P(R⌊T ⌋ = b|Ft )Eλ(X t,b|Ft )e
−β(T −t) of formula (26). Hence, it is specified by the

volatility of the spot price base regime scaled with e−β(T −t) and the corresponding

probability of switching to the base regime. Observe that the scaling factor e−β(T −t)

exhibits the Samuelson effect as it increases to 1 with t approaching maturity time T .

Moreover the forward price volatility, again due to the scaling factor, is lower than the

spot price volatility. This is in compliance with the behavior of the market spot and

forward prices.

Electricity forward contracts listed on energy exchanges are usually settled during

a certain period of time (a week, a month, a year, etc.). Denote the price at time t of a

forward contract settled during the period [T1, T2] by f
[T1,T2]
t . Obviously, the latter is

the mean price of forward contracts with delivery during the period [T1, T2], namely:

f
[T1,T2]
t =

T2
∫

T1

w(T1, T2, T ) f T
t dT =

T2
∫

T1

w(T1, T2, T )Eλ(PT |Ft )dT, (27)

where w(T1, T2, T ) is the weight function representing the time value of money. The

form of w depends on the contract specification. For contracts settled at maturity we

have w(T1, T2, T ) = 1
T2−T1

, while for instant settlement w(T1, T2, T ) = re−rT

e−rT1−e−rT2
,

where r > 0 is the interest rate (Benth et al. 2008a). The price f
[T1,T2]
t can be obtained

from formulas (26) and (27). Indeed, we have:

f
[T1,T2]
t = Eλ(X t,b|Ft )

T2
∫

T1

w(T1, T2, T )P(R⌊T ⌋ = b|Ft )e
−β(T −t)dT

+
T2
∫

T1

w(T1, T2, T )P(R⌊T ⌋ = b|Ft )

×

⎡

⎣

α

β

(

1 − e−β(T −t)
)

−
T
∫

t

e−β(T −u)λ(u)du

⎤

⎦ dT

+(eµs+ 1
2 σ 2

s + cs)

T2
∫

T1

w(T1, T2, T )P(R⌊T ⌋ = s|Ft )dT

+(cd − eµd+ 1
2 σ 2

d )

T2
∫

T1

w(T1, T2, T )P(R⌊T ⌋ = d|Ft )dT

+
T2
∫

T1

w(T1, T2, T )gT dT . (28)
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Pricing electricity derivatives 13

4.3 Options written on electricity forward contracts

Finally, we find an explicit formula for a European call option written on a forward

contract delivering electricity during a specified period of time. Observe, that the

forward price f
[T1,T2]
t depends on the spot price at time t and, as a consequence, also

on the state process value at time t .

We consider an option written on an electricity forward contract with settlement

during a specified period of time, as it is the most popular specification of electric-

ity options on energy exchanges. For example, in the EEX market there are options

written on forward contracts with monthly, quarterly and yearly settlement periods.

The maturity of such options is set to the fourth business day before the beginning

of the underlying contracts settlement period. The EEX example will be examined in

Sect. 5.

Price formula for an option written on a forward contract If the electricity spot price

Pt is given by the model defined by Eqs. (1)–(7), then the price of a European call

option with strike price K and maturity t written on a forward contract with delivery

during the period [T1, T2] is equal to:

C f
[T1,T2]
t (K ) = e−r t

{

A0(b)Ct,b

(

K − B0(b)

A0(b)
+ gt

)

P(R⌊t⌋ = b|R0 = b)

+
∑

i∈{s,d}

⌊t⌋
∑

k=1

[

Ak(i)C⌊t⌋−k+1,b

(

K − Bk(i)

Ak(i)
+ g⌊t⌋−k+1

)

×P(R⌊t⌋ = i, R⌊t⌋−1 �= b, . . . , R⌊t⌋−k = b|R0 = b)

]}

, (29)

where

Ak(i) =
T2
∫

T1

w(T1, T2, T )P(R⌊T ⌋ = b|R⌊t⌋ = i)e−β(T −⌊t⌋+k−1)dT, (30)

A0(b) =
T2
∫

T1

w(T1, T2, T )P(R⌊T ⌋ = b|R⌊t⌋ = b)e−β(T −t)dT, (31)

Bk(i) =
T2
∫

T1

w(T1, T2, T )P(R⌊T ⌋ = b|R⌊t⌋ = i)

×

⎡

⎢

⎣

α

β

(

1 − e−β(T −⌊t⌋+k−1)
)

−
T
∫

⌊t⌋−k+1

e−β(T −u)λ(u)du

⎤

⎥

⎦
dT

+(eµs+ 1
2 σ 2

s + cs)

T2
∫

T1

w(T1, T2, T )P(R⌊T ⌋ = s|R⌊t⌋ = i)dT
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14 J. Janczura

+(cd − eµd+ 1
2 σ 2

d )

T2
∫

T1

w(T1, T2, T )P(R⌊T ⌋ = d|R⌊t⌋ = i)dT

+
T2
∫

T1

w(T1, T2, T )gT dT, (32)

B0(b) =
T2
∫

T1

w(T1, T2, T )P(R⌊T ⌋ = b|R⌊t⌋ = b)

×

⎡

⎣

α

β

(

1 − e−β(T −t)
)

−
T
∫

t

e−β(T −u)λ(u)du

⎤

⎦ dT

+(eµs+ 1
2 σ 2

s + cs)

T2
∫

T1

w(T1, T2, T )P(R⌊T ⌋ = s|R⌊t⌋ = b)dT

+(cd − eµd+ 1
2 σ 2

d )

T2
∫

T1

w(T1, T2, T )P(R⌊T ⌋ = d|R⌊t⌋ = b)dT

+
T2
∫

T1

w(T1, T2, T )gT dT . (33)

and Ct,b(K ) is the ‘base regime part’ of the price of a European call option written on

the electricity spot price with maturity t and strike K , see Eq. (21) with T = t .

5 EEX market example

Theoretical results from the previous sections allow us to price energy derivatives. We

assume that the electricity spot price follows the model specified by Eqs. (1)–(7) with

a periodic transition matrix and cs, cd being the first and third quartile of the stochastic

part [i.e. X t in Eq. (1)] of the dataset, respectively. We use mean daily EEX spot prices

from the period January 2, 2006–January 2, 2011 (5 years and 261 whole weeks). In

order to calibrate the model, we first remove the seasonal component.

We assume that the deterministic function gt is composed of two parts: a long

term trend L t and a weekly seasonality St . Since the valuation of derivatives requires

forecasting the seasonal component, we use the standard approach (see e.g. Bierbrauer

and Menn 2007; Geman and Roncoroni 2006; Weron 2008) and model the long term

trend by a sum of sine functions:

L t = (a1 + a2t) sin [2π (t + a3)]

+ (a4 + a5t) sin [2πa6 (t + a7)] + a8 + a9t + a10t2, (34)

123



Pricing electricity derivatives 15

Table 1 Coefficients of the function L t , see Eq. (34), fitted to the EEX spot prices

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

−11.99 0.55 −0.13 34.03 −8.04 0.46 6.75 25.37 19.20 −3.35
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Fig. 1 Left panel EEX spot prices and the fitted long term seasonal component (blue solid line). Right panel

weekly periodicity calculated for the EEX spot prices. Note, that 1—Monday, 2—Tuesday, …, 7—Sunday,

while the 8 day of the week is used for the German national holidays. (Color figure online)

where t is in yearly time scale. Note, that the first component of the above sum is

responsible for the yearly periodicity, while the second one captures seasonalities

of different period than one year (here, we obtain nearly half-year period, see a6 in

Table 1). The function L t is fitted to the EEX spot prices using the least squares

method. The obtained curve is plotted in Fig. 1, while the obtained ai coefficients are

given in Table 1.

The estimated long term trend is subtracted from the analyzed time series. Next,

the short term seasonal component is estimated using the ‘average week’ method,

being equivalent to using dummy variables (see e.g. Cartea and Figueroa 2005; De

Jong 2006). Namely, we calculate the mean of prices corresponding to each day of

the week (German national holidays are treated as the eight day of the week). The

obtained weekly pattern is plotted in Fig. 1.

Finally, the deseasonalized prices are obtained by subtracting the long and short

term trend from the EEX spot prices. Moreover, the data is shifted so that the minimum

of the deseasonalized and the original prices is the same. The resulting time series can

be seen in Fig. 2.

After removing seasonality, we are left with modeling the stochastic part X t . Here,

we calibrate the 3-regime MRS model, see Eqs. (2)–(7), to the deseasonalized EEX

prices. To this end, we use a version of the Expectation-Maximization algorithm of

Dempster et al. (1977), which was applied to MRS models by Hamilton (1990) and

was later refined by Kim (1994). It is a two-step iterative procedure:

– Step 1: For a parameter vector θ compute the conditional probabilities for the

process being in regime j at time t, P(Rt = j |X1, X2, . . . , X N ; θ), where

(X1, X2, . . . , X N ) is a sample of observations.
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Fig. 2 Calibration results of the 3-regime MRS model fitted to the EEX deseasonalized prices. The prices

classified to the spike regime i.e. with P(S) = P(Rt = s|X1, X2, . . . , X N ) > 0.5 are denoted by red dots,

while the prices classified to the drop regime i.e. with P(D) = P(Rt = d|X1, X2, . . . , X N ) > 0.5 are

denoted with black x’s. Additionally, in the lower panels the corresponding probabilities are plotted. The

estimated unconditional probability of spike occurrence is displayed in the bottom panel. Observe, that the

highest probability of spike is obtained for the Autumn/Winter period, while the lowest for Spring. (Color

figure online)

– Step 2: Calculate new and more exact maximum likelihood estimates of θ using

the likelihood function, weighted with the probabilities from step 1.

The steps 1 and 2 are repeated until a local maximum of the likelihood function

is found. For the detailed description of the algorithm in case of the 3-regime model

considered in this paper see the recent work of Janczura and Weron (2012). The

obtained parameters are given in Table 2. Observe high probabilities of staying in the

same regime, ranging from 0.40 for the drop regime up to 0.97 for the base regime.

Hence, the assumed model allows for modeling consecutive spikes or drops in a very

natural way. The calibration results are plotted in Fig. 2, where additionally the regimes

classification is illustrated. As we may observe, spikes/drops occur usually as a series

of high/low prices rather than separate outstanding observations. What is interesting to

note, is the clear seasonal pattern in the estimated probability of spike, see the bottom

panel in Fig. 2. Indeed, the highest spike occurrence probability is obtained for the

Autumn/Winter season, while the lowest for Spring.

In order to validate the used MRS model, we apply a Kolmogorov–Smirnov

goodness-of-fit test for the marginal distribution of the individual regimes, as well

as, for the whole model. We use two testing procedures. The first one (called
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Pricing electricity derivatives 17

Table 2 Parameter estimates of the 3-regime MRS model fitted to the deseasonalized EEX prices

Parameters Probabilities

α1 β1 σ 2
1 α2 σ 2

2 α3 σ 2
3 p11 p22 p33

5.98 0.16 39.53 2.89 0.64 2.62 0.33 0.97 0.66 0.40

Table 3 p values of the goodness-of-fit tests for the 3-regime MRS model fitted to the deseasonalized EEX

prices

ewedf wedf

Regime Base Spike Drop Model Base Spike Drop Model

p value 0.64 0.16 0.50 0.34 0.30 0.59 0.95 0.25

The test results for the ewedf, as well as, the wedf approach are provided

Table 4 Specification of the

monthly forward contracts listed

on the EEX market on January

3, 2011

Name Settlement price T1 T2

Feb-11 54.35 1.2.2011 28.2.2011

Mar-11 51.64 1.3.2011 31.3.2011

Apr-11 48.07 1.4.2011 30.4.2011

May-11 45.53 1.5.2011 31.5.2011

Jun-11 48.50 1.6.2011 30.6.2011

Jul-11 49.00 1.7.2011 31.7.2011

ewedf—equally weighted empirical distribution function) is based on classifying

observations to the most probable regime, i.e. assuming that Rt = i if P(Rt =
i |X1, X2, . . . , X N ) > 0.5. Note that, due to the cutoff values cs and cd , if a proba-

bility of spike (drop) is positive, the probability of drop (spike) must be equal to 0.

Hence, an observation is considered a spike or a drop if it is the most probable regime

for it. As a consequence, the standard Kolmogorov–Smirnov goodness-of-fit test can

be applied. The second one (called wedf) utilizes a notion of the weighted empir-

ical distribution function, where t-th observation is taken into account with weight

proportional to the probability P(Rt = i |X1, X2, . . . , X N ). For the detailed testing

procedure derivation see Janczura and Weron (2013). The obtained test p values are

given in Table 3. Recall, that p value higher than 5 % means that we cannot reject,

at the 5 % significance level, the hypothesis that the analyzed dataset was driven by

the assumed model. As all of the obtained p values are higher than 5 %, we can-

not reject the considered 3-regime MRS model as a proper one for the analyzed

dataset.

Before we start with the valuation of derivatives we have to find the risk premium

and the function λ, see Eq. (19). We use monthly forward contracts listed on the EEX

market on January 3, 2011, i.e. on the day directly following the calibration period.

The prices, as well as, the delivery periods of the analyzed forward contracts are given

in Table 4. Since we analyze monthly contracts, the risk premium should be also

calculated on the monthly basis, i.e. instead of Eq. (8) we use:
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18 J. Janczura

RP(T1, T2) =
1

T2 − T1 + 1

T2
∑

t=T1

E(Pt |F0) − f
[T1,T2]
0 (35)

with f
[T1,T2]
0 being the monthly forward contracts quotations (see Table 4) and

E(Pt |F0) being the forecast of the future spot price based on the fitted model. Note that

the average monthly expected spot price is calculated as an arithmetic mean instead

of an integral, because the analyzed spot prices are quoted is discrete time (on a daily

basis). The values of the risk premium obtained from contracts with different delivery

periods are plotted in Fig. 3 (for contract specifications see Table 4).

The negative risk premium [if defined as in (8)] means that the forward prices are

higher than the expected spot prices, what might indicate that there is high demand

for the forward contracts. Such situation occurs if buyers (retailers) are risk averse and

are willing to pay more to ensure a future delivery. On the other hand, according to the

normal backwardation theory, a positive risk premium means that producers accept

forward prices lower than the expected spot prices in order to secure consumption

of electricity produced in the future. It should be noted that there are also different

attempts to explain signs of the risk premium in the literature. Benth and Meyer-

Brandis (2009) use an information-based approach, while Benth et al. (2008b) give

an interpretation of the risk premium on the basis of the certainty equivalent principle

and jumps in the spot price dynamics.

Here, we observe an evidence for the negative risk premium, especially for contracts

with approaching delivery period, see Fig. 3. For the contracts with more distant

delivery period the obtained risk premium is less significant. Since calibrating the

risk premium on only one day might not be representative, we also calculate the risk

premium for the same contracts but on the next three Mondays of January 2011,

namely on 10th, 17th and 24th of January. The obtained values are plotted in Fig. 7

in the “Appendix”. Observe, that although the values change for different times of

calculation, what might be due to the low liquidity of the contracts, the shape of the

risk premium is generally preserved. For each case the risk premium is negative and

increase with increasing time to delivery. The obtained term structure of risk premium

might indicate that for short deliveries the risk-averse retailers dominate on the market
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Fig. 3 The risk premium obtained from monthly forward contracts with different delivery periods (blue

lines), as well as the fitted function in the case of linear λ(t) [see Eq. (36)] plotted with red dashed line.

(Color figure online)
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Fig. 4 Prices of a European call option written on the electricity spot price for different maturities T and

strike prices K . The prices are calculated on January 3, 2011

hedging against a possible spike risks, while with increasing time of delivery the

forward contracts become more attractive for electricity producers. Similar results

were also obtained by other authors, like e.g. Geman and Vasciek (2001) for the case

of the PJM market or Ronn and Wimschulte (2009) for the EEX market (note that

these authors define the risk premium as the difference between the forward prices

and the expected spot prices, which is −RP(T ) defined in this article).

Next, using the obtained risk premium values we fit the function λ, i.e the market

price of risk, see Eq. (19). To this end, we assume that the market price of risk λ(t) =
λ1t + λ2. Again, since we analyze monthly forward contracts and the risk premium

is found on the monthly basis, λ1 and λ2 are found by fitting:

λ1

∑T2

t=T1
p

(t)
bb (t − (1 − e−βt )/β) + λ2

∑T2

t=T1
p

(t)
bb (1 − e−βt )

β(T2 − T1 + 1)
= RP (T1, T2). (36)

See Eq. (19) for the comparison with the continuous time scale. Using the least-

squares minimization scheme we get λ(t) = 0.0084t − 1.8387, see the red dashed

line in Fig. 3 for the plot of the function fitted to the risk premium [i.e. the left hand

side of Eq. (36)]. Note that, the choice of the linear form of the λ function allows

to model dependence between the risk premium and time to maturity. Obviously,

alternative functions can be used as well. Different time dependent market price of

risk specifications were studied e.g. by Haerdle and Lopez-Cabrera (2012) in the

case of weather derivatives. It was found that the market price of risk shows seasonal

variations and is an increasing function of the futures expiration date. However, for the

example studied in the paper, the linear function yields a reasonable fit as compared to

a constant, see Figs. 3 and 6, at the same time being simple enough to be numerically

and analytically easily handled.
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Fig. 5 Prices of a European call option written on the electricity forward contract with settlement in

February 2011 for different maturities t and strike prices K . The prices are calculated on January 3, 2011

Table 5 Prices of European call

options written on monthly

forward contracts with strike

price K = 30

The prices are calculated on

January 3, 2011

Month of delivery

[T1, T2]
Options maturity t Options price

C f
[T1,T2]
t (K )

February 26.1.2011 13.5449

March 23.2.2011 9.1074

April 28.3.2011 4.2258

May 26.4.2011 2.6826

June 28.5.2011 3.6148

July 27.6.2011 7.1913

Now, we can derive the price of a European call option written on the electricity spot

price. Assume that the interest rate r is equal to 0. The option prices obtained in Sect. 4.1

with different maturities t and strike prices K are plotted in Fig. 4. Obviously, the lower

is the strike price, the higher is the call option price. What is interesting to note, is how

the option price depends on the maturity tenor T . Observe the clear seasonal pattern of

option prices, both on the weekly and the long-term level. The long-term seasonality is

caused not only by the deterministic component gt but also by the periodic transition

matrix allowing for varying spike (drop) probabilities during the year. Recall that in

the EEX market the spike probability is the highest in Autumn/Winter and the lowest

in Spring, see Fig. 2.

Now, we derive the prices of European call options written on monthly forward

contracts. Using the results obtained in Sect. 4.3 we calculate the price of an option

written on the forward contract with settlement in February 2011. The results are

plotted in Fig. 5. In order to check how the option price varies according to the delivery

period, we calculate the prices of options written on monthly forward contracts with
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deliveries within the next 6 months (i.e. February 2011 till July 2011). According to

the products specification in the EEX market, the maturity of the options is set to the

fourth business day before the beginning of the delivery period. The obtained option

prices are given in Table 5. Similarly, as in the case of options written on the spot

price, we observe the lowest option prices for settlement during the Spring months.

6 Conclusions

In this paper we have derived premiums of European options written on electricity spot,

as well as, forward prices. We assumed that electricity spot prices can be described

by a 3-regime MRS model with independent spikes and drops and periodic transition

matrix, proposed earlier by Janczura and Weron (2010). The forward prices were

then derived using the risk premium approach and fitting the model-based prices to

the observed forward curve. Next, using the spot and forward price dynamics we

calculated prices of the corresponding European options. It should be stressed that

the presented formulas are valid only under assumption of the 3-regime MRS model

of Janczura and Weron (2010). However, the presented methodology can be easily

extended to other specifications of the MRS models.

The assumed model was then calibrated to the spot prices from the European Energy

Exchange. We have validated the model choice by performing a statistical goodness-

of-fit test. Next, using monthly forward contracts quotations we have calculated the

risk premium. We have obtained negative values, especially significant for contracts

with approaching maturity. For contracts with distant settlement the risk premium

values were higher.

Finally, the presented methodology and the calibration results allowed us to find

prices of European options currently listed on the EEX market. As the assumed

3-regime MRS model seems to be adequate to describe dynamics of electricity spot

prices, the results of the paper can be used for pricing of electricity derivatives and,

hence, yield an effective risk management tool.
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Appendix

Derivation of the option price formula Using standard arguments the option price

is the discounted expected value of the payoff function under the pricing measure

(see e.g. Musiela and Rutkowski (1997)). Moreover, analogously to formula (11) this

expectation is equal to:

CT (K ) = e−rT Eλ
[

(PT − K )+|F0

]

= e−rT Eλ
[

(XT + gT − K )+|F0

]
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= e−rT

{

p
(T )
bb Eλ

[

(XT,b − K ′)+|F0

]

+ p
(T )
bs E

[

(X⌊T ⌋,s − K ′)+|F0

]

+p
(T )
bd E

[

(X⌊T ⌋,d − K ′)+|F0

]

}

, (37)

where K ′ = K − gT and (x)+ = max(0, x).

We start with pricing the base regime part CT,b(K ):

CT,b(K ) = Eλ
[

(XT,b − K ′)+|F0

]

=
∞
∫

K ′

(x − K ′) fXT,b|X0,b
(x)dx, (38)

where fXT,b|X0,b
(x) denotes the density of XT,b conditional on X0,b. From (17) and

Ito’s lemma we have that:

XT,b = X0,be−βT +
α

β

(

1−e−βT
)

−
T
∫

0

e−β(T−u)λ(u)du+σb

T
∫

0

e−β(T −u)dW λ
u . (39)

Hence, XT,b given X0,b has a Gaussian distribution with mean

E(XT,b|F0) = X0,be−βT +
α

β

(

1 − e−βT
)

−
T
∫

0

e−β(T −u)λ(u)du, (40)

and variance

V ar(XT,b|F0) =
σ 2

b

2β

(

1 − e−2βT
)

. (41)

Denote the mean by m and the variance by s2. We have:

CT,b(K ) =
1

√
2πs

∞
∫

K ′

(x − K ′) exp

(

−
(x − m)2

2s2

)

dx

=
s

√
2π

exp

(

−
(K ′ − m)2

2s2

)

+ (m − K ′)

[

1 − Φ

(

K ′ − m

s

)]

. (42)

Now, we turn to the pricing of the spike regime part. Observe that if K ′ ≤ cs ,

then E[(X⌊T ⌋,s − K ′)+|F0] = E(X⌊T ⌋,s) − K ′. Assume that K ′ > cs . Denote the
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log-normal pdf by fL N (µs ,σ 2
s ) and the cdf by FL N (µs ,σ 2

s ). Then

E[(X⌊T ⌋,s − K ′)+|F0] =
∞
∫

K ′

(x − K ′) fL N (µs ,σ 2
s )(x − cs)dx

= exp

(

µs +
σ 2

s

2

){

1 − Φ

[

log(K ′ − cs) − µs − σ 2
s

σs

]}

−(K ′ − cs)

[

1 − FL N (µs ,σ 2
s )(K ′ − cs)

]

(43)

and we have that

E[(X⌊T ⌋,s − K ′)+|F0] = I{K ′>cs }

{

exp

(

µs +
σ 2

s

2

)

×
[

1 − Φ

(

log(K ′ − cs) − µs − σ 2
s

σs

)]

−(K ′ − cs)

[

1 − FL N (µs ,σ 2
s )(K ′ − cs)

]

}

+I{K ′≤cs }

[

exp

(

µs +
σ 2

s

2

)

+ cs − K ′
]

. (44)

Similarly, we can price the drop regime part:

E[(X⌊T ⌋,d − K ′)+|F0] = I{K ′<cd }

{

− exp

(

µd +
σ 2

d

2

)

×Φ

[

log(cd − K ′) − µd − σ 2
d

σd

]

+(cd − K ′)FL N (µd ,σ 2
d )(cd − K ′)

}

. (45)

Finally, letting CT,i (K ) = E[(X⌊T ⌋,i − K ′)+|F0] for i ∈ {s, d} and combining

formulas (37), (42), (44) and (45) yields the result.

Derivation of the forward price First, note that

Eλ(PT |Ft ) = Eλ(XT |Ft ) + gT = Eλ(I{R⌊T ⌋=b} XT,b + I{R⌊T ⌋=s} X⌊T ⌋,s

+I{R⌊T ⌋=d} X⌊T ⌋,d |Ft ) + gT . (46)

Since X⌊T ⌋,i , for i =s, d, is independent of R⌊T ⌋ and Ft , we have: Eλ(I{R⌊T ⌋=i} XT,i |
Ft ) = P(R⌊T ⌋ = i |Ft )E(X⌊T ⌋,i ), i = s, d. Secondly, we have

Eλ(I{R⌊T ⌋=b} XT,b|Ft ) = Eλ(I{R⌊T ⌋=b}|Ft )Eλ(XT,b|Ft )

+P(R⌊T ⌋ = b|Ft )Eλ
(

XT,b|Ft

)

(47)
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and from the base regime definition and Ito’s lemma:

Eλ(XT,b|Ft ) = Eλ(X t,b|Ft )e
−β(T −t) +

α

β

(

1 − e−β(T −t)
)

−
T
∫

t

e−β(T −u)λ(u)du. (48)

Moreover, from the definitions of the spike and drop regimes, see Eqs. (6) and (7),

we get:

E(X⌊T ⌋,s) = eµs+ 1
2 σ 2

s + cs (49)

and

E(X⌊T ⌋,d) = cd − eµd+ 1
2 σ 2

d . (50)

Finally, combining formula (46) with (48), (49) and (50) yields the result.

Derivation of the price formula for an option written on a forward contract We start

the derivation of the option price formula with the following observation.

If R⌊t⌋ = b, then the forward price is given by:

f
[T1,T2]
t |{R⌊t⌋=b} = X t,b

T2
∫

T1

w(T1, T2, T )P(R⌊T ⌋ = b|R⌊t⌋ = b)e−β(T −t)dT

+
T2
∫

T1

w(T1, T2, T )P(R⌊T ⌋ = b|R⌊t⌋ = b)

×

⎡

⎣

α

β

(

1 − e−β(T −t)
)

−
T
∫

t

e−β(T −u)λ(u)du

⎤

⎦ dT

+(eµs+ 1
2 σ 2

s + cs)

T2
∫

T1

w(T1, T2, T )P(R⌊T ⌋ = s|R⌊t⌋ = b)dT

+(cd − eµd+ 1
2 σ 2

d )

T2
∫

T1

w(T1, T2, T )P(R⌊T ⌋ = d|R⌊t⌋ = b)dT

+
T2
∫

T1

w(T1, T2, T )gT dT . (51)
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Moreover, if k is such a number that R⌊t⌋ = i, R⌊t⌋−1 �= b, . . . , R⌊t⌋−k+1 �=
b, R⌊t⌋−k = b, for i ∈ {s, d} (i.e. the last base regime price before time t was observed

k-periods earlier), then the forward price is given by:

f
[T1,T2]
t |{R⌊t⌋=i,R⌊t⌋−1 �=b,...,R⌊t⌋−k=b}

= X⌊t⌋−k+1,b

T2
∫

T1

w(T1, T2, T )P(R⌊T ⌋ = b|R⌊t⌋ = i)e−β(T −⌊t⌋+k−1)dT

+
T2
∫

T1

w(T1, T2, T )P(R⌊T ⌋ = b|R⌊t⌋ = i)

×

⎡

⎢

⎣

α

β

(

1 − e−β(T −⌊t⌋+k−1)
)

−
T
∫

⌊t⌋−k+1

e−β(T −u)λ(u)du

⎤

⎥

⎦
dT

+(eµs+ 1
2 σ 2

s + cs)

T2
∫

T1

w(T1, T2, T )P(R⌊T ⌋ = s|R⌊t⌋ = i)dT

+(cd − eµd+ 1
2 σ 2

d )

T2
∫

T1

w(T1, T2, T )P(R⌊T ⌋ = d|R⌊t⌋ = i)dT

+
T2
∫

T1

w(T1, T2, T )gT dT . (52)

Formula (51) is a simple consequence of Eq. (28) and the fact that R⌊t⌋ = b implies

that Eλ(X t,b|Ft ) = X t,b. In order to show (52), observe that for R⌊t⌋ = i, R⌊t⌋−1] �=
b, . . . , R⌊t⌋−k = b, i = s, d, we have

Eλ(X t,b|Ft ) = Eλ
[

X⌊t⌋−k+1,be−β(t−⌊t⌋+k−1) +
α

β

(

1 − e−β(t−⌊t⌋+k−1)
)

−
t

∫

⌊t⌋−k+1

e−β(t−u)λ(u)du

+ σb

t
∫

⌊t⌋−k+1

e−β(t−u)dW λ
u |X⌊t⌋−k+1,b

]

= X⌊t⌋−k+1,be−β(t−⌊t⌋+k−1) +
α

β

(

1 − e−β(t−⌊t⌋+k−1)
)
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−
t

∫

⌊t⌋−k+1

e−β(t−u)λ(u)du. (53)

Combining Eqs. (28) and (53) yields the result.

Now we can derive the option price formula. The option price is equal to the

expected future payoff. Therefore, we have

C f
[T1,T2]
t (K ) = e−r t Eλ

[

( f
[T1,T2]
t − K )+|F0

]

. (54)

Observe that the forward price can be written as

f
[T1,T2]
t = I{R⌊t⌋=b} f

[T1,T2]
t |{R⌊t⌋=b}

+
∑

i∈{s,d}

⌊t⌋
∑

k=1

I{R⌊t⌋=i,R⌊t⌋−1 �=b,...,R⌊t⌋−k=b} f
[T1,T2]
t |{R⌊t⌋=i,R⌊t⌋−1 �=b,...,R⌊t⌋−k=b},(55)

where f
[T1,T2]
t |{R⌊t⌋=b} and f

[T1,T2]
t |{R⌊t⌋=i,R⌊t⌋−1 �=b,...,R⌊t⌋−k=b}, i ∈ {s, d}, k = 1, 2, . . . , ⌊t⌋, are

given by (51) and (52). Hence,

C f
[T1,T2]
t (K ) = e−r t

{

Eλ
[

( f
[T1,T2]
t |{R⌊t⌋=b} − K )+|F0

]

P(R⌊t⌋ = b|R0 = b)

+
∑

i∈{s,d}

⌊t⌋
∑

k=1

{

Eλ
[

( f
[T1,T2]
t |{R⌊t⌋=i,R⌊t⌋−1 �=b,...,R⌊t⌋−k=b} − K )+|F0

]

×P(R⌊t⌋ = i, R⌊t⌋−1 �= b, . . . , R⌊t⌋−k = b|R0 = b)

}

. (56)

Now, observe that

Eλ
[

( f
[T1,T2]
t |{R⌊t⌋=b} − K )+|F0

]

= Eλ
[

(

X t,b A0(b) + B0(b) − K
)+ |F0

]

= A0(b)Eλ

[

(

X t,b −
K − B0(b)

A0(b)

)+ ∣

∣

∣
F0

]

= A0(b)Ct,b

(

K − B0(b)

A0(b)
+ gt

)

, (57)

where Ct,b

(

K−B0(b)
A0(b)

+ gt

)

is the ‘base regime part’ of the price of a European call

option written on the electricity spot price with maturity t and strike K−B0(b)
A0(b)

+ gt ,
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see Eq. (21) and Ak, Bk are defined in Eqs. (30)–(33). Similarly,

Eλ
[

( f
[T1,T2]
t |{R⌊t⌋=i,R⌊t⌋−1 �=b,...,R⌊t⌋−k=b} − K )+|F0

]

= Ak(i)Eλ

[

(

X⌊t⌋−k+1,b −
K − Bk(i)

Ak(i)

)+
|F0

]

= Ak(i)C⌊t⌋−k+1,b

(

K − Bk(i)

Ak(i)
+ g⌊t⌋−k+1

)

(58)
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Fig. 6 The risk premium obtained from monthly forward contracts with different delivery periods (blue

solid lines) on three consecutive Mondays in January 2011: 10.01.2011 (top panel), 17.01.2011 (middle

panel) and 24.01.2011 (bottom panel). Additionally, the fitted function in the case of linear λ(t) [see Eq.

(36)] is plotted with red dashed lines. (Color figure online)
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Fig. 7 The risk premium obtained from monthly forward contracts with different delivery periods (blue

lines), as well as the fitted function in the case of constant λ (see Eq. (36) with λ1 = 0) plotted with red

dashed line. (Color figure online)

for i ∈ {s, d} Finally, combining formulas (54), (57) and (58) completes the proof

(Figs. 6, 7).
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