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Chapter 1

Introduction

Credit structuring technology has been employed to create the market for collat-

eralized debt obligations (CDO). CDOs redistribute credit risk to meet investor

demands for a wide range of rated securities with scheduled interest and principal

payments, securitized by diversified pools of debt instruments. The equity com-

ponents of CDOs are leveraged investments in the collateral portfolio that offer

unique risk and return benefits and have created a market for alternative invest-

ments linked to the credit markets.

A relatively recent innovation in structuring technology is the advent of Collater-

alized Fund of Hedge Funds Obligations (CFO). In these structures, investors gain

exposure to a diversified pool of hedge funds through a fund of funds manager.

The capital structure of a CFO is similar to traditional CDOs, meaning that in-

vestors are offered different rated notes and equity interest. CFOs are structured

as arbitrage market value CDOs. The fund of funds manager actively manages the

fund to maximize total return while restraining price volatility within the guide-

lines of the structure.

The aim of this work is to provide a useful framework to evaluate Collateralized

Fund of Hedge Funds Obligations, that is pricing the equity and the debt tranches

of a CFO.

The basic idea of our pricing model is to evaluate each CFO liability as an op-

tion written on the underlying pool of hedge funds. The value of every tranche

depends on the evolution of the collateral portfolio during the life of the contract.

Furthermore, care is taken to distinguish between the fund of hedge funds and
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CHAPTER 1. INTRODUCTION 2

its underlying hedge funds, each of which is itself a portfolio of various securities,

debt instruments and financial contracts.

The models we propose incorporate skewness, excess-kurtosis and are able to cap-

ture more complex dependence structures among hedge fund log-returns than the

simple correlation matrix. With these models it is possible to describe the impact

of an equivalent change of probability measure not only on the marginal processes

but also on the underlying dependence structure among hedge funds.

The theoretical problem

Consider a portfolio of financial products (in our case hedge funds) whose log-

returns have distributions very far from the Normal. Assume that the value of

this portfolio is regularly checked during the time with a fixed frequency, for exam-

ple at the end of every month. Assume also that only historical data are available.

Our task is to compute the fair price of an asset whose payoff is linked to the value

of this portfolio at each date. To reach this purpose we can apply the martingale

method: we have to compute the expected discounted payoff of the asset under a

risk neutral probability measure.

The general problem is to define the joint distribution of the value of all the assets

in the portfolio at each date of control under a suitable risk neutral probability

measure.

To face this problem we consider separately two issues:

• the definition of the dependence structure under the physical probability

measure;

• the choice of an appropriate equivalent martingale measure allowing to study

the impact of the change of measure on the dependence structure

To solve the first problem we need to model both cross-section and temporal

dependence among assets simultaneously.

The two extreme choices are:

• the direct specification of a multivariate stochastic process;

• the definition of the marginal distributions and the temporal dependence

structure separately.
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The first alternative has the advantage of the parsimony but can lack of flexibil-

ity. The second alternative is very flexible but this high flexibility could result

inconsistent with the main principles of a pricing model. Our choice represents a

possible compromise between these two extreme cases.

Finally, since no traded options are available for calibration purpose, we use an

approach to change measure that allows to capture the impact of the change of

measure on the marginal and joint parameters.

Methodological contribution

In this work three models are employed.

In the first model the physical dependence among hedge fund log-returns is in-

troduced through a Gamma stochastic time change of a Multivariate Brownian

motion with drift, with independent components. The idea is that the economy is

driven by only one common factor, whose dynamic is given by a Gamma subor-

dinator. A jump in the time-change leads to a jump in the price processes and so

all jumps occur simultaneously. However the size of individual jumps are caused

by the independent Brownian Motions.

In the second model we have both temporal and cross section sources of de-

pendence. The dependence under the historical probability measure is obtained

through a Gamma stochastic time change of a Multivariate Brownian motion with

drift, whose components are correlated. In this case the Net Asset Value processes

jump at the same time and the size of individual jumps are correlated.

In both cases the use of a common Gamma stochastic clock leads to the Mul-

tivariate Variance Gamma process to describe the joint dynamic of hedge fund

log-returns.

In the third model we use a Multivariate Gamma subordinator to time-change a

Multivariate Brownian motion with drift. The main feature of this model is that

it allows to incorporate both a common time change, which can be interpreted

as a measure of the global market activity, and an idiosyncratic time transform

linked to the specific hedge fund and information update.

In all our models we have Variance Gamma margins under the physical probability

measure but different dependence structures.

In the current setting, the market is incomplete. The risk due to jumps cannot be

hedged and there is no more a unique risk neutral measure. Among the measures
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equivalent to the historical one, we choose the Esscher measure for which the dis-

counted Net Asset Value process of each hedge fund is a martingale. In particular,

we change the probability measure using the Multivariate Esscher Transform and

we show that under this new measure the first two models can be expressed again

as Multivariate Brownian motion with drift, time changed with a Gamma stochas-

tic clock identical to the physical one and with the same correlation matrix among

the Brownian motions . We find also functional relations between real world and

risk neutral parameters. In the third model the change of measure modifies both

marginal and joint processes. In particular the marginal processes are no longer

Variance Gamma. However, we show that under the Esscher Equivalent Martin-

gale Measure the this process can be expressed as a Multivariate Brownian motion

with drift time changed through a {new Multivariate subordinator. The use of the

Multivariate Esscher Transform in our models represents a powerful tool to study

the impact of the change of measure not only on the marginal price processes but

also on the underlying dependence structure. This is another contribution of this

paper.

The Application

These models are applied to evaluate the equity and the debt tranches of a CFO.

The analysis is done starting from a simple CFO structure, which is then progres-

sively complicated with the introduction of the structural features we encounter

in typical CFOs. In this way, at each step of the evolution of the structure, the

reader can understand the impact on the value, measured with respect to the

first four moments of the distribution, and how this value is divided among the

different tranches. The result is a useful schema that can provide some help in

designing a CFO transaction. The analysis is also helpful for the CFO manager

who usually invests in the equity tranche, because gives him some suggestions on

how to increase the value of his investment.

The work is organized as follows. In Chapter 2 an introduction to Collateralized

Fund of Hedge Funds Obligations is provided. Particular care is used to describe

the structural features that influence both the Nav of the collateral portfolio and

the payoff of each tranche. In Chapter 3 statistical properties of Hedge Fund

monthly log-returns are analysed. In particular, it is shown that the evolution



CHAPTER 1. INTRODUCTION 5

of hedge funds Net Asset Value cannot be described by a Geometric Brownian

motion. Hedge funds monthly log-returns exhibit leptokurtic and usually neg-

atively skewed distributions. In Chapter 4 is provided an introduction to Lévy

processes and Exponential Lévy models with particular emphasis for the concepts,

properties and instruments that are used in the sequel. In Chapter 5 we present

three different models applied to describe the physical evolution of hedge fund log-

returns. Then it is discussed the change of measure and its impact on marginal

and joint processes for each model. In Chapter 6 the estimation methodology

and the simulation procedure are illustrated. In Chapter 7 we discuss the pricing

applications and the results. Finally, we report our conclusions and indicate a

possible extension of our models.



Chapter 2

Collateralized Fund of Hedge

Funds Obligations

2.1 Collateralized Fund of Hedge Funds Obligations

Collateralized Debt Obligations are structured credit vehicles that redistribute

credit risk to meet investor demands for a wide range of rated securities with

scheduled interest and principal payments. CDOs are securitized by diversified

pools of debt instruments. Relatively recent developments in credit structuring

technology include the introduction of Collateralized Fund of Hedge Funds Obli-

gations (CFOs). A CFO is created by using a standard securitization approach.

Often a special purpose vehicle (SPV) issues multiple tranches of senior and subor-

dinated notes that pay interest at fixed or floating rates and an equity tranche, and

invests the proceeds in a portfolio of hedge funds. Picture 2.1 shows a schematic

prototype of a CFO structure. The SPV, a new structure with no operating his-

tory, is set up as a bankruptcy-remote entity. This allows CFO investors to take

only the risk of ownership of the assets but not the bankruptcy risk of the CFO’s

sponsor. The capital structure of a CFO is similar to that of a CDO. It consists of

the collateral pool held in the SPV on the asset side and a group of notes having

different priorities and payment obligations on the liability side. The asset-backed

notes are expected to be redeemed at the scheduled maturity date with the liq-

uidation proceeds of the collateral portfolio. The priority of payments among the

different classes is sequential such that the Class A investors will be redeemed

6
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first. Following the full redemption of the Class A notes, the Class B notes will

be redeemed. The Class C notes will repaid after the full redemption of the Class

B notes. The Equity holders will receive all the residuals after the full redemp-

tion of the Class C notes1. The most senior tranche is usually rated AAA and is

credit enhanced due to the subordination of the lower tranches. This means that

in case of loss the lowest tranche, that is the equity tranche, absorbs losses first.

When the equity tranche is exhausted, the next lowest tranche begins absorbing

losses. A CFO may have a AAA rated tranche, an AA rated tranche, a single A

rated tranche and an unrated equity tranche. The assets of the special purpose

vehicle secure the notes issued under an indenture or deed of trust under which a

trustee is appointed. CFOs tend to be structured as arbitrage market-value CDOs

that invest in hedge funds. CFO assets are actively managed by an investment

adviser or manager with fund of funds expertise in order to maximize total return

while restraining price volatility within the guidelines of the structure, in return

for management fees and incentive compensation. The leverage (the ratio of debt

to equity issued) in a CFO typically ranges from two-to-one to five-to-one while a

CDO may have leverage as high as twenty-five-to-one for investment grade assets.

A CFO can also be regarded as a financial structure with equity investors and

lenders where all the assets, equity and bond, are invested in a portfolio of hedge

funds. The lenders earn a spread over interest rates and the equity holders, usually

the manager of the CFO, earn the total return of the fund minus the financing

fees.

CFOs typically have a stated term of three to seven years at the end of which all

of the securities must be redeemed. Investors have limited redemption rights prior

to maturity. Typically, redemptions before maturity are only possible if some pre-

determined events happen.

Detailed descriptions of real CFO structures can be found in Stone and Sizzu

(2002) [121] and in some Moody’s pre-sale reports [100, 101, 102, 103] for exam-

ple.

1In the picture I, P, D, G indicate respectively interests, principal, dividends and capital gains.

Notice that capital gains can be negative. In the worst case scenario G+P=0, i.e. equity holders

lose all their invested capital.



CHAPTER 2. COLLATERALIZED FUND OF HEDGE FUNDS OBLIGATIONS8

Debt Tranche A
57% of the deal

Debt Tranche B
15% of the deal

Debt Tranche C
10% of the deal

Equity Tranche
18% of the deal

Special
Purpose
Vehicle
 (SPV)

Investors

Pool of Hedge Funds

Convertible Arbitrage
Dedicated Short Bias
Emerging Markets
Equity Market Neutral
Event Driven
Distressed
Multi−Strategy
Risk Arbitrage
Fixed Income Arbitrage
Managed Futures
Global Macro
Long−Short Equity
Fund of Hedge Funds

Fund of Hedge Funds Manager   Trustee

Investment

Investment

Investment

Investment

Investment

I & P

I & P

I & P

D & P+G

Cash flows

Schematic Prototype of a CFO Structure. Typical maturities 3−7 years

Figure 2.1: A CFO structure
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2.2 Motivations for Investing in CFOs

The motivation for investment in CFOs requires explanation from the perspective

of both equity and debt investors. The main reference on this topic is Mahade-

van and Schwartz (2002) [84]. The interested reader can also see [87, 121, 127, 131].

Debt Investor

• A note of a CFO can improve the degree of diversification of any credit

investor’s portfolio. The cash flows of the debt tranches (coupons and prin-

cipal payments) depend on the performance of the pool of the underlying

hedge funds. Fund of hedge funds exhibit unique risk/return profile when

compared to traditional asset classes and low correlation with the traditional

credit markets.

• The fact that some collateral may consist of successful hedge funds that are

closed to new investors is often cited as another motivation for CFO debt

investment.

• The notes of a CFO carry credit ratings, making the investments available

and suitable to a larger audience then the typical investor base for direct

fund of funds investment.

• An important advantage for CFO debt investor over the direct fund of funds

investment approach is the solid credit protection offered by CFOs struc-

tures. Trading restrictions, liquidation and early redemptions are procedures

designed to safeguard cash flows for debt investors.

• CFO debt is usually less liquid then a direct investment in a fund of hedge

funds because debtholders do not have early redemption options in their

notes. This is of course a disadvantage for CFO debt investors. However,

a source of liquidity for bondholders requiring early redemption may be

represented by the secondary market for CDO notes.

• Debt holders avoid direct fees because equity holders pay them.

Equity Investor
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• Some equity investors in funds of hedge funds seek to use leverage to in-

crease their investment returns by funding some of the investment with a

collateralized loan, much like the purchase of stock on margin. CFO equity

investors gain access to a diversified portfolio of hedge funds with a nominal

investment thanks to leverage provided by debtholders. Since it is raised

directly from the capital markets, CFO debt also broadens and deepens the

funding sources available to levered equity investors in funds of hedge funds.

For example, in a CFO structure with a debt-equity ratio of 5:1, an invest-

ment in the equity tranche of $20 million results in a leveraged investment

in the underlying fund of funds of $100 million. On a stand alone basis, it

could be more difficult to invest in a well diversified portfolio of hedge funds

with a nominal investment of $20 million.

• The fact that some collateral may consist of successful hedge funds that are

closed to new investors is often cited as another motivation also for CFO

equity investment.

• From a return on investment perspective, equity holders can benefit from

a levered investment in the underlying fund of funds. As demonstrated in

[84, 87] CFO equity holders take advantage from low break even rates versus

the underlying collateral, helping equity investors when the fund of funds is

able to outperform the performance hurdles set by the rated note investors.

• Term funding provided by bond investors gives equity investors a much more

stable funding source than alternative that involve borrowing against collat-

eral from banks and securities dealers, making CFO equity tranche possibly

a less volatile investment vehicle for hedge funds. However, funding could

not last the full term if triggers force early liquidation.

• CFO equity is less liquid then a direct investment in a fund of hedge funds

because early redemption may be available to minority equity holders on

a pro rata basis or at the option of the collateral manager. Often early

redemptions are prohibited at all in order to avoid the deterioration of the

credit quality of the rated notes. However, a source of liquidity for equity

investors requiring early redemption may be represented by the secondary

market for CDO equity.
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• The relative lack of liquidity can be seen also as an advantage since it gives

the CFO more flexibility to follow its strategies despite short-term market

fluctuations.

• Equity investors directly pay underwriting fees, rating agencies fees and

management fees. This is one of the drawbacks for hedge fund CFO equity

investors. However, if equity holders are sufficiently lucky, the returns gen-

erated by their levered investment in the underlying pool of hedge funds will

be high enough to compensate them for all the risks and expenses they face.

2.3 CFOs Risk Factors

Moody’s defines a hedge fund as an unrated and largely unregulated, privately or-

ganized and offered investment vehicle that is available to limited number of high

net worth individuals and certain other qualified investors. Managers of hedge

funds have the flexibility to take both long and short positions, use derivatives and

leverage and invest in a wide range of instruments not limited to traditional stock

and bond investments. The term hedge fund is often a misnomer as many hedge

funds are not hedged at all [131]. This definition reveals the potential volatility of

an individual hedge fund and highlights the importance of having an experienced

and skillful CFO portfolio manager.

There are also other factors connected with hedge fund investment to take into

account when structuring a CFO transaction.

An investment in a hedge fund does not result in a predictable cash flow to in-

vestors. Consequently, in structuring a CFO some provision must be made to

ensure that rated notes are paid their promised coupons in cash and on time, if

these promised cash flows cannot be capitalized.

A hedge fund investment is illiquid. Redemption of the investment is usually pro-

hibited for a lock-out period lasting one to three years. At the expiration of the

lock-out period, redemptions are available, but only on a limited basis such as

monthly or quarterly and then only after the expiration of a notice period. In ad-

dition, hedge funds often reserve the right to suspend redemptions during periods

of financial crisis.

Specific investments made by hedge funds are often carefully guarded secrets. This
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lack of transparency may make it difficult for a CFO manager to assess the CFO’s

aggregate exposure to a particular investment on a portfolio basis. It also presents

a challenge to the CFO manager attempting to monitor a particular hedge fund’s

adherence to its advertised style or investment approach.

2.3.1 Liquidity

Liquidation of a hedge fund position involves three distinct temporal concepts:

• initial lock-out period

• redemption frequency

• notice period prior to redemption

As we have just said, redemption of the investment in hedge fund is usually not

allowed for a lock-out period lasting one to three years, or in some extreme cases,

for several years. At the expiration of this period, redemptions are possible, but

only with a monthly or quarterly frequency and only after the expiration of a notice

period. Typically, a notice period ranging from 30 to 90 days is required before the

hedge fund manager is obligated to deliver funds to an investor. After the notice

period, investments in the underlying hedge fund can be liquidated within days,

weeks, months or years depending on its redemption frequency. Each underlying

hedge fund in a CFO portfolio tends to have complicated and restrictive liquidity

covenants. Indeed, a skilful manager must evaluate carefully all these features for

each hedge fund when structuring the CFO collateral portfolio. Two further points

should be underlined about hedge fund liquidity in the context of a CFO. First,

most hedge funds retain the right to temporarily suspend redemption (liquidity

suspension) under certain circumstances. Second, the terms of investments in

hedge funds are sometimes negotiable. Terms of liquidation are no exception. At

the most favourable extreme, the CFO portfolio manager contracts with a hedge

fund manager to manage a portfolio but retains ownership of it. This arrangement

is referred to as a managed account. Under this arrangement, the CFO manager

has the legal right to directly liquidate the positions in the managed account.

More typically, the CFO will have separate but specific liquidity provisions for

each hedge fund investment.
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2.3.2 Transparency

The NAV of the CFO portfolio, which is given by the sum of the market values

of each underlying hedge fund2 in the CFO portfolio. is frequently assessed and

measured against predefined trigger levels. If the NAV falls below any of the trig-

ger levels and the test violation is not cured within the prescribed time frame, the

underlying hedge funds are redeemed to preserve the value of the rated notes. The

administrator of each hedge fund have to report the fund’s valuation to the CFO

manager, usually on a monthly basis. However, due to the proprietary nature of

current investments and the intense competition among hedge funds, the positions

of the underlying hedge funds are typically not revealed. This lack of transparency

implies that the CFO portfolio manager valuation depends on the accuracy and

veracity of each hedge fund’s reported value. Some protective measures are de-

signed for the CFO portfolio. The financial statements of most hedge funds are

audited on an annual basis. The accuracy of reported hedge fund NAV can also

depend upon the degree to which the hedge fund administrator’s valuation pro-

cess is independent of the hedge fund manager. Another source of protection from

the various risks posed by limited transparency is the due diligence process that

CFO portfolio managers conduct on hedge funds prior to investment. This process

can be very extensive, detailed and ongoing. Still, even with annual audits, inde-

pendent administration, and diligent CFO managers, the limited transparency of

hedge funds creates two distinct challenges for CFO managers as well as for rating

agency models: fraud and style drift.

Fraud remains a rare event in the hedge fund industry, although it has happened

in the past. The occurrence of liquidity suspension in a single hedge fund can

have consequences similar to the incidence of fraud, that is the rapid total loss of

a single hedge fund value.

Style drift is a more subtle consequence of the hedge funds’ limited transparency.

A particular hedge fund manager can choose to focus on one or more of these

strategies. CFO managers typically covenant to maximum percentages within

each strategy. For hedge fund investments that are not transparent, the diligent

CFO portfolio manager can compare returns to associated indices and to similar

2The NAV of a hedge fund is the total value of the fund’s portfolio less its liabilities. Its

liabilities may be money owed to lending banks or fees owed to investment managers, for example
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funds to gauge each fund’s degree of adherence to its professed style. Evidence

of possible style drift can be investigated by discussions with hedge fund man-

agers. In fact, for the CFO portfolio manager, the best antidote to the risk of

limited transparency is a set of strong relationships with various hedge fund man-

agers and the knowledge gained from long years of investment experience in hedge

funds. Most concerns about lack of transparency in a CFO are related to the issue

of individual hedge fund collateral. One important point about transparency at

the fund of fund level needs to be emphasized. Because of restrictive investment

agreements, the names of each hedge fund in the CFO portfolio will not necessarily

be revealed to investors.

2.4 CFOs Structural Features

This section describes the structural features of CFOs that have been created to

address the risks described in the previous section.

• Diversification

Portfolio diversification, across both strategies and funds, is an essential way

to reduce the the risks arising from the unregulated and opaque nature of

hedge funds. Probably the diversification across funds is the most important

because of the potential for style drift and a rapid total loss of value in a

single fund. Specific tests are used to measure, report and encourage both

types of diversification. Limit on the maximum portfolio share for each

fund ensures diversification across funds. Limitations on concentrations of

funds within each styles encourage diversification across strategies. The

diversification criteria are typically expressed as a percentage of the total

NAV of the CFO portfolio. They can be structured in two different ways:

a) the criteria have to be met only at the start of the transaction or at the

time a fund is purchased

b) the criteria have to be met on an on-going basis.

• Over-Collateralization Tests/Minimum Net Worth Test

Over-Collateralization (OC) Tests are designed to give more credit protec-

tion to bond investors. In an OC Test, an advance rate is assigned for each

class of rated notes. The CFO manager will test whether the value of the
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assets (which are valued periodically), discounted by the advance rates rel-

evant for each of the rated notes, exceeds indebtedness. If the discounted

value is less than indebtedness, assets must be sold and debt repaid or less

risky assets purchased in order to bring the portfolio back into compliance

within a predetermined period, typically 3-6 months. Failure to cure an OC

test breach within this period will trigger an event of default and subsequent

acceleration of the rated notes. An advance rate reflects the protection pro-

vided against a decline in market value and is a function of the price volatility

and the liquidity of the asset: the more volatile and less liquid the asset, the

lower the advance rate.

The Minimum Net Worth (MNW) Test provides further protection to the

note-holders against the decline of the portfolio NAV. If the adjusted net

worth of the portfolio of hedge funds, given by the NAV minus the notional

of outstanding liabilities, calculated on a monthly basis, is less than the

required adjusted net worth, actions have to be taken to either cure the

test by adding more equity or pay down liabilities. If this MNW Test is

not cured within the predetermined time frame, all notes will be declared

due immediately and the CFO portfolio assets will be liquidated to pay the

liabilities.

• Liquidity Profile Test

A Liquidity Profile Test is incorporated to prescribe the time interval be-

tween issuance of a redemption notice and receipt of the liquidation proceeds

for each underlying hedge fund. Each separate time interval is associated

with the minimum percentage of NAV. For example, a very simple CFO Liq-

uidity Profile Test would be at least fifty percent of NAV within six months

and one hundred percent within one year. The covenanted liquidity profile

gives consideration to the notice period, redemption period and the initial

lock out period.

• Equity Distribution Rules

Equity distribution rules in a CFO transaction specify the timing of the

distribution of gains to the CFO equity investors. Typically, some threshold

return level has to be met before any gains are distributed to the equity

holders. The higher the threshold, the more aligned are the interests of the
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equity and note holders and the more stable the debt ratings.

• Liquidity Facility

The underlying assets of a CFO transaction are not typically coupon-bearing

instruments. The source of the coupon payments for the CFO liabilities

could be the proceeds from gains or liquidations set aside by the CFO man-

ager. If any rated liability tranche is not pikable3, a structural enhancement,

such as a reserve account or external liquidity facility is then required to en-

sure timely interest payments on the non-pikable CFO liabilities.

2.5 Rating Methodology

Credit ratings for CFO debt tranches are based on many factors related to the

underlying hedge funds, their managers and CFO manager. Rating agencies take

into account concentration limitations, risk-adjusted returns, and the volatility of

the net asset value. Advance rates, which are metrics used by rating agencies to

determine how much of an asset can be used as collateral to issue rated debt, are

the basis for determining the rating of debt issued by CFOs. Advance rates are

positively correlated with the credit quality and stability of an asset. At the same

time advance rates are inversely related to the risk of the debt, implying that

the lower the desired credit rating of debt, the more one can borrow against the

collateral.

2.5.1 Moody’s Approach

The ratings assigned by Moody’s reflect the expected losses posed to liability hold-

ers. To determine these expected losses, Moody’s employs a Monte Carlo simula-

tion approach. In particular, a hypothetical portfolio is created based on a worst

case portfolio composed of the most volatile and correlated strategies according to

the guidelines of the CFO. Moody’s generate the time series of the returns of the

underlying hedge funds (which correspond to these worst case strategies) based

on a random process. The monthly net asset value of the portfolio can then be

calculated and applied in the waterfall, including the Over Collateralisation tests,

such that an interest and principal shortfall can be calculated for each note in that

3This means that coupons cannot be capitalized but they must be paid in cash and on time
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given scenario. Moody’s repeat this calculation for a significant number of runs

and then calculate the average of these shortfalls in order to compute an expected

loss. The rating is then derived by benchmarking the expected loss calculated to

Moody’s idealised expected loss table based on the expected average life of the

notes.

2.6 Pricing Methodology

As we have already explained in the Introduction of this work, our aim is to provide

a useful framework to evaluate Collateralized Fund of Hedge Funds Obligations,

that is pricing the equity and the debt tranches of a CFO. The fair price of each

tranche is computed as its expected discounted payoff under a suitable risk neutral

probability measure.

The payoff of every tranche is linked to

• the risk neutral evolution of the CFO portfolio NAV, which depends on the

temporal behaviour of all its underlying hedge funds;

• the structural features of the CFO such as Over-Collateralization test, pri-

ority of payment waterfall (which includes all coupon payments), equity

distribution rules, liquidity profile and so on.

To compute the collateral portfolio NAV under the selected risk neutral probability

measure at each time of control t, it is necessary to model the joint risk neutral

evolution of the underlying hedge funds. At the same time we have to consider any

anticipated payments, Over-Collateralization test and the CFO liquidity profile.



Chapter 3

Statistical Properties of Hedge

Fund Returns

Hedge fund returns usually differ substantially from returns of standard asset

classes and there is growing evidence that, as a result, they may be of interest

to investors. Important issues include identifying the right portion to invest in

hedge funds and how to construct a portfolio of hedge funds. Usually, skewness

and larger kurtosis, relative to standard asset classes, are observed in monthly

log-return series of hedge funds. In addition, positive autocorrelation is some-

times observed. This leads to underestimation of the true volatility, and as a

consequence, an overestimation of the Sharpe ratio, if it is used as a performance

measure. Therefore, standard methods used for portfolio construction like mean-

variance approach can be inadequate for hedge funds. Interested readers on the

subject can see [105] in which the authors propose an efficient method for fund of

hedge funds construction under downside risk measures.

In our pricing procedure care is taken to distinguish between the fund of hedge

funds and its underlying hedge funds, each of which is itself a portfolio of various

securities, debt instruments and financial contracts.

In this chapter we analyse the statistical properties of hedge fund indices employed

to build the collateral portfolio for our applications.

18
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3.1 The Data

We got hedge fund index data from Credit Suisse/Tremont Hedge Index1. Credit

Suisse/Tremont maintains monthly NAV and simple return data for a Global hedge

fund index and for the following 13 indices corresponding to different styles: con-

vertible arbitrage, dedicated short bias, emerging markets, equity market neutral,

event driven, ED distressed, ED multi-strategy, ED risk arbitrage, fixed income

arbitrage, global macro, long/short equity, managed futures and multi-strategy.

Contrary to other hedge fund indices, the Credit Suisse/Tremont indices reflect

the monthly net of fee NAV on an asset-weighted basket of funds. Large funds

therefore have a larger influence on the index than smaller funds. Most indices

are affected by some form of survivorship bias. In order to minimize this effect,

Credit Suisse/Tremont does not remove hedge funds in the process of liquidation

from an index, and therefore captures all of the potential negative performance

before a fund ceases to operate.

Our sample covers the period from January 1994 through May 2008 , for a total

of 173 monthly log-return data for each hedge fund index.

3.1.1 Summary Statistics

Descriptive statistics are reported in Table 3.1. A brief examination of the last two

columns of this table indicates that hedge fund returns are not Gaussian. Twelve

hedge fund indices over fourteen exhibit a negative skewness. All index display

excess kurtosis. However, the degree of asymmetry and fat tails is quite different

among hedge funds. These results are similar to those reported in [2, 3, 66]

obtained using different hedge fund indices and in [105] obtained employing CS/T

indices on a shorter time period. Negative skewness and excess kurtosis are due to

hedge fund use of derivatives, leverage and short selling. However, some statistics

are really extreme and at least in part this can be explained also by the presence of

some outliers in the sample. Figure 3.1 shows boxplots for two indices. A boxplot

summarizes the distribution of a set of data by displaying the centring and spread

of the data using a few primary elements. The box portion of a boxplot represents

the first and third quartiles. The median is depicted using a line through the

1http://hedgeindex.com
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centre of the box, while the mean is drawn using a black star.

Table 3.1:

Summary Statistics of Monthly Log-returns for CS/Tremont Indices

Period January 1994-May 2008 (Smoothed Data)

Index Mean Median Max Min Std.Dev. Skew. Kurt.

% % % % %

CS/T Global Index 0,78 0,76 7,94 -7,98 2,12 -0,04 5,73

Convertible Arbitrage 0,58 0,86 3,45 -5,80 1,38 -1,64 7,64

Dedicated Short Bias -0,21 -0,36 20,2 -9,36 4,75 0,56 4,11

Emerging Markets 0,70 1,38 15,3 -26,2 4,50 -1,18 10,4

Equity Market Neutral 0,71 0,67 3,19 -1,27 0,76 0,36 3,90

Event Driven 0,83 1,02 3,84 -12,6 1,61 -3,58 30,1

ED Distressed 0,93 1,11 4,08 -13,4 1,78 -3,15 26,1

ED Multi-Strategy 0,78 0,86 4,29 -12,3 1,74 -2,65 20,9

ED Risk Arbitrage 0,55 0,55 3,58 -6,48 1,16 -1,29 10,4

Fixed Income Arbitrage 0,40 0,59 2,18 -7,25 1,16 -3,19 19,2

Global Macro 1,02 1,04 10,5 -12,2 2,97 -0,14 6,69

Long/Short Equity 0,86 0,94 12,0 -12,2 2,79 -0,13 7,31

Managed Futures 0,47 0,32 9,30 -9,71 3,39 -0,12 3,15

Multi-Strategy 0,65 0,75 3,57 -4,93 1,22 -1,11 5,89

Figure 3.1: Box Plots for Convertible Arbitrage and Fixed Income Arbitrage

The inner fences are defined as the first quartile minus 1.5*IQR (interquartile

range) and the third quartile plus 1.5*IQR. The inner fences are not drawn, but
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graphic elements known as whiskers and staples show the values that are outside

the first and third quartiles, but within the inner fences. The staple is a line drawn

at the last data point within (or equal to) each of the inner fences. Whiskers are

lines drawn from each hinge to the corresponding staple. Data points outside

the inner fence are known as outliers. To further characterize outliers, we de-

fine the outer fences as the first quartile minus 3.0*IQR and the third quartile

plus 3.0*IQR. Data between the inner and outer fences are termed near outliers

(circles), and those outside the outer fence are referred to as far outliers (pluses).

3.1.2 Kernel Density Estimators

The simplest nonparametric density estimate of a distribution of a series is the

histogram. To estimate the empirical densities we use kernel density estimators.

The kernel density estimator replaces the boxes in a histogram by bumps that are

smooth [119]. Smoothing is done by putting less weight on observations that are

further from the point being evaluated.

More technically, the kernel density estimate of a series Y at a point y is estimated

by:

f̂ (y) =
1

Nh

N
∑

i=1

K

(

y − Yi

h

)

where N is the number of observations, h is the bandwidth (or smoothing param-

eter) and K(u) is a kernel weighting function that integrates to one. Different

choices of the function K(u) are possible. Among them we may cite Epanech-

nikov, Triangular, Uniform, Gaussian, Biweight, Triweight and Cosinus kernel

functions2.

The Gaussian kernel is

K (u) =
exp

(

−1
2u

2
)

√
2π

(3.2)

The bandwidth h controls the smoothness of the density estimate; the larger

the bandwidth, the smoother the estimate. Bandwidth selection is of crucial

importance in density estimation.

2E-Views Help Guide reports a detailed description of all these kernel functions
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Figures 3.2 and 3.3 show the Gaussian kernel density estimates for two hedge fund

indices using different bandwidths. Each graph also reports the Normal density

function (black line with dots). The density estimate with optimal bandwidth h

is in blue. Estimates for smaller (0.5h) and larger (2h) bandwidths are in red and

green.

Empirical densities give us further evidence against normality. These empirical

distributions are in general skewed and have higher peak and fatter tails than the

Gaussian distribution with the same mean and variance.

Figure 3.2: Kernel density estimation for Convertible Arbitrage

Figure 3.3: Kernel Density Estimation for Fixed Income Arbitrage
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3.1.3 Quantile-Quantile Plots

The quantile-quantile (QQ)-plot is a simple yet powerful tool for comparing two

distributions. QQ-plot shows the quantiles of the chosen series against the quan-

tiles of another series or a theoretical distribution. If the two distributions are the

same, the QQ-plot should lie on a straight line. If the QQ-plot does not lie on a

straight line, the two distributions differ along some dimension. The pattern of

deviation from linearity provides an indication of the nature of the mismatch.

Each graph in figure 3.4 plots the quantiles of the chosen series of hedge fund

log-returns against the theoretical quantiles of the Gaussian distribution. These

plots suggest that it is unlikely that observed log-return time series come from

normally distributed random variables. In particular, the mismatch is related to

the tails, especially the left one.

Figure 3.4: Q-Q Plots for Convertible Arbitrage and Fixed Income Arbitrage

3.1.4 Normality Tests

First column of Table 3.2 reports the Jarque-Bera Statistic Test for each hedge

fund index. This statistic test is asymptotically distributed as a chi-square with

two degrees of freedom under the null hypothesis. Only for the Managed Future

Index the normality hypothesis cannot be rejected. In all other cases the normal-

ity assumption is clearly refused 3.

3Three stars (***) indicate a p-value less than 1%, two stars (**) than 5%, one star (*) than

10%.
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This Table displays also Anderson-Darling and Cramer von Mises statistic tests.

Both statistic tests can be used to test if a sample of data came from a population

with a specific distribution. They are modifications of the Kolmogorov-Smirnov

test and give more weight to the tails than does the K-S test. The K-S test is

distribution free in the sense that the critical values do not depend on the specific

distribution being tested. These tests make use of the specific distribution in cal-

culating critical values. This has the advantage of allowing a more sensitive test

and the disadvantage that critical values must be calculated for each distribution.

Both tests belong to the class of empirical distribution function tests (EDF). These

tests are based on the evaluation of the observed distance between the empirical

distribution and the specified theoretical distribution function. For a comprehen-

sive survey of empirical distribution function tests, also called smooth goodness

of fit tests, a good reference is [34]. For a general introduction to Goodness of Fit

test the interest reader can see [67].

The Anderson-Darling statistic test is computed as

A2 = −N − 1

N

N
∑

i=1

(2i− 1) [lnF (Yi) + lnF (1 − YN−i+1)] (3.3)

while the Cramer von Mises statistic test is calculated as

W 2 =
1

12N
+

N
∑

i=1

[

2i− 1

2N
− F (Yi)

]2

(3.4)

where N is the number of observations, Yi is the i-th observed value in increasing

order, and F is the cumulative distribution function of the specified distribution .

Under the null hypothesis hedge fund index log-returns come from a Gaussian

distribution with mean and standard deviation unknown4. Both statistic tests

allow to reject the normality hypothesis for twelve hedge funds. The Gaussian

assumption is not refused for two indices: Managed Futures and Dedicated Short

Bias5.

4These tests were performed using E-views. This software estimates mean and standard

deviation with MLE using the specified distribution under the null hypothesis. Critical values

are different if the true parameters are assumed to be known
5In this last case the Jarque-Bera test provides an absolutely different conclusion
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Table 3.2:

Normality Test Statistics for CS/Tremont Indices

Period January 1994-May 2008 (Smoothed Data)

Index Jarque-Bera Anderson-Darling Cramer von Mises

Stat-Test Stat-Test Stat-Test

CS/T Global Index 49,64*** 2,411*** 0,385***

Convertible Arbitrage 220,6*** 5,198*** 0,936***

Dedicated Short Bias 16,82*** 0,528 0,063

Emerging Markets 412,9*** 3,004*** 0,555***

Equity Market Neutral 8,96** 0,767** 0,117*

Event Driven 5333*** 4,456*** 0,701***

ED Distressed 3920*** 3,262*** 0,482***

ED Multi-Strategy 2386*** 3,971*** 0,686***

ED Risk Arbitrage 419,4*** 1,589*** 0,243***

Fixed Income Arbitrage 2085*** 7,949*** 1,349***

Global Macro 91,62*** 4,07*** 0,721***

Long/Short Equity 124,8*** 1,665*** 0,251***

Managed Futures 0,549 0,242 0,036

Multi-Strategy 90,85*** 2,091*** 0,299***

3.1.5 Serial Correlation

All the previous results are obtained under the implicit assumption of IID obser-

vations. The first three columns of Table 3.3 report hedge fund autocorrelations

up to order three. In particular, we note that all first order autocorrelations are

positive and nine of them are significantly different from zero. The last column

reports P-values of Ljung-Box statistic test for the joint relevance of autocorre-

lations up to order twelve. As already noted by C. Brooks, H. M. Kat and S.

Lu [17, 66], also in our sample, Convertible Arbitrage and ED Distressed indices

seems to be among the most affected by first order and general serial correlation.
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Table 3.3:

Autocorrelations up to order 3

Ljung-Box Autocorrelation Tests with lags up to order 12

Period January 1994-May 2008 (Smoothed Data)

Index AC(1) AC(2) AC(3) Ljung-Box-Q(12)

P-Value

CS/T Global Index 0,099 0,014 -0.026 0,661

Convertible Arbitrage 0,484*** 0,284 0,113 0,000

Dedicated Short Bias 0,099 -0,037 -0,072 0,248

Emerging Markets 0,275*** 0,020 0,002 0,033

Equity Market Neutral 0,227** 0,095 0,031 0,081

Event Driven 0,282*** 0,135 -0,001 0,038

ED Distressed 0,282*** 0,137 0,019 0,025

ED Multi-Strategy 0,251** 0,142 0,009 0,098

ED Risk Arbitrage 0,220** -0,090 -0,158 0,002

Fixed Income Arbitrage 0,280*** 0,006 0,016 0,048

Global Macro 0,057 0,018 0,088 0,029

Long/Short Equity 0,145* 0,024 -0,083 0,036

Managed Futures 0,057 -0,154 -0,076 0,071

Multi-Strategy 0,041 0,050 0,077 0,958

3.2 Unsmoothed Data

The observed positive autocorrelation is quite a unique property and seems in-

consistent with the notion of efficient markets. According to C. Brooks, H. M.

Kat and S. Lu [17, 66] one possible explanation is that the nature of hedge funds’

strategies leads their returns to be inherently related to those of preceding months.

As this implies lags in the major systematic risk factor, however, this is not the

most plausible explanation. An alternative and more likely explanation lies in the

difficulty for hedge fund managers to obtain up-to-date valuations of their posi-

tions in illiquid and complex over-the-counter securities. When confronted with

this problem, hedge fund managers either use the last reported transaction price

or an estimate of the current market price which may easily create lags in the

evolution of the net asset value. This would explain why the different convertible
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arbitrage and distressed indices, employed in their work, exhibit the most signifi-

cant autocorrelations.

One possible method for evaluating the effect of this autocorrelation stems from

the real estate finance literature. Do to smoothing in appraisal and infrequent

valuations of properties, the returns of direct property investment indices suffer

from similar problems as hedge fund index returns. The approach employed in

this literature has been to unsmooth the observed returns to create a new set of

returns which are more volatile and whose characteristics are believed to more

accurately capture the characteristics of the underlying property value. Geltner

et al. [46, 47, 48, 49] give an extensive discussion of the motivations and method-

ologies to unsmooth the series of returns. Following this tradition, the observed

value of a hedge fund index each month can be expressed as a weighted average of

the underlying true value and the observed value of the hedge fund in the previous

month.

Given these assumptions, it is possible to get the unsmoothed series with approx-

imately zero first order autocorrelation:

yt =
y∗t − αy∗t−1

1 − α
(3.5)

where yt and y∗t are the true unobservable underlying return and the observed

return at time t. The parameter α is set equal to the first order autocorrelation

coefficient of the time series.

We apply this procedure to get unsmoothed log-return series for each hedge fund

index and repeat the previous statistical analyses with these new data to evaluate

the impact of the unsmoothing procedure.

3.2.1 Summary Statistics

Descriptive statistics are reported in Table 3.4. The most interesting result is

shown in the fifth column. All the unsmoothed time series exhibit a greater

standard deviation, with a mean increment of 23%. The biggest increment is

reached by Convertible Arbitrage, with an increase of 70%. As evidenced by [66],

the unsmoothing procedure has also a relatively small impact on the skewness and

kurtosis of each hedge fund, but the direction of these changes is not clear. The

last two columns of table 3.4 clearly evidence that the normality hypothesis for
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the distribution of hedge fund log-returns is still unlikely. Figure 3.5 shows box

plots for Convertible Arbitrage and Fixed Income Arbitrage. Unsmoothed series

exhibit some outliers as the observed (smoothed) series.

Table 3.4:

Summary Statistics of Monthly Log-returns for CS/Tremont Indices

Period January 1994-May 2008 (Unsmoothed Data)

Index Mean Median Max Min Std.Dev. Skew. Kurt.

% % % % %

CS/T Global Index 0,78 0,72 8,28 -8,94 2,35 -0,08 5,52

Convertible Arbitrage 0,58 0,80 8,39 -10,1 2,34 -1,13 8,38

Dedicated Short Bias -0,20 -0,44 22,2 -10,8 5,25 0,55 4,05

Emerging Markets 0,63 1,59 18,9 -36,2 5,89 -1,47 11,5

Equity Market Neutral 0,72 0,64 3,83 -2,29 0,96 0,27 4,34

Event Driven 0,81 1,05 4,29 -17,6 2,14 -3,86 33,5

ED Distressed 0,91 1,04 5,69 -18,7 2,37 -3,40 29,7

ED Multi-Strategy 0,77 0,99 5,32 -16,38 2,24 -2,68 21,7

ED Risk Arbitrage 0,55 0,66 4,79 -8,17 1,45 -1,17 10,4

Fixed Income Arbitrage 0,40 0,63 5,49 -8,61 1,55 -2,30 15,7

Global Macro 1,03 1,02 11,0 -12,7 3,15 -0,14 6,50

Long/Short Equity 0,86 0,82 12,6 -14,4 3,23 -0,18 6,89

Managed Futures 0,47 0,37 9,94 -10,3 3,59 -0,17 3,18

Multi-Strategy 0,65 0,81 3,87 -5,17 1,28 -1,12 5,98

Figure 3.5: Box Plots for Convertible Arbitrage and Fixed Income Arbitrage
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3.2.2 Kernel Density Estimators

Figures 3.6 and 3.7 report Normal kernel density estimates for smoothed (blue

line) and unsmoothed (red line) series of log-returns for the same two indices.

These estimates are based on the optimal bandwidth h. In addition each graph

shows the Gaussian density with expectation and standard deviation equal to their

empirical unsmoothed counterparts (black line with dots).

Figure 3.6: Normal Kernel Density Estimation for Convertible Arbitrage

Figure 3.7: Normal Kernel Density Estimation for Fixed Income Arbitrage

Both empirical densities for unsmoothed log-returns exhibit negative skewness
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and fatter tails than the Gaussian density.

A comparison between blue and red lines shows that the unsmoothing procedure

generates empirical distributions with lower peaks and greater dispersion around

the mean. Bigger is the first order autocorrelation, larger is the variance and

smaller is the peak of the unsmoothed empirical density with respect to the ob-

served one.

3.2.3 Quantile-Quantile Plots

Figure 3.8 provides further evidence against the normality assumption. Compar-

ing Figures 3.4 and 3.8 it is possible to see different patterns of deviation from

linearity. In Figure 3.4 the convex shape of the QQ-plots for Convertible Arbi-

Figure 3.8: Q-Q Plots for Convertible Arbitrage and Fixed Income Arbitrage

trage and Fixed Income Arbitrage indicate that the distribution of both indices is

negatively skewed with a longer left tail and a shorter rigth tail than the Normal

distribution. See figures 3.2 and 3.3. Notice that if the shape were concave, it

would indicate that the distribution is positively skewed.

QQ-plots that fall on a straight line in the middle but curve upward at the left end

and curve downward at the right end indicate that the distribution is leptokurtic

and has thicker tails than the Gaussian distribution. Figure 3.8 depicts a similar

situation for both indices. Both tails for each index are heavier than the tails of

the Gaussian distribution. See figures 3.6 and 3.7. It should be noted that if the

plot curves downward at the left, and upward at the right, it is an indication that

the distribution is platykurtic and has thinner tails than the normal distribution.
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The unsmoothing procedure for this two indices has produced a reduction in ab-

solute value of the skewness (still negative) and has increased the length of the

right tail. However, this result is not valid for all CS/T indices.

3.2.4 Normality Tests

Table 3.5 reports formal normality tests. The null hypothesis is always completely

rejected, with the exception of the Managed Futures Index. The situation of the

Dedicated Short Bias Index is again ambiguous; the response of the Jarque-Bera

test and the EDF tests is clearly opposite.

Table 3.5:

Normality Test Statistics for CS/Tremont Indices

Period January 1994-May 2008 (Unsmoothed Data)

Index Jarque-Bera Anderson-Darling Cramer-von Mises

Stat-Test Stat-Test Stat-Test

CS/T Global Index 42,35*** 2,105*** 0,330***

Convertible Arbitrage 231,12*** 4,390*** 0,757***

Dedicated Short Bias 15,61*** 0,475 0,059

Emerging Markets 554,8*** 3,288*** 0,618***

Equity Market Neutral 13,94*** 0,914** 0,134**

Event Driven 6745*** 4,334*** 0,657***

ED Distressed 5149*** 3,502*** 0,529***

ED Multi-Strategy 2590*** 2,950*** 0,483***

ED Risk Arbitrage 403,8*** 1,829*** 0,275***

Fixed Income Arbitrage 1249*** 7,727*** 1,332***

Global Macro 82,25*** 3,922*** 0,696***

Long/Short Equity 101,9*** 1,415*** 0,211***

Managed Futures 1,013 0,283 0,039

Multi-Strategy 95,20*** 2,237*** 0,325***

3.2.5 Serial Correlation

Table 3.6 shows that these unsmoothed time series are not affected by first order

autocorrelation. Notice, however some problems of general serial correlation for
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two indices. Ljung-Box Statistics LB-Q(12) for ED Risk Arbitrage and Global

Macro do not allow to reject the hypothesis that autocorrelations up to order 12

are different from zero at significance level of 5%. Further analyses, not reported

in this work, reveals that in both cases this is due to autocorrelation of order 5.

Table 3.6:

Autocorrelations up to order 3

Ljung-Box Autocorrelation Tests with lags up to order 12

Period January 1994-May 2008 (Unsmoothed Data)

Index AC(1) AC(2) AC(3) Ljung-Box

Q(12)/P-Value

CS/T Global Index 0,003 0,010 -0,017 0.725

Convertible Arbitrage -0,032 0,085 -0,085 0,810

Dedicated Short Bias 0,005 -0,038 -0,057 0,575

Emerging Markets 0,025 -0,045 0,035 0,634

Equity Market Neutral -0,012 0,036 0,018 0,718

Event Driven -0,008 0,085 -0,036 0,978

ED Distressed -0,008 0,083 -0,023 0,910

ED Multi-Strategy -0,017 0,100 -0,019 0,880

ED Risk Arbitrage 0,033 -0,116 -0,128 0,023

Fixed Income Arbitrage 0,034 -0,077 -0,007 0,889

Global Macro -0,003 0,008 0,090 0,013

Long/Short Equity 0,000 0,018 -0,072 0,192

Managed Futures 0,009 -0,154 -0,068 0,115

Multi-Strategy -0,004 0,044 0,083 0,966

To conclude this Chapter we summarize the main results on statistical prop-

erties of hedge funds’ log-returns:

• the distributions of monthly hedge funds’ log-returns are usually not sym-

metric and negatively skewed;

• these distributions have fatter tails than the Normal;

• often hedge fund log-returns exhibit first order serial correlation. However,
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this is very likely a result of the appraisal procedure, and so observed data

do not reflect exactly the true values that are unobserved. In other words,

the true generating hedge fund log-returns process can be considered as a

process with uncorrelated increments6;

• the evolution of hedge funds’ Net Asset Value in general cannot be described

by a Geometric Brownian motion.

To model the temporal behaviour of hedge funds’ log-returns more flexible stochas-

tic processes than Brownian motion are therefore necessary. More general Lévy

processes can represent a possible solution.

6See previous discussion about smoothed and unsmoothed data
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Lévy processes

In the previous chapter we have shown that monthly log-returns of hedge funds are

not Normally distributed. Other more flexible distributions are therefore needed to

take into account skewness and excess-kurtosis. Furthermore, not only more flexi-

ble static distributions are necessary, but in order to model the behaviour through

time of hedge funds’ log-returns more flexible stochastic processes than Brownian

motion are required. In the late 1980s and 1990s, different processes were proposed

for modelling financial data. To describe the evolution of log-returns Brownian

Motion was replaced by more general Lévy process. The Gaussian distribution

was substituted by more flexible infinitely divisible distributions able to take into

account skewness and excess kurtosis. Examples of such distribution are the Nor-

mal Inverse Gaussian (See Barndorff-Nielsen(1995-1998) [9, 10]), the Symmetric

Variance Gamma (See Madan and Seneta(1990) [80]), the Variance Gamma (See

Madan et al. (1998) [82]), the Hyperbolic (See Eberlein and Keller (1995), [37])

the Generalized Hyperbolic (See Eberlein and Prause (1998-1999) [38, 107]), the

CGMY (See Carr, Geman, Madan and Yor (2002) [23] and the Meixner distribu-

tion (Schoutens (2001-2002) [114, 115]).

This chapter contains a short review of the properties of Lévy processes and Expo-

nential Lévy models, that are used in the sequel. General reference works on Lévy

processes are by Bertoin (1996) [14], Sato (1999) [109] and Applebaum (2003) [1].

For a general reference on Lévy processes in finance the best choice is undoubtedly

Cont and Tankov (2004) [33]. Persons more interested in practical applications of

financial models with jumps can find Schoutens (2003) [112] very useful.

34
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4.1 Definition and Properties

A Lévy process on a probability space (Ω,ℑ, P ) with values in R is a right contin-

uous with left limit stochastic process {Xt, t ≥ 0} with the following properties:

• X0 = 0;

• Independent increments: for every increasing sequence of times to t0, . . . tn,

the random variables Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1
are independent;

• Stationary increments: the law of Xt+h −Xt does not depend on t;

• Stochastic continuity: ∀ǫ > 0, limh→0 P (|Xt+h −Xt| ≥ ǫ) = 0

The last condition does not imply in any way that the sample paths are continu-

ous. It ensures that for given time t, the probability of seeing a jump at t is zero:

discontinuities occur only at random times.

A very important property of Lévy processes is the infinitely divisibility. If

{Xt, t ≥ 0} is a Lévy process then for every t, Xt has an infinitely divisible dis-

tribution. Conversely, if F is an infinitely divisible distribution then there exists

a Lévy process {Xt, t ≥ 0} such that the distribution of X1 is given by F . This

means that the Characteristic Function of Xt can be obtained from the Charac-

teristic Function of X1 and vice versa:

ΨXt(u) = E[exp(iuXt)] = E[exp(iuX1)]
t = (ΨX1

(u))t ∀u ∈ R (4.1)

In particular, the Characteristic Function of Xt can be computed as

E[exp(iuXt)] = exp(t[ζ(u)]) ∀u ∈ R (4.2)

where ζ(u) = φX1
(u) = lnΨX1

(u) corresponds to the Cumulant Characteristic

Function of X1 and is called Characteristic Exponent of Xt.

Notice that for a Lévy process the Cumulant Characteristic Function varies lin-

early in t: φXt(u) = tφX1
(u) = tζ(u). The law of Xt is therefore determined by

the knowledge of the law of X1 : the only degree of freedom we have in specifying

a Lévy process is to specify the distribution of Xt for a single time (say, t = 1).

The Characteristic Exponent ζ(u) satisfies the so called Lévy-Khintchin formula:

ζ(u) = iγu− 1

2
η2u2 +

∫

R
(exp(iux) − 1 − iux1|x|≤1)υ(dx) (4.3)
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where γ ∈ R, η ≥ 0, and υ is a measure on R-{0} with
∫

R(1 ∧ x2)υ(dx) < ∞.

The triplet
[

γ, η2, υ(dx)
]

is called Lévy triplet and υ Lévy measure of X. From

the Lévy-Khintchin formula, it is possible to see that, in general, a Lévy process

consists of three independent parts: a linear deterministic part, a Brownian part,

and a pure jump part.1 The Lévy measure υ(dx) describes how the jumps occur.

Jumps of sizes in the set A ∈ B(R)2 occur according to a Poisson process with

intensity parameter
∫

A υ(dx). In other words, υ(A) is the expected number, per

unit of time, of jumps whose size belongs to A.

If η = 0 and
∫ +1
−1 |x| υ(dx) < ∞, it can be shown that a Lévy process is of finite

variation and its Characteristic Exponent can be expressed as:

ζ(u) = iςu+

∫

R
(exp(iux) − 1)υ(dx) (4.4)

where ς = γ −
∫ +1
−1 xυ(dx).

A Lévy process of finite variation can be decomposed into the difference of two

increasing processes.

If η = 0 and
∫ +1
−1 υ(dx) < ∞, there are finitely many jumps in any finite interval

and the process is said to have finite activity.

If η 6= 0 the process is of infinite variation because the Brownian motion compo-

nent is of infinite variation. A pure jump Lévy process is of infinite variation if

and only if
∫ +1
−1 |x| υ(dx) is not finite. In this case the sum of small jumps does not

converge. This leads to the necessity of the compensator term iux1|x|≤1 in (4.3).

An important class of Lévy processes is represented by subordinators. A sub-

ordinator is a non negative and non decreasing Lévy process. Its characteristic

triplet is such that η = 0, υ((−∞, 0]) = 0, and ς ≥ 0: the process has no diffusion

component, only positive jumps of finite variation and a non negative drift.

4.1.1 Building Lévy processes and Brownian Motion Subordina-

tion

According to Cont and Tankov [33] there exist three convenient approaches to

build a parametric Lévy process:

1See also Lévy-Ito decomposition [33] Proposition 3.7
2
B(R) is the Borel σ-algebra of R
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• the direct specification of the Lévy measure;

• the specification of an infinitely divisible density as the density of increments

at a given time scale;

• the subordination of a Brownian motion with an independent increasing

Lévy process.

The first approach is described in Cont and Tankov [33] using the example of tem-

pered stable processes. This way to construct Lévy processes provides a dynamic

vision of the process because it allows to build directly the jump structure and

to know, via the Levy-Khinchin formula, its distribution at any time. However,

sometimes this distribution is not available in a very explicit form.

The second approach is to specify an infinitely divisible density as the density of

increments at a given time scale. Generalized Hyperbolic processes can be con-

structed in this way. In this approach it is easy to simulate the increments of the

process at the same time scale and to estimate parameters of the distribution if

data are sampled with the same frequency, but in general the Lévy measure is not

known. Therefore, unless this distribution belongs to some parametric class closed

under convolution, we do not know the law of the increments at other time scales.

In particular, given an infinitely divisible distribution it is not easy to infer from

its density whether the corresponding Lévy process has a Gaussian component or

whether it has finite or infinite activity.

The third way allows to compute the Characteristic Function of the resulting pro-

cess immediately every t. However this approach does not always allow to find an

explicit formula for the Lévy measure. Due to the conditionally Gaussian structure

of the process, simulation and some computations can be considerably simplified.

For example, call option price can be expressed as an integral involving Black-

Scholes prices. The interpretation of the subordinator as a business time makes

models of this type easier to understand and interpret (See Geman and Geman

et al. [51, 52, 53, 54]). The first idea to use such stochastic clock for analysing

financial processes was introduced by Clark (1973) [32]. Clark proposed to use

Bochner (1950) [16] concept of subordinated process while he was analyzing cot-

ton Futures price to address the non-normality of observed returns. In particular

he time changed a Brownian motion with an independent process with log-normal
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increments. The economic interpretation of the subordinator in his work was the

cumulative volume of traded contracts. Five years later, Monroe [99] extended the

Dubins-Schwarztz theorem 3 [36] to semimaringale and extablished that any semi-

martingale can be written as a time changed Brownian motion. Revisiting Clark’s

brillant conjecture, Ané and Geman (2000) [4] demonstrate that the structure of

semimartingales necessarily prevails for stock prices by bringing together the No

Arbitrage Assumption and Monroe’s theorem to establish that any stock price

may be written as a Brownian motion time changed with an almost surely in-

creasing process. In particular, they show in a general non-parametric setting,

that in order to recover a quasi perfect normality of returns, the transaction clock

is better represented by the number of trades than the volume.

All Lévy processes are semimartingales because a Lévy process can be split into

a sum of a square integrable martingale and a finite variation process: this is

the Levy-Ito decomposition (See [33] Proposition 3.7). It follows from Monroe’s

theorem that every Lévy process can be expressed as a time changed Brownian

Motion. The following is only a list of Lévy processes used in finance to describe

the evolution of log-returns whose subordinators are known:

• Geman, Madan and Yor (2001) prove that the Poisson model with reflected

normal jumps’ intensity can be constructed by Poisson time changing a uni-

varite Brownian motion (For details see [54]);

• the Normal Inverse Gaussian process can be obtained from a Brownian Mo-

tion with drift time changing the physical time with an Inverse Gaussian

time (See for example Shoutens (2003) [112]);

• the Generalized Hyperbolic process can be obtained from a Brownian Motion

with drift using a Generalized Inverse Gaussian process as a subordinator

(See Prause (1999) [107]);

• Madan, Carr and Chang (1998) [82] introduce the asymmetric version of the

Variance Gamma process by subordinating an arithmetic Brownian motion

with a Gamma process ;

3Dubins-Schwarztz (1965) theorem: Any continuous martingale is a time changed Brownian

Motion.
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• Madan and Yor (2005) show that CGMY and Meixner processes are ab-

solutely continuous with respect to One Sided Stable subordinators. For

details on their subordinators see [83].

For a complete review of stochastic time change techniques from its origins in

probability theory see Geman [51]. The relation among option pricing, stochastic

volatility and time-changed Lévy processes is discussed by Carr and Wu (2004)

[24].

We conclude this section with the first part of THEOREM 4.2 [33] on the subor-

dination of a Lévy process. In the next chapter we apply this part of the Theorem

several times.

THEOREM: Subordination of a Lévy process

Fix a probability space (Ω, ℑ, P ). Let {Xt, t ≥ 0} be a Lévy process on ℜn with

Characteristic Exponent c(u) and triplet (γ, A, υ(dx)) and let {Kt, t ≥ 0} be

a subordinator with Laplace Exponent l(u) and triplet (b, 0, ǫ(dk)). Then the

process {Yt, t ≥ 0} defined for each ω ∈ Ω by Y (t, ω) = X(K(t, ω), ω) is a Lévy

process. Its Characteristic Function is

E[exp(iuYt)] = exp[tl(c(u))]. (4.5)

The Characteristic Exponent of Y is obtained by composition of the Laplace

Exponent of K with the Characteristic Exponent of X4. The interested reader

can find the complete version of this Theorem and a sketch of the proof in Cont

and Tankov [33] (Section 4.2.2). For a detailed proof we refer the reader to Sato

([109] Theorem 30.1)

4.2 The Exponential Lévy Model and Equivalent Mar-

tingale Measures

4.2.1 The Exponential Lévy model

Consider the following financial market living on a stochastic basis (Ω, ℑ, (ℑt)t≥0, P )

which satisfies the usual conditions. We model two assets. The first one is a risk

4This Theorem is valid for general Lévy process (not only Brownian motion) time changed

with a subordinator.
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free asset whose price at time t is

At = A0 exp(rt) (4.6)

where r is the risk free rate. The second one is a risky asset with price process

St = S0 exp(Xt) (4.7)

where Xt is a Lévy process. A price process of this type is called (ordinary)

Exponential (or Geometric) Lévy process.

4.2.2 Absence of Arbitrage, Market Incompleteness and Equiva-

lent Martingale Measures

The equivalent martingale measure method is one of the most powerful methods in

the option pricing theory. The existence of a martingale measure is related to the

absence of arbitrage, while the uniqueness of the equivalent martingale measure

is related to market completeness, i.e. perfect hedging. The Exponential Lévy

market model is arbitrage free if the log-price process satisfies one of the following

(not mutually exclusive) conditions (See Cont and Tankov [33] section 9.5):

• η > 0;

• it has infinite variation;

• it has both positive and negative jumps;

• it has positive jumps and negative drift or negative jumps and positive drift.

However, the risk due to jumps cannot be hedged and therefore there is no more

a unique risk-neutral measure. This is always the case when the price process is

an arbitrage-free Geometric Lévy process, excepted of course in the Geomatric

Brownian motion case. In an arbitrage-free Lévy market model, there are many

different equivalent martingale measures under which the discounted asset price

process is a martingale (See Cont and Tankov [33] chapters 9 and 10). Many

candidates for suitable martingale measure equivalent to the real world probability

measure have been suggested and from a theoretical point of view, different criteria

can be chosen based on hedging arguments or distance minimization. Hellinger

distance, L2 distance, entropy or Kullback Leibler distance have frequently been
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put forward (see [12, 57, 95]).

The following is only a list of possible equivalent martingale measures:

• Minimal Martingale Measure (MMM) (Follmer & Schweizer (1991) [42])

• Variance Optimal Martingale Measure (VOMM) (Schweizer (1995) [116],

Jeanblanc & Miyahara (2005) [62])

• Mean Correcting Martingale Measure (MCMM)

• Utility Based Martingale Measure (UBMM)

• Minimal Entropy Martingale Measure (MEMM) (Miyahara (1996) [88], Frit-

telli (2000) [43] , Fujiwara & Miyahara (2003) [44])

• Esscher Martingale Measure (ESMM) (Gerber & Shiu (1994, 1996) [55, 56],

Buhlmann et al. (1996) [22]).

The interested reader can find a good survey of martingale measures for Geometric

Lévy models in Mihayara (2005) [95] (See also [41]). In the following section we

describe the Esscher Equivalent Martingale Measure.

4.2.3 Esscher Equivalent Martingale Measure

The Esscher transform is very popular and thought to be very important in the ac-

tuary theory. Esscher in 1932 has introduced the risk function and the transformed

risk function for the calculation of collective risk [39]. In a financial environment,

Gerber and Shiu (1994, 1996) use the Esscher transform to construct equivalent

martingale measures for processes with independent and stationary increments

[55, 56]. Inspired by this, Buhlmann et al. (1996) more generally use condi-

tional Esscher transforms to construct equivalent martingale measures for classes

of semi-martingales [21, 22]. This measure sometimes is called the compound re-

turn Esscher transformed martingale measure to distinguish it from the simple

return Esscher transformed martingale measure, which is known as the Minimal

Entropy Martingale Measure (see for example [94, 96, 61]). From a mathemat-

ical point of view, ESMM is the nearest equivalent martingale measure to the

historical probability P in the sense of power function metric [57, 95]. From an

economic viewpoint, the risk-neutral universe being not unique, prices will rely
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on the attitude of economic agents toward risk. Using the expected utility or the

neo-Bernoulli theory, a fair price can be obtained with the marginal utility princi-

ple and it can be shown that the fair price or indifference price given by a power

utility or logarithmic utility function can be expressed via the compound return

Esscher Measure [55, 56, 57]. From an operational perspective: most of the usual

univariate Lévy processes used in financial modelling remain of the same kind in

this particular risk-neutral universe. Schoutens ([112] Section 6.2.2) shows that

the Normal Inverse Gaussian and the Meixner processes remain of the same type

under the Esscher risk neutral probability measure. The same result is obtained

in [73] for the Kou jump-diffusion process and in [107] for the Generalized Hyper-

bolic model. In the special case of the Brownian Motion with drift the ESMM

coincides with the Mean Correcting Martingale Measure (this is obvious since in

this special Lévy model the market is complete). Finally, the passage of one set

of parameters of these processes in the historical universe to the set of parameters

in the compound return Esscher risk-neutral universe is very simple.

Esscher Transform and Risk Neutral Dynamics

In this subsection we explain how to use the Esscher transform method to find an

equivalent martingale measure for the process (4.7).

The Qh Esscher transform associated with the risk process Xt is defined by the

following Radon-Nicodym derivative:

dQh

dP
|ℑt =

exp(hXt)

E [exp(hXt)]
. (4.8)

The parameter h must be fixed such that the discounted price process of the asset

is a martingale under the probability measure Qh equivalent to P :

EQh [exp (−rt)St] = exp (−rt)S0E
Qh [exp (Xt)] = S0. (4.9)

This implies

EQh [exp (Xt)] = E [exp (Xt)
dQh

dP
|ℑt] = exp (rt). (4.10)

This condition can be written in terms of the Moment Generating Function of Xt

(if it exists)
MXt(h+ 1)

MXt(h)
=
E[exp((h+ 1)Xt)]

E [exp(hXt)]
= exp (rt) (4.11)
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or equivalently in terms of its Characteristic Function

ΨXt(−i(h+ 1))

ΨXt(−ih)
=
E[exp((h+ 1)Xt)]

E [exp(hXt)]
= exp (rt). (4.12)

Since the distribution of Xt is infinitely divisible the above conditions are equiva-

lent to the followings:

MX1
(h+ 1)

MX1
(h)

=
E[exp((h+ 1)X1)]

E [exp(hX1)]
= exp (r) (4.13)

ΨX1
(−i(h+ 1))

ΨX1
(−ih) =

E[exp((h+ 1)X1)]

E [exp(hX1)]
= exp (r). (4.14)

The last two expressions show that if a solution ĥ exists, it does not depend on

t. It can be shown that if (4.13) has a solution ĥ then the ESMM exists and is

unique. The process Xt is also a Lévy process under the new probability measure

Qh. Lévy triplets of Xt under the measures Qh and P are linked by the following

relations:

γQh = γ + ĥη2 +

∫

|x|≤1
x[exp(ĥx− 1)]υ(dx) (4.15)

ηQh2 = η2 (4.16)

υQh(dx) = exp(ĥx)υ(dx) (4.17)

where the P generating triplet is
[

γ, η2, υ(dx)
]

. However, in this case it should be

noted that since η 6= 0 the easiest way to a get an equivalent martingale measure is

represented by the Mean Correcting Martingale method.5 In models with jumps,

if the Gaussian component is absent (η 6= 0) we cannot change the drift to get an

equivalent martingale measure, but we can obtain a greater variety of equivalent

martingale measures by altering the distribution of the jumps.6 If the Gaussian

part is not present, the components of the Lévy triplet under the ESMM are given

by:

γQh = γ +

∫

|x|≤1
x[exp(ĥx− 1)]υ(dx) (4.18)

5It is sufficient to change the drift like in the Black & Scholes model
6When option prices are available, a change of measure called Mean Correcting Martingale

measure (See for example Schoutens [112]) is usually applied even if the process has zero Gaussian

component. The model parameters are calibrated directly under the risk neutral measure chosen

by the market. Since no explicit link among historical and risk neutral parameters exists, this

method is improperly called Mean Correcting Martingale method. Under this new measure both

the drift and the Lévy measure differ from the real world.



CHAPTER 4. LÉVY PROCESSES 44

ηQh2 = 0 (4.19)

υQh(dx) = exp(ĥx)υ(dx). (4.20)

The Qh Moment Generating Function of X1 can be computed in the following

way:

EQh [exp(uX1)] =
E[exp(u+ ĥ)X1]

E[exp(ĥX1)]
(4.21)

MQh

X1
(u) =

MX1
(u+ ĥ)

MX1
(ĥ)

. (4.22)

In a similar way, we get the Qh Characteristic Function of X1:

EQh [exp(iuX1)] =
E[exp(iu+ ĥ)X1]

E[exp(ĥX1)]
(4.23)

ΨQh

X1
(u) =

ΨX1
(u− iĥ)

ΨX1
(−iĥ)

. (4.24)

4.3 Jump-Diffusions vs Infinite Activity Lévy Processes

Financial models with jumps can be divided into two main categories:

• jump-diffusion models;

• infinite activity Lévy Processes.

In the first category, the evolution of prices is given by an exponential of a diffusion

process, punctuated by jumps at random intervals. In these models the jumps

represent rare events, crashes and large draw downs. Such an evolution can be

represented by modelling the log-price as a Lévy process with a nonzero Gaussian

component and a jump part, which is a compound Poisson process with finitely

many jumps in every time interval. Examples of such models are the Merton

jump-diffusion model with Gaussian jumps [86] and the Kou model with double

exponential jumps [69].

The second category consists of models with infinite number of jumps in every

interval. In these models, one does not need to introduce a Brownian component

since the dynamics of jumps is already rich enough to generate nontrivial small

time behaviour (See Carr et al. [23]) and it has been argued [23, 54] that such

processes give a more realistic description of the price process at various time
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scales. Examples of such models are the Variance Gamma [80, 81, 82], the Normal

Inverse Gaussian [9, 10], the Hyperbolic [37], the Generalized Hyperbolic [38,

107], the CGMY [23] and the Meixner models [113, 114, 115]. However, the

most important thing is that many models from this class can be constructed

via Brownian subordination, which gives them additional analytical tractability

compared to jump-diffusion models.

In the following subsections, we describe the Gamma and the Variance Gamma

processes in detail because we will make a wide use of them in the next chapter.

4.3.1 The Gamma Process

The density function of a Gamma random variable G1 with parameters a > 0 and

b > 0 is given by

fG1
(g) =

ba

Γ(a)
ga−1 exp(−gb) g > 0 (4.25)

where Γ(a) =
∫ +∞
0 za−1 exp(−z)dz is the Gamma function.

The Characteristic Function is given by

ψG1
(u) = (1 − iu

b
)−a (4.26)

This distribution is infinitely divisible since it easy to show that

ψGt(u) = (1 − iu

b
)−at (4.27)

and so we the following relation hold

ψGt(u) = [ψG1
(u)]t . (4.28)

The Gamma process {Gt, t ≥ 0} with parameters a > 0 and b > 0 is defined as the

stochastic process which starts at 0 and has stationary and independent Gamma

distributed increments. More precisely, Gt follows a Gamma(at, b) distribution.

The Lévy triplet of the Gamma process is given by

[a(1 − exp(1 − b))/b, 0, a exp(−bg)g−11g>0dg)] (4.29)

The following properties of the Gamma (a, b) distribution can be derived through

its Characteristic Function:

G1 =



























Mean a/b

Variance a/b2

Skewness 2a−1/2

Kurtosis 3(1 + 2/a)
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Notice also thatG1 has the following scaling property: cG follows a Gamma(a, b/c)

for c > 0.

4.3.2 The Variance Gamma Process

The symmetric version of this process was introduced by Madan and Seneta [80] as

a model for share market returns and subsequently used for option pricing purpose

by Madan and Milne [81]. The general model with skewness was introduced by

Madan, Carr and Chang [82].

If X1 follows a Variance Gamma law, that is if X1 ∼ V G(σ, ν, θ), then its

Characteristic Function is given by the well-known following expression

ΨX1
(u) =

(

1 − iuθν +
1

2
u2σ2ν

)−1/ν

. (4.30)

Since this distribution is infinitely divisible then the process X = {Xt, t ≥ 0} is

a Lévy process. This process, called Variance Gamma, as every Lévy process, it

starts at zero, has stationary and independent increments. In particular, Xs+t −
Xs ∼ V G(σ

√
t, ν/t, θt) which is the same distribution of Xt.

The VG process can be obtained by evaluating Brownian motion with drift at a

random time change given by a Gamma process:

Xt = θGt + σWGt (4.31)

where θ, ν > 0 and σ > 0 are constants;

G = {Gt, t ≥ 0} is a Gamma process Gt ∼ Gamma(t/ν, 1/ν);

W = {Wt, t ≥ 0} is a Wiener process Wt ∼ Normal(0, t).

The Characteristic Function of Xt is easily obtained from the one of X1

ΨXt(u) = E [exp (iuXt)] =

(

1 − iuθν +
1

2
u2σ2ν

)−t/ν

. (4.32)

It can be shown that the VG process is a pure jump process with infinite activity

but with paths of finite variation. In particular, Madan et al. showed that the

VG process can be also expressed as the difference of two independent Gamma

processes:

Xt = G
(1)
t −G

(2)
t (4.33)
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with G
(1)
1 ∼ Gamma(C, M) and G

(2)
1 ∼ Gamma(C, G), where

C = 1/ν > 0

G = (
√

1/4θ2ν2 + 1/2σ2ν − 1/2θν)−1 > 0

M = (
√

1/4θ2ν2 + 1/2σ2ν + 1/2θν)−1 > 0.

This characterization allows to compute the Lévy measure:

υ(dx) =

{

C exp(Gx) |x|−1 dx x < 0

C exp(−Mx)x−1dx x > 0

The Lévy measure has infinite mass and consequently a Variance Gamma process

has infinitely many jumps in any finite interval. Furthermore, it has paths of finite

variation because
∫ +1
−1 |x| υ(dx) is finite. Its Lévy triplet is given by [γ, 0, υ(dx)],

where

γX =
−C(G(exp(−M) − 1) −M(exp(−G) − 1))

MG
(4.34)

The Characteristic Function of X1 can be expressed in terms of C, M and G:

ΨX1
(u) =

(

GM

GM + (M −G)iu+ u2

)C

(4.35)

With this parameterization it easy to show that the Variance Gamma process is

a special case of the CGMY model (see [23, 112]). Expressions (4.30) and (4.35)

allow to compute the theoretical mean and central moments of X1 under different

parameterizations. We report only the moments obtained using (4.30) since we

are mainly interested in the representation of the Variance Gamma process as a

Brownian motion with drift time changed by a Gamma subordinator.

X1 =



























Expected Value θ

Variance σ2 + νθ2

Skewness θν
(

3σ2 + 2νθ2
)

/
(

σ2 + νθ2
)3/2

Kurtosis 3
(

1 + 2ν − νσ4
(

σ2 + νθ2
)−2

)

Looking at this table, it is easy to see that the parameter θ controls the skewness

and ν the kurtosis. Since ν > 0 this distribution is leptokurtic. If ν → 0 skew-

ness tends to 0 and kurtosis to 3. In particular, if ν → 0 the Variance Gamma

distribution converges to the Normal(θ, σ2) since

lim
ν→0

[

1 − (iuθ − 1

2
u2σ2)ν

]−1/ν

= exp(iuθ − 1

2
u2σ2). (4.36)
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If θ = 0 the Variance Gamma distribution is symmetric and its expected value

is 0 (in this case we get the model proposed by Madan and Seneta [80]). If the

Variance Gamma distribution is negatively skewed (θ < 0) /(or positively (θ > 0))

then the expected value is negative /(positive). To get a more flexible model to

describe the behaviour of log-returns a linear drift can be added:

Yt = µt+ θGt + σWGt (4.37)

Given the Characteristic Function of X1 (or Xt) is very easy to get

ΨY1
(u) = exp (iuµ)

(

1 − iuθν +
1

2
u2σ2ν

)−1/ν

, (4.38)

ΨYt(u) = E [exp (iuYt)] = exp (iuµt)

(

1 − iuθν +
1

2
u2σ2ν

)−t/ν

. (4.39)

This extension does not influence the infinite divisibility property. This Lévy

process is a Variance Gamma process with a deterministic trend. In particular,

Ys+t − Ys ∼ V G(σ
√
t, ν/t, θt, µt) which is the same distribution of Yt. The

additional term µ is only a location parameter. This change is reflected only on

the first term of the Lévy triplet: γY = γX + µ. For completeness, we report the

expressions for the expectation and other central moments up to order four of Y1

Y1 =



























Expected Value θ + µ

Variance σ2 + νθ2

Skewness θν
(

3σ2 + 2νθ2
)

/
(

σ2 + νθ2
)3/2

Kurtosis 3
(

1 + 2ν − νσ4
(

σ2 + νθ2
)−2

)

.

The additional location parameter allows to get a distribution whose skewness

does not determine automatically the sign and the magnitude of the mean. In

this case, if ν → 0 the Characteristic Function of Y1 tends to the one of the

Normal(θ + µ, σ2) since

lim
ν→0

exp(iuµ)

[

1 − (iuθ − 1

2
u2σ2)ν

]−1/ν

= exp(iu(θ + µ) − 1

2
u2σ2). (4.40)

4.3.3 Fitting Monthly Log-returns of Hedge Funds

In the previous chapter we have shown that the Normal distribution is a very

poor model to fit monthly log-returns of hedge fund indices. In order to achieve
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a better fit we can replace the Gaussian distribution by the more sophisticated

Variance Gamma distribution with four parameters, taking into account skewness

and excess kurtosis. We want to show that the underlying Variance Gamma dis-

tribution allows a much better fit to the data. In particular, we try to fit the

Variance Gamma distribution to the monthly log-returns of two indices: Convert-

ible Arbitrage and Fixed Income Arbitrage. To estimate the Variance Gamma

(annual) parameters we assume (implicitly) independent observations7 and use

moments estimators. The analysis is performed using smoothed and unsmoothed

time series for each hedge fund index.

We start considering the Convertible Arbitrage Index.

The results of the estimation procedure are given by:

• µ = 0, 1380 θ = −0, 0681 σ = 0, 0415 ν = 0, 1208 for observed data

• µ = 0, 1426 θ = −0, 0728 σ = 0, 0770 ν = 0, 1255 for unsmoothed data

Figure 4.1 shows two Normal kernel densities:

• the blue one is obtained using smoothed data (173 monthly log-returns)

• the red one is estimated using 25000 log-returns generated by the (smoothed)

VG model.

Figure 4.2 reports the densities estimated with unsmoothed data:

• the blue density is got with smoothed log-return data (173 monthly log-

returns)

• the red one is based on 25000 simulated log-returns through the (unsmoothed)

VG model.

In both cases the Variance Gamma distribution seems to work very well for Con-

vertible Arbitrage monthly log-returns. Further evidence is provided by Quantile-

Quantile plots. The plotted plusses should not deviate too much from a straight

line if the sample comes from the selected distribution. Pictures 4.3 and 4.5 report

Q-Q plots based on the Normal distribution. In Figures 4.4 and 4.6 Q-Q plots

7See the distinction between observed (smoothed) and unsmoothed data of Chapter 3. Ob-

served data are serial correlated. Unsmoothed data are not auto-correlated, but this does not

necessarily imply independent observations.
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are based on the Variance Gamma distribution. It can be seen that there is a

severe problem in the tails if we try to fit the data with the Normal distribution.

This feature of the data has been already evidenced in chapter 3. This problem

almost completely disappears when we use the Variance Gamma distribution to

fit observed and unsmoothed log-returns, as can be seen in Figures 4.4 and 4.6.

We repeat the same analysis for the Fixed Income Arbitrage Index.

The results of the estimation procedure are given by:

• µ = 0, 1113 θ = −0, 0630 σ = 0, 0258 ν = 0, 2464 for observed data

• µ = 0, 0984 θ = −0, 0512 σ = 0, 0474 ν = 0, 2525 for unsmoothed data

All Figures from 4.7 to 4.12 indicate that the Variance Gamma density fits smoothed

and unsmoothed log-returns of the Fixed Income Arbitrage Index much better

than the Normal.
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Figure 4.1: Kernel Densities for Convertible Arbitrage (smoothed data)

Figure 4.2: Kernel Densities for Convertible Arbitrage (unsmoothed data)
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Figure 4.3: Normal Q-Q Plot for Convertible Arbitrage (smoothed data)

Figure 4.4: VG Q-Q Plot for Convertible Arbitrage (smoothed data)



CHAPTER 4. LÉVY PROCESSES 53

Figure 4.5: Normal Q-Q Plot for Convertible Arbitrage (unsmoothed data)

Figure 4.6: VG Q-Q Plot for Convertible Arbitrage (unsmoothed data)
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Figure 4.7: Kernel Densities for Fixed Income Arbitrage (smoothed data)

Figure 4.8: Kernel Densities for Fixed Income Arbitrage (unsmoothed data)
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Figure 4.9: Normal Q-Q Plot for Fixed Income Arbitrage (smoothed data)

Figure 4.10: VG Q-Q Plot for Fixed Income Arbitrage (smoothed data)



CHAPTER 4. LÉVY PROCESSES 56

Figure 4.11: Normal Q-Q Plot for Fixed Income Arbitrage (unsmoothed data)

Figure 4.12: VG Q-Q Plot for Fixed Income Arbitrage (unsmoothed data)



Chapter 5

The Models

5.1 Multidimensional Lévy Processes and Dependence

Structure

An increasing number of financial applications requires a multivariate model with

dependence between components. Two typical examples are represented by the

pricing of basket options and portfolio optimization. In most of these applications,

jumps in the price process must be taken into account. However, multidimensional

models with jumps are more difficult to construct than one-dimensional ones. As

observed in [33] this has led to an important imbalance between the range of pos-

sible applications and the number of available models in the multidimensional and

one-dimensional cases: a wide variety of one-dimensional models have been devel-

oped for relatively few applications, while multidimensional applications continue

to be dominated by Brownian motion. The main reason for the abuse of mul-

tivariate Gaussian models is that dependence can be parameterized in a simple

way, in terms of correlation matrices. In this case marginal properties given by

volatilities are easy to separate from dependence properties described by correla-

tions. Another reason is that it is very easy to simulate Gaussian time series with

arbitrary correlation matrices. However, some methods have been developed to

build multidimensional processes with jumps.

Lévy copulas

This concept parallels the notion of ordinary copula on the level of Lévy measure.

57
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Ordinary copulas allow to separate the dependence structure of a random vector

from its univariate margins. They provide a complete characterization of the pos-

sible dependence structures of a random vector with fixed margins. They can be

used to construct multivariate distributions with specified dependence structure

from a collection of univariate laws. The interested reader can find an introduction

to copulas in [120, 63, 106] and for their multiple applications in finance can see

Cherubini et al. (2004) [29]. However, ordinary copulas are used to study depen-

dence in a static context. In principle, the whole distribution of a n-dimensional

Lévy process X = {Xt, t ≥ 0} is determined by the law of Xt for one fixed t.

Therefore, one can describe the dependence structure among components of X

by the ordinary copula Ct of Xt. However, this copula generally depends on t

and Cs for some t 6= s cannot be computed from Ct alone; to compute it one

also needs to know the marginal distributions at time t and at time s. Tankov

(2004) [123] construct an explicit example of a Lévy process with non constant

copula. Moreover, given n one-dimensional Lévy processes, it is not clear which

copulas Ct lead to a n-dimensional Lévy process. Since every (n-dimensional)

Lévy process X = {Xt, t ≥ 0} is described in a time-dependent fashion by its

characteristic triplet [γ, A, υ(dx)], it seems therefore natural to describe the

dependence between components of X also in terms of its characteristic triplet.

Since the continuous martingale component of X is completely described by the

covariance matrix A and is independent from the jump part, it is sufficient to

focus on the dependence of the jump part of X. For such a process, separate

modelling of margins and dependence is achieved by introducing Lévy copulas,

which play the same role for Lévy measures as ordinary copulas for probability

measures. Lévy copulas, introduced by Tankov (2003)[122] and further developed

by Tankov and Kallsen (2004)[65, 123], are functions that completely characterize

the law of a multidimensional Lévy process given the laws of its components, de-

scribed by their Lévy measures. If a Brownian motion component is also present,

since the Gaussian and the jump part are independent, one can use at the same

time a correlation matrix and a Lévy copula to model separately both sources of

dependence. It should be emphasized that a Lévy copula allows to describe in a

time-dependent fashion the dependence structure of a Lévy process without Gaus-

sian component. Lévy copulas completely characterize the possible dependence

patterns of Lévy processes in the sense that for every Lévy process, there exists
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a Lévy copula that describes its dependence structure and for every Lévy copula

and every n one-dimensional Lévy processes, there exists an n-dimensional Lévy

process with this Lévy copula and with margins given by these one-dimensional

processes. Multidimensional Lévy process models for applications can thus be

constructed by taking any n one-dimensional processes and a Lévy copula from a

parametric family (See for example Paragraph 5 [65]). Tankov in [123, 124] discuss

the simulation of multivariate Lévy processes with dependence structure given by

a Lévy copula. Financial applications include the pricing of basket option (with

barriers) and portfolio management. Lévy copula models are also useful in insur-

ance and in risk management, to model the dependence between loss processes

of different business lines, and more generally, in all multivariate problems where

dependence between jumps needs to be taken into account. From a theoretical

point of view they have very interesting property that make them unique, that

is flexibility. They allows to build multivariate Lévy processes with margins of

different kind and to model their dependence in a dynamical way. However, their

practical use is limited because are quite complex. In fact, from the point of view

of applications they exhibit two main problems:

• Lévy copula models are really hard to estimate from data;

• The simulation procedure is quite complex and becomes intractable when

the number of asset is greater than two or three.

For a detailed description of Lévy copula one can read the references mentioned

above or Chapter 5 of [33] on Multidimensional Lévy processes1.

Building Multivariate Lévy Process with Finite Activity

The simplest way to build an n-dimensional jump-diffusion model is to assume

the existence of a unique Poisson process, common to all price processes. This

essentially means that there is only one source of jump risk in the market affecting

all assets and no specific sources of jump risk exist. All assets jump at the same

1For a financial application of Lévy copulas see [33, 123, 124]. In these works a bivariate Lévy

process is built using a two parameters Clayton Lévy copula with Variance Gamma margins.

Copula parameters are computed in different combination to reproduce the observed correlation

between the log-returns. Different combinations produce quite different tail dependence struc-

tures
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time but the size of the jumps may be different (See [75]). In this model, the

dates of market crashes are modelled as jump times of a standard Poisson process

N = {Nt, t ≥ 0}.
This leads us to the following model for the log-price processes of n assets :

Y j
t = µjt+Bj

t +

Nt
∑

k=1

Lj
k j = 1, . . . , n (5.1)

where Bt is an n-dimensional Brownian motion with covariance matrix Σ, and

{Lk}∞k=1 are i.i.d. n-dimensional random vectors which determine the sizes of

jumps in individual assets during a market crash. To complete the model, we

need to specify the distribution of the size of the jump in individual assets and

the dependence between jumps in assets. If we assume that
{

Lj
k

}n

j=1
are Gaus-

sian random vectors, then we have to define their covariance matrix Λ and the

mean vector m, thus obtaining a multivariate version of Merton’s model [85]. To

construct this multivariate model from real data we have to estimate n2 + 3n+ 1

parameters simultaneously. Even in a simple bivariate Merton’s model we have to

estimate jointly 11 parameters! As the number of assets increases the estimation

becomes clearly unfeasible. If the jumps are not Gaussian, we must specify the

distribution of jumps in each component and the copula describing their depen-

dence. In particular, if the jumps are double exponential using different copulas

we get different multivariate extensions of Kou’s model [68, 69]. The model is thus

completely specified by a covariance matrix Σ, a drift vector with n components,

n jump size distributions, one n-dimensional copula C and a jump intensity pa-

rameter λ. Also in this case estimation is a real problem even with two assets.

It seems reasonable to model several independent shocks to account for events

that affect individual assets or individual sectors rather than the entire market.

To reach this task several driving Poisson processes have to be introduced into the

model. This leads to the following model for the log-price processes of n assets :

Y j
t = µjt+Bj

t +
D

∑

f=1

Nf
t

∑

k=1

Lj
k,f j = 1, . . . , n (5.2)

where N1
t , . . . , N

D
t are Poisson processes driving D independent shocks and Lj

k,f

is the size of jump in j-th component after k-th shock of type f . The vectors
{

Lj
k,f

}n

j=1
for different k and/or f are independent. To define a parametric model
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completely, one must specify a one-dimensional distribution for each component

for each shock type (different shocks influence the same stock in different ways),

and one n-dimensional copula for each shock type (that is D n-dimensional cop-

ulas). As the dimension of the problem grows, this kind of modelling quickly

becomes unfeasible.2

Building Multivariate Lévy Processes through Subordination of Multivariate Brow-

nian motion with drift

Another method to introduce jumps into a multidimensional model is to take a

Multivariate Brownian motion with drift and time change it with an independent

one-dimensional subordinator [33, 123, 76, 74].3 This approach allows construct-

ing multidimensional versions of many popular one-dimensional models, including

Variance Gamma, Normal Inverse Gaussian, Generalized Hyperbolic, Meixner and

Carr-Geman-Madan-Yor process. The principal advantage of this method is its

simplicity and analytic tractability, especially if compared with the previous meth-

ods. In particular:

• the computation of the Characteristic Function of the process is simple;

• the knowledge of the Characteristic Function allows to find expressions for

joint and marginal moments;

• conditional Normality of log-returns simplifies the simulation procedure;

• the knowledge of the joint Characteristic Function allows to estimate simul-

taneously (if the number of margins is not too high) all the parameters using

the Spectral GMM estimator [25]. The GMM estimator based on the Mo-

ment Generating Function or other ad hoc technique based on Method of

Moments can be used. Estimation of Lévy copula parameters is an open

question. Estimation of parameters in a multidimensional jump-diffusion

process is very difficult even in the bivariate case;

• a parsimonious description of dependence is especially important because one

typically does not have enough information about the dependence structure

to estimate many parameters;

2For an application of a multivariate jump-diffusion model in option pricing see[79].
3See Section 4.1.1
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• since no traded option on hedge funds are available we cannot calibrate the

model parameters directly in the risk neutral measure chosen by the market.

The method we use to find an equivalent martingale measure requires the

knowledge of the Characteristic Function of the multivariate process.

This method has also some drawbacks. The range of dependence patterns that

one can obtain using this approach is limited (for example, independence is not

included), and all components must follow the same parametric model. Finally,

building a Multivariate Lévy process time changing a Multivariate Brownian Mo-

tion with a one-dimensional subordinator imposes some constraints in the param-

eters of the marginal processes. Therefore, the greater the number of parameters

describing the distribution of the subordinator is, the more similar the moments

of the margins are. In the Multivariate Variance Gamma process with linear drift

we have only one constrained parameter for every margins.

Semeraro and Luciano (2006-2007)[78, 77, 118] suggest the use of a Multivariate

subordinator in order to get a more flexible and realistic multidimensional model.

In particular, they get some Multivariate Lévy processes with well-known margins

(NIG, VG, CGMY).

After an accurate analysis of advantages and disadvantages of all the exposed

methods, we decide to build multivariate Lévy processes using the technique of

the stochastic time change. In the following three section we provide three dif-

ferent models. All of them have Variance Gamma margins but present different

dependence structures.

5.1.1 Model 1: Multivariate Variance Gamma

(Independent Brownian Motions)

The evolution of hedge funds’ log-returns is described through a Multivariate Vari-

ance Gamma process with linear drift. The Multivariate Variance Gamma process

is obtained time changing a Multivariate Brownian motion with drift, with inde-

pendent components, with an independent one-dimensional Gamma process. As

in [76] modelling dependence in this way is like starting from an independent

Gaussian World in which all assets are driven by independent Geometric Brow-

nian motions. Then, in order to introduce dependence, we time-change all the

asset price processes by a common Gamma time-change. The economic interpre-
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tation is that all firms operate in the same economic environment. A jump in the

time-change leads to a jump in the price processes and hence all jumps happen

simultaneously. However, the jump sizes are caused by the individual Brownian

motions. We thus introduce a new business time in which the general market

operates. This new business time can also be interpreted as a model for the infor-

mation arrival. Taking into account that the market does not forget information,

the amount of information only cannot decrease. Moreover, it seems reasonable

that the amount of new information released should not be affected by the amount

already released. In other words, the information process should have indepen-

dent increments. Finally, one can also require that the increment only depends on

the length of that period and hence is stationary. The Gamma process satisfies

these properties. In fact, it is a positive Lévy process, i.e. a subordinator (See

subsection (4.3.1)).

The NAV at time t of each hedge fund is given by the product of the initial NAV

times the exponential of a Variance Gamma process with linear drift:

F j
t = F j

0 exp(Y j
t ) (5.3)

where F j
t and F j

0 is the NAV of the hedge fund j at times t and 0, while Y j
t is the

log-return of the j-th hedge fund over the period [0; t] for every j = 1, . . . , n. The

log-return of the j-th hedge fund is

Y j
t = µjt+Xj

t (5.4)

= µjt+ θjGt + σjW
j
Gt

(5.5)

where G = {Gt, t ≥ 0} is the common Gamma stochastic time change process

such that Gt ∼ Gamma(t/ν, 1/ν) and ν > 0;

W j = {W j
t , t ≥ 0} and W k = {W k

t , t ≥ 0} are independent Wiener processes for

all j 6= k, W j
t and W k

t are Gaussian(0, t);

θj , µj and σj > 0 are costants.

If we set t = 1, we get the yearly log-return for asset j, that is

Y j
1 = µj +Xj

1 (5.6)

= µj + θjG1 + σjW
j
G1

(5.7)
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The above assumptions leads to the following simple expression for hedge funds’

j and k yearly log-returns covariance:

σ
(

Y j
1 ;Y k

1

)

= θjθkν (5.8)

and for correlation:

ρ
(

Y j
1 ;Y k

1

)

=
θjθkν

√

σ2
j + νθ2

j

√

σ2
k + νθ2

k

(5.9)

Since ν is strictly positive, the j-th and k-th hedge funds are positively correlated

if and only if θj and θk have the same sign. In other worlds, this model implies

a positive correlation for all the assets having the same sign of skewness. Pairs

of negatively skewed or pairs of positively skewed hedge funds have a positive

correlation coefficient. If a hedge fund has a symmetric VG distribution then

it will be uncorrelated with all other hedge funds. However, by construction, it

is clear that this hedge fund cannot be independent with the others. Negative

correlation between pairs of hedge funds is only possible if their distributions

exhibit skewness of opposite sign.

The Characteristic Function of Y j
1 for j = 1, . . . , n is

Ψ
Y j
1

(u) = exp (iuµj)

(

1 − iuθjν +
1

2
u2σ2

j ν

)−1/ν

. (5.10)

Conditional normality allows to compute the joint Characteristic Function of the

Multivariate Variance Gamma distribution (with t = 1). The computations re-

quired are easy but tedious. Yet, we can compute this function in a more efficient

way by using THEOREM 4.2 [33]. In order to apply this theorem we need to

know:

• the Laplace Exponent l(u) of the Gamma subordinator;

• the Charactheristic Exponent c(u) of a Multivariate Brownian motion, with

independent components.

The Laplace Exponent of a generic subordinator is defined in the following way:

E [exp (uGt)] = exp [tl (u)] ∀u ≤ 0 (5.11)

l (u) = ln
E [exp (uGt)]

t
(5.12)
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The Moment Generating Function of Gt ∼ Gamma(t/ν, 1/ν) is

E [exp (uGt)] = (1 − uν)−t/ν u <
1

ν
(5.13)

and consequently its Laplace Exponent is simply

l (u) = − ln (1 − uν)

ν
(5.14)

The joint Characteristic Function of the Multivariate Brownian motion with in-

dependent components (t = 1)

Ψ(W)1(u) = E



exp



i

n
∑

j=1

(ujθj + ujσjW
j
1 )









= exp





n
∑

j=1

(

iujθj −
1

2
u2

jσ
2
j

)





(5.15)

and therefore its Characteristic Exponent is

c (u) =
n

∑

j=1

(

iujθj −
1

2
u2

jσ
2
j

)

(5.16)

Now we have all the elements necessary to compute the Characteristic Function

of the Multivariate Variance Gamma distribution. Using THEOREM 4.2 [33] we

get

Ψ(Y)1 (u) = exp



i
n

∑

j=1

ujµj



×



 1 − ν
n

∑

j=1

(iujθj −
1

2
u2

jσ
2
j )





(−1/ν) (5.17)

From this function it is immediate to derive the joint Moment Generating Func-

tion4 of Y1, whose existence requires that the argument between the square brack-

4Contrarily to the Characteristic Function, which is always well-defined (as the Fourier trans-

form of a probability measure), the Moment Generating Function is not always defined: the

integral (5.18) may not converge for some values of u. When it is well-defined, it can be formally

related to the Characteristic Function (5.17) by: M(Y)1 (u) = Ψ(Y)1 (−iu) . However, we can

use this relation to find the formal expression for the Moment Generating Function for the set of

values of u such that the expectation (5.18) is finite. See Cont and Tankov [33] Paragraph 2.2.4.
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ets is positive:

M(Y)1 (u) = exp





n
∑

j=1

ujµj



×



 1 − ν

n
∑

j=1

(ujθj +
1

2
u2

jσ
2
j )





(−1/ν) (5.18)

This function will play a crucial role in the section devoted to the change of

measure.

5.1.2 Model 2: Multivariate Variance Gamma

(Correlated Brownian Motions)

The dynamic of hedge funds is modelled through a Multivariate Variance Gamma

process with a linear drift. The pure Multivariate jump part of the process is got

by time changing a Multivariate Brownian motion, with correlated components,

with an independent one-dimensional Gamma process. Modelling dependence in

this way is like starting from a Gaussian World in which all assets are driven by

correlated Geometric Brownian motions and then introducing another source of

dependence through a stochastic time-change represented by a common Gamma

stochastic clock. The main difference with respect to the previous model is that

now there are two sources of co-movement among NAV of different hedge funds:

• cross-correlations between the underlying Brownian motions;

• dependence produced by the same stochastic clock.

The log-return of the j-th hedge fund over the period [0, t] is

Y j
t = µjt+Xj

t (5.19)

= µjt+ θjGt + σjW
j
Gt

(5.20)

where G = {Gt, t ≥ 0} is the Gamma stochastic time-change process with Gt ∼
Gamma(t/ν, 1/ν) and ν > 0;

W j = {W j
t , t ≥ 0} and W k = {W k

t , t ≥ 0} are correlated Wiener processes with

correlation coefficient ρjk for all j 6= k;
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θj , µj and σj > 0 are constants.

If we consider t = 1, we get the annual log-return for asset j, that is

Y j
1 = µj +Xj

1 (5.21)

= µj + θjG1 + σjW
j
G1

(5.22)

= µj + θjG1 + σj

√

G1W
j
1 (5.23)

The covariance between yearly log-returns of hedge funds j and k is given by:

σ
(

Y j
1 ;Y k

1

)

= θjθkE(G2
1) + σjσkE(G1)E(W j

1W
K
1 ) (5.24)

= θjθkν + σjσkρjk (5.25)

The correlation is:

ρ
(

Y j
1 ;Y k

1

)

=
θjθkν + σjσkρjk

√

σ2
j + νθ2

j

√

σ2
k + νθ2

k

(5.26)

These expressions show some important differences with respect to the same ones

of the previous model:

• pairs of assets with skewness of the same sign could be negatively correlated;

• pairs of assets with skewness of opposite sign could be positively correlated;

• a hedge fund with a symmetric distribution could be correlated with other

assets;

• pairs of assets have null correlation if and only if at least one of them has a

symmetric distribution and their underlying Brownian Motions are uncorre-

lated.

However, both models do not contemplate independence. Null correlation does

not imply independence. Hedge funds’ Navs are always dependent due to the

existence of a common stochastic clock. As we mentioned before, Semeraro and

Luciano developed some models, using multivariate subordinators, able to produce

also independence [77, 78, 118].

In order to compute the Characteristic Function of this more general Multivariate

Variance Gamma process we follow the same procedure described in the previous
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case. Therefore, we report only the different formulas. The joint Characteristic

Function of the Multivariate Brownian motion with correlated components (t = 1)

Ψ(W)1(u) = E



exp



i

n
∑

j=1

(ujθj + ujσjW
j
1 )









= exp





n
∑

j=1

iujθj −
1

2

n
∑

j

n
∑

k

ujukσjσkρjk





(5.27)

Therefore, the Characteristic Exponent of the Multivariate Brownian motion with

dependent components is simply

c (u) =

n
∑

j=1

iujθj −
1

2

n
∑

j

n
∑

k

ujukσjσkρjk (5.28)

Using THEOREM 4.2 [33] we get the Characteristic Function of the Multivariate

Variance Gamma process with linear drift :

Ψ(Y)1 (u) = exp



i
n

∑

j=1

ujµj



×



 1 − ν





n
∑

j=1

iujθj −
1

2

n
∑

j

n
∑

k

ujukσjσkρjk









−1/ν (5.29)

From this expression we can derive the joint Moment Generating Function5 of Y1,

which is defined when the argument between the square brackets is positive:

M(Y)1 (u) = exp





n
∑

j=1

ujµj



×



 1 − ν





n
∑

j=1

ujθj +
1

2

n
∑

j

n
∑

k

ujukσjσkρjk









−1/ν (5.30)

5.1.3 Model 3: Multivariate ν-Variance Gamma Model

(Independent Brownian Motions)

The traditional Multivariate Lévy process constructed by subordinating a Brow-

nian motion with drift through a univariate subordinator presents a number of

5See footnote 4 of section (5.1.1)
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drawbacks, including the lack of independence and a limited range of dependence.

In order to face these problems, Semeraro and Luciano [77, 78, 118] investigate

multivariate subordination, with a common and an idiosyncratic component. From

the intuitive point of view, the main feature of such multivariate subordination is

that it allows to incorporate both a common time transform, which can be inter-

preted in financial applications as a measure of the overall market activity, and

an idiosyncratic time shift. The evolution of hedge funds’ log-returns under the

real world probability measure now is described through a Multivariate Brownian

motion with drift and independent Gaussian components time changed by a Mul-

tivariate Gamma process with correlated marginal processes. Finally, we add to

each marginal process a linear drift to get a more flexible model for hedge funds’

log-returns.

The log-return of the j-th hedge fund over the period [0, t] is

Y j
t = µjt+Xj

t (5.31)

= µjt+ θjG
j
t + σjW

j

Gj
t

(5.32)

= µjt+ θj(U
j
t + νjZt)σjW

j

Uj
t +νjZt

(5.33)

where Gj = {Gj
t , t ≥ 0} is the Gamma stochastic time change for the j-th asset

process with Gj
t ∼ Gamma(t/νj , 1/νj) and νj > 0 for all j = 1, . . . , n;

U j = {U j
t , t ≥ 0} is the idiosyncratic part of the stochastic clock such that

U j
t ∼ Gamma(t/νj − at, 1/νj) where U j = {U j

t , t ≥ 0} and Uk = {Uk
t , t ≥ 0}

are independent Gamma processes for all j 6= k;

Z = {Zt, t ≥ 0} is the part of the stochastic clock common to all asset where

Zt ∼ Gamma(at, 1) and is independent with respect to the specific parts of each

time-change;

W j = {W j
t , t ≥ 0} and W k = {W k

t , t ≥ 0} are uncorrelated Wiener processes for

all j 6= k;

θj , µj and σj > 0 are constants. The process G = {Gt, t ≥ 0} is a multivariate

ν-Gamma subordinator with dependent components and it satisfies the condition

0 < νj < 1/a for j = 1, . . . , n.

The covariance between the j-th and the k-th components of the Gamma subor-

dinator for t = 1 is:

σ(Gj
1;G

k
1) = aνjνk (5.34)
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The covariance and the correlation between the log-returns of hedge funds j and

k are

σ(Y j
1 ;Y k

1 ) = θjθkσ(Gj
1;G

k
1) = θjθkaνjνk (5.35)

ρ(Y j
1 ;Y k

1 ) =
θjθkaνjνk

√

(σ2
j + θ2

jνj)(σ2
k + θ2

kνk)
(5.36)

Changing the parameter a it is possible to modify all the correlations without

modifying the marginal distributions.

• The marginal processes are independent if and only if a = 0.

• Two margins are uncorrelated but dependent if at least one of them is sym-

metric and a 6= 0.

To compute the joint Characteristic Function we need to use the generalized ver-

sion of THEOREM 4.2 [33] in the case of a multidimensional subordinator (See

[11] Theorem 3.3). The Laplace Exponent l(u) of the subordinator is

l(u) = ln







[

n
∏

j

(1 − ujνj)
−( 1

νj
−a)

][1 −
n

∑

j

ujνj ]
−a







(5.37)

The Charactheristic Exponent c(u) of our Multivariate Brownian motion, with

independent components is given by:

c(u) =
n

∑

j

(iθjuj −
1

2
σ2u2

j ) (5.38)

We compute the Characteristc Function of the process for t = 1 using the following

formula

Ψ(Y)1 (u) = exp(i

n
∑

j

ujµj) exp(l(c(u))) (5.39)

and we obtain

Ψ(Y)1 (u) = exp(i

n
∑

j

ujµj)
n

∏

j

(1 − νj(iθjuj −
1

2
σ2

ju
2
j ))

−( 1

νj
−a)×

(1 −
n

∑

j

νj(iθjuj −
1

2
σ2

ju
2
j ))

−a

(5.40)

To compute the j-th marginal Characteristic Function it is sufficient to evaluate

formula (5.40) in (0, . . . , uj , . . . , 0)

ΨY
j
1(uj) = exp(iujµj)(1 − νj(iθjuj −

1

2
σ2

ju
2
j ))

− 1

νj (5.41)
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Of course this is the Characteristic Function of a univariate Variance Gamma

process with linear trend. The joint Moment Generating Function is simply:

M(Y)1 (u) = exp(
n

∑

j

ujµj)
n

∏

j

(1 − νj(θjuj +
1

2
σ2

ju
2
j ))

−( 1

νj
−a)×

(1 −
n

∑

j

νj(θjuj +
1

2
σ2

ju
2
j ))

−a

(5.42)

5.2 The Change of Measure

The evolution of the Net Asset Value of each hedge fund is described as an Ex-

ponential Variance Gamma process under the real world probability measure in

all our models. According to Cont and Tankov ([33] Section 9.5) these models

are arbitrage free since the price process of every asset have both positive and

negative jumps. Consequently, there exists for each of them an equivalent mar-

tingale measure. However, they belong to the class of incomplete market models:

the equivalent martingale measure is not unique (See section (4.2.2)). Among the

possible candidates we select the Esscher Equivalent Martingale Measure6.

5.2.1 Multivariate Esscher Transform

In this section we explain how to use the Esscher Transform in a multivariate

contest in order to find the Esscher Equivalent Martingale Measure.

Consider a market with n risky assets and a bank account which provides a risk

free interest rate r constant over the time period [0, T ]. The value of the bank

account at time t is At = A0 exp (rt). Suppose that the price of every risky asset at

time t ∈ [0, T ] can be described by a Geometric Lévy model, say F j
t = F j

0 exp(Y j
t )

for j = 1, . . . , n.

Let Y = {Yt, t ≥ 0} be the n-dimensional Lévy process describing the multi-

variate log-returns process, then the Qh Esscher measure associated with the risk

process Y is defined by the following Radon-Nikodym derivative

dQh

dP
|ℑt =

exp(
∑n

j=1 hjY
j
t )

E
[

exp(
∑n

j=1 hjY
j
t )

] (5.43)

6Actually we cannot be sure about its existence.
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In order to find the Esscher risk neutral dynamic of Y = {Yt, t ≥ 0} two steps

are necessary:

• find a vector ĥ such that the discounted price process of every asset is a

martingale under the new probability measure Qh;

• find the joint Characteristic Function of the multivariate process Y = {Yt, t ≥ 0}
under Qh.

Any transformation of the Lévy measure respecting some integrability constraints

(See [33] Section 4.2.3) leads to a new Lévy process. In particular, the Esscher

Transform corresponds to an exponential tilting of the P Lévy measure. If there

exists a vector ĥ such that
∫

|y|≥1
υQh(dy) =

∫

|y|≥1
exp(hTy)υ(dy) <∞ (5.44)

then the process is a Lévy process under this new probability measure. However,

if it is possible to find a vector ĥ such that the discounted price process of each

asset is a martingale under the measure Qh, then the existence of the Esscher

Martingale Measure is ensured.

In the following sections we apply these steps to our multivariate models. Actually,

we cannot be sure that such an equivalent martingale measure exists.

Notice that in our case the choice of this risk neutral measure (if it exists) seems

to be the best as possible for at least to reasons7:

• Each step requires the knowledge of the joint P Characteristic Function.

Usually, it is not easy to find this function explicitly. However, building a

multidimensional Lévy process by a stochastic time change of a multivariate

Brownian motion makes easy the computation of the Characteristic Function

of the process (See Cont and Tankov [33] Theorem 4.3).

• If this equivalent martingale measure exists usually it possible to find the

link between the physical and the risk neutral parameters. This is very

useful when no option prices are available to calibrate the model. Since no

traded option on hedge funds are available we cannot apply the improperly

called Mean Correcting Martingale method, which is the easiest and most

frequently change of measure encountered in financial applications.

7See also the previous discussion of section 4.2.3
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Finally, it should be emphasized that even if the ESMM exists, we cannot be sure

that marginal and joint processes remain of the same type.

5.2.2 Model 1 and ESMM

The first step of the procedure described in the previous section requires the

solution of the following system of n equations8























E
[

exp(
∑n

j=1 hjY
j
t + Y 1

t )
]

/E
[

exp(
∑n

j=1 hjY
j
t )

]

= exp(rt)

...

E
[

exp(
∑n

j=1 hjY
j
t + Y n

t )
]

/E
[

exp(
∑n

j=1 hjY
j
t )

]

= exp(rt)

(5.45)

To solve this system we need the P Moment Generating function of the model

introduced in section 5.1.1:

M(Y)t (u) = exp





n
∑

j=1

ujµjt







 1 − ν
n

∑

j=1

(ujθj +
1

2
u2

jσ
2
j )





(−t/ν)

Thanks to the infinitely divisibility property of hedge funds’ log-returns distribu-

tions, the solution of the Esscher system does not depend on t. The previous

system after some computation leads to the next one:























ln
[

1 − (ν(θ1 + h1σ
2
1 + 0.5σ2

1))/(1 − ν
∑n

j (hjθj + 0.5h2
jσ

2
j ))

]

= (µ1 − r)ν

...

ln
[

1 − (ν(θn + hnσ
2
n + 0.5σ2

n))/(1 − ν
∑n

j (hjθj + 0.5h2
jσ

2
j ))

]

= (µn − r)ν

(5.46)

with the following constraints

[1 − ν
n

∑

j

(hjθj + 0.5h2
jσ

2
j )] > 0 (5.47)

and

[1−ν(
n

∑

j 6=k

(hjθj+0.5h2
jσ

2
j )+((hk+1)θk+0.5(hk+1)2σ2

k))] > 0 k = 1, . . . , n. (5.48)

8One equation for each hedge fund



CHAPTER 5. THE MODELS 74

It is not possible to find a closed formula for the solution of this system. However,

numerically the solution is obtained very quickly9. The existence of the vector

ĥ is sufficient to ensure the existence of the Esscher Equivalent Martingale Mea-

sure. The joint Moment Generating Function for t = 1 under the ESMM can be

computed as follows:

MQh(Y)1 (u) = EQh



exp
n

∑

j=1

ujY
j
1



 (5.49)

EQh



exp
n

∑

j=1

ujY
j
1



 =
E

[

exp
∑n

j=1(ĥj + uj)Y
j
1

]

E
[

exp
∑n

j=1 ĥjY
j
1

] (5.50)

where ĥj is the j-th component of the vector ĥ. The computation of the Esscher

risk neutral joint Moment Generating Function requires the knowledge of the

Moment Generating Function of the Multivariate Variance Gamma process for

t = 1 under the statistical measure (See (5.18)). We substitute the following

expressions into equation (5.50)

E



exp

n
∑

j=1

(ĥj + uj)Y
j
1



 = exp





n
∑

j=1

(ĥj + uj)µj



×



 1 − ν

n
∑

j=1

((ĥj + uj)θj +
1

2
(ĥj + uj)

2σ2
j )





(−1/ν)

(5.51)

E



exp

n
∑

j=1

ĥjY
j
1



 = exp





n
∑

j=1

ĥjµj



×



 1 − ν

n
∑

j=1

(ĥjθj +
1

2
ĥ2

jσ
2
j )





(−1/ν) (5.52)

and after tedious computations and rearrangements we get

MQh(Y)1 (u) = exp





n
∑

j=1

ujµj



×



 1 − ν

n
∑

j=1

(uj(θj + ĥjσ
2
j ) + 1

2u
2
jσ

2
j )

1 − ν
∑n

j=1(ĥjθj + 1
2 ĥ

2
jσ

2
j )





−1/ν

.

(5.53)

9See next chapter
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The joint Qh Moment Generating Function can be written in the following more

compact form:

MQh(Y)1 (u) = exp





n
∑

j=1

ujµ
Qh

j







 1 − νQh

n
∑

j=1

(ujθ
Qh

j +
1

2
u2

jσ
Qh

j
2)





(−1/νQ
h)

(5.54)

where relations among physical and Esscher risk neutral parameters are

µQh

j = µj (5.55)

νQh

j = ν (5.56)

θQh

j =
θj + ĥjσ

2
j

1 − ν
∑n

j=1(ĥjθj + 1
2 ĥ

2
jσ

2
j )

(5.57)

σQh

j
2 =

σ2
j

1 − ν
∑n

j=1(ĥjθj + 1
2 ĥ

2
jσ

2
j )

(5.58)

ρQh

jk = ρjk = 0 (5.59)

From (5.54) it is easy to get the joint Qh Characteristic Function

ΨQh(Y)1 (u) = exp



i

n
∑

j=1

ujµj







 1 − ν

n
∑

j=1

(iujθ
Qh

j − 1

2
u2

jσ
Qh

j
2)





(−1/ν)

(5.60)

The j-th Qh marginal Characteristic Function (for j = 1, . . . , n) is given by:

ΨQh

Y1
j (uj) = exp (iujµj)

[

1 − ν(iujθ
Qh

j − 1

2
u2

jσ
Qh

j
2)

](−1/ν)

(5.61)

Comparing (5.60) and (5.61) with (5.17) and (5.10) it results clear that the joint

and marginal Characteristic Functions under the P and Qh measures are of the

same type. For each marginal process, only two parameters changes. Under the

ESMM the multivariate log-returns process can be expressed again as a Mul-

tivariate Brownian motion with independent components, time-changed by an

independent Gamma process, identical to the physical one (plus a linear drift).

In other worlds, the underlying dependence structure remains unchanged. How-

ever, covariances, correlations, and marginal moments change. In particular, the

log-return of the j-th hedge fund over the period [0; t] under Qh is

Y j
t = µjt+ θQh

j Gt + σQh

j W j
Gt

(5.62)
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where G = {Gt, t ≥ 0} is the common Gamma stochastic process with Gt ∼
Gamma(t/ν, 1/ν), ν > 0;

W j = {W j
t , t ≥ 0} and W k = {W k

t , t ≥ 0} are independent Wiener processes for

all j 6= k;

θQh

j , µj and σQh

j > 0 are constants.

5.2.3 Model 2 and ESMM

In the first step we have to solve the system (5.45) in order to find a vector ĥ such

that the discounted Net Asset Value of each hedge fund is a martingale under the

new measure. The first ingredient we need is the P Moment Generating Function

of the Multivariate Variance Gamma process (t = 1) (5.30):

M(Y)1 (u) = exp





n
∑

j=1

ujµj







 1 − ν





n
∑

j=1

ujθj +
1

2

n
∑

j

n
∑

k

ujukσjσkρjk









−1/ν

After some computations and rearrangements the system to solve may be written

as:


























ln

[

1 − ν(θ1+0.5σ2

1
+

∑n
j=1

hjσ1σjρ1j)

1−ν(
∑n

j=1
hjθj+

1

2

∑n
j

∑n
k hjhkσjσkρjk)

]

= (µ1 − r)ν

...

ln

[

1 − ν(θn+0.5σ2
n+

∑n
j=1

hjσnσjρnj)

1−ν(
∑n

j=1
hjθj+

1

2

∑n
j

∑n
k hjhkσjσkρjk)

]

= (µn − r)ν

(5.63)

with the following constraints



 1 − ν





n
∑

j=1

hjθj +
1

2

n
∑

j

n
∑

k

hjhkσjσkρjk







 > 0 (5.64)

and

1 − ν(
n

∑

j 6=q

hjθj +
1

2

n
∑

j 6=q

n
∑

k 6=q

hjhkσjσkρjk)

− ν((hq + 1)θq +
1

2

n
∑

j 6=q

hj(hq + 1)σjσqρjq +
1

2
(hq + 1)2σ2

q ) > 0

(5.65)

for q = 1, . . . , n.

It is possible to find again the vector ĥ only numerically10. The solution ĥ is

10See next chapter
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sufficient to guarantee the existence of the Esscher Equivalent Martingale Measure.

The joint Moment Generating Function of the process for t = 1 under the ESMM

can be computed following the procedure described in section (5.2.2). After tedious

computations and some rearrangements we get the following expression:

MQh(Y)1 (u) = exp





n
∑

j=1

ujµj



×



 1 −
ν(

∑n
j=1 uj(θj +

∑n
k=1 ĥjσjσkρjk) + 1

2

∑n
j=1

∑n
k=1 ujukσjσkρjk))

1 − ν
(

∑n
j=1 ĥjθj + 1

2

∑n
j

∑n
k ĥj ĥkσjσkρjk

)





−1/ν

(5.66)

The joint Qh Moment Generating Function can be written in the following form

MQh(Y)1 (u) = exp





n
∑

j=1

ujµ
Qh

j



×



 1 − νQh





n
∑

j=1

ujθ
Qh

j +
1

2

n
∑

j

n
∑

k

ujukσ
Qh

j σQh

k ρQh

jk









−1/νQ
h

(5.67)

where the relations among statistical and Esscher risk neutral parameters are

µQh

j = µj (5.68)

νQh = ν (5.69)

θQh

j =
θj +

∑n
k=1 ĥkσjσkρjk

1 − ν
(

∑n
j=1 ĥjθj + 1

2

∑n
j

∑n
k ĥj ĥkσjσkρjk

) (5.70)

σQh

j
2 =

σ2
j

1 − ν
(

∑n
j=1 ĥjθj + 1

2

∑n
j

∑n
k ĥj ĥkσjσkρjk

) (5.71)

σQh

jk =
σjk

1 − ν
(

∑n
j=1 ĥjθj + 1

2

∑n
j

∑n
k ĥj ĥkσjσkρjk

) (5.72)

ρQh

jk = ρjk (5.73)
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From (5.67) we can easily obtain the joint Qh Characteristic Function

ΨQh(Y)1 (u) = exp



i
n

∑

j=1

ujµj



×



 1 − ν



i

n
∑

j=1

ujθ
Qh

j − 1

2

n
∑

j

n
∑

k

ujukσ
Qh

j σQh

k ρjk









−1/ν (5.74)

The j-th Qh marginal Characteristic Function (for j = 1, . . . , n) is given by:

ΨQh

Y1
j (uj) = exp (iujµj)

[

1 − ν(iujθ
Qh

j − 1

2
u2

jσ
Qh

j
2)

](−1/ν)

(5.75)

Marginal and joint Characteristic Functions under both probability measures (real

and risk neutral) are of the same type (Compare (5.74) and (5.75) to (5.29) and

(5.10)). For each marginal process, only two parameters changes. Under the

ESMM the log-returns process is still obtained time-changing a Multivariate Brow-

nian motion with correlated components, with an independent Gamma process.

In particular, the underlying dependence structures is not affected by the Esscher

change of measure. To be more precise, the Brownian motions have the same

correlation matrix and the Gamma process has the same parameters under both

Worlds. However, covariances, correlations, and marginal moments are different.

In particular, the log-return of the j-th hedge fund over the period [0, t] under

Qh is

Y j
t = µjt+ θQh

j Gt + σQh

j W j
Gt

(5.76)

where G = {Gt, t ≥ 0} is the common stochastic clock process with Gt ∼
Gamma(t/ν, 1/ν) and ν > 0;

W j = {W j
t , t ≥ 0} and W k = {W k

t , t ≥ 0} are correlated Wiener processes for

all j 6= k;

θQh

j , µj and σQh

j > 0 are constants.
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5.2.4 Model 3 and ESMM

First off all, to solve the system (5.45) we need the P Moment Generating Function

of the Multivariate ν-Variance Gamma process (t = 1) (5.42):

M(Y)1 (u) = exp(

n
∑

j

ujµj)

n
∏

j

(1 − νj(θjuj +
1

2
σ2

ju
2
j ))

−( 1

νj
−a)×

(1 −
n

∑

j

νj(θjuj +
1

2
σ2

ju
2
j ))

−a

After some computations and rearrangements the system (5.45) may be written

as :

(
1

νk
− a) ln[1 − νk(θk + hkσ

2
k + 0.5σ2

k)

1 − νk(θkhk + 0.5σ2
kh

2
k)

] + a ln[1 − νk(θk + hkσ
2
k + 0.5σ2

k)

1 −
∑n

j νj(θjhj + 0.5σ2
jh

2
j )

]

= µk − r for k = 1, . . . , n.

(5.77)

with the following constraints

[1 − ν
n

∑

j

(hjθj + 0.5h2
jσ

2
j )] > 0, (5.78)

[1−ν(
n

∑

j 6=k

(hjθj+0.5h2
jσ

2
1)+((hk+1)θk+0.5(hk+1)2σ2

k))] > 0 k = 1, . . . , n, (5.79)

[1 − ν(hkθk + 0.5h2
kσ

2
k)] > 0, k = 1, . . . , n, (5.80)

[1 − ν((hk + 1)θk + 0.5(hk + 1)2σ2
k))] > 0 k = 1, . . . , n. (5.81)

We cannot find the elements of the vector ĥ in closed form. However, we are able

to solve numerically this system11. The joint Moment Generating Function of the

process for t = 1 under this new probability measure can be computed following

the procedure described in section (5.2.2). Long and tedious calculations lead to

the following expression:

MQh(Y)1 (u) = exp





n
∑

j=1

ujµj





n
∏

j

{

1 −
νj [uj(θj + ĥjσ

2
j ) + 1

2u
2
jσ

2
j ]

1 − νk(θj ĥj + 1
2 ĥ

2
jσ

2
j )

}−( 1

νj
−a)

×

{

1 −
∑n

j νj [uj(θj + ĥjσ
2
j ) + 1

2u
2
jσ

2
j ]

1 − ∑n
j νj(θj ĥj + 1

2σ
2
j ĥ

2
j )

}−a

(5.82)

11See next chapter



CHAPTER 5. THE MODELS 80

The joint Characteristic Funtion is easily obtained from (5.82)

ΨQh(Y)1 (u) = exp



i
n

∑

j=1

ujµj





n
∏

j

{

1 −
νj [iuj(θj + ĥjσ

2
j ) − 1

2u
2
jσ

2
j ]

1 − νk(θj ĥj + 1
2 ĥ

2
jσ

2
j )

}−( 1

νj
−a)

×

{

1 −
∑n

j νj [(iuj(θj + ĥjσ
2
j ) − 1

2u
2
jσ

2
j ]

1 −
∑n

j νj(θj ĥj + 1
2σ

2
j ĥ

2
j )

}−a

(5.83)

The j-th marginal Characteristic Function under the ESMM is obtained substi-

tuting (0, . . . , uj , . . . , 0) in (5.83)

ΨQh(Y j
1 ) (uj) = exp (iujµj)

{

1 −
νj [iuj(θj + ĥjσ

2
j ) − 1

2u
2
jσ

2
j ]

1 − νk(θj ĥj + 1
2 ĥ

2
jσ

2
j )

}−( 1

νj
−a)

×
{

1 −
νj [(iuj(θj + ĥjσ

2
j ) − 1

2u
2
jσ

2
j ]

1 −
∑n

j νj(θj ĥj + 1
2σ

2
j ĥ

2
j )

}−a
(5.84)

Under the selected risk neutral measure the multivariate process of log returns is

not a Multivariate ν-Variance Gamma (Compare (5.83) to (5.40)). Furthermore,

the marginal processes are no longer Variance Gamma (Compare (5.84) to (5.41)).

Proposition

Under the ESMM the log-return of the j-th hedge fund over the period [0, t] for

j = 1, . . . , n can be expressed in the following way

Y j
t =µjt+ (θj + ĥjσ

2
j )

{

U j
t

1 − νj(θj ĥj + 1
2σ

2ĥ2
j )

+
νjZt

1 −
∑n

j νj(θj ĥj + 1
2σ

2
j ĥ

2
j )

}

+

+ σj

√

√

√

√

U j
t

1 − νj(θj ĥj + 1
2σ

2ĥ2
j )

+
νjZt

1 −
∑n

j νj(θj ĥj + 1
2σ

2
j ĥ

2
j )
W j

1

(5.85)

The j-th stochastic time change process is given by

T j =
U j

1 − νj(θj ĥj + 1
2σ

2ĥ2
j )

+
νjZ

1 − ∑n
j νj(θj ĥj + 1

2σ
2
j ĥ

2
j )

= {T j
t , t ≥ 0}. (5.86)

U j = {U j
t , t ≥ 0} drives the idiosyncratic part of the stochastic clock T j . U j

t ∼
Gamma(t/νj − at, 1/νj) and the processes U j and Uk are independent for j 6= k.

Z = {Zt, t ≥ 0} drives the common part of each stochastic time-change. Zt ∼
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Gamma(at, 1) and is independent with respect to U j for all j. W j = {W j
t , t ≥ 0}

and W k = {W k
t , t ≥ 0} are uncorrelated Wiener processes for all j 6= k. W j is

independent with respect to all previous Gamma processes for all j. Finally, θj ,

µj and σj > 0 are constants for j = 1, . . . , n.

The process T = {Tt, t ≥ 0} is a multivariate subordinator with dependent

components.

Proof

The proof is divided into two parts:

• in the first part of the proof we show that under the assumptions of the

proposition the process T = {Tt, t ≥ 0} is a subordinator;

• in the second part of proof we need to show that time changing a Multivariate

Brownian motion with uncorrelated components with this subordinator we

get the Characteristic Function (5.83)

First part

Consider the process T = {Tt, t ≥ 0}. Its j-th component at time t is given by

the following expression:

T j
t =

U j
t

1 − νj(θj ĥj + 1
2σ

2ĥ2
j )

+
νjZt

1 −
∑n

j νj(θj ĥj + 1
2σ

2
j ĥ

2
j )

(5.87)

where

U j
t

1 − νj(θj ĥj + 1
2σ

2ĥ2
j )

∼ Gamma((
1

νj
− a)t,

1 − νj(θj ĥj + 1
2σ

2ĥ2
j )

νj
) (5.88)

νjZt

1 −
∑n

j νj(θj ĥj + 1
2σ

2
j ĥ

2
j )

∼ Gamma(at,
1 − ∑n

j νj(θj ĥj + 1
2σ

2
j ĥ

2
j )

νj
) (5.89)

T j
t for t ∈ [0, t] it does not follow a Gamma distribution. However, under the

assumptions of this proposition we can compute its Characteristic Function:

E[exp(iujT
j
t )] =

[

1 − iuj
νj

1 − νj(θj ĥj + 1
2σ

2ĥ2
j )

]−( 1

νj
−a)t

×
[

1 − iuj
νj

1 −
∑n

j νj(θj ĥj + 1
2σ

2
j ĥ

2
j )

]−at
(5.90)
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From equation 5.90 clearly the distribution of T j
t for all j is infinitely divisible

since

E[exp(iujT
j
t )] = E[exp(iujT

j
1 )]t (5.91)

The multivariate distribution of Tt is also infinitely divisible since its Character-

istic Function can be obtained considering the Characteristic Function of T1 to

the power t:

ΨQh(T)t (u) =

n
∏

j

[

1 − iuj
νj

1 − νj(θj ĥj + 1
2σ

2ĥ2
j )

]−( 1

νj
−a)t

×

[

1 −
i
∑n

j ujνj

1 − ∑n
j νj(θj ĥj + 1

2σ
2
j ĥ

2
j )

]−at
(5.92)

Finally, since all marginal processes are expressed as the sum of two independent

Gamma processes they are non-negative and non decreasing. This consideration

concludes the first part of the proof. The process T = {Tt, t ≥ 0} is a multivarite

subordinator since for every t its distribution is infinitely divisible and each com-

ponent is a non-negative and non decreasing Lévy process.

Second part

To compute the joint Characteristic Function of (5.85) we use the generalized ver-

sion of THEOREM 4.2 [33] for the case of multivariate subordinators [11].

The Laplace Exponent l(u) of T1

l(u) = ln(
n

∏

j

[

1 − ujνj

1 − νj(θj ĥj + 1
2σ

2ĥ2
j )

]−( 1

νj
−a) [

1 −
∑n

j ujνj

1 −
∑n

j νj(θj ĥj + 1
2σ

2
j ĥ

2
j )

]−a

)

(5.93)

The Characteristic Exponent c(u) of the Multivariate Brownian motion is

c(u) =
n

∑

j

(i(θj + ĥjσ
2
j ) −

1

2
σ2u2

j )) (5.94)

The Characteristic Function of the vector Y1 can be computed from the following

expression:

Ψ(Y)1 (u) = exp(i
n

∑

j

ujµj) exp(l(c(u))) (5.95)
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Ψ(Y)1 (u) = exp(i
n

∑

j

ujµj)
n

∏

j

[

1 −
νj(i(θj + ĥjσ

2
j ) − 1

2σ
2u2

j ))

1 − νj(θj ĥj + 1
2σ

2ĥ2
j )

]−( 1

νj
−a)

×

[

1 −
∑n

j νj(i(θj + ĥjσ
2
j ) − 1

2σ
2u2

j ))

1 −
∑n

j νj(θj ĥj + 1
2σ

2
j ĥ

2
j )

]−a

(5.96)

A comparison between (5.96) and (5.83) concludes the proof. This result is very

useful because it allows to express the Esscher risk neutral hedge funds’ log-returns

process through a Multivariate Brownian motion time-changed by a Multivariate

subordinator, whose components are linear combination of two Gamma processes.

In particular, all risk neutral parameters are explicitly linked to the physical ones.

It should be emphasized that Model 3 is an example of a Lévy process that do not

remain of the same kind under the Esscher Equivalent Martingale Measure. It is

important to note that not only the multivariate but also the marginal processes

change. In particular, the margins are no longer Variance Gamma.

To simplify the notation for the sequel, we rewrite expression (5.85) in the following

way:

Y j
t = µjt+ λj(αjU

j
t + βjZt) + σj

√

αjU
j
t + βjZtW

j
1 (5.97)

where

λj = θj + ĥjσ
2
j , (5.98)

αj =
1

1 − νj(θj ĥj + 1
2σ

2ĥ2
j )
, (5.99)

βj =
νj

1 − ∑n
j νj(θj ĥj + 1

2σ
2
j ĥ

2
j )

(5.100)

for j = 1, . . . , n.



Chapter 6

Estimation and Simulation

In order to use the models developed in chapter 5 to price equity and debt tranches

it is necessary to be able to simulate trajectories of the Net Asset Value of the

collateral fund of hedge funds under the selected risk neutral probability measure.

To reach this task the following steps are necessary:

• the estimation of the real world parameters;

• the computation of the risk neutral parameters;

• the simulation of the NAV of every hedge fund under the selected Equivalent

Martingale Measure, with the desired frequency;

• the computation of the NAV of the fund of hedge funds by summing the

value of each hedge fund in the collateral portfolio.

In this chapter we briefly describe the estimation procedure and report the es-

timated real world parameters for each model, making a distinction between es-

timates obtained using smoothed or unsmoothed data. We report also the risk

neutral parameters computed following the procedures described in the previous

chapter. Finally, we explain how to simulate paths of hedge funds’ NAV for each

model.

6.1 Estimation Procedure and Results

To estimate real world parameters we use method of moments.

We start with Model 1 and Model 2. First, we impose a value for the common pa-

84
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rameter ν. Then, we estimate marginal parameters requiring the equality among

the first three empirical moments of log-returns and their theoretical VG coun-

terparts. By so doing, we get Variance Gamma distributions able to replicate

empirical means, variances and skewnesses. Then, we compute the mean of the

resulting kurtoses and we compare this value with the empirical one of hedge funds

in the collateral portfolio1. Varying the value of parameter ν we estimate again

the model replicating the first three moments. The resulting mean kurtosis de-

pends of course on the value of ν. After several trials we choose ν = 0, 33333. This

value leads to a mean fitted kurtosis similar to the mean empirical one. Annual

marginal parameter estimates are reported in table A.1 and table A.4. Model 2

requires also to estimate the correlation matrix of the underlying Brownian Mo-

tions. Formula (5.26) allows us to find the implied correlation ρjk for each pair of

Brownian Motions. However, this matrix is not positive definite. Using Matlab it

is easy to find a positive definite approximation of this implied correlation matrix

(See table A.11 and table A.12).

We want to underline that our interest is mainly theoretical. We know that this

estimation procedure is far from being rigorous. A more accurate way to pro-

ceed requires the joint estimation of all parameters at the same time. Since we

know in explicit form the joint Characteristic Function, a multivariate extension

of the Spectral GMM estimator of continuous-time processes, introduced in the

univariate case by Chacko and Viceira (2003) [25], is possible at list theoretically.

However, also for practical reasons we decided to use the method described above.

We estimate Model 3 using unconstrained method of moments for each time series

of monthly log-returns. In this way, we obtain Variance Gamma distributions that

replicate perfectly empirical means, standard deviations, skewnesses and kurtosis.

Then, we choose a value for the common parameter a which satisfies the constraint

0 < a < min( 1
νj

) for j = 1, . . . , n. Theoretically, Model 3 is more flexible than

Model 1 in modelling dependence. If a = 0 hedge funds are independent. As a

increases all correlations increase in absolute value. However, when this model

is applied to real data, the existence of an asset j with a big νj can reduce the

domain of a considerably with a huge impact on maximal correlations attainable.

When we estimate Model 3 using observed log-returns we get min( 1
νj

) = 1, 98.

1See next chapter for the composition of the fund of hedge funds
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When we use unsmoothed data we get min( 1
νj

) = 1, 79. These values impose very

strict limits on the maximal magnitude of correlations that can be reached choos-

ing a big value for the common parameter a. This is caused by the presence of a

hedge fund with a very high kurtosis in the collateral portfolio. This is the main

disadvantage of Model 3. Since maximal correlations produced by this model are

low in absolute value, we decide to use a high value of the parameter a inside its

domain. In particular, we fix a = 1, 6.

Tables A.7 and A.8 report annual estimates for Model 3.

6.1.1 Risk Neutral Parameters Computation

Given the estimates of real world parameters, we solve numerically the Esscher

systems described in chapter 5. We find a solution ĥ for each model. This ensures

the existence of the Esscher Risk Neutral Probability Measure for all our processes.

Then, using the vectors ĥ, the estimates of physical parameters and their relations

with the risk neutral ones, we get the following tables reporting the Esscher risk

neutral parameters for each process:

• table A.2 for Model 1 (Smoothed data)

• table A.5 for Model 1 (Unsmoothed data)

• table A.3 for Model 2 (Smoothed data)

• table A.6 for Model 2 (Unsmoothed data)

• table A.9 for Model 3 (Smoothed data)

• table A.10 for Model 3 (Unsmoothed data)

Furthermore, in chapter 5 we showed that this change of measure does not modify

the underlying dependence structure among Brownian motions. Consequently,

the underlying Brownian motions are still independent in the case of Model 1

and Model 3. In the case of Model 2 they have the same correlation matrix as

under the statistical probability measure (See table A.11 and table A.12). Figures

6.1, 6.2, and 6.4 display comparisons between real world and risk neutral Kernel

densities of Convertible Arbitrage for each model. Figure 6.3 show a comparison

between risk neutral densities under Models 1 and 2 for the same index.
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6.2 Simulation

To simulate the paths of n dependent hedge fund NAVs under the Esscher Equiv-

alent Martingale Measure we can proceed as follows. Discretize the time-interval

[0, T ] into N equally spaced intervals:

Let ∆t = T/N and set tk = k∆t, for k = 0, ..., N.

F j
t0

is the NAV of hedge fund j at time 0 for j = 1, . . . , n.

6.2.1 Model 1

To simulate F j
tk

for every hedge fund repeat the following steps for k from 1 to N :

• sample a random number gk out of the Gamma(∆t/ν, 1/ν) distribution;

• sample for each j = 1, . . . , n an independent standard Normal random num-

ber wj
tk

.

• Set

F j
tk

= F j
tk−1

exp
[

µj∆t+ θQh

j gk + σQh

j

√
gkw

j
tk

]

(6.1)

6.2.2 Model 2

To simulate F j
tk

for every hedge fund repeat the following steps for k from 1 to N :

• sample a random number gk out of the Gamma(∆t/ν, 1/ν) distribution;

• generate for each j = 1, . . . , n an independent standard Normal random

number wj
tk

;

• convert these random numbers wj
tk

into correlated random numbers vj
tk

by

using the Cholesky decomposition of the implied correlation matrix of the

underlying Brownian Motions.

• Set

F j
tk

= F j
tk−1

exp
[

µj∆t+ θQh

j gk + σQh

j

√
gkv

j
tk

]

(6.2)
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6.2.3 Model 3

To simulate F j
tk

for every hedge fund repeat the following steps for k from 1 to N :

• sample a random number zk out of the Gamma(a∆t, 1) distribution;

• sample for each j = 1, . . . , n an independent random number uj
k from a

Gamma(( 1
νj

− a)∆t, 1
νj

);

• sample for each j = 1, . . . , n an independent standard Normal random num-

ber wj
tk

.

• Set

F j
tk

= F j
tk−1

exp

[

µj∆t+ λj(αju
j
k + βjzk) + σj

√

αju
j
k + βjzkw

j
tk

]

(6.3)

Figures 6.5, 6.6 and 6.7 show simulated paths of the log-return process for the pair

Convertible Arbitrage and Event Driven over a period of 5 years. Finally, pictures

6.8, 6.8, 6.8 report scatter plots of risk neutral monthly log-returns for the same

indices.

6.2.4 Simulation of Fund of Hedge Funds NAV

Chosen a model, to simulate a simple trajectory of the NAV of the collateral fund

of hedge funds it is sufficient to compute for k from 1 to N

Ftk =

n
∑

j=1

F j
tk
. (6.4)

In the applications of chapter 7, we will also take into account the impact of CFO

structural features such as coupon payments, equity distribution rules, Over Col-

lateralization tests, liquidity profile and management fees to describe the temporal

evolution of the NAV of the collateral portfolio.
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Figure 6.1: Risk Neutral (red) and Real World (blue) Kernel Densities for Con-

vertible Arbitrage (Model 1 Unsmoothed case)

Figure 6.2: Risk Neutral (green) and Real World (blue) Kernel Densities for Con-

vertible Arbitrage (Model 2 Unsmoothed case)
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Figure 6.3: Risk Neutral Kernel Densities for Convertible Arbitrage (Models 1

and 2 Unsmoothed case)

Figure 6.4: Risk Neutral (red) and Real World (blue) Kernel Densities for Con-

vertible Arbitrage (Model 3 Unsmoothed case)
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Figure 6.5: Model 1 (Unsmoothed case)

Figure 6.6: Model 2 (Unsmoothed case)
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Figure 6.7: Model 3 (Unsmoothed case)

Figure 6.8: Model 1 (Unsmoothed case)
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Figure 6.9: Model 2 (Unsmoothed case)

Figure 6.10: Model 3 (Unsmoothed case)



Chapter 7

Pricing CFOs equity and debt

tranches

As we have already mentioned, CFOs equity securities and notes are different

types of investment in the underlying pool of hedge funds. In this chapter we

price debt and equity securities of a CFO as options written on a basket of hedge

funds. In particular, we price equity and debt tranches for a theoretical CFO using

a sort of structural firm value approach. In fact, CFOs can be seen as firms with a

fixed maturity (if we do not consider default). We use a Merton-type model and

a Black-Cox-type model, where we assume that the hedge fund NAV processes

are described by dependent Geometric Variance Gamma processes under the real

world probability measure1. Default can be triggered either by the fact that the

CFO Net Asset Value at maturity is too low to cover promised debt payments, as

in the traditional Merton’s model, or by the violation of an Over Collateralization

Test, which represent a barrier, as in the traditional Black-Cox’s model. In the

second case default before the scheduled maturity is possible.

While the CFO collateral is the same in all our applications, the covenants of the

CFO constitutive document change. First of all, we price a very simple CFO, in

which its liability side is represented only by zero coupon bonds with different

priorities and an equity tranche. Secondly, we consider a CFO structure in which

liabilities are represented by different coupon bonds and a paying dividend equity

tranche. In both cases, we assume that default can happen only at maturity. Fi-

1See the three models introduced in Chapter 5
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nally, we introduce the possibility of default before the CFO maturity and consider

the CFO liquidity profile.

7.1 Applications and Results

Consider the following theoretical Collateralized Fund of Hedge Funds Obligations

structure with a scheduled maturity T = 5 years.

• Asset Side: fund of hedge funds with a current price of 1000 monetary units;

• Liability Side: debt and equity with total initial investment of 1000 monetary

units;

1. Debt tranche A with nominal value of 570 monetary units;

2. Debt tranche B with nominal value of 150 monetary units;

3. Debt tranche C with nominal value of 100 monetary units;

4. Equity tranche with nominal value of 180 monetary units.

The most senior tranche in this CFO is tranche A and is credit enhanced due

to the subordination of the lower tranches. This means that the lowest tranche,

the equity tranche, absorbs losses first. When this tranche is exhausted, the next

lowest tranche, i.e tranche C, begins absorbing losses. If tranche C is consumed,

tranche B starts absorbing losses. Finally, only if tranche B is completely dissi-

pated then tranche A is exposed to losses.

Now, we report the collateral portfolio composition and the amounts invested at

time 0 in each underlying hedge funds:

1. Convertible Arbitrage: 175 monetary units;

2. Dedicated Short Bias: 50 monetary units;

3. Emerging Markets: 50 monetary units;

4. Equity Market Neutral: 250 monetary units;

5. Event Driven: 100 monetary units;

6. ED Distressed: 50 monetary units
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7. ED Multi-Strategy: 100 monetary units;

8. ED Risk Arbitrage: 225 monetary units.

Finally, assume the existence of a risk free asset with a constant annual log-return

r = 4%.

These features are common to all the CFOs we price.

7.1.1 First CFO: pricing and sensitivity analyses

The distinctive characteristics of this CFO are the followings:

1. Debt tranche A is a zero coupon bond with a promised maturity payment

DA
T = 696, 20, with an implicit promised annual log-return of r = 4%;

2. Debt tranche B is a zero coupon bond with a promised final payment of

DB
T = 183, 67, with r = 4, 05%;

3. Debt tranche C is a zero coupon bond with a promised payment DC
T =

125, 23, with r = 4, 5%;

4. Equity tranche is a stock that pays no dividends.

Default is only possible at the CFO scheduled maturity date if the value of the

collateral pool of hedge funds is not sufficient to repay the liabilities. Note that

it is not very precise to talk of default at the maturity for a CFO. In fact, even

if CFOs have a capital structure similar to firms, at the fixed maturity date, they

always cease to exist. Instead, it makes sense to talk of CFOs default prior to

their scheduled maturity date.

In this simple case, each tranche can be expressed as a European option on the

collateral portfolio. In particular, the equity tranche is a European call option on

the pool of hedge funds with strike price DT = DA
T +DB

T +DC
T and maturity T .

Its intrinsic value is given by:

E0 = exp(−rT )EQh [max(FT −DT ; 0)] (7.1)

where FT =
∑8

j=1 F
j
T is the value of the collateral portfolio at time T .

Current fair prices of tranches A, B, C are given by the following expressions:

A0 = exp(−rT )EQh
[

DA
T − max(DA

T − FT ; 0)
]

(7.2)
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B0 = exp(−rT )EQh
[

max(FT −DA
T ; 0) − max(FT − (DA

T +DB
T ); 0)

]

(7.3)

C0 = exp(−rT )EQh
[

max(FT − (DA
T +DB

T ); 0) − max(FT −DT ; 0)
]

(7.4)

To compute fair prices we perform the following steps:

• we simulate several times (50000) the Nav of the collateral portfolio at the

maturity T = 5, under the Esscher risk neutral probability measure;

• we compute the mean payoff of every tranche;

• we discount these values with the risk free rate.

Tables B.1, B.2, B.3 and B.4 report CFOs notes and equity fair prices obtained

using Model 1 and Model 2. These tables also display some sensitivity analyses.

All the results exposed in the first two are based on a value of the common pa-

rameter ν equal to 0,3333, while those in the last two on ν = 0, 5833. In the

Benchmark case of tables B.1 and B.2 prices are based on the risk neutral param-

eters reported respectively in tables A.2 for Model 1, and A.3 and A.11 for Model

2. Half variances is the scenario under which, preserving the common Gamma

parameter value ν = 0, 3333 (or ν = 0, 5833), all other real parameters are esti-

mated using method of moments, with all the empirical variances divided by two.

In the case called Double Variances all empirical variances are multiplied by two,

other empirical moments and the common parameter ν are unchanged. Then real

world parameters are again estimated by constrained method of moments. Similar

considerations hold for the other cases reported on the tables. In each scenario,

risk neutral parameters are then computed as explained in Chapter 5.

Finally, all tables report the minimum value of each thanche and the number of

losses based on a simulated sample of 50000 values. These details are not very

useful, but we report them only to show how the risk can change under different

hypotheses concerning empirical marginal moments.

An analysis of the results let us to make some observations.

Ceteris paribus:

• if variance increases the equity tranche becomes a more attractive investment

opportunity, while the debt becomes riskier and its valuation diminishes. On

the contrary, a reduction of the variance results in a decline of the equity

fair price, while the debt tranches become more appreciated;



CHAPTER 7. PRICING CFOS EQUITY AND DEBT TRANCHES 98

• if negative skewness increase in absolute value the equity tranche is more

valued while the price of the debt tranches decreases;

• building a collateral portfolio with a positive skewness is the best thing

a CFO manager can try to do for debt holders but the worst for equity

investors;

• if kurtosis increases the theoretical value of the equity tranche increases,

while the prices of the notes decrease;

• the consideration of implied correlations among Brownian Motions increase

the equity value; this increase is particularly relevant in situation of high

risk (double variances);

• tranche A is very protected by the structure and only in some extreme and

rare scenarios (trajectories) can suffer medium losses. Its fair price is almost

always equal by the amount invested. A triple AAA rating for this tranche

seems very plausible;

• tranche A has a fair price less than its initial invested amount if and only

if two risks are high at the same time. Examples are high kurtosis and

big variance, high variance and high negative skewness, or high negative

skewness and big kurtosis;

• tranche B has also a good protection, but not at the same level of tranche

A;

• tranche C is the most risky among debt tranches. Its fair price is often less

then the initial investment;

• notice that the model can be used to infer final promised payments, i.e. the

promised rates of return, to make the price of each debt tranche fair;

• to sum up: as risk increases equity holders take advantage over debt in-

vestors;

Table 7.2 summarize our main results.
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7.1.2 Second CFO: pricing and sensitivity analysis

The distinctive features of this CFO are the followings:

1. Debt tranche A is a coupon bond with an annual cash flow of 23, 26, i.e. the

coupon rate is c = 4%

2. Debt tranche B is a coupon bond with an annual cash flow of 6, 20, i.e. the

coupon rate is c = 4, 05%

3. Debt tranche C is a coupon bond with an annual cash flow of 4, 60, i.e. the

coupon rate is c = 4, 5%

4. Equity tranche is a stock that pays dividends computed as a given percentage

of the annual net profit. Notice that the dividend payment at the end of a

year is not sure. Only if the NAV of the collateral portfolio at the end of

a year is greater than 1000 after the payment of coupons to bondholders, a

portion of the profits is distributed. In particular, we consider three different

hypotheses concerning the equity distribution rule: 0%, 50%, 100% of annual

net profit.

These differences influence the simulation procedure. In the previous case, it was

sufficient to simulate directly the value of the collateral portfolio at the CFO

maturity. Now, we have to simulate the NAV at the end of every year until time

T , to take into account jumps due to coupon payments and possible dividend

payments. It is assumed that every payment is made through the liquidation of

a part of the collateral portfolio. In particular, we suppose that a part of each

hedge fund, proportional to its NAV at the payment date, is sold. Implicitly, we

presume that the CFO has enough liquidity to pay coupons and dividends.

Tables B.5, B.6, B.7, B.8 show equity and fair prices obtained using Model 1 and

Model 2 and some sensitivity analyses. All previous observations are still valid.

However, in this case we can analyse the impact on fair prices of different equity

distribution rules. In particular, the following observations can be made:

• if the dividend increases then equity fair price increases of an amount ap-

proximately equal to the value lost by lower debt tranches. Especially, the

dividend policy has a direct impact on the price of equity and C tranches.
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Tranche A is unaffected by a change in the equity distribution rule. Tranche

B is only marginally influenced in extremely risky situations;

• dividend policy relevance is strictly linked to the degree of risk of the collat-

eral portfolio. Specifically, the greater the risk is more relevant the impact

of a change on the portion of net profits distributed on fair prices is. When

variances and correlations are high, the distribution of a high portion of prof-

its really creates value for stockholders. On the contrary, when the collateral

pool is made up by positively skewed hedge funds, the dividend policy seems

to be irrelevant.

Table 7.1 summarize these results.

7.1.3 Third CFO: pricing and sensitivity analysis

The third and the second CFO have the same liability structure. However, now

we take into account the possibility of default prior to maturity and CFO liquidity

profile. Tables B.9 and B.10 show the price of each CFO tranche computed under

different equity distribution rules and using four different models to describe the

physical evolution of hedge funds log-returns:

1. Multivariate Brownian Motion;

2. Multivariate Variance Gamma Process with independent underlying Brow-

nian Motions (Model 1);

3. Multivariate Variance Gamma Process with dependent underlying Brownian

Motions (Model 2);

4. Multivariate ν - Variance Gamma Process (Model 3).

Tables B.9 and B.10 report prices based respectively on observed and unsmoothed

data. Only in the case of Model 3 the change of measure modifies joint and

marginal processes as we have proved in Chapter 5. Under the risk neutral proba-

bility measure a Multivariate Brownian Motion changes only its drift. In the first

case, to simulate this process we use the Cholesky decomposition of the empirical

log-returns correlation matrix. In the second case, we employ the same decompo-

sition of the correlation matrix obtained from unsmoothed time series2.
2These matrices are not reported in this work.
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In the simulation procedure we consider a barrier equal to 1,05 times the total

nominal value of the debt tranches. If the NAV of the fund of hedge funds falls

below this level, when its value is checked by the CFO manager, then the collateral

portfolio will be sold in order to redeem the rated notes. In the event of default,

we model the sale of the assets by assuming this simple liquidity profile:

• 30% after three months;

• 30% after six months;

• all the residual collateral portfolio value after nine months.

If default happens six months before CFO legal maturity the liquidity profile will

be the following:

• 30% after three months;

• all the residual collateral portfolio value at the maturity.

If default occurs three months before CFO legal maturity, the liquidity profile will

be 100% of the NAV at maturity. For simplicity, we assume that hedge funds

are liquidated proportionally to their NAV. In the default event, tranche A is

redeemed first. In particular, we assume that both capital and current coupon

have to be paid. Then, tranche B has to be repaid in the same way and so on.

The CFO manager usually makes the Over Collateralization test on a monthly

basis. However, it can happen that to do all the necessary operations, more

time is needed. For pratical reasons, we simulate portfolio NAV and make Over

collateralization test every three months. Finally, we assume the existence of an

initial lock out period of two years. This implies that redemptions before two

years are not admitted.

Fair prices reported in these tables allow us to make the following observations:

• barriers destroy value for all tranches;

• the equity price is only marginally affected by the choice of the model;

• the intrinsic value of the equity tranche is slightly influenced by CFO divi-

dend policy. Notice that the introduction of a barrier modifies the sign of the

relation between equity price and the percentage of net profits distributed;
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• debt tranche prices are strongly affected by the choice of the model. In

particular, tranche C is the most influenced by this choice;

• when the percentage of net profits distributed increases debt tranches values

decrease; this effect is especially relevant for tranche C.

Tables B.11, B.12, B.13 and B.14 report some sensitivity analyses. The main

results can be summarized as follows:

• the higher the barrier is, the greater the value destroyed is in terms of fair

prices;

• the higher the risk is, the bigger the negative impact is on debt tranches

theoretical price ;

• as the barrier increases equity price tends to become independent with re-

spect to risk. Without barrier, the value of equity tranche clearly increases

when risk increases;

• the introduction of a barrier can protect apparently the capital invested by

debt holders. Early redemptions, force to sell the assets when the price is

low and bondholders loses one ore more promised coupon payments;

• as the level of the barrier decreases all tranches becomes more valued and

converge to the prices obtained in the case of the second CFO;

• the less risky the collateral portfolio is, the faster the speed of convergence

of prices towards prices without barrier is. As an example, look at the case

opposite skewnesses in all these tables. The barrier seems to be irrelevant.

We perform further analyses3 increasing the incidence of the equity tranche from

18% of the collateral to 30%. This increment of course gives more protection

to debt tranches. The level of the barrier decreases and its negative effect on

fair prices is reduced. In particular, tranche C take the biggest advantage by an

increase of the equity capital. Other results, previously exposed are still valid.

Finally, tables B.15 and B.16 display fair prices computed considering also an

annual management fee of 0,5% of the total nominal amount of CFO tranches. If

3These analyse are not reported in Appendix B
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there are no barriers, at the end of each year the CFO manager receive 5. In this

case the discounted value of the management fees is 22,20. If there are barriers

the manager is paid until default. It is clear that the present value of this fee

diminishes. However, if we look at tables B.15 and B.16 it is easy to see that the

global impact on fair prices of management fees is even greater than 22,20. In

presence of a barrier management fees have a double impact on the value:

• direct, i.e the fees paid. This cost is essentially faced by equity ;

• indirect, i.e they make easier to default. This cost mainly affect debt tranches

because they become more risky.

Table 7.2 summarize the main results of this section:

7.2 Conclusion and Future Developments

Our models were applied to evaluate the equity and the debt tranches of a CFO.

The analysis was performed starting from a simple CFO structure, which was

then progressively complicated with the introduction of the structural features

we encounter in typical CFOs. In this way, at each step of the evolution of the

structure, the reader can understand the impact on the value, measured with

respect to the first four moments of the distribution of log-returns, and how this

value is divided among the different tranches. The result is a useful schema that

can provide some help in designing a CFO transaction. In particular, we believe

these models can be useful for rating agencies as well as for deal structurers, to

efficiently evaluate various capital structures, test levels, liquidity profiles, coupons

and equity distribution rules. The analysis is also helpful for the CFO manager

who usually invests in the equity tranche, because gives him some suggestions on

how to increase the value of his investment.

In this work we built a multivariate Lévy process to describe by time change a

Multivariate Brownian motion with a univariate and multivariate subordinator.

The main limit of this method is the lack of flexibility:

• marginal processes are of the same type;

• the pattern of dependence structure is quite limited. On the other hand we

explained that Lévy copulas are very flexible, but are difficult to use in real
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applications.

A possible future line of research tries to combine both methodologies in order to

get the advantages of both methods and to mitigate their drawbacks. The idea is

to build multidimensional Lévy processes time-changing a Multivariate Brownian

motion with a multivariate subordinator whose components are linked by a

positive Lévy copula. This gives more flexibility to the first method because we

may have different margins and more patterns of dependence are possible. At

the same time the simulation procedure of the multivariate process should be

simpler. To simulate from a positive L’evy copula is less complicated than for

general copulas. If we are able to simulate the multivariate subordinator then all

simulation problems are solved thanks to the conditional Gaussianity of the

process.

Results for CFO 1

Hedge EQUITY ZCB A ZCB B ZCB C

Funds TRANCHE TRANCHE TRANCHE TRANCHE

Variance ↑ ↑ ↓ ↓ ↓
Variance ↓ ↓ ↑ ↑ ↑
Skewness ↑ ↓ ↑ ↑ ↑
Skewness ↓ ↑ ↓ ↓ ↓
Kurtosis ↑ ↑ ↓ ↓ ↓
Kurtosis ↓ ↓ ↑ ↑ ↑

Correlation ↑ ↑ ↓ ↓ ↓
Correlation ↓ ↓ ↑ ↑ ↑
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Table 7.1:Results for CFO 2

Hedge EQUITY ZCB A ZCB B ZCB C

Funds TRANCHE TRANCHE TRANCHE TRANCHE

Variance ↑ ↑ ↓ ↓ ↓
Variance ↓ ↓ ↑ ↑ ↑
Skewness ↑ ↓ ↑ ↑ ↑
Skewness ↓ ↑ ↓ ↓ ↓
Kurtosis ↑ ↑ ↓ ↓ ↓
Kurtosis ↓ ↓ ↑ ↑ ↑

Correlation ↑ ↑ ↓ ↓ ↓
Correlation ↓ ↓ ↑ ↑ ↑
Dividend ↑ ↑ ↓ or⊥ ↓ ↓
Dividend ↓ ↓ ↑ or⊥ ↑ ↑

Table 7.2:Results for CFO 3

Hedge EQUITY ZCB A ZCB B ZCB C

Funds TRANCHE TRANCHE TRANCHE TRANCHE

Variance ↑ ↑ ↓ ↓ ↓
Variance ↓ ↓ ↑ ↑ ↑
Skewness ↑ ↑ ↑ ↑ ↑
Skewness ↓ ↓ ↓ ↓ ↓
Kurtosis ↑ ↑ ↓ ↓ ↓
Kurtosis ↓ ↓ ↑ ↑ ↑

Correlation ↑ ↑ ↓ ↓ ↓
Correlation ↓ ↓ ↑ ↑ ↑

Barrier ↑ ↓ ↓ ↓ ↓
Barrier ↓ ↑ ↑ ↑ ↑

Dividend ↑ ↓ ↓ ↓ ↓
Dividend ↓ ↑ ↑ ↑ ↑

Fees ↑ ↓ ↓ ↓ ↓
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Table A.1:(Smoothed) Real World Parameters-Models 1 and 2

Index µj θj σj ν

Convertible Arbitrage 0,09318 -0,02330 0,04590 0,33333

Dedicated Short Bias -0,05208 0,02691 0,16397 0,33333

Emerging Markets 0,13886 -0,05419 0,15268 0,33333

Equity Market Neutral 0,08316 0,00281 0,02647 0,33333

Event Driven 0,17030 -0,07013 0,03866 0,33333

ED Distressed 0,17588 -0,06401 0,04969 0,33333

ED Multi-Strategy 0,14482 -0,05025 0,05321 0,33333

ED Risk Arbitrage 0,08215 -0,01534 0,03925 0,33333

Table A.2:(Smoothed) Risk Neutral Parameters-Model 1

Index µj θQh

j σQh

j ν

Convertible Arbitrage 0,09318 -0,05559 0,06214 0,33333

Dedicated Short Bias -0,05208 0,06605 0,22197 0,33333

Emerging Markets 0,13886 -0,12187 0,20668 0,33333

Equity Market Neutral 0,08316 -0,04412 0,03584 0,33333

Event Driven 0,17030 -0,13454 0,05233 0,33333

ED Distressed 0,17588 -0,14126 0,06726 0,33333

ED Multi-Strategy 0,14482 -0,10927 0,07204 0,33333

ED Risk Arbitrage 0,08215 -0,04386 0,05313 0,33333

Table A.3:(Smoothed) Risk Neutral Parameters-Model 2

Index µj θQh

j σQh

j ν

Convertible Arbitrage 0,09318 -0,05524 0,05619 0,33333

Dedicated Short Bias -0,05208 0,07054 0,20072 0,33333

Emerging Markets 0,13886 -0,11797 0,18690 0,33333

Equity Market Neutral 0,08316 -0,04400 0,03241 0,33333

Event Driven 0,17030 -0,13429 0,04732 0,33333

ED Distressed 0,17588 -0,14085 0,06083 0,33333

ED Multi-Strategy 0,14482 -0,10879 0,06514 0,33333

ED Risk Arbitrage 0,08215 -0,04360 0,04804 0,33333
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Table A.4:(Unsmoothed) Real World Parameters-Models 1 and 2

Index µj θj σj ν

Convertible Arbitrage 0,09668 -0,02685 0,07974 0,33333

Dedicated Short Bias -0,05341 0,02913 0,18126 0,33333

Emerging Markets 0,16393 -0,08836 0,19764 0,33333

Equity Market Neutral 0,08424 0,00257 0,03326 0,33333

Event Driven 0,20534 -0,10811 0,03994 0,33333

ED Distressed 0,20328 -0,09448 0,06129 0,33333

ED Multi-Strategy 0,15701 -0,06522 0,06800 0,33333

ED Risk Arbitrage 0,08382 -0,01723 0,04935 0,33333

Table A.5:(Unsmoothed) Risk Neutral Parameters-Models 1

Index µj θQh

j σQh

j ν

Convertible Arbitrage 0,09668 -0,06227 0,10046 0,33333

Dedicated Short Bias -0,05341 0,06589 0,22837 0,33333

Emerging Markets 0,16393 -0,15753 0,24900 0,33333

Equity Market Neutral 0,08424 -0,04544 0,04190 0,33333

Event Driven 0,20534 -0,17125 0,05032 0,33333

ED Distressed 0,20328 -0,17079 0,07722 0,33333

ED Multi-Strategy 0,15701 -0,12300 0,08567 0,33333

ED Risk Arbitrage 0,08382 -0,04608 0,06218 0,33333

Table A.6:(Unsmoothed) Risk Neutral Parameters-Models 2

Index µj θQh

j σQh

j ν

Convertible Arbitrage 0,09668 -0,06165 0,09415 0,33333

Dedicated Short Bias -0,05341 0,06907 0,21402 0,33333

Emerging Markets 0,16393 -0,15375 0,23336 0,33333

Equity Market Neutral 0,08424 -0,04534 0,03927 0,33333

Event Driven 0,20534 -0,17109 0,04716 0,33333

ED Distressed 0,20328 -0,17042 0,07237 0,33333

ED Multi-Strategy 0,15701 -0,12255 0,08029 0,33333

ED Risk Arbitrage 0,08382 -0,04584 0,05827 0,33333
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Table A.7:(Smoothed) Real World Parameters-Models 3 a = 1, 6

Index µj θj σj νj

Convertible Arbitrage 0,13801 -0,06812 0,04156 0,12084

Dedicated Short Bias -0,40369 0,37852 0,15358 0,02470

Emerging Markets 0,18611 -0,10144 0,14978 0,18022

Equity Market Neutral 0,04379 0,04219 0,02575 0,02263

Event Driven 0,14267 -0,04250 0,04718 0,50277

ED Distressed 0,15713 -0,04527 0,05393 0,45167

ED Multi-Strategy 0,14018 -0,04562 0,05399 0,36426

ED Risk Arbitrage 0,09662 -0,02981 0,03826 0,17449

Table A.8:(Unsmoothed) Real World Parameters-Models 3 a = 1, 6

Index µj θj σj νj

Convertible Arbitrage 0,14268 -0,07284 0,07701 0,12560

Dedicated Short Bias -0,45876 0,43452 0,16953 0,02331

Emerging Markets 0,22752 -0,15192 0,19267 0,19703

Equity Market Neutral 0,06288 0,02388 0,03298 0,03599

Event Driven 0,15216 -0,05484 0,06173 0,55842

ED Distressed 0,16524 -0,05652 0,07126 0,51766

ED Multi-Strategy 0,14772 -0,05592 0,06959 0,38403

ED Risk Arbitrage 0,09912 -0,03252 0,04843 0,17883

Table A.9:(Smoothed) Risk Neutral Parameters-Models 3 a = 1, 6

Index µj λj σj αj βj

Convertible Arbitrage 0,1380 -0,0788 0,0416 1,0580 0,2578

Dedicated Short Bias -0,4037 0,4061 0,1536 1,0114 0,0527

Emerging Markets 0,1861 -0,1219 0,1498 1,0187 0,3845

Equity Market Neutral 0,0438 -0,0041 0,0258 0,9708 0,0483

Event Driven 0,1427 -0,0554 0,0472 1,1658 1,0726

ED Distressed 0,1571 -0,0656 0,0539 1,2120 0,9636

ED Multi-Strategy 0,1402 -0,0612 0,0540 1,1165 0,7771

ED Risk Arbitrage 0,0966 -0,0426 0,0383 1,0586 0,3723
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Table A.10:(Unsmoothed) Risk Neutral Parameters-Models 3 a = 1, 6

Index µj λj σj αj βj

Convertible Arbitrage 0,1427 -0,0898 0,0770 1,0301 0,2299

Dedicated Short Bias -0,4588 0,4620 0,1695 1,0101 0,0427

Emerging Markets 0,2275 -0,1690 0,1927 1,0148 0,3606

Equity Market Neutral 0,0629 -0,0224 0,0330 0,9989 0,0659

Event Driven 0,1522 -0,0678 0,0617 1,1324 1,0221

ED Distressed 0,1652 -0,0779 0,0713 1,1720 0,9476

ED Multi-Strategy 0,1477 -0,0735 0,0696 1,0993 0,7029

ED Risk Arbitrage 0,0991 -0,0479 0,0484 1,0494 0,3273

Table A.11:(Smoothed) Brownian Motions Implied Correlations

ρjk CA DSB EM EMN ED D MS RA

CA 1,00 -0,27 0,29 0,35 0,52 0,43 0,52 0,31

DSB -0,27 1,00 -0,54 -0,34 -0,72 -0,68 -0,57 -0,49

EM 0,29 -0,54 1,00 0,28 0,74 0,63 0,69 0,42

EMN 0,35 -0,34 0,28 1,00 0,53 0,47 0,41 0,30

ED 0,52 -0,72 0,74 0,53 1,00 0,82 0,86 0,66

D 0,43 -0,68 0,63 0,47 0,82 1,00 0,67 0,53

MS 0,52 -0,57 0,69 0,41 0,86 0,67 1,00 0,60

RA 0,31 -0,49 0,42 0,30 0,66 0,53 0,60 1,00

Table A.12:(Unsmoothed) Brownian Motions Implied Correlations

ρjk CA DSB EM EMN ED D MS RA

CA 1,00 -0,38 0,31 0,30 0,50 0,47 0,56 0,35

DSB -0,38 1,00 -0,59 -0,37 -0,64 -0,73 -0,63 -0,51

EM 0,31 -0,59 1,00 0,35 0,63 0,61 0,69 0,45

EMN 0,30 -0,37 0,35 1,00 0,48 0,50 0,44 0,28

ED 0,50 -0,64 0,63 0,48 1,00 0,72 0,72 0,58

D 0,47 -0,73 0,61 0,50 0,72 1,00 0,60 0,51

MS 0,56 -0,63 0,69 0,44 0,72 0,60 1,00 0,61

RA 0,35 -0,51 0,45 0,28 0,58 0,51 0,61 1,00
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Table B.1:

Asset Side 1000: Fund of Hedge Funds

Liability Side 1000: Equity and Three Zero Coupon Bonds

Model 1: Independent Brownian Motions (Smoothed Data)

Fund of EQUITY ZCB A ZCB B ZCB C

Hedge funds TRANCHE TRANCHE TRANCHE TRANCHE

Benchmark ν = 0, 3333

Prices 178,641 570 150,281 101,078

Minimum 0 551,879 0 0

Num. Losses 25106 1 138 1749

Half Variances

Prices 177,754 570 150,353 101,894

Minimum 0 570 33,488 0

Num. Losses 25044 0 43 905

Double Variances

Prices 180,778 569,995 149,973 99,254

Minimum 0 478,205 0 0

Num. Losses 25427 7 509 3348

Double Skewnesses

Prices 179,373 569,999 150,196 100,433

Minimum 0 532,191 0 0

Num. Losses 25206 3 240 2361

Opposite Skewnesses

Prices 177,093 570 150,375 102,531

Minimum 0 570 150,375 68,888

Num. Losses 25958 0 0 2
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Table B.2:

Asset Side 1000: Fund of Hedge Funds

Liability Side 1000: Equity and Three Zero Coupon Bonds

Mode 2: Dependent Brownian Motions (Smoothed Data)

Fund of EQUITY ZCB A ZCB B ZCB C

Hedge funds TRANCHE TRANCHE TRANCHE TRANCHE

Benchmark ν = 0, 3333

Prices 179,036 570 150,278 100,686

Minimum 0 560,854 0 0

Num. Losses 25860 1 150 2237

Half Variances

Prices 177,871 570 150,354 101,775

Minimum 0 570 38,482 0

Num. Losses 25579 0 42 1126

Double Variances

Prices 182,092 569,992 149,845 98,071

Minimum 0 491,691 0 0

Num. Losses 26227 12 722 4386

Double Skewnesses

Prices 179,661 570 150,219 100,113

Minimum 0 554,721 0 0

Num. Losses 25921 1 249 2768

Opposite Skewnesses

Prices 177,106 570 150,375 102,515

Minimum 0 570 150,375 18,874

Num. Losses 26308 0 0 36
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Table B.3:

Asset Side 1000: Fund of Hedge Funds

Liability Side 1000: Equity and Three Zero Coupon Bonds

Model 1: Independent Brownian Motions (Smoothed Data)

Fund of EQUITY ZCB A ZCB B ZCB C

Hedge funds TRANCHE TRANCHE TRANCHE TRANCHE

Benchmark ν = 0, 5833

Prices 179,968 569,998 150,102 99,932

Minimum 0 507,777 0 0

Num. Losses 24659 6 356 2734

Half Variances

Prices 178,668 570 150,273 101,059

Minimum 0 570 30,955 0

Num. Losses 24544 0 157 1709

Double Variances

Prices 182,514 569,984 149,556 97,945

Minimum 0 496,739 0 0

Num. Losses 24930 32 854 4237

Double Skewnesses

Prices 181,261 569,993 149,851 98,895

Minimum 0 527,943 0 0

Num. Losses 24737 15 600 3545

Opposite Skewnesses

Prices 177,336 570 150,374 102,29

Minimum 0 570 106,936 0

Num. Losses 24830 0 4 386
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Table B.4:

Asset Side 1000: Fund of Hedge Funds

Liability Side 1000: Equity and Three Zero Coupon Bonds

Model 2:Dependent Brownian Motions (Smoothed Data)

Fund of EQUITY ZCB A ZCB B ZCB C

Hedge funds TRANCHE TRANCHE TRANCHE TRANCHE

Benchmark ν = 0, 5833

Prices 180,444 570 150,072 99,484

Minimum 0 569,995 0 0

Num. Losses 25515 1 391 3208

Half Variances

Prices 178,831 570 150,283 100,886

Minimum 0 570 26,2 0

Num. Losses 25146 0 149 1946

Double Variances

Prices 184,051 569,981 149,334 96,633

Minimum 0 484,994 0 0

Num. Losses 25944 34 1121 5357

Double Skewnesses

Prices 181,497 569,996 149,872 98,634

Minimum 0 530,132 0 0

Num. Losses 25364 11 609 3862

Opposite Skewnesses

Prices 177,557 570 150,367 102,077

Minimum 0 570 73,996 0

Num. Losses 25546 0 26 696
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Table B.5:

Asset Side 1000: Fund of Hedge Funds

Liability Side 1000: Paying Dividend Equity and Three Coupon Bonds

Model 1: Independent Brownian Motions (Smoothed Data)

Fund of EQUITY CB A CB B CB C

Hedge funds TRANCHE TRANCHE TRANCHE TRANCHE

Benchmark ν = 0, 3333

Prices (0% Div.) 178,339 570 150,284 101,304

Prices (50% Div.) 178,439 570 150,276 101,165

Prices (100% Div.) 178,623 570 150,264 100,978

Half Variances

Prices (0% Div.) 177,685 570 150,336 101,914

Prices (50% Div.) 177,707 570 150,334 101,86

Prices (100% Div.) 177,773 570 150,332 101,785

Double Variances

Prices (0% Div.) 180,058 569,997 150,008 99,852

Prices (50% Div.) 180,395 569,997 149,969 99,491

Prices (100% Div.) 180,914 569,997 149,915 99,004

Double Skewnesses

Prices (0% Div.) 178,906 570 150,212 100,799

Prices (50% Div.) 179,078 570 150,196 100,587

Prices (100% Div.) 179,386 570 150,173 100,285

Opposite Skewnesses

Prices (0% Div.) 177,308 570 150,347 102,317

Prices (50% Div.) 177,298 570 150,347 102,317

Prices (100% Div.) 177,295 570 150,347 102,317
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Table B.6:

Asset Side 1000: Fund of Hedge Funds

Liability Side 1000: Paying Dividend Equity and Three Coupon Bonds

Model 2: Dependent Brownian Motions (Smoothed Data)

Fund of EQUITY CB A CB B CB C

Hedge funds TRANCHE TRANCHE TRANCHE TRANCHE

Benchmark ν = 0, 3333

Prices (0% Div.) 178,539 570 150,268 101,134

Prices (50% Div.) 178,714 570 150,258 100,954

Prices (100% Div.) 179,009 570 150,244 100,668

Half Variances

Prices (0% Div.) 177,749 570 150,336 101,863

Prices (50% Div.) 177,793 570 150,333 101,808

Prices (100% Div.) 177,884 570 150,33 101,716

Double Variances

Prices (0% Div.) 180,788 569,998 149,891 99,253

Prices (50% Div.) 181,381 569,997 149,842 98,693

Prices (100% Div.) 182,267 569,994 149,762 97,884

Double Skewnesses

Prices (0% Div.) 178,990 570 150,213 100,727

Prices (50% Div.) 179,245 570 150,197 100,462

Prices (100% Div.) 179,659 570 150,173 100,064

Opposite Skewnesses

Prices (0% Div.) 177,329 570 150,347 102,312

Prices (50% Div.) 177,332 570 150,347 102,312

Prices (100% Div.) 177,333 570 150,347 102,310
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Table B.7:

Asset Side 1000: Fund of Hedge Funds

Liability Side 1000: Paying Dividend Equity and Three Coupon Bonds

Model 1: Independent Brownian Motions (Smoothed Data)

Fund of EQUITY CB A CB B CB C

Hedge funds TRANCHE TRANCHE TRANCHE TRANCHE

Benchmark ν = 0, 5833

Prices (0% Div.) 179,249 569,998 150,117 100,537

Prices (50% Div.) 179,545 569,998 150,095 100,239

Prices (100% Div.) 179,927 569,998 150,061 99,881

Half Variances

Prices (0% Div.) 178,296 570 150,265 101,352

Prices (50% Div.) 178,439 570 150,259 101,196

Prices (100% Div.) 178,644 570 150,250 100,993

Double Variances

Prices (0% Div.) 181,294 569,980 149,691 98,921

Prices (50% Div.) 181,924 569,978 149,609 98,345

Prices (100% Div.) 182,729 569,977 149,498 97,637

Double Skewnesses

Prices (0% Div.) 180,328 569,994 149,907 99,655

Prices (50% Div.) 180,821 569,994 149,856 99,187

Prices (100% Div.) 181,433 569,994 149,786 98,634

Opposite Skewnesses

Prices (0% Div.) 177,413 570 150,345 102,188

Prices (50% Div.) 177,415 570 150,345 102,174

Prices (100% Div.) 177,432 570 150,345 102,153
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Table B.8:

Asset Side 1000: Fund of Hedge Funds

Liability Side 1000: Paying Dividend Equity and Three Coupon Bonds

Model 2:Dependent Brownian Motions (Smoothed Data)

Fund of EQUITY CB A CB B CB C

Hedge funds TRANCHE TRANCHE TRANCHE TRANCHE

Benchmark ν = 0, 5833

Prices (0% Div.) 179,786 569,998 150,086 100,049

Prices (50% Div.) 180,215 569,997 150,044 99,632

Prices (100% Div.) 180,816 569,997 149,987 99,075

Half Variances

Prices (0% Div.) 178,488 570 150,273 101,164

Prices (50% Div.) 178,677 570 150,261 100,964

Prices (100% Div.) 178,966 570 150,244 100,682

Double Variances

Prices (0% Div.) 182,804 569,979 149,390 97,737

Prices (50% Div.) 183,784 569,975 149,245 96,865

Prices (100% Div.) 185,095 569,970 149,032 95,757

Double Skewnesses

Prices (0% Div.) 180,661 569,995 149,900 99,346

Prices (50% Div.) 181,255 569,994 149,833 98,786

Prices (100% Div.) 182,050 569,992 149,743 98,068

Opposite Skewnesses

Prices (0% Div.) 177,569 570 150,340 102,047

Prices (50% Div.) 177,601 570 150,339 102,003

Prices (100% Div.) 177,668 570 150,337 101,933
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Table B.9:

Asset Side 1000: Fund of Hedge Funds

Liability Side 1000: Paying Dividend Equity and Three Coupon Bonds

4 Models with barrier 105% (Smoothed Data)

Fund of EQUITY CB A CB B CB C

Hedge funds TRANCHE TRANCHE TRANCHE TRANCHE

M.G.B.M.

Prices (0% Div.) 177,265 569,974 150,229 102,022

Prices (50% Div.) 177,282 569,974 150,226 102,014

Prices (100% Div.) 177,274 569,972 150,212 101,979

Model 1

Prices (0% Div.) 176,547 568,242 148,111 96,218

Prices (50% Div.) 176,443 568,073 147,725 95,291

Prices (100% Div.) 176,309 567,800 147,131 93,927

Model 2

Prices (0% Div.) 176,354 567,715 147,503 94,611

Prices (50% Div.) 176,199 567,475 146,921 93,294

Prices (100% Div.) 175,950 567,046 146,111 91,319

Model 3

Prices (0% Div.) 176,907 569,472 149,463 99,945

Prices (50% Div.) 176,841 569,416 149,281 99,521

Prices (100% Div.) 176,793 569,322 149,069 99,014



APPENDIX B. TABLES: EQUITY AND DEBT TRANCHES FAIR PRICES121

Table B.10:

Asset Side 1000: Fund of Hedge Funds

Liability Side 1000: Paying Dividend Equity and Three Coupon Bonds

4 Models with barrier 105% (Unsmoothed Data)

Fund of EQUITY CB A CB B CB C

Hedge funds TRANCHE TRANCHE TRANCHE TRANCHE

M.G.B.M.

Prices (0% Div.) 176,700 569,529 149,266 99,487

Prices (50% Div.) 176,576 569,475 148,910 98,769

Prices (100% Div.) 176,504 569,069 148,877 98,459

Model 1

Prices (0% Div.) 176,673 566,882 146,735 92,738

Prices (50% Div.) 176,557 565,982 146,010 91,083

Prices (100% Div.) 176,395 565,982 145,053 88,835

Model 2

Prices (0% Div.) 176,943 565,868 145,499 90,076

Prices (50% Div.) 176,843 565,405 144,507 87,884

Prices (100% Div.) 176,625 564,645 142,999 84,520

Model 3

Prices (0% Div.) 176,631 568,700 148,608 97,458

Prices (50% Div.) 176,495 568,579 148,263 96,637

Prices (100% Div.) 176,371 568,346 147,805 95,503
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Table B.11:

Asset Side 1000: Fund of Hedge Funds

Liability Side 1000: Paying (50%) Dividend Equity and Three Coupon Bonds

CFO tranche prices with barriers and liquidity profile

Model 1: Independent Brownian Motions (Smoothed Data)

Collateral NAV EQUITY CB A CB B CB C

and Debt Ratio TRANCHE TRANCHE TRANCHE TRANCHE

Benchmark ν = 0, 3333

(105%) 176,443 568,073 147,725 95,291

(100%) 178,141 569,357 148,410 99,280

(95%) 178,338 569,806 149,351 100,854

Half Variances

(105%) 176,564 569,054 148,952 98,461

(100%) 177,581 569,769 149,523 101,052

(95%) 177,654 569,943 149,996 101,774

Double Variances

(105%) 176,637 566,035 145,380 89,697

(100%) 179,654 568,250 145,899 95,418

(95%) 180,201 569,318 147,379 98,400

Double Skewnesses

(105%) 176,364 567,251 146,836 93,037

(100%) 178,572 568,967 147,479 97,770

(95%) 178,920 569,650 148,690 100,004

Opposite Skewnesses

(105%) 177,289 569,996 150,330 102,279

(100%) 177,296 570,000 150,347 102,317

(95%) 177,296 570,000 150,347 102,317
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Table B.12:

Asset Side 1000: Fund of Hedge Funds

Liability Side 1000: Paying (50%) Dividend Equity and Three Coupon Bonds

CFO tranche prices with barriers and liquidity profile

Model 2: Dependent Brownian Motions (Smoothed Data)

Collateral NAV EQUITY CB A CB B CB C

and Debt Ratio TRANCHE TRANCHE TRANCHE TRANCHE

Benchmark ν = 0, 3333

(105%) 176,199 567,475 146,921 93,294

(100%) 178,420 569,099 147,808 98,332

(95%) 178,682 569,733 148,951 100,337

Half Variances

(105%) 176,495 568,797 148,650 97,638

(100%) 177,649 569,676 149,312 100,664

(95%) 177,735 569,924 149,954 101,646

Double Variances

(105%) 176,626 564,732 143,618 85,940

(100%) 180,496 567,556 144,120 92,884

(95%) 181,358 568,950 146,050 96,869

Double Skewnesses

(105%) 176,081 566,754 146,118 91,290

(100%) 178,825 568,760 147,005 97,114

(95%) 179,181 569,567 148,381 99,595

Opposite Skewnesses

(105%) 177,241 569,963 150,268 102,099

(100%) 177,305 569,999 150,332 102,294

(95%) 177,306 570,000 150,347 102,313
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Table B.13:

Asset Side 1000: Fund of Hedge Funds

Liability Side 1000: Paying (50%) Dividend Equity and Three Coupon Bonds

CFO tranche prices with barriers and liquidity profile

Model 1: Independent Brownian Motions (Smoothed Data)

Collateral NAV EQUITY CB A CB B CB C

and Debt Ratio TRANCHE TRANCHE TRANCHE TRANCHE

Benchmark ν = 0, 5833

(105%) 177,099 567,153 146,950 93,704

(100%) 179,021 568,746 147,292 97,667

(95%) 179,352 569,481 148,270 99,699

Half Variances

(105%) 176,785 568,004 147,641 95,388

(100%) 178,376 569,270 148,302 99,175

(95%) 178,557 569,747 149,153 100,676

Double Variances

(105%) 178,000 564,900 143,755 87,171

(100%) 181,243 567,363 144,095 93,077

(95%) 182,021 568,679 145,582 96,579

Double Skewnesses

(105%) 177,462 565,697 144,801 89,175

(100%) 180,335 567,921 145,285 94,742

(95%) 180,905 569,035 146,700 97,787

Opposite Skewnesses

(105%) 177,007 569,584 149,671 100,506

(100%) 177,442 569,920 149,987 101,792

(95%) 177,460 569,984 150,220 102,104
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Table B.14:

Asset Side 1000: Fund of Hedge Funds

Liability Side 1000: Paying (50%) Dividend Equity and Three Coupon Bonds

CFO tranche prices with barriers and liquidity profile

Model 1: Dependent Brownian Motions (Smoothed Data)

Collateral NAV EQUITY CB A CB B CB C

and Debt Ratio TRANCHE TRANCHE TRANCHE TRANCHE

Benchmark ν = 0, 5833

(105%) 177,111 566,021 145,182 89,681

(100%) 179,861 568,182 145,857 95,451

(95%) 180,327 569,237 147,301 98,419

Half Variances

(105%) 176,812 567,498 147,130 93,929

(100%) 178,605 569,047 147,841 98,422

(95%) 178,805 569,693 148,926 100,313

Double Variances

(105%) 178,732 563,285 141,718 83,014

(100%) 182,797 566,363 142,037 89,987

(95%) 183,823 568,115 143,725 94,408

Double Skewnesses

(105%) 177,716 565,138 144,150 87,659

(100%) 180,774 567,602 144,607 93,675

(95%) 181,379 568,894 146,204 97,212

Opposite Skewnesses

(105%) 176,763 569,106 149,120 98,864

(100%) 177,625 569,784 149,636 101,204

(95%) 177,677 569,953 150,056 101,852
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Table B.15:

Asset Side 1000: Fund of Hedge Funds

Liability Side 1000: Paying (50%) Dividend Equity and Three Coupon Bonds

CFO tranche prices with barrier (105%) and management fees

(Smoothed Data)

MODEL EQUITY CB A CB B CB C

TRANCHE TRANCHE TRANCHE TRANCHE

M.G.B.Motion

Prices with fees 154,977 569,912 149,994 101,439

(Prices with no fees) (177,282) (569,974) (150,226) (102,014)

Model 1 ν = 0, 333

Prices with fees 154,894 567,517 146,788 92,873

(Prices with no fees) (176,443) (568,073) (147,725) (95,291)

Model 2 ν = 0, 333

Prices with fees 154,837 566,788 145,762 90,356

(Prices with no fees) (176,199) (567,475) (146,921) (93,294)

Model 3

Prices with fees 154,768 569,101 148,693 97,973

(Prices with no fees) (176,841) (569,416) (149,281) (99,521)
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Table B.16:

Asset Side 1000: Fund of Hedge Funds

Liability Side 1000: Paying (50%) Dividend Equity and Three Coupon Bonds

CFO tranche prices with barrier (105%) and management fees

(Unsmoothed Data)

MODEL EQUITY CB A CB B CB C

TRANCHE TRANCHE TRANCHE TRANCHE

M.G.B.Motion

Prices with fees 154,317 569,185 148,217 97,010

(Prices with no fees) (176,700) (569,529) (149,266) (99,487)

Model 1 ν = 0, 333

Prices with fees 155,638 565,833 144,838 88,181

(Prices with no fees) (176,557) (566,552) (146,010) (91,083)

Model 2 ν = 0, 333

Prices with fees 156,393 564,549 143,148 84,570

(Prices with no fees) (176,843) (565,405) (144,507) (87,883)

Model 3

Prices with fees 154,647 568,066 147,367 94,273

(Prices with no fees) (176,495) (568,578) (148,263) (96,637)
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Noyaga City University, (2005).

[96] Y. Miyahara, N. Moriwaki: Volatility Smile-Smirk Properties of [GLP &

MEMM], (preprint), (2004).

[97] Y. Miyahara, A. Novikov: Geometric Lévy Process Pricing Model, Pro-
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