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PRICING EQUITY DERIVATIVES SUBJECT TO BANKRUPTCY

VADIM LINETSKY

Northwestern University, Evanston, Illinois

We solve in closed form a parsimonious extension of the Black–Scholes–Merton

model with bankruptcy where the hazard rate of bankruptcy is a negative power of

the stock price. Combining a scale change and a measure change, the model dynamics

is reduced to a linear stochastic differential equation whose solution is a diffusion

process that plays a central role in the pricing of Asian options. The solution is in

the form of a spectral expansion associated with the diffusion infinitesimal generator.

The latter is closely related to the Schrödinger operator with Morse potential. Pricing

formulas for both corporate bonds and stock options are obtained in closed form. Term

credit spreads on corporate bonds and implied volatility skews of stock options are

closely linked in this model, with parameters of the hazard rate specification controlling

both the shape of the term structure of credit spreads and the slope of the implied

volatility skew. Our analytical formulas are easy to implement and should prove useful

to researchers and practitioners in corporate debt and equity derivatives markets.

KEY WORDS: bankruptcy, credit risk, hazard rate, credit spread, stock options, implied volatility

skew, Asian options, Brownian exponential functionals, Schrödinger operator with Morse potential,

spectral expansions

1. INTRODUCTION

In the celebrated Black–Scholes–Merton model the firm’s stock price is assumed to

follow geometric Brownian motion (GBM)—a diffusion process with constant volatil-

ity and infinite life time. On one hand, this assumption precludes bankruptcy. To the

contrary, modeling bankruptcy and credit spreads is at the center of the literature on

corporate bonds (see recent monographs Bielecki and Rutkowski [2002], Duffie and

Singleton [2003], Lando [2004], and Schönbucher [2003], for a summary of the credit risk

literature). On the other hand, the GBM assumption contradicts the accumulated empir-

ical evidence on implied volatility skews exhibited by stock options prices. Modeling the

implied volatility skew is at the center of the equity derivatives literature (e.g., Rubinstein

1994; Jackwerth and Rubinstein 1996).

Until recently, the literature on stock options and the literature on corporate bonds

developed more or less independently. Recently, the two strands of literature have merged

on the topic of modeling convertible bonds, as convertible bonds are corporate bonds

with embedded stock option features. In the reduced-form framework, one specifies the

hazard rate of bankruptcy as a decreasing function of the underlying stock price, h = h(S).

The bankruptcy event is modeled as the first jump time of a doubly stochastic Poisson
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256 V. LINETSKY

process with intensity h, and the term structure of credit spreads is determined from the

specification of the intensity and the parameters of the underlying stock price process.

The negative power intensity provides a particularly parsimonious specification:

h(S) = αS−p(1.1)

for some p > 0 and α > 0. This specification was recently employed in Andersen and

Buffum (2003), Ayache, Forsyth, and Vetzal (2003), Davis and Lischka (2002), Duffie

and Singleton (2003, p. 216), Muromachi (1999), and Takahashi, Kobayashi, and Naka-

gawa (2001) in the context of modeling convertible bonds. Muromachi (1999) empirically

estimated the value of the power parameter p to be in the range between 1.2 and 2 for

Japanese bonds rated BB+ and below. In these references the convertible bond price

was determined numerically by finite-difference or lattice methods. The negative power

intensity model has become popular among practitioners for convertible bond modeling.

While the main focus of these references is on pricing convertible bonds, Andersen and

Buffum (2003) showed that this class of models exhibits implied volatility skews in stock

option prices, with the parameters of the hazard rate specification controlling the slope of

the skew, thus establishing a link between implied volatility skews and credit spreads (see

also Hull, Nelken, and White [2004] for the linkage between credit spreads and implied

volatility skews in Merton’s structural model).

In the present paper we solve the negative power intensity model in closed form both for

corporate bonds and European-style stock options. We start in Section 2 by introducing

bankruptcy into the GBM model by killing the process at the rate h = h(S ), where h is

a decreasing function of the underlying stock price. To insure that the discounted stock

price is a martingale under equivalent martingale measure (EMM), the hazard rate h(S)

needs to be added to the drift rate of the process (e.g., Davis and Lischka 2002). We then

discuss the pricing of equity derivatives in this diffusion-with-killing model and show that,

by Girsanov’s theorem, the risky discount factor with the hazard rate can be removed

from the valuation relationships at the expense of modifying the drift of the underlying

diffusion, thus reducing the problem to the study of the diffusion process (2.3) without

killing. In Section 3 we adopt the negative power specification (1.1) and show that the

valuation problem further reduces to the problem of computing expectations with respect

to the distribution of the diffusion process X (ν) solving the linear stochastic differential

equation (SDE) (3.4). This process has recently been studied in the context of pricing

arithmetic Asian options (see Donati-Martin, Ghomrasni, and Yor [2001] and Linetsky

[2004a] and references therein). Fortunately, the spectral representation of its transition

density is available in closed form (Proposition 3.3), and we are able to compute all the

necessary integrals in closed form and obtain closed-form expressions for both corpo-

rate bonds (Proposition 3.4) and European-style stock options (Proposition 3.5). These

closed-form expressions are in the form of spectral expansions (for recent applications

of the spectral expansion method to derivatives pricing see Lewis [1998], Gorovoi and

Linetsky [2004], Linetsky [2004a–2004d] and references therein). In Section 4 our analyti-

cal solutions are employed to develop an economic analysis of the model. In particular, we

study possible shapes and asymptotics of the term structure of credit spreads and implied

volatility skews in the negative power intensity model, and explore the link between credit

spreads and implied volatility skews. Section 5 concludes the paper. Appendix A presents

additional mathematical details on the process X (ν) and its density p(ν) and their con-

nections with several classical mathematical objects (Schrödinger operator with Morse

potential and Maass Laplacian on the hyperbolic plane). Appendix B discusses the close

relationship of the process X (ν) to the pricing of Asian options (Geman and Yor 1992,

1993; Donati-Martin, Ghomrasni, and Yor 2001; Linetsky 2004a). Appendix C collects
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the necessary facts about special functions appearing in the pricing formulas. Appendix D

contains proofs.

2. EQUITY DERIVATIVES SUBJECT TO BANKRUPTCY

IN THE INTENSITY-BASED FRAMEWORK

2.1. The Stock Price Model

Let (�,G, P) be a probability space supporting a standard Brownian motion {Bt, t ≥
0} and an exponential random variable e ∼ Exp(1) with unit parameter independent of

B. Let h = h(x) be a nonnegative function on R+ satisfying the following assumptions.

ASSUMPTION 2.1. We assume that h is C1(0, ∞), strictly decreasing, and has the fol-

lowing limits:

lim
x→0

h(x) = +∞, lim
x→∞

h(x) = 0.

We take an EMM P as given and model the pre-bankruptcy underlying stock price

dynamics under the EMM as a diffusion process {St, t ≥ 0} solving the SDE

dSt = (r − q + h(St))St dt + σ St dBt, S0 = S > 0,(2.1)

where r > 0, q > 0, and σ > 0 are the risk-free interest rate, dividend yield, and pre-

bankruptcy stock price volatility, respectively. Under Assumption 2.1, the SDE (2.1)

has a unique strong nonexploding solution. This solution is a diffusion process on (0,

∞) with both zero and infinity inaccessible boundaries. To see this, consider a process

{Xt := σ−1ln St, t ≥ 0},

dX t = (μ + σ−1h(eσ Xt )) dt + dBt, X0 = σ−1 ln S, μ = (r − q − σ 2/2)/σ.

Under Assumption 2.1, this SDE has a unique strong nonexploding solution. Strong

uniqueness up to the explosion time is insured by h ∈ C1 (e.g., Ikeda and Watanabe

1981). Nonexplosion can be checked by applying Feller’s test for explosions (e.g., Karlin

and Taylor 1981, p. 234).

We model the random time of bankruptcy τ as the first time when the process
∫ t

0
h(Su) du is greater or equal to the random level e (equivalently, as the first jump time of

a doubly stochastic Poisson process (Cox process) with intensity (hazard rate) ht = h(St)):

τ = inf

{

t ≥ 0 :

∫ t

0

h(Su) du ≥ e

}

.

At the time of bankruptcy τ , the stock price jumps to the bankruptcy state, �, where it

remains forever (� is a cemetery state in the terminology of Markov processes; e.g., Revuz

and Yor 1999). We assume that equity holders do not receive any recovery in the event of

bankruptcy and their equity position becomes worthless. In other words, we model the

stock price subject to bankruptcy as a diffusion process {S�
t , t ≥ 0} with the extended state

space E� = (0, ∞) ∪ {�}, diffusion coefficient a(x) = σx, drift b(x) = (r − q + h(x))x,

and killing rate h(x). In our notation, {St, t ≥ 0} is the pre-bankruptcy stock price

process (2.1), while {S�
t , t ≥ 0} is the stock price process subject to bankruptcy, so that

S�
t = St for t < τ and S�

t = � for all t ≥ τ .

The addition of the hazard rate in the drift rate in the pre-bankruptcy dynamics (2.1)

compensates for the bankruptcy jump to insure that the total expected rate of return to the



258 V. LINETSKY

stockholder is equal to the risk-free rate in the risk-neutral economy and the discounted

gain process is a martingale under EMM (e.g., Davis and Lischka 2002). Our assumptions

about the hazard rate are intuitive. As the stock price declines towards zero, the hazard

rate increases to infinity. As the stock price increases, the hazard rate declines to zero,

making the stock price process asymptotically GBM.

To keep track of how information is revealed over time, following Elliot et al. (2000),

we introduce a bankruptcy jump indicator process {Dt, t ≥ 0}, Dt = 1{t≥τ }, denote by

D = {Dt, t ≥ 0} a filtration generated by D, by F = {Ft, t ≥ 0} a filtration generated by

the Brownian motion B, and by G = {Gt, t ≥ 0}, Gt = Ft ∨ Dt, an enlarged filtration. The

defaultable stock process S� is adapted to the enlarged filtration G.

If we identify the cemetery state � = 0, then we can write the process for the stock

price subject to bankruptcy in the form

dS�
t = S�

t−((r − q) dt + σ dBt − dMt),

where

Mt = Dt −
∫ t∧τ

0

h(Su) du,

is a martingale (compensated bankruptcy jump process).

2.2. Equity Derivatives

A European-style equity derivative with maturity (expiration) at time T > 0 is defined

by its payoff F : E� → R+,

F
(

S�
T

)

= F
(

S�
T

)

1{S�
T �=�} + R1{S�

T =�},

where F(S�
T )1{S�

T �=�} is the payoff at maturity, given no bankruptcy prior to T , and R =
F(�) ≥ 0 is the recovery payment at maturity in the event of bankruptcy. The valuation

of the two parts of the payoff is standard in the reduced-form intensity-based credit risk

modeling framework1

e−rT
E

[

F
(

S�
T

)

1{S�
T �=�}

]

= e−rT
E

[

F(ST)1{τ>T}
]

= e−rT
E

[

F(ST)E
[

1{τ>T}
∣

∣FT

]]

= e−rT
E

[

e−
∫ T

0
h(St) dt F(ST)

]

,

and

e−rT
E

[

R1{S�
T =�}

]

= e−rT
E

[

R1{τ≤T}
]

= e−rT R
(

1 − E
[

1{τ>T }
])

= e−rT R
(

1 − E
[

E
[

1{τ>T }
∣

∣FT

]])

= e−rT R
(

1 − E
[

e−
∫ T

0
h(St) dt

])

,

where {Ft, t ≥ 0} is the filtration generated by the Brownian motion B, and we used the

fact that

E
[

1{τ>T }
∣

∣FT

]

= e−
∫ T

0
h(St) dt.

These valuations reduce to computing expectations of the form

Vψ (S, T) = e−rT
E

[

e−
∫ T

0
h(St) dtψ(ST)

]

.

1 See Duffie, Schroder, and Skiadas (1996), Duffie and Singleton (1999), Jarrow and Turnbull (1995),

Jarrow, Lando, and Turnbull (1997), and Madan and Unal (1998), as well as recent monographs Bielecki

and Rutkowski (2002), Duffie and Singleton (2003), Lando (2004), and Schönbucher (2003). For the partial

differential equation (PDE) approach to the pricing of equity derivatives with the hazard rate dependent on

the underlying stock price, see Carr and Javaheri (2005).
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This can be interpreted as pricing a claim with payoff ψ(ST ) at T > 0 in a fictitious

economy with the risk-free interest rate process rt = r + h(St), stock price process (2.1),

and no bankruptcy. The discount factor with h can be removed by changing the probability

measure.

PROPOSITION 2.1.

Vψ (S, T ) = e−rT
E

[

e−
∫ T

0
h(St) dtψ(ST)

]

= e−qT S Ê
[

S−1
T ψ(ST)

]

,(2.2)

where Ê is the expectation with respect to the probability measure P̂ under which B̂t :=
Bt − σ t is a standard Brownian motion and

dS t =
(

r − q + σ 2 + h(St)
)

St dt + σ St dB̂t, S0 = S > 0.(2.3)

Proof . From equation (2.1) we have

St = Se(r−q)t+
∫ t

0
h(Su ) du+σ Bt− 1

2
σ 2t, t ≥ 0,

and hence

e−rT
E

[

e−
∫ T

0
h(St) dtψ(ST)

]

= e−qT SE

[

eσ BT− 1
2
σ 2T S−1

T ψ(ST)
]

.

Application of Girsanov’s theorem completes the proof. �

In particular, for fixed T > 0, we will be interested in a zero-coupon bond with unit

face value and constant recovery payment 0 ≤ R < 1 at maturity, a call option with strike

K > 0 with the payoff (ST − K)+ at expiration and no recovery if the firm goes bankrupt,

and a put option with strike K > 0 with the payoff (K − ST )+ if τ >T and recovery

payment R = K at expiration in the event of bankruptcy τ ≤ T (note that we decompose

the put payoff into two parts: (K − ST )+1{τ>T} + K1{τ≤T}). Using Proposition 2.1, the

pricing formulas for the bond, call, and put take the form

BR(S, T ) = e−rT R + (1 − R)e−qT S Ê
[

S−1
T

]

,(2.4a)

CK (S, T ) = e−qT S Ê
[(

1 − K S−1
T

)+]

,(2.4b)

PK (S, T ) = e−qT S Ê
[(

K S−1
T − 1

)+]

+ K
(

e−rT − e−qT S Ê
[

S−1
T

])

,(2.4c)

respectively. In particular, the put–call parity is satisfied by

CK (S, T ) − PK (S, T ) = e−qT S − e−rT K .(2.5)

One notes that the put pricing formula (2.4c) consists of two parts: the present value of

the put payoff given no bankruptcy,

e−qT S Ê
[(

KS−1
T − 1

)+]

,(2.6)

and the present value of the recovery in the event of bankruptcy,

K(e−rT − B(S, T )),(2.7)

where

B(S, T ) = e−rT
P(τ > T) = e−qT S Ê

[

S−1
T

]

(2.8)
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is the price of the T-maturity zero-coupon bond with unit face value and zero recovery

(the subscript 0 in B0(S, T) will be dropped for zero-recovery bonds) and P(τ > T) is the

(risk-neutral) probability of surviving beyond time T (survival probability). The recovery

part of the put option is termed a bankruptcy claim by Lewis (1998) in the context of

Merton’s model with constant dividend rate, where the bankruptcy occurs when the stock

price process hits zero.

3. ANALYTICAL SOLUTION FOR THE NEGATIVE

POWER INTENSITY MODEL

3.1. The Negative Power Intensity Model

A parsimonious specification for the hazard rate satisfying Assumption 2.1 is

h(S) = αS−p, α > 0, p > 0.(3.1)

This specification was employed in Andersen and Buffum (2003), Ayache, Forsyth, and

Vetzal (2003), Davis and Lischka (2002), Duffie and Singleton (2003, p. 216), Muromachi

(1999), and Takahashi, Kobayashi, and Nakagawa (2001) in the context of modeling

convertible bonds. Muromachi (1999) estimated the value of the power parameter p to

be in the range between 1.2 and 2 for Japanese bonds rated BB+ and below. In these

references the convertible bond price was determined numerically by finite-difference or

lattice methods. The negative power intensity model (3.1) has become popular among

practitioners for convertible bond modeling. In the present paper we solve the model

both for corporate bonds and European-style stock options in closed form.

We are interested in calculating expectations (2.2) under the process (2.3) with h given

by Itô’s (3.1). First, introduce a new process {Zt := βS
p
t , t ≥ 0}, where β = pσ 2/(4α).

From Itô’s formula, it solves the linear SDE

dZt = (aZt + b) dt + cZt dBt, Z0 = z = βSp,(3.2)

with parameters

a = p(r − q + (p + 1)σ 2/2) ∈ R, b = p2σ 2/4 > 0, c = pσ > 0.

This linear SDE has a well-known solution (e.g., Karatzas and Shreve 1992, pp. 360–361)

Zt = e(a−c2/2)t+cBt

(

z + b

∫ t

0

e−(a−c2/2)u−cBu du

)

, t ≥ 0.

Using the Brownian scaling property cBt
(law)= 2Bc2t/4, we can effect a time change so that

Zt = X
(ν)

τ (t), τ (t) = p2σ 2t/4,

where X (ν) is the standardized process:

X
(ν)
t = e2(νt+Bt)

(

z +
∫ t

0

e−2(νu+Bu )du

)

, t ≥ 0, with ν =
2

pσ 2

(

r − q +
σ 2

2

)

,

(3.3)

solving the standardized linear SDE2

dX
(ν)
t =

(

2(ν + 1)X
(ν)
t + 1

)

dt + 2X
(ν)
t dBt, X

(ν)
0 = x = z = βSp.(3.4)

2 We note that this SDE was derived by Shiryaev (1961) in the context of quickest detection problems (see

Peskir 2004).
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Thus, the valuation equation (2.2) is reduced to

Vψ (S, T ) = e−qT SE(ν)
x

[

χψ

(

X(ν)
τ

)]

, x = βSp, β = pσ 2/(4α), τ = p2σ 2T/4,

(3.5)

where the expectation E
(ν)
x is with respect to the law of the process X (ν) started at x

and

χψ (y) := (y/β)−1/pψ((y/β)1/p).(3.6)

3.2. The Process X (ν), Its Resolvent Kernel, and Transition Density

In this section we review the properties of the diffusion process X (ν).

PROPOSITION 3.1. The boundary at zero is entrance for all ν ∈ R. The boundary at

infinity is natural for all ν ∈ R. For ν > 0 it is attracting and the process is transient. For

ν ≤ 0 it is nonattracting. For ν < 0 the process is positive recurrent and possesses a stationary

distribution with the density

π (x) =
2ν

Ŵ(−ν)
xν−1e− 1

2x .(3.7)

Proof . The scale and speed densities of X (ν) are (see, e.g., Borodin and Salminen

2002, p. 17, for scale and speed densities of one-dimensional diffusions)

s(x) = x−ν−1e
1

2x , m(x) =
1

2
xν−1e− 1

2x .(3.8)

The nature of the boundaries at zero and infinity are established by applying Feller’s

boundary classification criteria based on the behavior of the scale and speed densi-

ties (Borodin and Salminen 2002, pp. 14–15). For ν < 0 the speed measure is finite,
∫ ∞

0
m(x) dx < ∞, and hence, the process is positive recurrent with the stationary density

given by the normalized speed density (Borodin and Salminen 2002, pp. 20–21). �

Let p(ν)(t; x, y) be the transition density of X (ν) and, for s > 0, G
(ν)
s (x, y) its Laplace

transform in time (also called resolvent kernel or Green’s function, e.g., Borodin and

Salminen 2002, pp. 19–20)3

G(ν)
s (x, y) =

∫ ∞

0

e−st p(ν)(t; x, y) dt.(3.9)

PROPOSITION 3.2. For x, y > 0, the resolvent kernel is given by (x ∧ y := min{x, y},
x ∨ y := max{x, y}):

G(ν)
s (x, y) = Ŵ

(

μ(s) +
ν

2

)(

y

x

)
ν−1

2

e
1

4x
− 1

4y M 1−ν
2

,μ(s)

(

1

2(x ∨ y)

)

W1−ν
2

,μ(s)

(

1

2(x ∧ y)

)

,

(3.10)

where

μ(s) =
1

2

√

2s + ν2,(3.11)

3 Note that our Green’s function and transition density are defined with respect to the Lebesgue measure,

while Borodin and Salminen’s are defined with respect to the speed measure and, thus, our Green’s function

and transition density differ from Borodin and Salminen’s by a factor of m(y).
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Ŵ(z) is the Gamma function, and Mκ,μ(z) and W κ,μ (z) are the Whittaker functions (C.2)

and (C.3). For x = 0 and y > 0 the Green’s function reduces to

G(ν)
s (0, y) = Ŵ

(

μ(s) +
ν

2

)

(2y)
ν−1

2 e− 1
4y M 1−ν

2
,μ(s)

(

1

2y

)

.

Proof . See Appendix D.

REMARK 3.1. This Green’s function was obtained by Donati-Martin, Ghomrasni, and

Yor (2001, Theorem 3.1) by solving the differential equation. The transition density is

recovered by inverting the Laplace transform. This produces the spectral representation

for the transition density (see McKean [1956] and Itô and McKean [1974, Section 4.11]

for the spectral representation of the transition density of a one-dimensional diffusion,

and Linetsky [2004b; 2006] and references therein for applications in finance).

PROPOSITION 3.3. For x, y > 0 and ν ∈ R, the transition density has the following

spectral representation

p(ν)(t; x, y) = 1{ν<0}π (y) + 1{ν<−2}

[|ν|/2]
∑

n=1

e−2n(|ν|−n)t 2(|ν| − 2n)n!

Ŵ(1 + |ν| − n)
e− 1

2y (2x)n(2y)n−1−|ν|

× L(|ν|−2n)
n

(

1

2x

)

L(|ν|−2n)
n

(

1

2y

)

+
1

2π2

∫ ∞

0

e− (ν2+ρ2)t
2 e

1
4x

− 1
4y

(

y

x

)
ν−1

2

× W1−ν
2

,
iρ
2

(

1

2x

)

W1−ν
2

,
iρ
2

(

1

2y

)
∣

∣

∣

∣

Ŵ

(

ν + iρ

2

)
∣

∣

∣

∣

2

sinh(πρ)ρ dρ,

(3.12)

where L
(α)
n (x) are the generalized Laguerre polynomials, [x] denotes the integer part of x,

and 1{·} is the indicator. When x = 0, y > 0, and ν ∈ R,

p(ν)(t; 0, y) =
1

2π2

∫ ∞

0

e− (ν2+ρ2)t
2 e− 1

4y (2y)
ν−1

2 W1−ν
2

,
iρ
2

(

1

2y

)
∣

∣

∣

∣

Ŵ

(

ν + iρ

2

)
∣

∣

∣

∣

2

sinh(πρ)ρ dρ

+ 1{ν<0}π (y) + 1{ν<−2}

[|ν|/2]
∑

n=1

e−2n(|ν|−n)t (−1)n2(|ν| − 2n)

Ŵ(1 + |ν| − n)

× e− 1
2y (2y)n−1−|ν|L(|ν|−2n)

n

(

1

2y

)

.

Proof . See Appendix D.

REMARK 3.2. The density in Proposition 3.3 has a long history and is closely related

to a number of classical mathematical objects. For ν < 0 this density was first obtained

by Wong (1964, p. 271, equation (38)) in his studies of diffusions with stationary densities

in the Pearson family. See Comtet, Monthus, and Yor (1998), Linetsky (2004a), and

Appendix A and B for details. In Appendix D we provide a proof for all ν ∈ R.

REMARK 3.3. Because the boundary at zero is entrance, the process can be started at

zero and G
(ν)
s (0, y) and p(ν)(t; 0, y) exist. In the application to Asian options the process is

started at zero (see Appendix B). In the present application to equity derivatives subject

to bankruptcy, the process is started at a positive value x = βSp > 0.
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REMARK 3.4. For ν ≥ 0 the spectrum of the infinitesimal generator

G(ν) = 2x2 d 2

dx2
+ (2(ν + 1) + 1)

d

dx

of X (ν) in the Hilbert space of functions square-integrable with the speed density m in

equation (3.8) is purely continuous (the integral term in the spectral expansion (3.12)). For

ν < 0 there is some nonempty discrete spectrum that contains at least the zero principal

eigenvalue. The term in the spectral expansion (3.12) corresponding to the zero principal

eigenvalue is the stationary density π (3.7). The spectral expansion for the transition

density can be obtained by directly inverting the Laplace transform of the resolvent kernel,

using the Cauchy Residue Theorem. The resolvent kernel (3.10) needs to be considered in

the complex s-plane. The poles of the resolvent kernel (the poles of the Gamma function

in equation (3.10) for ν < 0) give the eigenvalues, and the integral along the branch cut

{s = −ν2/2 − ρ2/2, ρ ∈ [0, ∞)} produces the continuous part of the spectral expansion.

See Appendix D for this approach. Alternatively, the spectral expansion can be obtained

by employing the real-variable approach by first considering a truncated spectral problem

on [0, b] for some b > 0 with the Dirichlet boundary condition at b and purely discrete

spectrum, and then passing to the limit b → ∞ (this approach is detailed in Linetsky

2004a).

3.3. Pricing L2 Payoffs

We now apply the spectral representation to the valuation problem (3.5). Let H :=
L2((0, ∞),m) be the Hilbert space of functions square-integrable with the speed density m

in equation (3.8) and endowed with the inner product

( f , g)m =
∫ ∞

0

f (x)g(x)m(x) dx.

For any ψ such that χψ ∈ H (χψ is defined in (3.6)), the valuation (3.5) has the spectral

representation

eqT S−1Vψ (S, T ) =
1

2π2

∫ ∞
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2 e

1
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∣

∣

∣
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2

)
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∣

∣

∣

2

sinh(πρ)ρ dρ

+ 1{ν<0}cψ (0) + 1{ν<−2}

[|ν|/2]
∑

n=1

cψ (n)e−2n(|ν|−n)τ

×
2(|ν| − 2n)n!

Ŵ(1 + |ν| − n)
(2x)n L(|ν|−2n)

n

(

1

2x

)

,

(3.13)

where the expansion coefficients are given by

Cψ (ρ) =
∫ ∞

0

y
ν−1

2 e− 1
4y W1−ν

2
,

iρ
2

(

1

2y

)

χψ (y) dy,(3.14)

cψ (0) =
∫ ∞

0

χψ (y)π (y) dy, cψ (n) =
∫ ∞

0

(2y)n−|ν|−1 e− 1
2y L(|ν|−2n)

n

(

1

2y

)

χψ (y) dy.

(3.15)
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For details of the spectral expansion approach to derivatives pricing, see Linetsky (2004b)

and references therein.

3.4. Pricing Bonds

First consider the case ν < 2/p (from equation (3.3) this condition is equivalent to

r − q − σ 2/2 < 0). Bond payoff ψbond(x) = 1 is such that χψ ∈ H, and the spectral rep-

resentation (3.13) is applicable. Fortunately, in this case the integrals in equations (3.14)

and (3.15) can be calculated in closed form.

The case ν ≥ 2/p (equivalently, r − q − σ 2/2 ≥ 0) is more involved. For the bond

payoff ψbond(x) = 1, χψ (x) = (x/β)−1/p /∈ H and, hence, the spectral representation

(3.13) cannot be applied. The alternative is to first compute the Laplace transform

�(ν)
s (x) :=

∫ ∞

0

e−sτ E(ν)
x

[(

X(ν)
τ /β

)−1/p]
dτ =

∫ ∞

0

(y/β)−1/pG(ν)
s (x, y) dy(3.16)

with the kernel (3.10) and then do the Laplace inversion, choosing the contour of integra-

tion in the Bromwich complex Laplace inversion formula to the right of any singularities

of �
(ν)
s (x) in the complex s-plane. In this case the function �

(ν)
s (x) has an additional pole

in addition to the singularities inherited from the Green’s function G
(ν)
s (x, y), resulting

in an additional positive term in the pricing formula for ν > 2/p (this phenomenon for

non-L2 payoffs has been first discussed in Lewis 1998). The interpretation of this addi-

tional term as the discounted probability of the firm asymptotically escaping to large

stock price values and ultimately avoiding bankruptcy is provided in Section 4.

PROPOSITION 3.4. The pricing function (2.8) for the zero-coupon bond with unit face

value and no recovery is given by

B(S, T ) = 1{ν>2/p}e
−rT Ŵ(ν − 1/p)

Ŵ(ν − 2/p)
U

(

1

p
,

2

p
− ν + 1,

1

2x

)

+ 1{ν<0}e
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1
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+ 1{ν<−2}e
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[|ν|/2]
∑

n=1
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∣

2

sinh(πρ)ρ dρ,

where U(a, b, z) is the second confluent hypergeometric function (see Appendix C ).

Proof . See Appendix D.

3.5. Pricing Options

The put payoff ψ(x) = (K − x)+ is such that χψ ∈ H for all ν ∈ R and, hence, the

valuation of the put payoff given no bankruptcy (2.6) follows from the spectral expansion

(3.13). Fortunately, the integrals in the expressions for the expansion coefficients (3.14)

and (3.15) can be computed in closed form. The recovery part (bankruptcy claim) value

(2.7) follows from the bond valuation in Proposition 3.4.
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PROPOSITION 3.5. Define k = βKp. The put pricing function (2.4c) is given by

PK (S, T ) = e−rT K − 1{ν>2/p}e
−rT K
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where

PK (ρ) = k
1+ν
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+ 2ℜ
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pK (n) = −
1

2n
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2k L
(|ν|−2n)
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2k
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1
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,

and 2F2[a1, a2; b1, b2; z] is the hypergeometric function given in (C.13), γ (a, x) =
∫ x

0
za−1e−z dz is the incomplete Gamma function, Ŵ(a, x) =

∫ ∞
x

za−1e−z dz is the comple-

mentary incomplete Gamma function, and ℜ(z) ≡ (z + z̄)/2 denotes the real part of a com-

plex number z.

Proof . See Appendix D.

The call payoff ψcall(x) = (x − K)+ is such that χψ ∈ H for ν < 0 but χψ /∈ H for ν ≥
0. Nevertheless, we can use the put–call parity (2.5) to recover the call pricing function

CK (S, T) for all ν ∈ R from the put pricing formula in Proposition 3.5.

4. ECONOMIC ANALYSIS OF THE MODEL: CREDIT

SPREADS AND IMPLIED VOLATILITY SKEWS

Assuming the unit face value T-maturity zero-coupon bond recovers nothing in the event

of bankruptcy (R = 0), the T-maturity credit spread is defined as usual

S(S, T ) = −
1

T
lnB(S, T ) − r .

For small T , asymptotically we have

S(S, T ) ∼ h(S) as T → 0.
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To investigate the long maturity asymptotics of the term structure of credit spreads, define

the asymptotic credit spread as

S∞ := lim
T→∞

S(S, T ).

There are three distinct cases, depending on the relationship among the risk-free rate,

dividend yield, and volatility.

(i) When |r − q| ≤ σ 2/2 (0 ≤ ν ≤ 2/p), the spectrum is purely continuous, the

bond pricing function in Proposition 3.4 contains only the integral term, and

we have (recall that τ = p2σ 2T/4)

S∞ = q − r +
ν2 p2σ 2

8
=

1

2σ 2

(

r − q −
σ 2

2

)2

.

For large T , the term structure of credit spreads flattens out toward the asymp-

totic spreadS∞ = (r − q − σ 2/2)2/(2σ 2) ∈ [0, σ 2/2]. Note that it depends only

on r, q and σ , and not on the hazard rate parameters α and p.

(ii) When the dividend yield is sufficiently large so that q > r + σ 2/2 (ν < 0), there

is some nonempty discrete spectrum containing at least the zero principal eigen-

value that contributes the leading term in the spectral expansion of the bond

pricing function, and

S∞ = q − r .

For large T , the term structure of credit spreads flattens out toward the asymp-

totic spread S∞ = q − r > σ 2/2. In this case it depends only on r and q.

(iii) When the risk-free rate is sufficiently large so that r > q + σ 2/2 (ν > 2/p), the

bond pricing function contains an additional term

e−rT Ŵ(ν − 1/p)

Ŵ(ν − 2/p)
U

(

1

p
,

2

p
− ν + 1,

1

2x

)

and

S∞ = 0.

In this case, asymptotically the term structure of credit spreads declines to

zero for long maturities. To understand this behavior, consider the process

(2.1). For large values of the stock price, the process behaves asymptotically as

GBM. The natural boundary at infinity is attracting when r − q − σ 2/2 > 0.

For r − q − σ 2/2 > 0, there is thus a positive probability that the stock price

process asymptotically escapes to large values and the firm never goes bankrupt:

P

(

lim
t→∞

S�
t = ∞

∣

∣

∣
S0 = S

)

> 0.

We can calculate this (risk-neutral) probability directly.

PROPOSITION 4.1. For ν > 2/p (equivalently, r − q − σ 2/2 > 0) and S > 0,

P

(

lim
t→∞

S�
t = ∞

∣

∣

∣
S0 = S

)

=
Ŵ(ν − 1/p)

Ŵ(ν − 2/p)
U

(

1

p
,

2

p
− ν + 1,

1

2x

)

.
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Term Structure of Credit Spreads 
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FIGURE 4.1. Term structure of credit spreads. Parameter values: S = S∗ = 50, σ =
0.3, r = q = 0.03, h∗ = 0.03, p = 0.5, 1, 2, 3.

Proof . See Appendix D.

For the bond price, we have the large-T asymptotics

B(S, T ) ∼ e−rT
P

(

lim
t→∞

S�
t = ∞

∣

∣

∣
S0 = S

)

as T → ∞.

Therefore, the additional term in the bond pricing function B(S, T) for ν > 2/p is the

discounted (risk-neutral) probability of the firm asymptotically escaping to large stock

price values and ultimately avoiding bankruptcy.

We now investigate the possible shapes of the term structure of credit spreads. It is

convenient to parameterize the hazard rate as follows:

h(S) = h∗
(

S∗

S

)p

,

where S∗ > 0 is some reference stock price level and h∗ > 0 is the hazard rate at that

reference level, h(S ∗) = h∗, so that h∗ serves as the scale parameter. To calibrate the

model in applications, one typically selects S∗ = S0, the initial stock price at the time of

calibration.

Figures 4.1–4.3 illustrate the shapes of the term structure of credit spreads for the three

cases considered above.4 Volatility is fixed at 30% (σ = 0.3). Figure 4.1 gives an example of

the first case. The risk-free rate and the dividend yield are both equal to 3% (r = q = 0.03).

4 For all numerical computations in this paper we used Mathematica software package running on a PC.

All required special functions are available in Mathematica as standard built-in functions. The single integral

with respect to the spectral parameter ρ in the valuation formulas was computed using the built-in numerical

integration routine in Mathematica.
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Term Structure of Credit Spreads 
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FIGURE 4.2. Term structure of credit spreads. Parameter values: S = S∗ = 50, σ =
0.3, r = 0.02, q = 0.07, h∗ = 0.03, p = 0.5, 1, 2, 3.
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FIGURE 4.3. Term structure of credit spreads. Parameter values: S = S∗ = 50, σ =
0.3, r = 0.07, q = 0, h∗ = 0.03, p = 0.5, 1, 2, 3.
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In this case |r − q| ≤ σ 2/2 and the asymptotic spread is S∞ = 0.01125 (112.5 basis

points). Figure 4.1 plots four curves corresponding to the four choices of the hazard

rate parameter p = 0.5, 1, 2, 3 with h∗ = 0.03 and S∗ = 50. For these parameter values,

the term structure has a humped shape, first upward slopping and then slowly downward

slopping toward the asymptotic yield.

Figure 4.2 gives an example of the second case with r=0.02 and q=0.07. In this case q >

r + σ 2/2 and the asymptotic spread is S∞ = 0.05 (500 basis points). Figure 4.2 plots four

curves corresponding to the four choices of the hazard rate parameter p = 0.5, 1, 2, 3 with

h∗ = 0.03 and S∗ = 50. The term structures are upward slopping, have a hump, and then

decline toward the asymptotic spread of 5%, which is much larger than that in Figure 4.1

since the dividend yield is q > r + σ 2/2.

Figure 4.3 gives an example of the third case with r = 0.07 and q = 0. In this case r >

q + σ 2/2 and the asymptotic spread isS∞ = 0. Figure 4.3 plots four curves corresponding

to the four choices of the hazard rate parameter p = 0.5, 1, 2, 3 with h∗ = 0.03 and S∗ = 50.

The terms structures are downward slopping toward zero. The term structures with p = 2

and 3 have an initial hump. To further illustrate this case, Figure 4.4 plots the (risk-neutral)

probability of the firm escaping to the high stock price values and ultimately avoiding

bankruptcy as a function of the initial stock price u(S) = P(limt→∞ S�
t = ∞ | S0 = S).

Note that this probability increases with p. Since r is large and q = 0, the stock price tends

to appreciate. For larger values of p, the hazard rate falls off more quickly as the stock

price increases, thus increasing the probability of avoiding bankruptcy.

Figure 4.5 plots the option implied volatility against the strike price of the option in

the model with S∗ = 50, σ = 0.3, r = q = 0.03, h∗ = 0.03, and p = 2 for expirations of

3 months, 6 months, 1 year, and 5 years (these implied volatility curves correspond to

the term structure of credit spreads in Figure 4.1 with p = 2). The implied volatilities are

obtained by first computing the put pricing formula of Proposition 3.5 for a given strike

and expiration and then implying the Black–Scholes implied volatility. The current stock

price is S = 50. For higher strikes, the implied volatility asymptotically decreases toward

σ = 0.3, as the hazard rate vanishes and the process becomes asymptotically GBM as

the stock price increases. For lower strike prices, we observe the characteristic implied
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FIGURE 4.4. Probability of avoiding bankruptcy as a function of the initial stock

price, u(S) = P(limt→∞ S�
t = ∞ | S0 = S). Parameter values: S∗ = 50, σ = 0.3, r =

0.07, q = 0, h∗ = 0.03, p = 0.5, 1, 2, 3 (the lower curve corresponds to p = 0.5, the up-

per curve corresponds to p = 3).
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Implied Volatility 
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FIGURE 4.5. Implied volatilities for times to expiration T = 0.25, 0.5, 1, 5. Parameter

values: S = S∗ = 50, σ = 0.3, r = q = 0.03, h∗ = 0.03, p = 2.

volatility skew with implied volatilities increasing for lower strikes, as the hazard rate

increases as the stock price declines. Moreover, shorter expirations exhibit steeper skews

and the skews gradually flatten out for longer maturities. For larger values of p, the skew

is steeper for out-of-the-money puts, since the hazard rate increases more rapidly as the

stock price declines. On the other hand, for larger p, implied volatilities approach the
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FIGURE 4.6. Implied volatilities for times to expiration T = 0.25, 0.5, 1, 5. Parameter

values: S = S∗ = 50, σ = 0.3, r = q = 0.03, h∗ = 0.06, p = 2.
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bankruptcy-free volatility σ more rapidly for out-of-the-money calls, as the hazard rate

falls off more rapidly as the stock price increases. For smaller p, the skew is flatter, but

declines toward the bankruptcy-free σ slower.

Figure 4.6 plots implied volatility skews for the case with h∗ = 0.06. We observe that as

the hazard rate parameter h∗ increases, the skews become steeper. We thus have a clear link

between the hazard rate of bankruptcy and resulting credit spreads and option implied

volatility skews. Increasing probability of bankruptcy of the underlying firm increases both

credit spreads on corporate bonds and implied volatility skews in stock options.

5. CONCLUSION

In this paper we have solved in closed form a parsimonious extension of the Black–

Scholes–Merton model with bankruptcy where the hazard rate of bankruptcy is a neg-

ative power of the stock price. By combining a scale change and a measure change, we

reduced the model dynamics to a linear stochastic differential equation, whose solution

is a diffusion process that has played a central role in the pricing of Asian options. The

solution is in the form of a spectral expansion associated with the diffusion infinitesimal

generator. Pricing formulas for both corporate bonds and stock options are obtained

in closed form. Term credit spreads on corporate bonds and implied volatility skews of

stock options are closely linked in this model, with parameters of the hazard rate speci-

fication controlling both the shape of the term structure of credit spreads and the slope

of the implied volatility skew. The results of our analysis provide further insights into

the linkage between corporate credit spreads and volatility skews in stock options. Our

analytical formulas are easy to implement and, it is hoped, will prove useful to researchers

and practitioners in corporate debt and equity derivatives markets.

To conclude, we note that credit risk is not the only cause of implied volatility skews

in equity options. Stochastic volatility σ that is negatively correlated with the stock price

process will further contribute to the steepening of the skew. In this paper we kept σ

constant to focus on the credit risk aspect of the problem. Carr and Linetsky (2005)

study a jump-to-default extension of the constant elasticity of variance (CEV) model,

where σ is a function the underlying stock price.

APPENDIX A: MATHEMATICAL ORIGINS OF THE DENSITY p(ν):

BROWNIAN EXPONENTIAL FUNCTIONALS, SCHRÖDINGER OPERATOR

WITH MORSE POTENTIAL, AND MAASS LAPLACIAN

In this appendix we discuss the mathematical origins of the density p(ν) in Proposition 3.3

and provide relevant references. For ν < 0, this density was first obtained by Wong (1964,

p. 271, equation 38) (see also Comtet, Monthus, and Yor [1998] and Linetsky [2004a]).

This density is closely related to several classical mathematical objects.

For ν ∈ R, consider the process X (ν) solving the SDE (3.4) and starting at x > 0. Define

a new process {Z
(ν)
t := 1

2
ln X

(ν)
t , t ≥ 0},

dZ
(ν)
t =

(

ν +
1

2
e−2Z

(ν)
t

)

dt + dBt, Z
(ν)
0 = z =

1

2
ln x.

Let P
(ν)
z be the law of the process Z(ν) starting at z ∈ R and let PB

z be the law of standard

Brownian motion starting at z ∈ R.
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PROPOSITION A.1. We have the following absolute continuity relationship

dP (ν)
z

dPB
z

∣

∣

∣

∣

∣

Ft

= exp

{

−
ν2

2
t + ν(Bt − z) −

1

4
(e−2Bt − e−2z) −

∫ t

0

(

ν − 1

2
e−2Bu +

1

8
e−4Bu

)

du

}

.

Proof . This result follows from Girsanov’s theorem. �

Let q(ν)(t; x, y) be the density defined by

q (ν)(t; x, y) :=
∂

∂y
EB

x

[

e−
∫ t

0
( ν−1

2
e−2Bu + 1

8
e−4Bu ) du1{Bt≤y}

]

,(A.1)

where B is a standard Brownian motion starting at x. From Proposition A.1 we have

p(ν)(t; x, y) = e− ν2

2
te

1
4x

− 1
4y

(

y

x

)
ν
2

q (ν)

(

t;
1

2
ln x,

1

2
ln y

)

.

By the Feynman–Kac theorem, the density q(ν)(t; x, y) is the heat kernel of the second-

order differential operator

H(ν) = −
1

2

d2

dx2
+

ν − 1

2
e−2x +

1

8
e−4x,

a self-adjoint operator in L2(R). The heat kernel satisfies the heat equation with the

operator H(ν)

H(ν)q = −
∂q

∂t

with the initial condition q(ν)(0; x, y) = δ(x − y), where δ(·) is Dirac’s delta. The

operator H(ν) is the well-known Schrödinger operator with Morse potential. The spectral

expansion of the density p(ν) in Proposition 3.3 thus follows from the spectral expansion

of the Schrödinger operator with Morse potential. The Schrödinger operator

−
d2

dx2
+ V(x)

with potential of the form

V(x) = ae−βx + be−2βx

first appeared in quantum mechanics in the classical paper Morse (1929) on the spectra

of diatomic molecules. It is closely related to another classical differential operator, the

Maass Laplacian or Schrödinger operator on the Poincaré upper half-plane in a magnetic

field.

Let H2 be the upper half-plane with rectangular coordinates (x, y), x ∈ R, y > 0, and

with the Poincaré metric (hyperbolic plane). Consider the Schrödinger operator with a

uniform magnetic field B, B ∈ R, on H2

HB = −
1

2
y2

(

∂2

∂x2
+

∂2

∂y2

)

+ iBy
∂

∂x
+

B2

2
.

This is a −1/2 of the standard Laplace–Beltrami operator on H2 plus magnetic field terms.

Introduce a new variable η = − 1
2

ln y. On functions of the form u(x, η) = exp(−i px −
1
2
η)v(η) the operator HB reduces to the Schrödinger operator with Morse potential.
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Harmonic analysis on the hyperbolic plane can be applied to obtain its spectral repre-

sentation.

Thus, the density of linear diffusion (3.4), the density of Brownian motion killed at a

linear combination of two Brownian exponential functionals (A.1), the heat kernel of the

Schrödinger operator with Morse potential, and the heat kernel of the Maass Laplacian

on the hyperbolic plane are closely related. These connections have been explored in

Alili and Gruet (1997), Alili, Matsumoto, and Shiraishi (2001), Comtet (1987), Comtet

and Monthus (1996), Comtet, Monthus, and Yor (1998), Grosche (1988), and Ikeda and

Matsumoto (1999) in several different contexts.

APPENDIX B: CONNECTION WITH ASIAN OPTIONS

The process X (ν) and its density p(ν) are closely related to the problem of pricing arithmetic

Asian options. Assume that, under the EMM, the underlying asset price follows a GBM

process {St = S0 exp(σBt + (r − q − σ 2/2)t), t ≥ 0}. For t > 0, let At be the continuous

arithmetic average price, At = t−1
∫ t

0
Su du. An Asian call (put) option with strike K >

0 and expiration t > 0 delivers the payoff (AT − K)+((K − AT)+) at T . After standard-

izing the problem (see Geman and Yor 1993), it reduces to computing expectations of

the form E[(A
(ν)
τ − k)+](E[(k − A

(ν)
τ )+]), where τ = σ 2T/4, ν = 2(r − q − σ 2/2)/σ 2, k =

τK/S0, and A
(ν)
τ is a Brownian exponential functional (see Yor 2001)

A(ν)
τ =

∫ τ

0

e2(Bu+νu) du.

Dufresne’s identity in law (Dufresne 1989, 1990; see also Donati-Martin, Ghomrasni,

and Yor 2001) states that, for each fixed t > 0,

A
(ν)
t

(law)= X
(ν)
t ,

where X
(ν)
t is the diffusion process (3.4) starting at the origin. To see this, recall equa-

tion (3.3) (in this case x = 0). By invariance to time reversal of Brownian motion, for

each fixed t > 0

X
(ν)
t =

∫ t

0

e2(Bt−Bu )+2ν(t−u)du
(law)=

∫ t

0

e2(Bs+νs) ds = A
(ν)
t .

Dufresne’s identity in law was applied to the valuation of Asian options by Donati-

Martin, Ghomrasni, and Yor (2001). To compute the Asian option price, these authors

observe that this computation is equivalent to the computation of the price of an option

written on the process X (ν) starting at the origin. They compute the resolvent kernel of

X (ν) and, on integration with the payoff, obtain the Laplace transform of the option price

with respect to time to expiration. This gives an alternative derivation of the celebrated

Geman and Yor (1992, 1993) Laplace transform result (which was originally obtained

via Lamperti’s identity and the theory of Bessel processes). To recover the Asian option

price for fixed time to expiration, one needs to invert the Laplace transform. The Laplace

inversion for Asian options is accomplished in Linetsky (2004a) by means of the spectral

expansion approach.

APPENDIX C: CONFLUENT HYPERGEOMETRIC FUNCTIONS

This appendix collects some facts about the confluent hypergeometric functions. The

reader is referred to Slater (1960), Buchholz (1969), Abramowitz and Stegun (1972), and
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Prudnikov, Brychkov, and Marichev (1990) for further details. All the special functions

in this Appendix are available as built-in functions in Mathematica and Maple software

packages. To compute these functions efficiently, these packages use a variety of integral

and asymptotic representations given in the above references, in addition to the defining

hypergeometric series presented here.

The Kummer confluent hypergeometric function is defined by the hypergeometric series

1 F1[a; b; z] =
∞

∑

n=0

(a)n

(b)n

zn

n!
,

where (a)0 = 1, (a)n = a(a + 1) · · · (a + n − 1) are the Pochhammer symbols, (a)n =
Ŵ(a + n)/Ŵ(a), where Ŵ(z) is the Gamma function. The regularized Kummer function

1F1[a; b; z]/Ŵ(b) is an analytic function of a, b, and z, and is defined for all values of a, b,

and z real or complex. The second confluent hypergeometric function (Tricomi function)

is defined by

U(a, b, z) =
π

sin(πb)

{

1 F1[a; b; z]

Ŵ(1 + a − b)Ŵ(b)
−

z1−b
1 F1[1 + a − b; 2 − b; z]

Ŵ(a)Ŵ(2 − b)

}

.

It is analytic for all values of a, b, and z real or complex even when b is zero or a negative

integer, for in these cases it can be defined in the limit b → ±n or 0. It has the following

symmetry property

U(a, b, z) = z1−bU(1 + a − b, 2 − b, z).

The confluent hypergeometric functions are solutions of the confluent hypergeometric

equation

z
d2u

dz2
+ (b − z)

du

dz
− au = 0.(C.1)

The first Whittaker function is defined by

Mκ,μ(z) = zμ+1/2e−z/2
1 F1[1/2 + μ − κ; 1 + 2μ; z].

The regularized Whittaker function

Mκ,μ(z) =
Mκ,μ(z)

Ŵ(1 + 2μ)
(C.2)

is analytic for all values of κ, μ, and z real or complex. The second Whittaker function is

defined by

Wκ,μ(z) = zμ+1/2e−z/2U(1/2 + μ − κ, 1 + 2μ, z)

=
π

sin(2μπ )

{

Mκ,−μ(z)

Ŵ(1/2 + μ − κ)
−

Mκ,μ(z)

Ŵ(1/2 − μ − κ)

}

(C.3)

and is analytic for all values of k, μ, and z real or complex, and is even in its second index,

Wκ,−μ(z) = Wκ,μ(z).

Whittaker functions Mκ,μ(z) and W κ,μ(z) are the two solutions of the Whittaker dif-

ferential equation

wzz +

⎛

⎜

⎝
−

1

4
+

κ

z
+

1

4
− μ2

z2

⎞

⎟

⎠
w = 0(C.4)
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with the Wronskian

Wκ,μ(z)M′
κ,μ(z) − Mκ,μ(z)W ′

κ,μ(z) =
1

Ŵ(μ − κ + 1/2)
.(C.5)

When κ = μ + n + 1
2
, n = 0, 1, 2, . . . , the Wronskian vanishes and the functionsMκ,μ(z)

and Wκ,μ(z) become linearly dependent and reduce to generalized Laguerre polynomials

(Buchholz 1969, p. 214)

Mμ+n+ 1
2
,μ(z) =

n!

Ŵ(2μ + n + 1)
e− z

2 zμ+ 1
2 L(2μ)

n (z),(C.6)

Wμ+n+ 1
2
,μ(z) = (−1)nn!e− z

2 zμ+ 1
2 L(2μ)

n (z).(C.7)

The following integrals with Whittaker functions are used in the proofs of bond and

option pricing formulas:

∫ x

0

zα−1e− z
2 Mκ,μ(z) dz =

xα+μ+1/2

α + μ + 1/2

× 2 F2[α + μ + 1/2, 1/2 + κ + μ; α + μ + 3/2, 2μ + 1; −x]

(C.8)

for x > 0 and ℜ(α + μ + 1/2) > 0 (Prudnikov, Brychkov, and Marichev 1990, p. 39,

equation (1.13.1.1)),

∫ ∞

x

zα−1e− z
2 Wκ,μ(z) dz =

Ŵ(α + μ + 1/2)Ŵ(α − μ + 1/2)

Ŵ(α − κ + 1)

−
xα+μ+1/2

α + μ + 1/2

Ŵ(−2μ)

Ŵ(1/2 − κ − μ)

× 2 F2[α + μ + 1/2, 1/2 + κ + μ; α + μ + 3/2, 2μ + 1; −x]

−
xα−μ+1/2

α − μ + 1/2

Ŵ(2μ)

Ŵ(1/2 − κ + μ)

× 2 F2[α − μ + 1/2, 1/2 + κ − μ; α − μ + 3/2, −2μ + 1; −x]

(C.9)

for x > 0 (Prudnikov, Brychkov, and Marichev 1990, p. 40, equation (1.13.2.2)),
∫ ∞

0

zα−1e− z
2 Wκ,μ(z) dz =

Ŵ(α + μ + 1/2)Ŵ(α − μ + 1/2)

Ŵ(α − κ + 1)
(C.10)

for ℜ(α) > |ℜ(μ)| − 1/2 (Prudnikov, Brychkov, and Marichev 1990, p. 256, equa-

tion (2.19.3.7)), and indefinite integrals (Prudnikov, Brychkov, and Marichev 1990,

pp. 39–40, equations (1.13.1.6) and (1.13.2.6))
∫

zκ−2e− z
2 Wκ,μ(z) dz = −zκ−1e− z

2 Wκ−1,μ(z),(C.11)

∫

zκ−2e− z
2 Mκ,μ(z) dz =

1

κ + μ − 1/2
zκ−1e− z

2 Mκ−1,μ(z).(C.12)
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The generalized hypergeometric function is defined by

2 F2[a1, a2; b1, b2; z] =
∞

∑

n=0

(a1)n(a2)n

(b1)n(b2)n

zn

n!
.(C.13)

The regularized function 2F2[a1, a2; b1, b2; z]/(Ŵ(b1)Ŵ(b2)) is analytic for all values of

a1, a2, b1, b2, and z real or complex.

The following integrals with Laguerre polynomials are used in the proofs of pricing

formulas:
∫ ∞

0

xα−1e−xL(ν)
n (x) dx =

(ν − α + 1)n

n!
Ŵ(α)(C.14)

for ℜ(α) > 0 (Prudnikov, Brychkov, and Marichev 1986, p. 463, equation (2.19.3.5)),
∫ ∞

x

zα−1e−z L(ν)
n (z) dz =

(ν − α + 1)n

n!
Ŵ(α)

−
(ν + 1)n

n!

xα

α
2 F2[ν + n + 1, α; ν + 1, α + 1; −x]

(C.15)

for x > 0 (Prudnikov, Brychkov, and Marichev 1986, p. 51, equation (1.14.3.7)), and the

indefinite integral (Prudnikov, Brychkov, and Marichev 1986, p. 51, equation (1.14.3.9))
∫

zν+n−1e−z L(ν)
n (z) dz =

1

n
zν+ne−z L

(ν)
n−1(z).(C.16)

APPENDIX D: PROOFS

Proof of Proposition 3.2 (Donati-Martin, Ghomrasni, and Yor 2001). It is classical

(Ito and McKean 1974) that, for s > 0, the resolvent kernel can be taken in the form

Gs(x, y) = w −1
s m(y)ψs(x ∧ y)φs(x ∨ y),(D.1)

where the functions ψ s(x) and φs(x) can be characterized as the unique (up to a multiple

independent of x) solutions of the ODE

2x2u′′(x) + [2(ν + 1)x + 1]u′(x) = su(x)(D.2)

by demanding that ψ s is increasing and φs is decreasing (Borodin and Salminen 2002,

p. 18). These functions have the following limits at zero and infinity (Borodin and Salminen

2002, pp. 18–19)). At the entrance boundary at zero: ψs(0+) > 0, φs(0+) = ∞. At the

natural boundary at infinity: ψs(∞) = +∞, φs(∞) = 0. The functions ψ s(x) and φs(x)

are linearly independent for all s > 0. Moreover, the Wronskian w s with respect to the

scale density s(x) defined by

φs(x)ψ ′
s(x) − ψs(x)φ′

s(x) = s(x)ws

is independent of x.

We look for solutions to (D.2) in the form

u(x) = x
1−ν

2 e
1

4x w

(

1

2x

)

(D.3)

for some function w(z). Substituting this functional form into equation (D.2), we arrive

at the Whittaker equation (C.4) for w , where κ = (1 − ν)/2 and μ = μ(s) = 1
2

√
2s + ν2.

For s > 0, the two linearly independent solutions are Mκ,μ(z) and W κ,μ (z) with the
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Wronskian (C.5). Thus, the solutions ψs(x) and φs(x) of the original problem can be

taken in the form

ψs(x) = x
1−ν

2 e
1

4x W1−ν
2

,μ(s)

(

1

2x

)

, φs(x) = x
1−ν

2 e
1

4x M 1−ν
2

,μ(s)

(

1

2x

)

.(D.4)

The boundary properties are verified using the asymptotic properties of the Whittaker

functions for z > 0 and μ > 0

Mκ,μ(z) ∼
1

Ŵ(1 + 2μ)
zμ+ 1

2 e− z
2 and Wκ,μ(z) ∼

Ŵ(2μ)

Ŵ (μ − κ + 1/2)
z−μ+ 1

2 e− z
2 as z → 0,

(D.5)

Mκ,μ(z) ∼
1

Ŵ (1/2 + μ − κ)
z−κe

z
2 and Wκ,μ(z) ∼ zκe− z

2 as z → ∞.(D.6)

From (C.5), the Wronskian with respect to the scale density is

ws =
1

2Ŵ(μ(s) + ν/2)
.(D.7)

Substituting (D.4) and (D.7) into (D.1), we arrive at (3.10). The case x = 0 is obtained in

the limit x → 0, using the asymptotic properties of the Whittaker functions (D.6). �

Proof of Proposition 3.3. Following the complex variable approach to spectral expan-

sions (see Titchmarsh 1962), we analytically invert the Laplace transform (3.9) with the

resolvent kernel (3.10). Regarded as a function of complex variable s ∈ C, the resolvent

kernel (3.10) has the following singularities. For ν < 0, it has simple poles at

s = sn = −λn, λn = 2n(|ν| − n), n = 0, 1, . . . , [|ν|/2],(D.8)

(poles of the Gamma function in (3.10) at μ(−λn) + ν/2 = −n, n = 0, 1, . . . , [|ν|/2],

where [x] denotes the integer part of x). The residues at these poles are

Ress=−λn
Gs(x, y)

= (−1)n 2(|ν| − 2n)

n!
e

1
4x

− 1
4y

(

y

x

)
ν−1

2

M 1−ν
2

,− ν
2
−n

(

1

2(x ∨ y)

)

W1−ν
2

,− ν
2
−n

(

1

2(x ∧ y)

)

=
2(|ν| − 2n)n!

Ŵ(1 + |ν| − n)
e− 1

2y

(

1

2x

)−n (

1

2y

)1+|ν|−n

L(|ν|−2n)
n

(

1

2x

)

L(|ν|−2n)
n

(

1

2y

)

.

(D.9)

The second equality follows from the reduction of the Whittaker functions to generalized

Laguerre polynomials when the difference between the two indexes is a positive half-

integer (equations (C.6) and (C.7)). Furthermore, for all real ν, the resolvent has a branch

point at s = −ν2/2. We place the branch cut from s = −ν2/2 to s → −∞ on the negative
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real axis. It is convenient to parameterize the branch cut as {s = −(ρ2 + ν2)/2, ρ ≥ 0}.
The jump across the branch cut is

G 1
2

(ν2+ρ2)eiπ (x, y) − G 1
2

(ν2+ρ2)e−iπ (x, y)

= −e
1

4x
− 1

4y

(

y

x

)
ν−1

2

W1−ν
2

,
iρ
2

(

1

2(x ∧ y)

) {

Ŵ

(

ν − iρ

2

)

M 1−ν
2

,− iρ
2

(

1

2(x ∨ y)

)

− Ŵ

(

ν + iρ

2

)

M 1−ν
2

,
iρ
2

(

1

2(x ∨ y)

)}

= −
i

π
e

1
4x

− 1
4y

(

y

x

)
ν−1

2

W1−ν
2

,
iρ
2

(

1

2x

)

W1−ν
2

,
iρ
2

(

1

2y

)
∣

∣

∣

∣

Ŵ

(

ν + iρ

2

)
∣

∣

∣

∣

2

sinh(πρ).

(D.10)

In the first equality we used the fact that W κ,μ (z) is even in its second index. In the second

equality we used equation (C.3).

To recover the transition density, we invert the Laplace transform (3.9). The Bromwich

complex inversion formula reads for t > 0

p(t; x, y) =
1

2π i

∫ c+i∞

c−i∞
estGs(x, y) ds,

where the integration is performed along the contour Re(s) = c for some c > 0. This

integral is calculated by applying the Cauchy Residue Theorem (see Titchmarsh 1962):

p(t; x, y) = 1{ν<0}

[|ν|/2]
∑

n=0

esn tRess=sn
Gs(x, y)

−
1

2π i

∫ ∞

0

e− (ν2+ρ2)t
2

{

G 1
2

(ν2+ρ2)eiπ (x, y) − G 1
2

(ν2+ρ2)e−iπ (x, y)
}

ρ dρ.

(D.11)

Substituting (D.9) and (D.10) in (D.11), we arrive at the spectral representation for the

density (3.12).

Since the boundary at zero is entrance, the limit x → 0 exists and can be explicitly com-

puted using the asymptotics of the Whittaker function (D.6) and Laguerre polynomials

lim
z→∞

(

z−n L(α)
n (z)

)

=
(−1)n

n!
. �

Proof of Proposition 3.4. First consider the case ν < 2/p (equivalently, r − q − σ 2/2 <

0). Bond payoff ψbond(x) = 1 is such that χψ ∈ H, and the spectral representation (3.13) is

applicable. The integrals in equations (3.14) and (3.15) for χψ (y) = (y/β)−
1
p are calculated

in closed form by reduction to the known integrals (C.10) and (C.14) for Whittaker

functions and Laguerre polynomials.

The case ν ≥ 2/p (equivalently, r − q − σ 2/2 ≥ 0) is more involved. For the bond

payoff ψbond(x) = 1, χψ (x) = (x/β)−1/p /∈ H and, hence, the spectral representation

(3.13) cannot be applied. The alternative is to first compute the Laplace transform (3.16)



PRICING EQUITY DERIVATIVES SUBJECT TO BANKRUPTCY 279

with the resolvent kernel (3.10) and then do the Laplace inversion, choosing the contour

of integration in the Laplace inversion formula

eqT S−1 B(S, T ) = E(ν)
x

[(

X(ν)
τ

/

β
)−1/p] =

1

2π i

∫ c+i∞

c−i∞
esτ�(ν)

s (x) ds(D.12)

to the right of any singularities of �
(ν)
s (x) in the complex s-plane. The function �

(ν)
s (x) is

calculated in closed form by calculating the integral in (3.16), using the known integrals

(C.8) and (C.9). We omit the resulting cumbersome expression. In addition to the singu-

larities inherited from the resolvent kernel Gs(x, y) (a branch cut from s = −ν2/2 to −∞
on the negative real axis for all real ν and poles (D.8) for ν < 0), for ν > 2/p, �

(ν)
s (x) has

an additional simple pole at

s = s∗ = −λ∗, λ∗ =
2

p

(

ν −
1

p

)

=
4(r − q)

p2σ 2
> 0

that comes from the factor 1/(1/p − ν/2 + μ(s)). The residue at this pole is

Ress=s∗�(ν)
s (x) = (x/β)−

1
p
Ŵ(ν − 1/p)

Ŵ(ν − 2/p)
U

(

1

p
,

2

p
− ν + 1,

1

2x

)

,

a strictly positive expression for ν > 2/p.

The inversion integral (D.12) is calculated by applying the Cauchy Residue Theorem

as in the proof of Proposition 3.3 (equation (D.11))

E(ν)
x

[(

X(ν)
τ

/

β
)−1/p] = 1{ν>2/p}e

s∗τ Ress=s∗�(ν)
s (x) + 1{ν<0}

[|ν|/2]
∑

n=0

esnτ Ress=sn
�(ν)

s (x)

−
1

2π i

∫ ∞

0

e− (ν2+ρ2)τ
2

{

�
(ν)
1
2

(ν2+ρ2)eiπ
(x) − �

(ν)
1
2

(ν2+ρ2)e−iπ
(x)

}

ρ dρ.

Computing this expression leads to the result in Proposition 3.4 for the bond price, with

the additional pole at s = s∗ resulting in the additional positive term in the bond pricing

formula for ν > 2/p. �

Proof of Proposition 3.5. The put payoff ψput(x) = (K − x)+ is such that χψ ∈ H for

all ν ∈ R and, hence, the valuation of the put payoff given no bankruptcy (2.6) follows

from the spectral expansion (3.13). The integrals in the expressions for the expansion

coefficients (3.14) and (3.15) are calculated in closed form by reduction to the known

integrals (C.9) and (C.15). The recovery part (bankruptcy claim) value (2.7) follows from

the bond valuation in Proposition 3.4. �

Proof of Proposition 4.1. The function u(S) = P(limt→∞ S�
t = ∞ | S0 = S) solves the

ODE (see Karlin and Taylor 1981, Chapter 12)

1

2
σ 2S2uSS + [r − q + αS−p]SuS = αS−pu

subject to the boundary conditions

u(0) = 0, u(∞) = 1.

Introducing a new variable y = 1/(2x), where x = (pσ 2/(4α))Sp as in Section 3, this ODE

reduces to the confluent hypergeometric equation (C.1) with

a =
1

p
, b =

2

p
− ν + 1 =

2(q − r )

pσ 2
+ 1 +

1

p
.
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The solution satisfying the required boundary conditions is

u(S) =
Ŵ(ν − 1/p)

Ŵ(ν − 2/p)
U

(

1

p
,

2

p
− ν + 1,

1

2x

)

.

The boundary conditions are verified by using the asymptotic properties of the function

U(a, b, x)

lim
x→0

U(a, b, x) =
Ŵ(1 − b)

Ŵ(1 + a − b)

for b < 1, and

lim
x→∞

U(a, b, x) = 0

for a > 0. �
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