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1. Introduction

After the landfall of Hurricane Andrew in 1992, the Chicago Board of Trade (CBOT) introduced catas-

trophe futures and options based on an industry loss index provided by Property Claims Services (see,

e.g., Kielholz and Durrer, 1997). Despite the fact that trading in these new risk management instruments

ceased a few years later, the era of catastrophe risk securitization had dawned. In 1994, the year of the

disastrous Northridge earthquake, Hannover Re launched the first catastrophe bond (cat bond), a fully

collateralized solution that allowed the trading of natural disaster risk in a classical fixed income format

(PartnersRe, 2015). Shortly after, in 1995, Nationwide issued USD 400 mn of so-called “Act of God

Bonds” in a deal arranged by J.P. Morgan and Salomon Brothers (see, e.g., Jaffee and Russell, 1997).

Since then, the market for insurance-linked securities (ILS) has been growing markedly (see, e.g., Braun

and Weber, 2017). According to Aon Benfield, 2019, outstanding risk capital reached a new record high

of USD 97 bn in 2018 and a recent report of auditing and consulting firm Ernst & Young even predicts

the ILS market volume to amount to USD 224 bn or 28% of the global reinsurance capital by 2021.

The extant literature has dealt with various aspects of ILS such as sponsor and investor demand, mar-

ket development, and relation to classical reinsurance (see, e.g., Bantwal and Kunreuther, 2000; Cummins

and Weiss, 2009a; Braun et al., 2013; Braun and Weber, 2017). One of the key questions in the context of

ILS, however, remains their pricing.1 Although the number of articles on this issue has notably increased

over the last years, a commonly accepted convention is missing to date. Instead, the literature forked into

various strands, advocating actuarial, econometric, utility-based, and risk-neutral approaches (see, e.g.,

Braun, 2016). We aim to contribute to the resolution of this disarray by advancing the debate in favor of

the latter category. The general applicability of arbitrage methods in the context of catastrophe-linked

instruments has already been evaluated by Balbás et al. (1999) and, more recently, Gatzert et al. (2017)

as well as Beer and Braun (2019). Notable attempts to derive risk-neutral pricing formulas were, amongst

others, undertaken by Bakshi and Madan (2002) as well as Jarrow (2010). In both cases, the underlying

insurance losses are modeled in an aggregate manner. The former studied the valuation of Asian catas-

trophe loss options based on a mean-reverting Markov process. The latter introduced a reduced-form

model for cat bonds, which takes advantage of their similarities with credit-linked notes.2

1While our focus is on nonlife ILS, this also holds for traded life insurance risks (see, e.g., Braun et al., 2012, 2016).

2Hence, a cat bond can be essentially decomposed into a default-free bond and a catastrophe swap.
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In contrast to most earlier work, we depart from the common practice of aggregate loss modeling.

That is, we explicitly consider the stochastic dependence of individual claims in the underlying insurance

portfolio. Those are then cumulated to determine whether a payment on the ILS instrument is triggered.

Although, at first glance, cat bonds are a natural subject matter for our study, their lack of standard-

ization makes them less suitable for calibration purposes. More specifically, the wide variety of terms

and conditions leads to a high-dimensional setting with only few observations for each case (Beer and

Braun, 2019). In addition to this data scarcity problem, cat bond issuances with more than one tranche

are generally quite rare (see, e.g., Guy Carpenter, 2016). This implies that an aggregate loss process is

regularly sufficient for pricing purposes. Therefore, we focus on industry loss warranties (ILWs), which

distinguish themselves through complete standardization. Moreover, they cover multiple layers of one

and the same portfolio loss distribution. Pricing those with a small set of common parameters logically

demands a model that accounts for the stochastic dependence of the underlying risks. With respect to

pricing, ILWs have received little scholarly attention to date. Two exceptions are Gatzert et al. (2011)

and Gatzert and Schmeiser (2012). The former introduce a simple option-theory framework based on

geometric Brownian motions and the latter contrast actuarial and financial valuation. Moreover, Braun

(2011) acknowledges the structural similarities of catastrophe swaps and ILWs and proposes a contingent

claims pricing approach that he fits to historical data.

Inspired by recent progress in the area of structured credit modeling, we adapt and extend the Lévy-

Frailty framework of Mai and Scherer (2009a,b) to ILWs. This novel approach allows us to capture the

excess clustering of insurance claims after a natural disaster through a stochastic time change, driven by

a compound Poisson subordinator with rare and large jumps. In addition to the theoretical advancement

of the ILW literature, we contribute a rare empirical analysis to this field of research. More specifically,

we fit our model to a comprehensive time-series-cross-section data set of historical quotes for US wind and

US earthquake contracts, underlining its suitability with excellent results. Although ILWs are an ideal

application, the framework is not sensitive to contract specification and can thus be flexibly deployed for

the market-consistent valuation of catastrophe risk in general. In other words, by matching all observable

quotes for standardized contracts with a small set of parameters, we are able to estimate unobservable

prices of more complex instruments in accordance with their natural hedges.
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The rest of this paper is structured as follows. In Section 2, we briefly recap the main characteristics

of ILW contracts and highlight that the stochastic dependence of the underlying insurance claims is

relevant for valuation. Section 3 is centered on the model development. It begins with a brief review of

the reduced-form model by Jarrow (2010), which will serve as a benchmark, before extensively laying out

the Lévy-Frailty framework of Mai and Scherer (2009a,b) and extending it to dependent claim events.

Furthermore, in Section 4, we calibrate the model based on historical ILW prices, assess its fit and

interpret the parameter estimates. Finally, in Section 5, we draw our conclusion.

2. An ILW Primer

2.1 Contract Design

The market for ILWs emerged in the late 1980s. In its classical form, an ILW is a simple and standard-

ized double-trigger reinsurance contract. At inception, the protection buyer pays a premium in return

for which he receives a lump sum payment (limit) from the protection seller, if a specified event occurs.

The event is defined as a natural disaster that drives an index of insurance industry losses beyond an

attachment point (warranty) and, at the same time, causes losses in the insurance portfolio of the protec-

tion buyer that exceed a certain threshold (retention). These conditions for the payoff are called index

trigger and indemnity trigger, respectively.3 The latter is set fairly low so that it will almost certainly

be hit if industry losses are high enough for a payout. ILWs reference a specific territory (e.g., Florida,

California) as well as peril (e.g., hurricanes, earthquakes), and typically exhibit a contract term of 12

months. Moreover, they can be structured as aggregate or occurrence contracts. The former allow for an

aggregation of losses caused by all covered natural disasters that strike in the reference territory during

the contract term and thus resemble a stop-loss reinsurance contract. The latter, in contrast, are akin

to excess of loss per event (CatXL) reinsurance contracts that can only be triggered by losses that stem

from a single catastrophe. From a protection buyer’s point of view, the major drawback of ILWs is their

basis risk, arising from the fact that insurance losses incurred by the whole industry are not perfectly

correlated with those of the protection buyer (see, e.g., Zeng, 2000).

3Due to the indemnity trigger, classical ILWs qualify for reinsurance accounting (see, e.g., Cummins and Weiss, 2009b).

4



Apart from the classical double-trigger ILW, there is a second form that exclusively exhibits an

industry loss trigger. The U.S. firm Property Claims Services (PCS) provides the dominant index suite

for such transactions. Since an own insurance portfolio is not required to purchase this product, it

is essentially a derivative instead of a reinsurance contract. Due to their structural similarities with

credit default swaps (CDS), practitioners dub ILWs without an indemnity trigger catastrophe swaps (see,

e.g., Braun, 2011). The latter are mainly employed by alternative investment funds for the tactical

management of their ILS portfolios (see, e.g., Braun et al., 2019a). For a more comprehensive review of

ILWs, the reader is referred to McDonnell (2002) as well as Gatzert and Schmeiser (2012).

2.2 The Relevance of Stochastic Dependence in ILW Pricing

Henceforth we focus on ILWs in the derivatives form (catastrophe swaps), since the absence of an indem-

nity trigger facilitates risk-neutral valuation. Multiple layers of ILWs with different attachment points

stacked on top of each other are essentially quite similar to the tranche structure of a collateralized

debt obligation (CDO) or an asset-backed security (ABS). In the same way as default losses in a pool

of mortgages, loans or bonds are absorbed by the tranches in the capital structure of a CDO, claims

in an insurance portfolio may be redistributed to reinsurance or ILW layers according to a predefined

hierarchy. Of particular interest in this regard is the pool of insurance policies that underlies the industry

loss index referenced by the ILW contract. Since it reflects the aggregated catastrophe event losses of the

entire insurance industry, the index is essentially an enormously large portfolio, consisting of all policies

that have been underwritten in the covered territory. As a result, the shape of the relevant loss distribu-

tion and, in turn, the value of each ILW layer, is driven by the stochastic dependence of the individual

risks in the index portfolio. For the sake of argument, we will center the following explanations on corre-

lation. Note, however, that our model framework does not rely on the assumption of linear dependencies.4

Under normal circumstances, property insurance risks are virtually uncorrelated. To see this, consider

an insurance policy on a house in the south and in the north of Florida. Usually, one has no reason to

expect a loss on both at the same time. In other words, the risk of fire, burglaries, or other claim events

4Mai (2010) derives the implied dependence structure of the Lévy-Frailty default model and shows that it belongs to the

Marshall-Olkin family.
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is idiosyncratic to each property. Consequently, large policy pools benefit from supreme diversification

effects. The latter form the core of the insurance business model. Expected losses are priced into the

premiums and the variation around them tends to be small enough to be covered by risk loadings and

equity capital. This general rule, however, breaks down in the presence of loss accumulation scenarios.

Those are caused by large-scale events such as extreme natural disasters (e.g., Hurricane Irma in 2017),

which lead to correlated losses on originally independent insurance policies (see Braun et al., 2019b). In

these scenarios, the aggregate (portfolio-level) loss distribution exhibits a substantial positive skewness,

implying that diversification largely breaks down (see, e.g., Jaffee and Russell, 1997). Most insurers need

to cede such tail risks in order to avoid existence-threatening capital events.5

3. Pricing ILWs

3.1 Reduced-Form Model

Consider a probability space (Ω,F ,Q). We explicitly specify the model under the risk-neutral measure Q.

Much like a CDS, an ILW (catastrophe swap) can be priced by equating the present values of the

protection and the premium leg. Since the premium, denoted by pILW, is typically paid upfront and

no further payments are made by the protection buyer to the protection seller, the problem reduces to

valuing the protection leg. The present value (PV) of the latter equals the expected discounted stream of

stochastic future payoffs of the contract (from the protection seller to the protection buyer). For ease of

calculation, we fix a schedule of discrete dates M = [t1 t2 t3 ... tT ] on which a trigger event may occur.

T stands for the final maturity of the contract. Provided the differences ti − ti−1 are kept reasonably

small, the PV of the protection leg can be approximated as follows (see O’Kane and Turnbull, 2003):

pILW ≈ L
T∑
i=1

DF (ti) (TP (ti)− TP (ti−1)) , ti ≥ 0; (1)

where L is the specified limit (the lump-sum payoff) of the ILW, DF (ti) represents the discount factor

that matches time ti and TP (ti) denotes the risk-neutral probability that the contract is triggered at or

5Correlated risks in the insurer’s investment and underwriting portfolios lead to higher ruin probabilities and therefore
substantial markups in regulatory capital charges. For an illustration of this effect on the asset side of the balance sheet
see, e.g., Braun et al. (2015, 2017, 2018).
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before time ti.
6 Accordingly, TP (ti) − TP (ti−1), also denoted TP (ti−1, ti), equals the probability of a

trigger event occurring between times ti−1 and ti. The following parameters are required to calculate

pILW: (i) the set of risk-neutral trigger probabilities, (ii) the deterministic limit of the contract, and (iii)

the zero-coupon yield curve to discount cash flows. Items (ii) and (iii) are readily observable. Hence,

the only non-trivial quantities are the risk-neutral trigger probabilities. The issue of modeling them has,

amongst others, been addressed by Embrechts and Meister (1997), Geman and Yor (1997), or Bakshi and

Madan (2002) in various catastrophe derivative contexts.

More recently, Jarrow (2010) suggested to price catastrophe bonds by means of a standard reduced-

form pricing model from the credit risk literature (see, e.g., Jarrow and Turnbull, 1995). Below we adapt

his approach to ILWs and use it as a benchmark for the Lévy-Frailty framework advocated in this paper.

Assume that trigger events are driven by a nonhomogeneous Poisson process Nt with intensity λti−1,ti ,

defined as the expected number of events between times ti−1 and ti under the risk-neutral measure Q:

λti−1,ti = EQ
ti−1

(
Nti −Nti−1

)
=

∫ ti

ti−1

λ(u)du.

Hence, the contract’s survival probability SP (ti−1, ti) = 1 − TP (ti−1, ti) between times ti−1 and ti

(ti > ti−1) equals

SP (ti−1, ti) = Pr
(
Nti −Nti−1

= 0
)

=
e−λti−1,ti

(
λti−1,ti

)0
0!

= e−λti−1,ti ,

and the risk-neutral probability for a trigger event between ti−1 and ti can be described as follows:

TP (ti−1, ti) = Pr
(
Nti −Nti−1

> 0
)

= 1− SP (ti−1, ti) = 1− e−λti−1,ti . (2)

Below, we deviate from such an aggregate trigger process by explicitly considering the individual items in

the insurance portfolio on which the contract is written. Although our work focuses on ILWs, the idea is

easily extendable to other types of catastrophe derivatives. To avoid any confusion regarding terminology,

6As discussed in the previous section, we will exclusively focus on ILWs in derivatives form. Recall that, in this case, a

trigger event is defined as the occurrence of a catastrophe in the covered territory that causes insurance industry losses in

excess of the contract’s attachment point. On the flip side, survival of the contract implies that losses remain below the

attachment point.
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we will refer to the occurrence of a natural disaster (e.g. hurricane, earthquake) as a catastrophe event

and to a loss on a specific insurance policy as a claim event.

3.2 The Marshall-Olkin and the Lévy-Frailty Framework

The Marshall-Olkin (MO) copula naturally extends the ideas of single-name reduced-form credit risk

models to the multivariate case. The first MO approach in financial economics was developed by Lind-

skog and McNeil (2003), who distinguishes between shocks that are idiosyncratic to the firm (e.g. fraud)

or systematic across the economy (e.g. recessions). His method can be employed to price both basket

credit derivatives and portfolios of insurance lines. However, an important drawback of the model is its

numerical instability in high-dimensional settings (see, e.g., Mai, 2010). This is a major weakness in the

context of structured credit index tranches and even more so in the context of very large insurance pools.

Therefore, we resort to a modern extension of the classical MO model: the Lévy-Frailty default frame-

work introduced by Mai and Scherer (2009a,b). Relying on a stochastic time change in combination with

the large homogeneous portfolio (LHP) assumptions, the latter overcomes the aforementioned obstacles

and exhibits a high degree of mathematical tractability. In analogy to joint credit defaults during eco-

nomic downturns, systematic insurance risks such as large-scale natural disasters lead to dependent claim

events. A Lévy subordinator that serves as a stochastic clock can capture this phenomenon, since it

allows time to elapse more quickly in the aftermath of a catastrophe, causing losses to cluster. As will

be shown below, further advantages of the Lévy-Frailty framework are a clean separation of the marginal

distributions and the dependence structure as well as an intuitive economic interpretation of the param-

eters for the time change. Furthermore, the implied copula that drives joint survival probabilities can be

computed explicitly.7 Finally, the LHP assumptions are highly reasonable for ILWs. The pool of policies

underlying a loss index as calculated by PCS is extremely large, since it consists of all portfolios held

by the insurance industry as a whole. Likewise, homeowners insurance contracts are quite homogeneous.

According to data from the National Association of Insurance Commissioners (NAIC), 78% of the cus-

tomers in the U.S. opt for an open-peril HO-3 policy, which covers any cause of damage apart from a few

explicit exclusions. In addition, the insured sums in residential property portfolios are usually distributed

quite evenly.

7Mai and Scherer (2009a) show that in the bivariate case, the implied copula is of Cuadras-Augé type.
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3.3 Stochastic Time Change and Subordinators

The concept of a stochastic time change was first proposed by Clark (1973), who noticed that cotton

futures prices exhibit a higher volatility on days with large transaction volumes. However, when mea-

sured with respect to trading activity, prices are normally distributed. This finding led other authors to

suggest that changing the time measure might be a suitable approach for the modeling of asset prices

(see, e.g., Ané and Geman, 2000; Geman, 2002; Carr and Wu, 2004). Put differently, it is possible to

define a non-equidistant time grid such that asset returns have the same distribution in each interval

(see, e.g., Borovkova and Schmeck, 2017). The modified time measure is called business time and can be

interpreted as the arrival of new information (see, e.g., Tankov, 2003).

To be suitable for the modeling of business time, stochastic processes need to have right-continuous

sample paths with left limits, and exhibit both stationary and independent increments. Lévy subordi-

nators fulfill all of these requirements (see, e.g., Tankov, 2003). Joshi and Stacey (2006) were the first

to apply them for the generation of dependent credit events. During normal times, there is only a small

number of defaults. However, when the economy enters a downturn, more firms become financially dis-

tressed. Consequently, a lot of business time should elapse during a recession. Chang et al. (1996, 2008,

2010) introduce a similar approach for catastrophe futures and options. The case of a whole spectrum of

ILW layers, however, has not been considered yet. This is surprising, given that ILW prices are evidently

driven by the stochastic dependence of the risks in the underlying index portfolio (refer to the second

section). Below, we extend the work of Mai and Scherer (2009a) to address this issue. Consistent with

their model, claim dependence among individual policies will be introduced through a common stochastic

time change based on subordinators. We generally follow their notation and highlight our own model

alterations explicitly.

3.4 Modeling Isolated Claim Events

We begin with the specification of the marginal claim event distributions. Consider a pool of n insurance

policies with claim times τi (i = 1, 2, ..., n). Under normal circumstances, claim events are stochastically

independent. Thus, it is reasonable to assume that they are driven by a homogeneous Poisson process

Ni(t) with hazard rate function hi(t) = λit and constant and individual hazard rate λi idiosyncratic to
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policy i (λi > 0). A claim event for policy i coincides with the first jump of the Poisson process:

τi = inf{t ≥ 0 : Ni(t) > 0}, ∀i = 1, 2, ..., n; ∀t ≥ 0. (3)

The probability of a loss on policy i at or before time t, Pr(τi ≤ t) = POLi(t), is defined as:

POLi(t) = 1− PNLi(t)

= 1− e−hi(t)

= 1− e−λit, ∀i = 1, 2, ..., n; ∀t ≥ 0,

(4)

where Pr(τi > t) = PNLi(t) equals the probability that policy i suffers no loss at or before time t.

Although the approach is well-suited to model the occurrence of individual events, it cannot capture the

joint behavior of multiple policies in a pool. For this purpose, we need to resort to the MO framework

for dependent events.

3.5 Modeling Simultaneous Dependent Claim Events

The MO framework extends the conventional reduced-form approach by allowing the shock to have

multiple reasons. Consider a setup with two shock processes of Poisson type. In this case, the claim time

τi for policy i on the time scale t is defined as

τi = inf{t ≥ 0 : Ni(t) +N(t) > 0}, ∀i = 1, 2, ..., n; ∀t ≥ 0, (5)

where Ni(t) is a Poisson process with intensity λi idiosyncratic to policy i and N(t) represents the

common shock process with intensity λ (λi > 0;λ > 0). Consequently, policy i experiences a claim event

if either one of the two shocks occurs for the first time. Owing to the superposition property of Poisson

processes, the intensity at which policy i suffers a loss equals the sum of the default intensities of the

individual processes.8 The probability of no loss on policy i at or before time t, Pr(τi > t) = PNLi(t),

8A superposition of independent Poisson processes is again a Poisson process. To put it formally, if N1(t)t≥0 and N2(t)t≥0

are independent Poisson processes with intensities λ1 and λ2, then (N1(t) +N2(t))t≥0 is a Poisson process with intensity

λ1 + λ2 (see, e.g., Tankov, 2003).
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can thus be defined as follows:

PNLi(t) = e−(λi+λ)t, ∀i = 1, 2, ..., n; ∀t ≥ 0. (6)

Further systematic risk factors can be added as one sees fit. While the choice of copula is often flexible,

this model requires the marginal distributions to be linked into a joint survival function by means of

the MO copula known from reliability theory (see Marshall and Olkin, 1967). If there are two items

with individual survival functions as specified in Equation (6), a unique function Cτ :[0, 1]2 → [0, 1] exists

through which the joint survival probabilities can be represented as follows:9

Pr(τ1 > t, τ2 > t) = Cτ (PNL1(t), PNL2(t)). (7)

Now let θi denote the ratio of the common intensity λ to the total intensity (λi + λ) for policy i, i.e.

θi =
λ

λi + λ
. (8)

In this case, the MO copula can be represented as follows:

Cτ (PNL1(t), PNL2(t)) = min
(
PNL1(t) · PNL2(t)1−θ1 , PNL2(t) · PNL1(t)1−θ2

)
. (9)

This bivariate model can be easily extended to the multivariate case.10

3.6 Modeling Non-Simultaneous Dependent Claim Events

Due to the common shock in the MO model, claim events caused by the systematic risk factor(s) always

occur simultaneously. We relax this assumption by switching from conventional time t to event time

St.
11 The latter will be governed by an independent Lévy subordinator S = {St}t≥0 (almost surely non-

9The theoretical foundation is provided by Sklar’s theorem.

10Giesecke (2003), for example, draws on the MO framework to price basket default swaps.

11Owing to the close link between credit events and subsequent business disruptions, Mai and Scherer (2009a,b) term the

subordinator business time. Since the latter may not be considered as an adequate expression for modeling catastrophe

events, we decide to call it event time instead.
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decreasing) with characteristic triplet (µ, 0, ν).12 Hence, it is completely determined by its corresponding

Laplace transform:

E[e−λiSt ] = e−ψ(λi)t, ∀i = 1, 2, ..., n; ∀t ≥ 0, (10)

where ψ represents the Laplace exponent and is defined as follows:

ψ(λi) := µλi +

∫ ∞
0

(
1− e−λit

)
ν(dt), ∀i = 1, 2, ..., n. (11)

We focus on a single risk source as in Equation (4). After the time change, the intensity λi represents

the rate at which policy i experiences a claim event per unit of event time St. Thus, the original claim

event probability in Equation (4) changes as follows:

POLi(t) = 1− E[e−λiSt ], ∀i = 1, 2, ..., n; ∀t ≥ 0. (12)

Now, claim time τi of policy i can be interpreted as the first jump of a homogeneous Poisson process

subject to a common event time. As a consequence, we have stochastically dependent events with non-

simultaneous occurrences. For a formal definition as well as key distributional properties, please refer

to Mai and Scherer (2009a). The latter also demonstrate how the marginal distributions can be kept

invariant under the time change to ensure analytical tractability. In our context, S satisfies the so-called

time normalization for the exponential distribution, if the following relationship holds (proof see Mai and

Scherer, 2009a):

E[F (St)] = F (t), ∀t ≥ 0, (13)

such that

1− E[e−λiSt ] = 1− e−λit, ∀i = 1, 2, ..., n; ∀t ≥ 0. (14)

Put differently, the parameter values of the subordinator have to be chosen so as to ensure Equation (14)

12Lévy processes are fully specified by their characteristic triplet (µ, σ, ν). µ and σ denote the drift and volatility of a

Wiener process, while the Lévy measure ν reflects size and frequency of jumps. ν ([x,∞)) gives the expected number of

jumps per time step that are greater than or equal to x.
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to hold. This applies if −ψ(λi) = −λi.13 We thus achieve time normalization by constructing the

following deterministic relationship between µ and ν:

µi = 1− 1

λi

∫ ∞
0

(
1− e−λit

)
ν(dt), ∀i = 1, 2, ..., n. (15)

In the case of ILWs, only one type of systematic insurance risk (e.g., windstorms or earthquakes) is

relevant. All other risk sources are excluded from the instrument by construction (see second section).

Nevertheless, depending on their geographic locations, different insured objects in the underlying insur-

ance portfolio can be more or less exposed to relevant natural disasters. Hence, λi in Equation (12)

stands for the intensity of policy i with regard to the single source of catastrophic risk that is covered by

the ILW contract at hand.

3.7 Deriving the Aggregate Insurance Loss Distribution Function

As in the case of structured credit products, the key input factor for the pricing of a whole spectrum

of ILW layers is the cumulative distribution function (cdf ) of the aggregate portfolio loss. Below, we

describe how the latter can be derived in the Lévy-Frailty framework. In our insurance portfolio with n

constituents, let Lnt be the proportion of policies that suffered losses up to time t. Then the relative loss

process Ln = {Lnt }t≥0 can be expressed as follows:

Lnt :=
1

n

n∑
i=1

Ait, ∀t ≥ 0. (16)

The stochastic process Ai = {Ait}t≥0 is defined as:

Ait := 1τi≤t, ∀i = 1, 2, ..., n; ∀t ≥ 0. (17)

For any t, each Ait follows a Bernoulli distribution with probability of success POLi(t) = 1−E[e−λiSt ].

13Proof:

1− E[e−λiSt ] = 1− e−λit

⇔ 1− e−ψ(λi)t = 1− e−λit

⇔ −ψ(λi) = −λi.
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If the portfolio is homogeneous, the claim times τi exhibit the same distribution. Consequently, all

intensities must be identical and we may write λi = λ. Mai and Scherer (2009a) show that, under this

assumption, the absolute number of impaired policies nLnt can be approximated by means of the Bernoulli

mixture model

nLnt ∼ Bin
(
n, 1− e−λSt

)
, ∀t ≥ 0. (18)

In addition, as the portfolio size n tends to infinity, Lnt converges to the mixture variable

lim
n→∞

Lnt = L∞t = 1− e−λSt , ∀t ≥ 0.14 (19)

Thus, if the LHP assumptions hold, we exactly know the relative loss L∞t , given any realization of

the stochastic process St. It is thus straightforward to derive the probability density function (pdf ) of

the random percentage of impaired policies in the portfolio, fL∞t (x), from the pdf of the subordinator,

fSt
(x):15

fL∞t (x) = fSt

(
− 1

λ
log(1− x)

)
1

λ(1− x)
, x ∈ (0, 1); ∀t ≥ 0. (20)

3.8 Introducing Recovery Rates

So far we have implicitly assumed that a claim event will inevitably lead to a full loss of a policy’s sum

insured, i.e., Equation (16) is a zero-recovery loss process. In reality, however, insurance companies will

often face partial losses, for example, due to deductibles or because the value of the covered object has

not been entirely destroyed. Hence, the characteristics of the industry index portfolio referenced by an

ILW evidently have an influence on the aggregate loss distribution and thus the trigger probabilities. In

the LHP setting introduced above, all portfolio constituents are assumed to exhibit the same contract

specifications, which leads to identical claim intensities λ and sums insured SI. We may therefore describe

the loss on an individual policy li, conditional on the occurrence of a claim event, based on a deterministic

recovery rate R (in %):

li = l = (1−R) · SI (21)

14See Mai (2010): “supt≥0

∣∣∣Lnt − (
1− e−λSt

)∣∣∣ tends to zero almost surely.”

15Consider two random variables X and Y with known densities, where Y = G(X) and G(X) is non-decreasing. Then

fY (y) = fX
(
G−1(y)

) dG−1(y)

dy
. In our case: Y = L∞t , X = St and G−1(y) = − 1

λ
log (1− y).
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R is, by definition, independent of the loss process. Yet, it will vary with the combination of peril

(windstorm, earthquake etc.) and geography (e.g., United States, Japan etc.) covered by an ILW and can

either be determined exogenously or estimated during the calibration process. Mai and Scherer (2009a)

demonstrate that, under these circumstances, Equation (19) becomes

L∞,Rt = (1−R)
(
1− e−λSt

)
, ∀t ≥ 0; (22)

and the corresponding pdf is

fL∞,R
t

(x) = fSt

(
− 1

λ
log

(
1− x

1−R

))
1

λ(1−R− x)
, x ∈ (0, 1); ∀t ≥ 0. (23)

Alternatively, one may implement the model based on Equation (20) and take into account a fixed

portfolio-level recovery rate R by adjusting the integration boundaries for the calculation of the expected

tranche loss. For an illustration of this method in the context of structured credit instruments, the

interested reader is referred to Kalemanova et al. (2007).

3.9 Selecting a Suitable Subordinator

An explicit solution of the pdf of the relative loss, as shown in Equations (20) and (23), calls for a

specification of St. Here, we must account for the fact that catastrophe events are rare, but cause

insurance claims to occur in great numbers in a very short time interval. To reflect this pattern, we

require a subordinator with infrequent and large jumps. Infinite activity subordinators and drift terms,

as employed by Mai and Scherer (2009a), are not appropriate, as they imply that event time is always

moving. In contrast, we opt for a compound Poisson subordinator, which is of the convenient form:

St =

M(t)∑
j=1

Yj , ∀t ≥ 0, (24)

where M(t) stands for a Poisson process with intensity β. The Yj are i.i.d. jump sizes.16 To fulfill the

requirements of a subordinator, the jump sizes must adhere to a distribution which is exclusively defined

on the positive half axis. We will return to this issue below. It can be shown that the Laplace exponent

16Note that for a fixed jump size Ȳ = 1, the compound Poisson process is equivalent to a conventional Poisson process.
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ψ of the compound Poisson process (without a drift) has the following form:

ψ(u) = βE
[
(1− e−uY1)

]
, u ≥ 0. (25)

Furthermore, time normalization of the subordinator in line with Equation (10) can be achieved by

setting ψ(1) = 1, which leads to the following value for β:

β =
1

1− E [e−Y1 ]
. (26)

In this setup, catastrophe events are infrequent but affect a large number of policies simultaneously.

Since the subordinator exhibits discontinuous sample trajectories, we have a slightly modified pdf of the

relative loss process compared to the original L∞t shown in Equation (20) (see, e.g., Böttcher, 2010):17

fL∞t (x) =

∞∑
k=0

Pr(M(t) = k)fk

(
− 1

λ
log(1− x)

)
1

λ(1− x)
, x ∈ (0, 1); ∀t ≥ 0. (27)

where fk is the pdf of the kth convolution of the subordinator’s jump size distribution.18 As we do not

need to calculate expected losses to price ILWs, we directly use the cdf to speed up computation. It is

of the form

FL∞t (x) =

∞∑
k=0

Pr (M(t) = k)Fk

(
− 1

λ
log(1− x)

)
, x ∈ (0, 1); ∀t ≥ 0. (28)

Fk is the cdf of the kth convolution of the subordinator’s jump size distribution. This means that a

tractable model is achieved if the kth convolution is explicitly known (see Mai and Scherer, 2009a). To

ensure this, we will discuss adequate choices for the jump size distribution in the next section.

17This is not necessary for infinite activity subordinators.

18The convolution of the individual probability distributions of two or more independent random variables delivers the

distribution of the sum of these variables.
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Equation (28) specifies a cdf for the loss fraction x given by the attachment point of the ILW in

relation to the pool size:

x =
attachment point

pool size
. (29)

To additionally account for the possibility that not the entire value of an insured item may be destroyed

in case a catastrophe occurs, we divide the trigger threshold by the adjusted pool size:

x =
attachment point

adjusted pool size
, (30)

which incorporates the recovery rate R defined in Equation (21) as follows:

adjusted pool size = (1−R) · pool size. (31)

Alternatively, we could have also directly modified the portfolio loss cdf in Equation (28) as illustrated

by Equation (23) for the pdf case. We explain our choice to opt for an adjustment of the pool size in

more detail, when we discuss the estimates for the parameters.

3.10 Selecting the Jump Size Distribution

For the jump size we require a distribution that is exclusively defined on the positive half axis and has

a known density under convolution. These two requirements considerably reduce the range of suitable

candidates to the Cauchy, chi-squared, exponential, and gamma distribution.19 The first one needs to

be excluded as well, since it has an undefined mean and variance. Consequently, we further explore the

k-th convolutions of the gamma, chi-squared and exponential distribution:20

•
k∑
i=1

Gamma(α, θ) ∼ Gamma(kα, θ), with shape α > 0 and scale θ > 0,

•
k∑
i=1

χ2(ri) ∼ χ2(
k∑
i=1

ri), with degrees of freedom (mean) r =
k∑
i=1

ri

•
k∑
i=1

exp(η) ∼ Gamma(k, η), with rate η > 0.21

19The range gets even smaller when considering a continuous-time setting.

20Note that, for these relationships to hold, stochastic independence of the summands is required.

21We know that, for the exponential distribution, Equation (26) reduces to β = 1 + 1/η (see Mai and Scherer, 2009a).
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4. Empirical Analysis

4.1 Dataset

Our dataset consists of end-of-month ILW prices for US wind and US earthquake contracts in the

time period between August 2005 and August 2013. The quotes were obtained from BMS and re-

flect the premium pILW at the initiation of a new contract with a fixed maturity of 12 months. For

both perils, we have seven attachment points (warranties), defined as W = {20, 25, 30, 40, 50, 60, 70} and

E = {10, 15, 20, 25, 30, 40, 50} for wind and earthquake contracts, respectively (quoted in USD bn).22 All

prices are percentages of the selected notional. For example, on 31 August 2005, a US wind ILW with a

USD 20 bn warranty was quoted at 12%. This means that it cost an up-front payment of USD 12 mn to

enter a contract with a notional (payoff) of USD 100 mn as the protection buyer.
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Figure 1: Time series of monthly ILW prices for US wind contracts (08/2005–08/2013)

Figure 1 illustrates the development of monthly prices for US wind ILWs between August 2005 and August 2013. The
time period (in months) is depicted on the x-axis and the price as a percentage of the notional on the y-axis. The quotes
reflect the premium pILW at the initiation of a new contract for a fixed maturity of 12 months. The cross section of
attachment points (warranties) is defined as W = {20, 25, 30, 40, 50, 60, 70} (quoted in USD bn).

Figure 1 shows the price movements of US wind ILWs. In August 2005, reinsurance was quite cheap,

with the highest two warranties (USD 60 and USD 70 bn) not even quoted and the lowest warranty

22Recall from the second section that the warranty equals the total industry loss that needs to be exceeded for a payoff.

18



being just at 12%. Following Hurricane Katrina, prices rose steadily until they peaked in the summer

of 2006. This was a classical hard market with high premiums and low reinsurance capacity (see, e.g.,

Cummins et al., 2006). After a brief recovery phase, during which conditions softened again, a sharp rise

was observed around the time of the collapse of Lehman Brothers and the occurrence of Hurricane Ike.

The next increase could be observed in the summer of 2010. During that hurricane season, four category

4 storms were observed: Danielle, Earl, Igor and Julia (NOAA, 2011). From then on until August 2013,

premiums slowly decreased. The time series of historical prices of US earthquake ILWs in Figure 2 exhibit

very similar movements. This suggests that price fluctuations may also be explained by structural effects

such as the reinsurance cycle and not merely by manifestations of the reference peril.
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Figure 2: Time series of monthly ILW prices for US earthquake contracts (08/2005–08/2013)

Figure 2 illustrates the development of monthly prices for US earthquake ILWs between August 2005 and August 2013.
The time period (in months) is depicted on the x-axis and the price as a percentage of the notional on the y-axis. The
quotes reflect the premium pILW at the initiation of a new contract for a fixed maturity of 12 months. The cross section
of attachment points (warranties) is defined as E = {10, 15, 20, 25, 30, 40, 50} (quoted in USD bn).

Apart from the historical ILW price data, we collect end-of-month US zero-coupon yield curves (trea-

sury spot rates) for the time period between August 2005 and August 2013 from Bloomberg. Fitting a

Nelson-Siegel-Svensson model allows us to derive monthly discount factors for Equation (1).
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4.2 Calibration to ILW Prices

Reduced-Form Model

In line with our ILW and interest rate data, we set the trigger-time vectorM (see third section) to monthly

intervals (t1, t2, t3, ..., t12), implying that the time step length ∆ti = ti − ti−1 equals 1
12 . Moreover, we

switch to a homogeneous Poisson setup by assuming a fixed λ in p.a. terms, which is broken down to

match the loss process as follows: λti−1,ti = λ∆ti (∀ti). For each monthly cross-section of wind and

earthquake ILW quotes, we then determine the implied intensity rate that minimizes the sum of squared

price errors over all seven layers:

argminλ̂

7∑
i=1

(
p̂ILWi,t (λ̂)− pILWi,t

)2
, (32)

where p̂ILWi,t (λ̂) is the price generated by Equation (1) and pILWi,t is the observed market spread. The

optimization problem in (32) is solved by means of the Levenberg-Marquardt algorithm. Thus, we obtain

one implied intensity estimate λ̂ (p.a.) for each monthly cross-section of ILW spreads in our sample.23

Lévy-Frailty Model

Fitting Equation (28) to market data implies the simultaneous estimation of three unknown parameters

for the specifications with exponentially and chi-squared distributed jump sizes, and of four parameters

for the model with gamma-distributed jump sizes. We proceed with the following steps:

1. An adequate hazard rate function for the individual insurance policies in the index portfolio needs

to be chosen. Opting for homogeneity (see third section), we have h(t) = λt and only the common

λ remains unknown.

2. We must estimate the parameters for the jump size distributions, i.e., two for the Gamma model

and one each for the chi-squared and the exponential model. Based on their fitted values, we may

then directly determine β such that the marginals are kept invariant under the time change.24

23Alternatively, one could have also extracted implied intensity rates separately for each attachment point in a given month.

However, this would have been resulted in a perfect price fit. Hence, we opt for single cross-section intensities that allows

a fair comparison with the estimates obtained by the Lévy-Frailty Model.

24See Equation (26).
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3. Since the number of constituents in the industry index portfolio and their sums insured are unknown,

we do not have an exogenous value for the pool size. The same holds true for the recovery rate.

Thus, the adjusted pool size is endogenously determined in the estimation process according to

Equation (30). A drawback is that we are unable to disentangle the pool size from the recovery

rate without further information on either of the two.25

All three aspects discussed above differ substantially from the analysis of Mai and Scherer (2009a)

for structured credit instruments. First, we are unable to derive λ for the marginal distributions from

market quotes, since the equivalent of a single-name CDS contract is unavailable in the catastrophe risk

space. Second, we explicitly consider three alternative jump size specifications to establish whether the

exponential distribution favored by Mai and Scherer (2009a) is suited in the context of ILWs as well.

Third, we have to rely on an endogenous estimation of the portfolio size, whereas Mai and Scherer (2009a)

calibrate their model to iTraxx Europe tranches, for which the underlying portfolio is known. Hence,

adapting the Lévy-Frailty framework to catastrophe risk pricing is not a trivial task.

We fit the models to each end-of-month cross section of ILW quotes in two different ways: through

differential evolution developed by Price et al. (2005) and the Nelder-Mead algorithm, also known as

direct search. The target criterion is a maximization of the adjusted R-squared (adj. R2).26 When an

unconstrained optimization is run, both methods yield similar results. Therefore, we decide to report

the figures for the much faster direct search approach. For the gamma and exponential specifications, all

parameters are estimated simultaneously. In the case of the chi-squared distribution, we proceed slightly

differently. Since the degrees of freedom (df ) parameter r is an integer, we first define the following

fixed range of values: r = 1, 2, 3, 4, 5. For the subsequent model calibration, we maximize the adj. R2 by

estimating both the hazard rate parameter λ and the adjusted pool size, while holding r constant. We

separately run this procedure for all of the five values of r, which results in a set of five adj. R2 values.

We then select the df that produces the largest adj. R2. The optimal value turns out to be r = 1 for

both peril types. This result is quite intuitive. For a higher r, a very large fraction of the pool suffers

25A more adept treatment of this problem necessitates an empirical analysis of the recovery rate distribution. See Amraoui

et al. (2012) for an example in the context of structured credit products.

26Note that the optimization requires a numerical implementation of the infinite series in Equation (28). We cut off the

series, when the term on the right-hand side of Equation (28) drops below 0.0000001.
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impairments if a jump of only average size occurs.27

4.3 Investigating the Fit

The challenge for a pricing model is to fit all quoted prices with a small set of parameters. Its goodness

of fit thus needs to be gauged with respect to error functions. In addition to the adj. R2, which was

employed for the calibration, We will report the mean absolute error (MAE), the root mean squared error

(RMSE) and the mean absolute percentage error (MAPE) associated with the generated prices. These

three measures are defined as follows (see, e.g., Armstrong and Collopy, 1992; Xu and Taylor, 1995):

• Root mean square error (RMSE):

RMSE =

√√√√ 1

N ′T ′

N ′∑
i=1

T ′∑
t=1

(
pILWi,t − p̂ILWi,t

)2
, (33)

• Mean absolute error (MAE):

MAE =
1

N ′T ′

N ′∑
i=1

T ′∑
t=1

∣∣pILWi,t − p̂ILWi,t ∣∣, (34)

• Mean absolute percentage error (MAPE):

MAPE =
1

N ′T ′

N ′∑
i=1

T ′∑
t=1

∣∣∣∣∣pILWi,t − p̂ILWi,tpILWi,t

∣∣∣∣∣. (35)

Here, pILWi,t represents the observed market spread for contract i (characterized by the warranty) at

time t, p̂ILWi,t is the model-generated spread for contract i at time t, N ′ = 7 denotes the number of con-

tracts for each peril, and T ′ = 97 equals the number of observations in the time series. Based on these

measures, we calculate loss statistics for our entire time-series-cross-section sample of quoted prices. The

results for US wind and US earthquake ILWs are depicted in Tables I and II, respectively.28 In addition,

27In the case of earthquake contracts, for example, an r of 2 results in an average trigger probability of 86.47% across all

attachment points and months in our data set. This value is derived as follows: we take Equation (28) and compute the

trigger probability for each month and all of the seven attachment points. We then average these probabilities per month

and subsequently take the mean of all averages over the full time period.

28Note that the time series for the calculation of MAPE start on 31 January 2006, since the statistic cannot be calculated

22



the minimum and the maximum monthly mean absolute error of each model, averaged across the seven

contracts, is provided. Apart from the MAPE, the loss measures consistently suggest that all models

perform better for US earthquake contracts than for US wind contracts. This finding is owed to the fact

that prices and price variations for the former are generally on a lower level (compare Figures 1 and 2).

For wind ILWs (see Table I), the model with chi-squared distributed jump sizes clearly underperforms

the other two specifications on all three measures.29 On its best day (see column “Minimum MAE”),

the MAE equals 79 basis points compared to 23 and 29 basis points for the gamma and the exponential

model, respectively. Similarly, the MAE, RMSE as well as MAPE are much higher than those of the

latter two. Both the gamma and the exponential model achieve an excellent adj. R2 of 0.93. However,

the former additionally exhibits the smallest error statistics across the board. This is not surprising,

since the exponential model is nested in the gamma specification. Evidently, the higher precision of the

gamma model justifies the additional parameter. The results for the earthquake contracts (see Table II)

are very similar. Again, the gamma model dominates the other two approaches and the chi-squared

model exhibits the highest errors.

Model MAE RMSE MAPE Adj. R2

Chi-Squared 0.0107 0.0139 0.0539 0.6247

Exponential 0.0069 0.0045 0.0364 0.9386

Gamma 0.0042 0.0041 0.0299 0.9330

Reduced-Form 0.0579 0.0656 0.4100 0.2951

Table I: Fit statistics for the time-series-cross-section sample of US wind ILW quotes

This table shows the goodness of fit for the chi-squared, the exponential and the gamma model, as well as the reduced-
form model. All models have been fitted to each end-of-month cross section of US wind ILW quotes between August
2005 and August 2013. Please note that the first three cases use the Nelder-Mead algorithm to maximize the adjusted
R-squared (adj. R2), while in the latter case we solve a series of systems of linear equations employing the Levenberg-
Marquardt algorithm. As loss statistics, we provide the mean absolute error (MAE), the root mean squared error
(RMSE), the mean absolute percentage error (MAPE) and the adjusted R-squared (adj. R2).

for longer durations.

29A key reason is the boundedness of r to integer values, which makes this specification less flexible for calibration.
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Model MAE RMSE MAPE Adj. R2

Chi-Squared 0.0091 0.0082 0.0710 0.5129

Exponential 0.0048 0.0059 0.0499 0.9049

Gamma 0.0041 0.0049 0.0472 0.8976

Reduced-Form 0.0269 0.0327 0.3548 0.1739

Table II: Fit statistics for the time-series-cross-section sample of US earthquake ILW quotes

This table shows the goodness of fit for the chi-squared, the exponential and the gamma model, as well as the reduced-
form model. All models have been fitted to each end-of-month cross section of US earthquake ILW quotes between
August 2005 and August 2013. Please note that the first three cases use the Nelder-Mead algorithm to maximize the
adjusted R-squared (adj. R2), while in the latter case we solve a series of systems of linear equations employing the
Levenberg-Marquardt algorithm. As loss statistics, we provide the mean absolute error (MAE), the root mean squared
error (RMSE), the mean absolute percentage error (MAPE) and the adjusted R-squared (adj. R2).

As discussed in the third section, we benchmark the Lévy-Frailty framework with the reduced-form

model in the spirit of Jarrow (2010). The corresponding results can be found in the last row of Tables I

and II. The pricing errors of this simple but common approach are much higher than for the Lévy-Frailty

model with gamma-distributed jump sizes and the adj. R2 is substantially lower. This holds for both

wind as well as earthquake contracts across all four fit statistics and can be traced back to the fact that

the model needs to fit each cross-section of monthly ILW spreads with just one parameter.30 Finally, we

put the figures into perspective by comparing them to historical reinsurance quotes.31 According to data

published by Cummins and Danzon (1997), nonproportional property reinsurance prices from different

coverage providers exhibited a coefficient of variation of 28 percent between 1980 and 1988.32 In the

same period, the time series of industry prices per unit of ceded exposure was relatively stable (see Froot

and O’Connell, 1999). Thus, firm-specific factors are the major driver behind the observed reinsurance

price variation (see, e.g., Weiss and Chung, 2004). Against the background of such notable cross-sectional

price differences, the MAPE values for the gamma model (2.99 percent and 4.72 percent) reflect a good

accuracy.

4.4 Out-of-Sample Analysis

To further assess the suitability of the suggested Lévy-Frailty models for ILW pricing, we run an out-

of-sample analysis. As indicated in the first section, the framework is not designed to forecast future

ILW prices. Instead, it is meant to be employed on a contemporaneous basis, extracting information

30Although the model fit is disappointing, unreported results show that the hazard rates implied by the reduced-form model

are quite reasonable in economic terms.

31Recall from section two that ILWs are essentially a standardized reinsurance contract.

32Cummins and Danzon (1997) define prices as premiums earned divided by the present value of accident year losses.
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from observed market quotes that can then be harnessed to value natural catastrophe risk transfer in-

struments for which prices are not observed. Against this background, we adopt the following algorithm

for the out-of-sample analysis. Recall that for every month between August 2005 and August 2013, we

have two cross sections (one for wind and one for earthquake risk) of seven contracts defined by their

attachment points. Hence, in any given month, we fit the model seven times for both cross sections. In

each iteration, we reserve a different contract for testing. The model calibrated on the other six contracts

is then used to estimate the price of the test contract. In doing so, we pretend that the price of the

test contract is unobservable and needs to be estimated from the information included in the prices of

the other contracts. Based on this procedure, we are able to calculate an out-of-sample pricing error

(estimated minus observed price) for each contract at each point in the time series. These pricing errors

are then used to calculate out-of-sample MAE, RMSE, MAPE and R2.33

The out-of-sample results for all three Lévy-Frailty specifications are summarized in Tables III and

IV. As one would expect, the error statistics turn out slightly higher than those measuring the in-sample

fit. Importantly though, our general assessment from the previous section is confirmed. The chi-squared

model can once more be discarded owing to the fact that it exhibits the worst performance. Moreover, the

gamma model outperforms the exponential model, sometimes by a higher margin than in the in-sample

analysis. Overall, the gamma model does astonishingly well out-of-sample, indicated by the fact that its

error statistics are virtually on par with the in-sample measures for the chi-squared model and far lower

than those of the reduced-form model. We may therefore conclude that the gamma model is an adequate

choice for the pricing of ILW contracts.

33Note that the out-of-sample R2 follows a slightly different logic than the (in-sample) adjusted R2. For more information
refer, e.g., to Armstrong and Collopy (1992).
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Model MAE RMSE MAPE OOS R2

Chi-Squared 0.0486 0.0635 0.2787 0.5606

Exponential 0.0136 0.0505 0.1061 0.8790

Gamma 0.0106 0.0138 0.0677 0.8725

Table III: Out-of-sample fit statistics for the US wind ILW contracts

This table shows the goodness of fit for the chi-squared, the exponential and the gamma model, as well as the reduced-
form model. All models have been fitted to each end-of-month cross section of US wind ILW quotes between August
2005 and August 2013 seven times, leaving out one of the prices in each iteration. Please note that the first three cases
use the Nelder-Mead algorithm to maximize the adjusted R-squared (adj. R2), while in the latter case we solve a series of
systems of linear equations employing the Levenberg-Marquardt algorithm. The fitted model is then used to predict the
price of the contract that was excluded from each estimation. This proceeding allows us to calculate an out-of-sample
pricing error (actual minus predicted price) for every contract at every point in time. Based on these pricing errors,
we can determine the mean absolute error (MAE), the root mean squared error (RMSE), the mean absolute percentage
error (MAPE) and the out-of-sample (OOS) R-squared (adj. R2) for each model.

Model MAE RMSE MAPE OOS R2

Chi-Squared 0.0244 0.0340 0.2489 0.4688

Exponential 0.0089 0.0365 0.1198 0.8250

Gamma 0.0075 0.0099 0.1023 0.8305

Table IV: Out-of-sample fit statistics for the US earthquake ILW contracts

This table shows the goodness of fit for the chi-squared, the exponential and the gamma model, as well as the reduced-
form model. All models have been fitted to each end-of-month cross section of US earthquake ILW quotes between
August 2005 and August 2013 seven times, leaving out one of the prices in each iteration. Please note that the first
three cases use the Nelder-Mead algorithm to maximize the adjusted R-squared (adj. R2), while in the latter case
we solve a series of systems of linear equations employing the Levenberg-Marquardt algorithm. The fitted model is
then used to predict the price of the contract that was excluded from each estimation. This proceeding allows us to
calculate an out-of-sample pricing error (actual minus predicted price) for every contract at every point in time. Based
on these pricing errors, we can determine the mean absolute error (MAE), the root mean squared error (RMSE), the
mean absolute percentage error (MAPE) and the out-of-sample (OOS) R-squared (adj. R2) for each model.

4.5 Economic Interpretation

A larger number of parameters generally ensures a higher model flexibility when it comes to adequately

fitting observed prices of traded instruments. However, this does not automatically imply that all pa-

rameters also have a reasonable economic meaning. Hence, in a last step, we will evaluate the estimated

parameter values of the gamma jump-size model with regard to their interpretability. We refrain from a

discussion of the other two specifications, since they are clearly dominated in terms of in-sample fit.

According to Tables I and II, the gamma model as the most general specification exhibits the best

performance. Taking a closer look at the descriptive statistic for the estimated parameter values in

Table V, we find hazard rates and adjusted pool sizes to be relatively stable over time and to move

within reasonable bounds. This holds for both peril types. Regarding wind contracts, our estimates for

the adjusted pool sizes lie between USD 70.01 bn and USD 331.58 bn. Furthermore, implied hazard rates

are found to be in a range from 0.0446 to 0.2144. The adjusted pool sizes for earthquake contracts range
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between USD 70.00 bn and USD 521.27 bn, while estimated hazard rates fall between 0.0078 and 0.0999.

When investigating the jump frequency that is computed from the shape and the scale parameter, we

find it to be of low magnitude and rather constant over time. This is an encouraging result.

The lower bounds of the adjusted pool sizes are just slightly above the highest attachment points

of USD 70 bn for wind and USD 50 bn for earthquake contracts. This could be due to relatively low

total pool sizes or high recovery values. Since industry index portfolios are arguably larger, we deem the

high recoveries to be a more plausible cause for our results. Implied hazard rates, on the other hand,

seem quite appropriate, particularly when recalling that they are derived under the risk-neutral pricing

measure Q. Furthermore, the observation of lower marginal probabilities for earthquake contracts than

for wind contracts is consistent with industry experience.

Gamma Mean S.D. Minimum Median Maximum

Wind

Implied Hazard Rate 0.1253 0.0305 0.0446 0.1320 0.2144

Adjusted Pool Size 146.99 48.28 70.01 139.06 331.58

Jump Frequency 3.9317 0.0036 3.1414 3.9364 4.4464

Earthquake

Implied Hazard Rate 0.0552 0.0203 0.0078 0.0556 0.0999

Adjusted Pool Size 133.60 43.22 70.00 104.34 521.27

Jump Frequency 2.9016 0.0173 2.7199 2.8104 3.2407

Table V: Descriptive statistics for the estimated parameter values of the gamma model

This table shows the mean, median, standard deviation (S.D.), as well as the minimum and maximum values for the
implied hazard rate (λ), the adjusted pool size, and the jump frequency of the subordinator (β) for the model with
gamma-distributed jump sizes. The latter has been fitted to each end-of-month cross-section of US wind and US
earthquake ILW quotes between August 2005 and August 2013. The adjusted pool size is measured in USD bn.
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5. Conclusion

We enrich the literature on risk-neutral pricing of ILS by explicitly considering the stochastic dependence

of individual claims in the underlying insurance portfolio. Our focus lies on ILWs, since those distinguish

themselves through complete standardization and the availability of multiple layers. We highlight why,

much like in the case of CDO tranches, the prices for a whole spectrum of different coverage layers must

be driven by the stochastic dependence of the policies in the industry index portfolio. Subsequently,

we adapt and extend the Lévy-Frailty framework by Mai and Scherer (2009a) to ILWs. More specifi-

cally, we employ a compound Poisson subordinator as a stochastic clock that drives loss clustering in

the aftermath of catastrophes. We consider three model variants based on chi-squared, exponential and

gamma-distributed jump sizes and employ a standard reduced-form model as a benchmark. The Lévy-

Frailty framework with gamma-distributed jump sizes is found to exhibit the best fit to a comprehensive

set of historical ILW prices, both in sample and out of sample.

Several directions for future research are conceivable. First, our analysis could be enriched with

data on the claim intensities of the individual policies. Such information should be available in insurance

companies and could be used to further improve the model fit by explicitly estimating the common hazard

rate. Second, it would also be desirable to disentangle the recovery value from the pool size through an

exogenous determination of those variables. The former could be based on an empirical distribution of the

percentage loss on the policies, given a claim event has occurred, and the latter should be obtainable from

an insurance industry index provider such as PCS. Third, although we focused on ILWs, the approach

could be extended to promote the market-consistent valuation of catastrophe risk in general.

28



References

Amraoui, S., Cousot, L., Hitier, S., and Laurent, J.-P. (2012). Pricing CDOs with state-dependent

stochastic recovery rates. Quantitative Finance, 12(8):1219–1240.
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