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Abstract: This paper examines the pricing of term life insurance based on the economic
approach of profit maximization, and incorporating the financial approach of
stochastic interest rates, investment returns, and the insolvency option, while also
including actuarial modeling of mortality risk. Optimal price (premium) is obtained
by optimizing a stochastic objective function based on maximizing the expected net
present value (NPV) of insurer profit. Expected claim payments are calculated on the
basis of the Cox, Ingersoll, Ross (1985) financial valuation model. Our work analyzes
numerically the influence of various parameters on optimal price, optimal expected
NPV of insurer profit, and the insolvency put option value. We examine several
parameters including the speed of adjustment in the mean reverting prices, the initial
value of the short run equilibrium interest rate, the volatility of interest rate, the
volatility of asset portfolio, the long run equilibrium interest rate, and the age of the
insured. Findings demonstrate that optimal prices generally are most sensitive to
changes in the long run equilibrium interest rate. Factors that have a strong influence
on the price of the insolvency option include the age of the insured, volatility of interest
rate, and volatility of the asset portfolio, especially at larger values of these parameters.
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pricing; stochastic optimization; insolvency]
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INTRODUCTION

E arly life insurance pricing models generally followed one of two paths:
afocus on life risks with little attention to other aspects (e.g., investment
risks), or a focus on financial valuation principles with little attention to
the insurance liabilities side. Over time, pricing models have evolved to
include both underwriting and investment risks. Such models are
reviewed by Cummins (1991). From the 1970s through the 1990s, research
examined insurance pricing in competitive markets. For example, Spell-
mam, Witt, and Rentz (1975) developed an insurance pricing method based
on microeconomic theory in which investment income and the effect of the
elasticity of demand are considered, and price is determined by maximiz-
ing profit. McCabe and Witt (1980) discussed insurance prices and regula-
tion under uncertainty. They considered underwriting and investment
risks, as well as the cost of regulation imposed on the insurer. In addition,
demand for the insurer’s product was assumed to be a function of the
insurance rate and the average time the insurer takes to settle claims. More
recently, Persson and Aase (1997) developed a model for pricing life
insurance that includes a guaranteed minimum return under stochastic
interest rates. In their pricing model, investment and mortality risks are
considered simultaneously.

Cummins and Danzon (1997) developed a two-period pricing model
subject to default risk. Demand for insurance is inversely related to
insurance default risk and is imperfectly price elastic. Kliger and Levikson
(1998) discuss pricing of short-term insurance contracts based on economic
and probabilistic arguments. Their objective function in the maximization
problem is defined as expected net profit, the loss resulting from
insolvency, and the demand for insurance embedded in the objective
function. Price and the number of insurance policies are determined by
optimizing an objective function. Wang (2000) introduces a class of
distortion operators for pricing financial and insurance risks. Schweizer
(2001) combines insurance and financial research by embedding an
actuarial valuation principle in a financial environment. Still other research
addresses insurance pricing in competitive markets for property and
liability insurance with one or two period cash flows. Related articles
include Joskow (1973), D’ Arcy and Garven (1990), Brockett and Witt (1991),
Greg (1995), Sommer (1996), De Vylder (1997), Wang, Young, and Panjer
(1997), Lai, Witt, Fung, MacMinn, and Brockett (2000), Gajek and
Ostaszewski (2001), and Oh and Kang (2004).

The typical approach in life insurance is to model interest rates by a
stochastic process (see Persson, 1998; Bacinello and Persson, 2002) and to
derive price (premium) according to the equivalence principle (Bowers et
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al., chapter 6, 1997). The risks associated with interest rates and mortality
typically are salient factors considered in establishing pricing models.
Pricing methods based on a security loading factor that aims to achieve a
desired low probability of insolvency assume that premiums are
independent of the number of insureds. However, assuming at least some
price elasticity of demand (Pindyck and Rubinfeld, 1998), such an
assumption is inconsistent with the laws of supply and demand.

The goal of this paper is to extend previous research with multi-period
life insurance pricing models that combine economic and actuarial criteria
to maximize the expected net present value of insurer profit. In this study,
the influence of interest rate risk, insolvency, and supply/demand are
considered explicitly in optimal control models. Optimal prices (from
insurer’s perspective) are obtained by solving objective functions based on
optimization techniques and Monte Carlo simulation. The effects of
various parameters (interest rates, volatility, and age) on optimal prices,
optimal expected NPVs of insurer profit, and values of the insolvency put
option are illustrated with numerical examples. The next section discusses
life insurance pricing models.

PRICING MODELS

Assumptions Underlying the Pricing Models

In this section, we discuss the assumptions underlying the
development of the pricing models used in this study. The insurer sells only
life insurance. We consider single-premium and level-premium term life
insurance policies with term Y. (Note that the concept of single premium term
life insurance may seem foreign to some readers, especially since term life
is not marketed this way; however, this approach is standard in actuarial
pricing, as in Bowers et al., 1997.)

In the stochastic control model (see Ferguson and Lim, 1998) described
below, the contract is a contingent-claim affected by both mortality and
financial risk. Stochastic interest rates are used as discount rates that are
treated as a continuous time-stochastic process where mortality also is
considered as a random component (see Giaccotto, 1986; and Panjer and
Bellhouse, 1980). The single premium and level premium models treat the
insurance policyholder as analogous to an investor buying a financial asset.
The insurer raises funds from policyholders, invests the funds, and pays
benefits including investment income when claims occur.

Optimal price levels of the insurer’s life insurance products are postu-
lated to be dependent on the insurer’s claims, non-claim expense, financial
strength (solvency), and the market demand. Moreover, price is considered
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demand-elastic with endogenous insolvency risks, where interest rates and
mortality are independent of each other. Also, the insurer is assumed to be
risk neutral, where price is set according to the expectation criterion; that
is, the objective of the insurance company is to maximize the expected net
present value of insurer profit—the difference between the expected
present value of income and the expected present value of payments.

The pricing models do not impose binding constraints from rate
regulation. However, insolvency occurs if the insurer’s wealth decreases
beyond a minimum reserve required by law. The firm is assumed to have
market power and can vary its premium volume by varying price (i.e., we
do not assume perfectly competitive insurance markets, but we note that
decreasing demand function also applies to all companies in a competitive
industry). Financial markets are assumed to be perfectly competitive,
frictionless, and free of arbitrage opportunities. All consumers purchase
the same unit of insurance coverage, and market demand is a function of
price, age of the insured, maturity time of insurance contracts, and default
risk. Moreover, for modeling purposes, all policyholders are assumed to
be rational and non-satiated, and to share the same information.

For both single premium and level premium models, a closed—form
solution for the default-free discount bond price is desirable. Several
models have been developed to calculate prices of default-free discount
bonds.! Here we will employ the Cox, Ingersoll, and Ross (1985) model.
This model describes the valuation of a zero-coupon bond. The model
specifies that the short-term interest rate, r, follows an Ornstein-Uhlenbeck

mean reverting stochastic process. Specifically, dr = x(u —r)dt + o /rdz,
where z denotes a standard Wiener process, o denotes the volatility of
interest rates, 1 is the long run equilibrium interest rate, the gap between
its long run equilibrium and current level is represented by 1 -, and «
is a measure of the sense of urgency exhibited in financial markets to
close the gap and gives the speed at which the gap is reduced, where the
speed is expressed in annual terms. Let P(r, t, Y) express the discount
value of a zero-coupon bond, so that the valuation equation is

12 . .
50 rP, . +k(u-r)P,—P —rP = 0, where subscripts on P denote partial

derivatives and t = Y —t, where Y is the maturity time.

As solved by Cox, Ingersoll, and Ross, the price of a zero-coupon bond
is given by:

P(r,7) = A(t)e 2T
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(K+7)1/2-2¢pn/G>
where A(7) = [g%(?)—-—} g
By = 271 (1)
g(7)

g(1) = 2y+ (k+y)(e" -1)
Y = /\/K2+262.

The above result will be used in the analysis that follows.

Single Premium Term Life Insurance Contracts

For single premium term insurance policies, the expected net present
value of the policy’s cash flows is ENPV(n). The expected net present value
of the policy cash flows equals the difference between the expected present
value of income and the expected present value of payments.

The objective function satisfies the constraint that the market price
(premium) is positive and is defined as:

Max ENPV(n) = PI(n)-PL(n) )
Subject to PP(n, b(n), ' (x, Y))> 0.

The Present Value of Income

Assume that the insurance firm faces a price for policies that depends
on quantities of policies, insolvency risks (financial strength), and claim

payment: PP(#n, b(n), Ttl(x, Y)), where n equals the quantity of insurance

sold, nl(x, Y) equals the expected present value of claim payment for each
exposure unit, x equals the age of the insured, Y equals the maturity time
of insurance contracts, and b(n) equals the value of the insolvency put
option—the current value of the owners’ option to default if liabilities
exceed assets at the claim payment date. The value of the insolvency put
option is inversely related to the price and liability. >

Therefore, the present value of income is:

PI(n) = PP(n, b(n), 7 (x, Y))n.

Table 1 shows the notation that is used in the pricing models.
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Table 1. Notation Used for Pricing Models

b(n)

n

PP(n, b(n), ' (x, Y))
T="T(x)

Y

f()

P

C(t)

p

1
T

PI

PL
ENPV(n)
AA

A
B,GF

the value of insolvency put option for single premium life
policy

quantity of insurance sold for single premium life policy

a single premium rate based on market price

the remaining life time of an x year old insured

the maturity time of insurance contracts

the probability density function of T

the survival probability

benefit payable (or claim payment ) upon death at time ¢

the non-claim payment expense percentage of claim payment

expected present value of claim payment for each exposure
unit

expected present value of income for a single premium life
policy

expected present value of claim payment for a single premium
life policy

expected net present value of a single premium life policy =
PI(n) — PL(n)

constant of the demand function (assumed linear) for single
premium life policy

constant of demand equation for level premium life policy

coefficients of the demand function for single premium life
policy corresponding to quantity of demand, insolvency
risk, and age of the insured, respectively

long run equilibrium interest level (assumed independent of t)

standard deviation of cumulative investment in widely diver-
sified portfolio (assumed independent of t)

standard deviation of interest rate (assumed independent of t)
short run interest rate

the speed of adjustment in the mean reverting prices

Note: In the analysis that follows, the appropriate terms are subscripted with

premium analysis.

“1”

forlevel
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The Present Value of Payments

Let C(t) denote an arbitrary insurance benefit payable at time ¢. Let the
random variable T = T(x) denote the remaining lifetime of an x-year-old
insured, and let ,p, = P(T>t) denote the probability that the insured

survives to age x + t given that he is alive at age xand 4, = 1- p, denote
the probability that the insured will die between x and x + ¢ given that he
is alive at age x. We assume that the probability density function of T exists
and denote it by f, (e).

Assume that T and the pair (C(e) and v(e)) are independent random
variables. Let us represent the non-claim payment expenses as p percent of
claim payments for n policies. For simplicity, taxes are ignored here. The

t
quantity v(t) = exp {—jrudu] is the discount function and represents the

0
present value at time zero of one unit of account at time ¢ discounted by
the stochastic interest rate. Then the expected present value of benefit C(t)

(claim payment) of term life insurance, payable upon death at time t <Y, is

1 Y
R Y) = [ EltCmlf b, 3)
0

where E(e) denotes the expected value operator. Note that equation (3)
includes product of mortality factor and the expected value of pure finan-
cial claims.

Using the Cox, Ingersoll, Ross closed form of valuation and letting
C(t) =1, then the expected present value of benefit (claim payment) payable
upon death at time ¢ is

Y t
nl(x, Y) = I E[exp[—jruduﬂfx(t)dt
0 0

Y
- j P(r, £, T)f ($)dt
0

10,

Y
- I A POf (e @)
0



PRICING LIFE INSURANCE 141

(k+7)t/2-2kn/ >
where A(t) = [%ﬁ_} g
2" - 1)
B(t) = ————=
® g(t)

g(t) = 27+ (k+ )’ = 1)

Y = /\/K2+262.

The Value of the Insolvency Put Option

The option pricing model has been applied to insurance pricing by
several authors (see Cummins, 1991). Further literature includes Pennacchi
(1999), Grosen and Jorgensen (2000), Milevsky and Posner (2001), Tan and
Hu (2002), and Bacinello and Persson (2002). In this article, we extend the
research to price insolvency risks that incorporate stochastic rates and also
consider correlation between two stochastic processes of interest rates and
accumulated investment.

Suppose that the initial asset D, is the premium income of the insurer

where D, = PP(n, b(n), nl(x, Y))n, which is deemed to be invested in a

widely diversified portfolio. Denoting by D, the market value at time ¢ of
the accumulated investment, the value of the insolvency put option at time
tis H, = max(X,-D,, 0) with exercise price X,, where X, is the cash flow

of liability at time ¢ and
X, = g n(l+p). (5)

Here we assume that the death benefit paid on each contract is one dollar.
Furthermore, we assume D, is described by the following stochastic
differential equation under the equivalent martingale measure:

dD, = rD,dt +o,D tdwl , Where r satisfies the stochastic differential equa-

tion dr = k(p-r)dt + cﬁdwz, dwl, dwz are correlated Wiener processes,

and let p; , express their instantaneous correlation coefficient.
Therefore, based on the definition of the insolvency put option and

the equations of (1) and (5), the current value of the insolvency put option

is equal to the aggregate discounted value of all individual put options
with exercise price X, = ,4,n(1+p),0<t<Y; thatis:
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Y
b(n) = EQ{jv(t)dHt]
0

Y
- EQ{[P(r, fydmax(X,-D,,0) |, (6)
0

- ¥

Y
J-A(t)e_B(t)rdmax(thn(l +p)-D,, 0)]
0

where E[ -] denotes the expectation operator under the equivalent martin-
gale measure. By using numerical approximating algorithms, we can get
the approximating solution of b(n) (see Appendix 1). For proof of existence
of differentiation—dmax(,q,n(1 +p) - D,, 0)—and continuity of function

b(n), please see Appendix 2.

Babbel, Jeremy, and Merrill (2002) discussed the fair value of liabilities
in terms of financial economics. They indicate that the fair value of
liabilities should equal the discounted liability cash flows minus the value
of the insolvency put option, as there must be some accounting for risk.

Therefore, the expected present value of liability payments can be
expressed as the difference between the expected present value of explicit
payments (including claims and non-claim expenses) and the value of the
insolvency put option. That is:

PL(n) = n'(x, Y)(1 + p)n—b(n), @)

where b(n) satisfies equation (6), so that the expected net present value of
insurer profits is:

ENPV(n) = PI(n) - PL(n)
= PP(1, b(n), n'(x, Y))n - (x, Y)(1 + p)n + b(n). )
The optimization problem is:

Max ENPV(n) = PI(n) - PL(n)
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= PP(n, b(n), n' (x, Y))n - (x, Y)(1 + p)n + b(n) ©9)
Subject to PP(1, b(n), 7' (x, Y))> 0.

Given the parameters of u, x, 64, 6,, Y, p, x, P12/ the initial value of r,,

the probability density of the remaining lifetime of an x-year-old insured,
f(®), and the function of demand, then the optimal solutions consisting of

n*, PP(n*, b(n’),n'(x,Y), b(n*) and ENPV(n*) can be obtained by optimizing
the objective function. Before presenting results for single premium term
life contracts, we will examine the pricing of level premium term life
contracts.

Level Premium Term Life Insurance Contracts

As noted in Table 1, for level premium term insurance policies, the
subscript “1” is added to each term where appropriate. Consider a contract
in which a periodical premium is paid at the beginning of each year, if the
insured is alive. As in the case of a single premium term life insurance
contract, the objective function can be described as:

Max ENPV(ny) = PI;(ny)-PL{(ny)
Subject to PP, (15, by(ny), 7' (x,Y))>0. (10)

Assume that the level premium based on market price is expressed as
PP (nq, by(ny), nl(x, Y)), and premium income occurs at the beginning of
each year, so the present value of premium income is

Y-1 £
Pli(n) = z PP(nq, by(ny), nl(x, Y))tpxnlE[exp[—IruduD
t=0 0

Y-1
1
= Z PP,(nq, by(nq), © (x, Y)),p, 1y P(r, t)
t=0

where P(r, t) = A(t)eiB(t)r

PO y)t/ZTKH/GZ

AW = [F

(11)
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2" - 1)

B =
=0

g(t) = 2y+ (x+y)(e’ = 1)
Y = A/K2+202.

We assume that the premium income at the beginning of each year is

invested in a widely diversified portfolio. Let D}t express the market value

of the cumulative investment fund at time t with initial value of
1

D]. = PP (ny, by(n), rcl(x, Y))jpxnl, where D]-lO indicates the premium

paid by the surviving policyholders at time j, j =0, 1,2 ...Y — 1, t > j.

Therefore, the total market value of the cumulative investment fund at time
Y-1

tis D} = Z D}t , where D]-lt satisfies the stochastic differential equation

j=0
1 1 1 41 1 . . . g .
dD]-t = rD]-tdt+ Glejtdwj ,j=0,1,2,... Y -1, t >, r satisfies stochastic

differential equation dr = w(p-r)dt + oArdw, and w, w(l),w%, w;...w;_l

are Y + 1 Wiener processes, and let pl,1 ' (i, k=0,1,2...,Y) express their

instantaneous correlation coefficients.
Similarly as in the case of a single premium term life contract, the
current value of the insolvency put option is:

Y
by(ny) = E2 IA(t)e‘B“)’dmax(thnl(l +p)-D},0)|. (12)
0

As in the case of single premium life policies, the expected present
value of payment PL,(n) is equal to:

7' (6, Y)(1+ pyny —by(ny) (13)

where b,(n,) satisfies equation (12).

Therefore, the objective function is:
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max ENPV (1) = PI,(ny)-PL,(n;)

T-1
= 3 PPy, by (n), ' (5 Y))pn P ) (14)
t=0

(' (%, Y)(1+ p)ny + by(ny)
Subject to PP, (1, by(ny), 7 (x, ¥)) > 0.

Similarly as in the case of a single premium life policy, Monte Carlo
simulation and optimization technique (written by the authors in Matlab
6.0), the optimum solutions of 1n,*, P,(n;*b,(n,*),n'(x,Y)), ENPV (n;*), and
b,(n;*) are obtained. The next section discusses the numerical results and
the sensitivity analysis.

NUMERICAL RESULTS AND SENSITIVITY ANALYSIS

First, let us illustrate the process by an example. For conciseness of
exposition, we discuss only a single premium term life policy case.
Consider the demand function:

PP(n,b(n), 7 (x,Y)) = AA—Bn—Gb(n)+Fr (x,Y). (15)

The rationality of this consideration is discussed here. First, demand
theory suggests that marginal utility decreases with consumption, and here
we assume demand is a linear decreasing function of price. Second, in the
early 1990s a significant number of U.S. life insurance companies were
unable to meet their obligations and became insolvent (e.g., see Browne et
al., 1999), so the financial strength of insurance companies has become
more of a salient issue in the life insurance transaction. Third, it is clear that
price must be positively related to the expected present value of claim

payment for each exposure unit (rc1 (x,Y)), which is an increasing function
of the initial age of the insured (x) and the maturity time of insurance
contract (Y). Based on optimization techniques, Monte Carlo simulation in
Matlab 6.0, and assumed values (as noted in Table 2), optimal solutions are
shown in Table 2.
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Table 2. Optimal Results with and without Insolvency Risk

K = 024,75 = 007, = 0.05,0 = 0.1

c,=0.03 6, =05
Optimum Optimum
solutions Optimum solutions Optimum
without solutions without solutions

consideration  considering  consideration  considering
of insolvency  insolvency  of insolvency  insolvency

risk risk risk risk
MaxENVP(n%) 212.4891 212.4891 212.4891 111.9641
n* 10308 10308 10308 4084
PP(n*,b(n*), n'(x,Y)) 0.0574 0.0574 0.0574 0.0552
b(n*) - 0 - 36.6580

Assumptions for other parameters:
AA=0075B=2x10% G=0.0004, F=0.1,p=02,x=49,Y=5,dt =1, p,;, =0.5, qy =
0.00612, qs, = 0.00663, qs, = 0.00720, q, = 0.00784, qs, = 0.00857

Table 2 illustrates the observation that when the long run equilibrium
interest rate (u), initial value of short run interest rate (r,), the speed of
adjustment in the mean reverting prices (x), and the standard deviation
of interest rates (o) remain constant, and the standard deviation of accu-
mulated investment (c;) increases, the risk of insolvency will strongly
affect the optimal level of number of policies and prices. Therefore, it is
shown that default risk is an important consideration when determining
the solutions to the optimal number of policies and prices, especially in the
case that ¢, takes on larger values.

In addition, it should be noted that when the insolvency
risk is not considered (let b(n) = 0), an explicit solution can be found
simply by solving the partial differential equation of

A(ENPV(n):b(n) = 0) _ O(n<AA+Fnl(x, Y))
B

3 . The optimal solution is:
n

. AA+ 7' (x, Y)(F=1-p)
n = 2B
— otherwise.

when AA<x'(x,Y)(F+1+p), (16)
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By combining equation (16) with (8) and (15), and letting b(n) = 0, we
can get the optimum solutions

(17)
1
PP(n*, 7' (x, Y)) = Ad+m (% ?(F *14P) whenAA <al(x, Y)(F+1+p),
— otherwise.
(18)

2
[AA+ 7' (x, Y)(E-1-p)]
4B
— otherwise.

ENPV(n*) = when AA<z'(x, Y)(F+1+p),

In the case that AA = 0.075, F=0.1, B=2 x 107, n! = 0.0307, p = 0.20,
the explicit solutions are PP(n*, rcl(x, Y)) = 0.0574, ENPV(n*) = 212.4891,

n* = 10308, consistent with the solutions obtained by optimization tech-
niques shown in Table 2.

The complexity of the optimization problem, when considering insol-
vency risk, does not allow for an explicit solution, but numerical algorithms
can be developed for seeking such solutions (see Appendix 1 for discussion
of finite differentiation, simulation and optimization). The results of these
numerical calculations are shown below.

Table 3, along with Figures 1 to 4, displays the pattern of optimal
expected net present values, ENPV(n*), optimal prices PP(n*,b(n*), n(x,Y)),
and values of the insolvency put option b(n*), with changes in parameters
of the speed of adjustment in the mean reverting prices (x) initial value of
short run interest rate (r)) volatility of accumulated investment (o),
volatility of interest rates (o), long run equilibrium interest level (p), and
age of the insured (y).

Figure 1 shows that the value of the insolvency put option is negatively
related to the initial value of the short run interest rate (r;) and the volatility
of interest rates (o, except when o takes on values less than .09), and
positively related to the long run equilibrium interest level (n, consistent
with Browne, Carson, and Hoyt, 1999), the speed of adjustment in the mean
reverting price («), and the volatility of accumulated investment (o;, con-
sistent with Babbel, Jeremy, and Merrill, 2002).
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Table 3. Optimal Values of Expected Net Present Value, ENPV(1*); Number
of Policies, n* Price of Policies PP(n*b(n*), n'(x,Y)); and Values of
Insolvency Put Option b(n*)

x=49,x=024,r,=0.07,n=0.050=0.1
0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24

MaxENVP(r*) 212.489 212.489 212.844 211.3196 206.477 198.791 189.248 179.045
n* 10308 10308 10168 9960 9546 8992 8348 7668
PP(n*, b(n*), n'(x,Y)) 0.0574 0.0574 0.0577 0.0579 0.0582 0.0584 0.0586 0.0589
b(n*) 0 0 00863 005743 19126 4.1299 6.8007 9.6183

x=49,x=024,r,=0.07, p=0.05,6 =0.2
0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24

Ic\vluxEN VP(n*) 194.149 192.266 192.578 196.099 202.130 209.771 215.853 222.511
n* 8146 8422 8620 8816 8964 9266 9348 9584
PP(n*, b(n*), n'(x,Y)) 0.0600 0.0589 0.0585 0.0584 0.0583 0.0582 0.0581 0.0580
b(n*) 43204 5.7134 59165 5.0325 4.0970 3.1615 2.6064 1.8980
x=49,06,=02,7,=0.07, p=0.05,6=0.1
K 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24
MaxENVP(n*) 203.133 202.218 199.800 196.876 195.383 194.687 192.870 192.458
n* 8742 8742 8748 8722 8686 8656 8644 8632
PP(n*, b(n*), n'(x,Y)) 0.0583 0.0583 0.0583 0.0583 0.0583 0.0583 0.0583 0.0583
b(n*) 55141 5.6077 5.7292 5.8934 59505 5.9703 6.0043 6.1095
x=49,x=024,06,=02,1=0.050=0.1
7, 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
MaxENVP(n*) 167.359 172.241 176.162 180.609 184.393 188.829 192.458 196.480
n* 7550 7780 7964 8110 8302 8466 8632 8816
PP(n*, b(n*), n'(x,Y)) 0.0595 0.0593 0.0591 0.0590 0.0588 0.0586 0.0584 0.0582
b(n*) 8.9675 8.4508 7.9340 7.4546 6.9751 6.3606 6.0382 5.6151

x=49,x=024,1,=007,0,=02,06=0.1

n 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
MaxENVP(n*) 169.720 174.428 179.522 185.656 192.458 199.830 206.734 214.247
n* 8276 8324 8462 8558 8632 8892 9124 9392
PP(n*, b(n*), n'(x,Y)) 0.0599 0.0595 0.0591 0.0587 0.0582 0.0578 0.0573 0.0567
b(n*) 4.6834 5.3654 5.6857 6.0059 6.0382 6.0792 6.1202 6.2472
6,=02,xk=024,7,=0.07,n=0.050=0.1

X 39 41 43 45 47 49 51 53
MaxENVP(n*) 443917 403.402 358.665 309.256 254.751 192.458 130.412 74.198
n* 14644 14068 12900 11924 10644 8632 6523 4684
PP(n*, b(n*), n'(x,Y)) 0.0470 0.0483 0.0507 0.0526 0.0549 0.0584 0.0624 0.0653
b(n*) 0.1734 0.4924 1.0036 2.819 3.6308 6.0382 8.8757 11.7133

Other parameters: AA =0.075,B =2 X 107, G = 0.0004, F = 0.10, p=02,Y=5p,,=05
dt = 1, mortality data (1980 CSO).
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Y=5,dt=1,p,,=0.5,and q,y=0.00612, g5, = 0.00663, q5, = 0.00720, q5, = 0.00784, g5, = .00857

Fig. 1.3 Values of Insolvency Put Option b(n*) versus Parameters of k, 1, 1, 5, o,
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Assumptions for Figure 2 are: AA = 0.075, B =2 x 107, G =0.0004, F = 0.1, p=02,x=49,
Y=5,dt=1,p,,=0.5and q, =0.00612, g5, = 0.00663, g5, = 0.00720, g5, = 0.00784, qs5 = .00857

Fig. 2. Optimal Prices PP(n*b(n*), n!(x,Y)) versus Parameters of k, o, W, O, Oy

From Figure 2 we observe that optimal price is most sensitive and
negatively related to the long run equilibrium interest level (u), which
ranges from 0.0599 (when p =0.01) to 0.0567 (when p = 0.08). Optimal price
also is negatively related to the volatility of interest rates () and the initial
value of short run interest rate (r() . Optimal price is positively related to
the volatility of accumulated investment (o) . Findings also suggest that
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Assumptions for Figure 3 are: AA = 0.075, B =2 x 10, G =0.0004, F = 0.1, p=02,x=49,Y
=5,dt=1,p,,=0.5,and q, = 0.00612, g5, = 0.00663, q5; = 0.00720, g5, = 0.00784, qs, = .00857

Fig. 3. Optimal Expected Net Present Values ENPV(n*) versus Parameters of , r, [, 6, 5,

optimal prices are insensitive to the change in the speed of adjustment in
the mean reverting prices (k).

From Figure 3 we observe that optimal net present value is negatively
related to the speed of adjustment in the mean reverting prices (k) and
volatility of accumulated investment (o), and positively related to the
volatility of interestrates (¢) (when ¢ > 0.06 ), long run equilibrium interest
level (p), and the initial value of the short run interest rate (r,).

Figure 4 indicates that the age of the insured has a positive influence
on optimal prices and values of insolvency put option and has a negative
influence on optimal expected net present values. The value of insolvency
put option is highly sensitive to the change of age of the insured, and the
sensitivity rises with the increase of age of the insured (see Appendix 2 for
the proof of continuity of Figure 1 to Figure 4).

Table 4 lists the numerical results to demonstrate the influence of values
of the insolvency put option on the benefits of the insurer and the insured.
We examine the volatility of accumulated investment (o), which is most
sensitive to the change in values of put option, and set it at three different
levels (0.03, 0.5, 0.8) to see the corresponding changes in the values of the
insolvency put option, expected net present values, price, and liability.

From Table 4 we see that when the volatility of the accumulated
investments, o, increases, the value of the insolvency put option, b(n*),
also increases. At the same time, both the expected net present value and
the value of liability decrease. Looking further, as the values of liability for
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Assumptions for Figure 4 are: AA = 0.075, B = 2 x 107, G = 0.0004, F = 0.1, p=02,n=0050c
=01,0,=02,x=39-53,Y =5, r,=0.07, x = 0.24, dt = 1, and mortality data are from the 1980

CSO Table.

Fig. 4. Optimal Expected Net Present Values (ENPV(n*)), Prices PP(n*b(n*), n'(x,Y)), and
Values of Insolvency Put Option(b(n*)) versus Age of the Insured (x)

the insurer (and insured) decrease, the insolvency put option moves from
being far out of the money to being much in the money.

Table 4. Relationship of Values of Insolvency Put Option

on Benefits of the Insurer and the Insured

oy Case 1 (0.03) Case 2 (0.5) Case 3 (0.8)
MaxENPV (n*) 212.4891 111.9641 91.3571
n* 10308 4084 2584
PP(n*, b(n*), x, (x, Y)) 0.0574 0.0552 0.0496
Ttl, (x,Y) 0.0307 0.0307 0.0307
b(n*) 0 36.6580 58.1364
The values of liability 379.7467 113.7466 37.0582
The values of liability for each 0.03684 0.02785 0.01434

life contract

Assumptions for Table 4 are: AA=0.075, B =2 x 107, G =0.0004, F = 0.1, p=02,x=49,
Y=5dt=1,x=024,r,=0.07,u=0.0506=0.1,p,,=0.5,and g,y = 0.00612, q5, = 0.00663,
gs; = 0.00720, g5, = 0.00784, q5; = .00857
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CONCLUSIONS

The foregoing analysis combined economic, financial, and actuarial
approaches in the pricing of single premium and level premium term life
insurance. Stochastic control models were developed to maximize the
expected net present value of insurer profit considering supply and
demand, and risks associated with investments, mortality, interest, and
insolvency. Optimal prices were obtained by solving objective functions
with optimization techniques and Monte Carlo simulation. The Cox,
Ingersoll, Ross (1985) financial valuation model was used in order to
calculate expected claim payment and values of insolvency put options.
The analysis of the effects of interest rates and other parameters indicates
that optimal prices generally are most sensitive to changes in the long run
equilibrium interest rate (n). In addition, the age of the insured (x),
volatility of interest rate (o), and volatility of accumulated investment
(1) have strong influence on the value of the insolvency option, especially
when they take on larger values. Future research combining economic and
actuarial aspects could focus on the pricing of life insurance products such
as those with minimum guaranteed returns and annuities, as well as
investigating the feasibility of applying these methods in practice. Finally,
when determining prices of insurance products, many factors must be
considered, including overall business strategy, the dynamics of the
marketplace, moral hazard, and adverse selection resulting from informa-
tion asymmetries.

APPENDIX 1

1. The calculation of Tl',l
Let the time horizon Y be divided into time intervals s of constant
length, then,

1.9 B(tpr s B(t)r
Ta Y Alte ‘Af (L) = D Altpe ‘Aleer o (19
i=1 i=1

where ,q. . - indicates the probability that the insured will die between

ages x+t;_; and x +t; given that he is alive at age x, and At = t,—t; ;.
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Tt T K(“_rt,,At)At+G /rtiiAtsljﬂL (20)

rf,' = rti_N+ K(u—rti_M)At+ c /rti_Aralﬁ, i=1,2,...s,

Dti - Dti—At * rti—AtDti—AtAt * GlDti—AtSZm’
i—-1
= D, Z(1+rtiAt+clsJA—if) ,i=1,2,..5 (21)
j=0

where & = ¢, &, = P1,2¢1+ m’

and ¢,, ¢, have the standard and independent normal distributions.

Do simulation of M runs and generate at least 2 xs independent
random numbers of standard normal distribution for each simulation run.
They are then substituted into the discrete equations (20) and (21).

By combining equations of (20) with (19) repeatedly for M runs to

M (M)
calculate the values of rgl)... rgM),i =1,2,.. s;rc1 . n' and letting

1 TCl(l)+ .. +7Il(M)

no= M , (22)

we can get the values of .
2. The calculation of b(n)

S —B(t;
b(n)~E° 3 Ate SRV
i=1

t.

1

0 S -B(t)r,
= E ZA(tz-)e [max(th_—Dti),O—max((Xti_l —Dtl__l),O)] (23)
i=1
When Dy, = (AA -Bn—Gb(n)+ Fr' (x, Y)n,

i—1
D, = [AA-Bn-Gb(n)+ Fr'(x, Y)ln z (147, At+ c1En/AL).
j=0
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Equation (23) becomes

t)r
[maxt‘qx +n(l+p)-
j

b(n) - E2 Zs: A(ti)e_B(

i=1

i-1
(AA —Bn - Gb(n) + Fr(x, Y))n 3 (1, At+oe/AN)0]  (24)
]
=0

_max[tjiqun(l +p)—(AA—Bn—Gb(n) + Fn'(x, Y))

i—1
nz (1+ rtj_lAt+ 51€4/A1)),01]F = 0
j=0

By iterative approximation calculation, we find that the iterative val-
ues of b(n) are convergent. Therefore, b(n) has a unique solution. Table 5
lists iterative (10 times) results setting AA = 0.075, B = 2 x 107, G = 0.0004,
F=01,p=02,x=49,Y=5,dt=1,«=024,1r,=0.07,,=0.05,6=0.1, o, =
0.2, p;, = 0.5. Results are based on the same 1,000,000 simulation runs.

Table 5. Numerical Calculation Results of b(n)

b(n)” b(n)® bn)® b(n)® b(n)® b(n)®
0 6.3239 6.1137 6.0072 6.0027 6.0128

b(n)© b(n)? b(n)® b(n)® bn)™

6.0701 6.0391 6.0189 6.0167 6.0382

3. The optimization
The process of optimization is described below:

When PP(n, b(n), ©'(x,Y)) = AA—Bn—Gb(n)+ Fr'(x,Y) and b(n) =
0, the constrain condition for objective function Max ENPV(n) becomes

1
AA-Bn+ Fnl(x, Y)>0, or n <W. While it is easily known
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from equation (6) that b(n) >0 (the integrand and dH, are larger than or
equal to 0 and Y > 0), and the upper boundary limit of # for MaxENPV (n)

is less than or equal to

1
IiA—Jr—Pg—QCJ—) , a search procedure is employed to

locate optimum solution n*, which satisfies constraint

AA + Fr'(x, Y))
B

AA-Bn+Gb(n)+ Frcl(x, Y) >0 in the interval of (0, for n.

APPENDIX 2

The proof of continuity of equation (6):
Equation (6) can be written as:

Y
b(n) = E9 IA(t)e_B(t)r

0

dmax(,q,n(1+p)—-D,,0) (25)

~B(t)r

Y
- jA(t)e dEQ[max(,q,n(1+p)-D,, 0)].
0

From equation (25), we can know that the first term of the integrand

of b(n)— A(t)efB(t)r—is a continuous function,

(k+7)t/2-2kn/c>
where A(t) = [2«/6 0 } g
206" = 1)
B(t) = ——=
® g(t)

g(t) = 27+ (k+ )’ = 1)

Yy = VK2 + 267
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Let R = ,g,.n(1+p)-D,, then

Q
dEQ[max(thn(1+p)_Dt,0)] - ‘wdt'

Q
dE~(D
( t)dt}

Q d-Q
when R >0, dE~max(R, 0) = Zi—tE {thn(l +p)dt — T

1
= f(Hn(1+p)dt + EQ(rDtdt - cht‘%dt)

<f.(n(1+ pydt + E2rD,dt) - JE%o, D)’ /%EQ(wl)zdt.

Since the variance of standard Wiener process DQ(wl) = t,the expectation

of standard Wiener process EQ(wl) = 0and

1.2

2
EQw" = D!y - [EQ@h)] = ¢,

2
dE%max(R, 0) <f,(tyn(1 + p)dt + EX(rD,)dt - [E%(s,D,)? %EQ(wl) dt

= f(n(1+pydt+ ES(rDat - [E96 D it

When R < 0, dE¢max(R,0) = 0.
Therefore dE9 max(R,0) is differentiable and continuous. And since

A(t)e_B(t)r is also continuous, b(n) is a continuous function.
While the price of the life insurance contract and the expected net

present value are functions of b(n) and nl(x, Y),and nl(x, Y) is a continu-

ous function, ENPV(n) and PP(n, b(n), nl, (x,Y)) also are continuous

functions.
Therefore, we can derive their graphs from a selected discrete set of
points at which calculations for Figure 1 through Figure 4 were performed.
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ENDNOTES

!In the Vasicek (1977) and Langetieg (1980) models (see also Yao, 1999), interest rates are nor-
mally distributed and there is a positive probability of negative interest rates (which implies
arbitrage opportunities). These two models are not used in our analysis.

>The put option is often called the insolvency put because it is exercised only if the firm is
insolvent (Cummins, 1991).

*For Figure 1 through Figure 4, the functions are continuous, and numerical experiments sug-
gest monotonicity. Figures are shown to illustrate the results of the methods developed here,
and are based on assumptions believed to be reasonable.
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