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PRICING OF ZERO-COUPON AND COUPON CAT BONDS

Abstract. We apply the results of Baryshnikov, Mayo and Taylor (1998)
to calculate non-arbitrage prices of a zero-coupon and coupon CAT bond.
First, we derive pricing formulae in the compound doubly stochastic Poisson
model framework. Next, we study 10-year catastrophe loss data provided
by Property Claim Services and calibrate the pricing model. Finally, we
illustrate the values of the CAT bonds tied to the loss data.

1. Introduction. Catastrophe bonds, also called “CAT bonds”, are
insurance-linked securities that enable insurers to transfer the risk of natural
disasters like earthquakes or hurricanes to capital markets. They are sold
to large institutions. A financial intermediary, a reinsurance company or an
investment bank, issues a bond to a particular insurable event like e.g. Los
Angeles earthquake. The proceeds from the sale are put into a collateral
account. If there is no earthquake, investors are paid generous interest rate,
but if the earthquake occurs and the claims exceed a specified amount,
investors sacrifice fully or partially their principal and interest.

For insurers the deals create a pool of money that can be tapped imme-
diately into a disaster. CAT bonds appeal to professional money managers
because catastrophe risk is a new asset class that is uncorrelated with stocks
and traditional bonds. They are growing in importance also because insur-
ance capacities worldwide have been severely reduced by the events of 11
September 2001.

In the article of Baryshnikov et al. (1998) the authors presented an
arbitrage-free solution to the pricing of CAT bonds under conditions of
continuous trading. They modelled the stochastic process underlying the
CAT bond as a compound doubly stochastic Poisson process. In Section 2
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we apply their results to calculate non-arbitrage prices of a zero-coupon and
coupon CAT bond. In Section 3 we study 10-year catastrophe loss data pro-
vided by Property Claim Services (PCS). We find a distribution function
which fits the observed claims in a satisfactory manner and estimate the
intensity of the Poisson process governing the flow of the natural events. In
Section 4 we illustrate the values of the CAT bonds associated with the loss
data with respect to the threshold level and maturity time. To this end we
apply Monte Carlo simulations.

2. Compound doubly stochastic Poisson pricing model. The
CAT bond price process Vt, t ∈ [0, T ], is modelled by many factors: type
of region, kind of loss event, sort of insured property etc. Baryshnikov et
al. (1998) describe the bond by means of the aggregate loss process Lt and
the trigger value D. Set a probability space (Ω,F ,Ft, ν) and an increasing
filtration F t ⊂ F , t ∈ [0, T ]. The CAT bond is well characterized by:

• A doubly stochastic Poisson process (see Bremaud 1981)Ms (s ∈ [0, T ])
describing the flow of natural events of a given type in the region. The
intensity of this process is assumed to be a predictable bounded process ms.
• The losses {Xi}i∈N, which are independent and identically distributed

with F (x) = P{Xi < x}. Moreover, X and M are independent.
• The aggregate loss process Lt =

∑Mt
i=1Xi.

• A pogressive process of discounting rates r. We assume the process is
continuous a.e. This process describes the value at time s of USD 1 paid at
time t > s by

exp(−R(s, t)) = exp
(
−
t�

s

r(ξ) dξ
)
.

• The maturity time T and threshold level D.
• The threshold time τ = inf{t : Lt ≥ D}, which is the moment when

the aggregated loss Lt exceeds the value D.
• In the case of a zero-coupon bond: payment of a certain (random)

amount Z at maturity time T contingent on threshold time τ > T .
• In the case of a coupon bond: payment of the principal (face value) at

maturity time T contingent on threshold time τ > T and coupon payments
Ct which stop immediately at τ (in general a process which is predictable
and continuous on [0, T ]).

Now define a new process Nt = 1{Lt≥D}. Baryshnikov et al. (1998) in
Proposition 2 show that this is also a doubly stochastic Poisson process with
the intensity

λs = ms(1− F (D − Ls))1{Ls<D}.(1)
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Let us consider a bond with the payment of a certain amount Z at
maturity time T contingent on threshold time τ > T , which is in fact a
zero-coupon CAT bond. Define the process Zs = E(Z | Fs). The condition
required is that Zs is a predictable process, which can be interpreted to mean
that the payment at maturity is not directly linked to the occurrence and
timing of the threshold. The amount Z can be e.g. the principal plus interest
which is usually defined as a fixed percentage over LIBOR. We obtain the
following result.

Theorem 2.1. The non-arbitrage price of the zero-coupon CAT bond as-
sociated with the threshold D, the catastrophic flow Ms, and the distribution
function F of the incurred losses, paying Z at maturity , is given by

Vt = E
(
Zte
−R(t,T )

[
1−

T�

t

ms[1− F (D − Ls)]1{Ls<D} ds
] ∣∣∣Ft

)
.

Proof. Clearly the price of a CAT bond paying Z at maturity at time
t < τ is

Vt = E(Ze−R(t,T )(1−NT ) | Ft).
Representing NT as � Tt dNs one arrives at the expression

Vt = E
(
Ze−R(t,T )

(
1−

T�

t

dNs

) ∣∣∣Ft
)
.

From the definition of a doubly stochastic Poisson process (see Bremaud,
1981) we have

Vt = E
(
Ze−R(t,T )

(
1−

T�

t

λs ds
) ∣∣∣Ft

)
.

Now we apply (1) to get the assertion.

We note that Baryshnikov et al. (1998) in p. 3.2 of their article presented
a price of the threshold bond paying Z at maturity, which corresponds to
the case of the zero-coupon CAT bond, but their formula is incorrect.

Now, we consider a CAT bond with only coupon payments Ct which
stop immediately at τ . The following theorem gives the fair CAT bond price
formula for such a bond.

Theorem 2.2. The non-arbitrage price of the CAT bond associated with
the threshold D, the catastrophic flow Ms, and the distribution function F
of the incurred losses, with coupon payments Cs which cease at threshold
time τ , is given by

Vt = E
( T�

t

e−R(t,s)Cs

[
1−

s�

t

mξ[1− F (D − Lξ)]1{Lξ<D} dξ
]
ds
∣∣∣Ft
)
.
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Proof. It is easy to see that the price of a CAT bond with coupon pay-
ments Ct to the threshold event τ is

Vt = E
(T�

t

e−R(t,s)Cs(1−Ns) ds
∣∣∣Ft
)
.(2)

Repeating the steps as in the proof of Theorem 2.1 we obtain the conclus-
sion.

We note that Baryshnikov et al. (1998) (p. 3.2) studied the case of coupon
payments Ps on the threshold bond, which corresponds to the above case.
In the proof of Theorem 2.2 we just apply their starting formula which can
be rewritten as (2). We also remark that, unfortunately, they further use
integration by parts incorrectly.

Finally, we combine Theorems 2.2 and 2.1 with Z = face value (FV) in
order to obtain the following fair price for the coupon CAT bond.

Corollary 2.1. The non-arbitrage price of the coupon CAT bond asso-
ciated with the threshold D, the catastrophic flow Ms, the distribution func-
tion F of the incurred losses, paying FV at maturity , and coupon payments
Cs which cease at threshold time τ , is given by

Vt = E
(

FV e−R(t,T ) +
T�

t

e−R(t,s)
[
Cs

(
1−

s�

t

mξ[1− F (D − Lξ)]1{Lξ<D} dξ
)

−FV e−R(s,T )ms[1− F (D − Ls)]1{Ls<D}
]
ds
∣∣∣Ft
)
.

In the foregoing cases (see Theorem 2.1 and Corollary 2.1) we assumed
that in the case of the trigger event the principal is fully lost. However, if
we would like to incorporate a partial loss in the contract it is just enough
to multiply Z by a proper constant.

3. Calibration of the pricing model. We conducted empirical studies
for data obtained from Property Claim Services. The data (see Figure 1)
concern the US market’s loss amounts in USD, which occurred between
1990 and 1999 and were adjusted using the discount window borrowing rate
(the discount rate refers to the simple interest rate at which depository
institutions borrow from the Federal Reserve Bank of New York). Only
natural perils like hurricane, tropical storm, wind, flooding, hail, tornado,
snow, freezing, fire, ice and earthquake which caused damages exceeding
USD 5 m were taken into consideration. We notice that peaks in Figure 1
mark the occurrence of Hurricane Andrew (24 August 1992) and Northridge
Earthquake (17 January 1994).

In order to calibrate the pricing model we have to fit both the distribution
function of the incurred losses F and the process Mt governing the flow of



Pricing of zero-coupon and coupon cat bonds 319

natural events. We commence with the presentation of typical claim size
distributions.
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Fig. 1. Illustration of the PCS catastrophe loss data, 1990–1999

3.1. Claim amount distributions. The claim distributions, especially de-
scribing property losses, are usually heavy-tailed. In the actuarial literature,
to describe such claims continuous distributions are often proposed (with
the domain R+):

• lognormal distribution, with the distribution function (d.f.) given by

F (x) = Φ

(
lnx− µ

σ

)
=

x�

0

1√
2π σy

e−
1
2 ( ln y−µ

σ
)2
dy, x > 0, σ > 0, µ ∈ R,

where Φ(x) is the standard normal (with mean 0 and variance 1) d.f.;
• Pareto distribution, with the d.f.

F (x) = 1−
(

λ

λ+ x

)α
, x > 0, α > 0, λ > 0;

• Burr distribution, with the d.f.

F (x) = 1−
(

λ

λ+ xτ

)α
, x > 0, α > 0, λ > 0, τ > 0;
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• gamma distribution, with the d.f.

F (x) =
x�

0

1
Γ (α)βα

yα−1e−y/β dy, x > 0, α > 0, β > 0.

The choice of the distribution is very important because it influences the
bond price.

3.2. Non-parametric tests. The derivation of claim size distributions
from the loss data could be considered to be a separate discipline, which re-
quires applying methods of mathematical statistics (cf. Daykin et al. 1994).
The objective is to find a distribution function F which fits the observed
data in a satisfactory manner. The approach most frequently adopted in
the actuarial literature is to find a suitable analytic expression which fits
the observed data well and which is easy to handle (see e.g. Burnecki et al.
2000).

Once the distribution is selected, we must obtain parameter estimates.
In what follows we use the moment and maximum likelihood estimation.
The next step is to test whether the fit is adequate. This is usually done by
comparing the fitted and empirical distribution functions, more precisely, by
checking whether values of the fitted distribution function at sample points
form a uniform distribution (cf. D’Agostino and Stephens 1986). To this end
we apply the well known and not so well known non-parametric tests, namely
χ2, Kolmogorov–Smirnov (KS), Cramer–von Mises (CM) and Anderson–
Darling (AD), verifying the hypothesis of uniformity (see e.g. Kukla 2000).

A very natural and well known test is the χ2 statistic

χ2
k = k

k∑

i=1

(ni − n/k)2

n
,

where n is the overall number of observations and ni is the number of ob-
servations which fall into the interval [(i−1)/k, i/k]. χ2

k has an approximate
chi-square distribution with k− 1 degrees of freedom. In general, the better
the fit, the smaller χ2

k. This test becomes more discriminating as the sample
size becomes larger.

Another classical measure of fit is the Kolmogorov–Smirnov statistic

Dn = sup
x∈R
|F̂ (x)− F (x)|,

where the empirical d.f. is defined as

F̂ (x) =
1
n

n∑

i=1

1{xi≤x}.

The statistic Dn measures the distance between the empirical and fitted d.f.
in the supremum norm.
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The other two tests we apply are the Cramer–von Mises and Anderson–
Darling tests. The former uses the statistic

Cn = n

∞�

−∞
(F̂ (x)− F (x))2 dF (x)

while the latter (considered to be the best within the class of tests based on
empirical d.f.) uses

AD = n

∞�

−∞

(F̂ (x)− F (x))2

F (x)(1− F (x))
dF (x).

In order to interpret the results of the tests we compare them with the
corresponding critical values Cα (for the same significance level α). When
the value of the test is less than the corresponding Cα we accept the fit as
adequate (there is no reason to reject the null hypothesis). The critical values
Cα of the tests given a significance level α (e.g. α = 0.05) can be found in
the literature (see e.g. D’Agostino and Stephens 1986, and Stephens 1974).

3.3. Results of the fit procedure. First we studied the loss amounts. Dis-
tributions were fitted using the moment and maximum likelihood estimation.
The results of the parameter estimation and test statistics are presented
in Table 1. The lognormal distribution with parameters µ = 18.4406 and
σ = 1.1348 passed all tests (the corresponding test statistics are in boldface),
so we chose it for further analysis.

Table 1. Parameter estimates and test statistics for the catastrophe loss amounts

Distributions: lognormal Pareto Burr gamma

Parameters: µ=18.4406 α=2.3872 α=3.8830 α=0.9796

σ=1.1348 λ=3.0320e+8 λ=1.0891e+5 β=1.6348e+8

τ=0.5407

Test values (in brackets critical values for α = 0.05):

χ2 (31.4104) 31.2105 43.1228 125.4035 63.0175

Dn (0.0729) 0.0494 0.1151 0.2362 0.0960

Cn (0.4608) 0.1839 0.8366 5.4508 0.6895

AD (2.492) 2.0283 6.7282 31.9213 10.3872

Next, we fitted the doubly stochastic Poisson process governing the oc-
currence times of the losses. We started the analysis with the simplest case
assuming the intensity ms is equal to a non-negative constant m. Studies of
the quarterly numbers of losses and the interoccurrence times of the catas-
trophes led to the conclusion that the flow of the events may be described
by the Poisson process with the daily intensity m = 0.095.
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The parameters of the fitted model imply that the expected value of a
daily loss is USD meµ+σ2/2 ∼ USD 19 m.

4. Dynamics of the CAT bond price. In this section we present CAT
bond prices for t = 0 days, namely V0. To this end we apply the appropriate
formulae and Monte Carlo simulations. We assume for illustration purposes
that the continuous discount rate r equivalent to LIBOR = 2.5% is constant
and equal to ln(1.025), T ∈ [90, 720] days,D ∈ USD [1.71, 8.55] bn (quarterly
to 5∗quarterly average loss) and the principal is USD 1.

Furthermore, in the case of the zero-coupon CAT bond we assume that
the bond is priced at 3.5% over LIBOR. If there is no trigger event, the
total yield is hence 6% and we put Z = USD 1.06. Figure 2 depicts the zero-
coupon CAT bond values with respect to the threshold level and expiration
time (cf. Theorem 2.1). We can see that the greater the expiration time,
the lower the CAT bond value, and increasing the threshold level leads to
greater prices. When T = 90 days and D = USD 8.55 bn the CAT bond price
approaches the value USD 1.06e− ln(1.025)/4 ∼ USD 1.053, which corresponds
to the situation when τ ≥ T w.p.1.
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Fig. 2. The zero-coupon CAT bond price with respect to the threshold level and expiration
time

Before we present the case of the coupon bond, we concentrate on the
bond paying only coupons (cf. Theorem 2.2). We assume Ct ≡ 0.06. The
values of V0 are depicted in Figure 3. We clearly see that now the situation
is quite different, namely the price increases when the expiration time and
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threshold level are greater. When D = USD 8.55 bn and T = 720 days the
price of the bond approaches USD 0.06 � 720

0 e− ln(1.025)t/360 dt ∼ USD 0.08,
which corresponds to the situation when τ ≥ T w.p.1.
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Fig. 3. The CAT bond price, for the bond paying only coupons, with respect to the
threshold level and expiration time
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Fig. 4. The coupon CAT bond price with respect to the threshold level and expiration
time
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Finally, we consider the case of the coupon CAT bond. We assume as
previously that Ct ≡ 0.06. We can see the CAT bond prices in Figure 4.
The influence of the threshold level D on the bond value is clear as in the
cases discussed above but the effect of changing the expiration time T is not
straightforward. As T gets bigger the chance of receiving more coupons is
greater but at the same time the possibility of loosing the principal of the
bond increases. In our case (see Figure 4) the price decreases with respect to
the expiration time but this does not have to be always true. We also notice
that the bond prices in Figure 4 are lower than the corresponding ones in
Figure 2, but we must remember that in the latter case Z = USD 1.06 and
now we have Z = USD 1 (cf. Corollary 2.1).
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