
HAL Id: hal-01983115
https://hal.univ-grenoble-alpes.fr/hal-01983115v2

Submitted on 7 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pricing path-dependent Bermudan options using Wiener
chaos expansion: an embarrassingly parallel approach

Jérôme Lelong

To cite this version:
Jérôme Lelong. Pricing path-dependent Bermudan options using Wiener chaos expansion: an em-
barrassingly parallel approach. The Journal of Computational Finance, Incisive Media, 2020, 24 (2),
pp.1-31. �10.21314/JCF.2020.394�. �hal-01983115v2�

https://hal.univ-grenoble-alpes.fr/hal-01983115v2
https://hal.archives-ouvertes.fr

Pricing path-dependent Bermudan options using
Wiener chaos expansion: an embarrassingly parallel

approach∗

Jérôme Lelong †

July 7, 2020

Abstract

In this work, we propose a new policy iteration algorithm for pricing Bermudan options
when the payoff process cannot be written as a function of a lifted Markov process. Our ap-
proach is based on a modification of the well-known Longstaff Schwartz algorithm, in which
we basically replace the standard least square regression by a Wiener chaos expansion. Not
only does it allow us to deal with a non Markovian setting, but it also breaks the bottleneck
induced by the least square regression as the coefficients of the chaos expansion are given
by scalar products on the L2(Ω) space and can therefore be approximated by independent
Monte Carlo computations. This key feature enables us to propose an embarrassingly paral-
lel algorithm to efficiently handle non Markovian payoff.
Key words: path-dependent Bermudan options, optimal stopping, regression methods, high
performance computing, Wiener chaos expansion.

AMS subject classification: 62L20, 62L15, 91G60, 65Y05, 60H07

1 Introduction
We fix some finite time horizon T > 0 and a filtered probability space (Ω,F , (Ft)0≤t≤T ,P),
where (Ft)0≤t≤T is supposed to be the natural augmented filtration of a d−dimensional Brownian
motion B. On this space, we consider an adapted process (St)0≤t≤T with values in Rd′ modeling
a d′–dimensional underlying asset, with d′ ≤ d. The number of assets d′ can be strictly smaller
than the dimension d of the Brownian motion to encompass the case of stochastic volatility
∗The High Performance Computations presented in this paper were performed using the Froggy platform of the

CIMENT infrastructure (https://ciment.ujf-grenoble.fr), which is supported by the Rhône-Alpes region (GRANT
CPER07_13 CIRA) and the Equip@Meso project (reference ANR-10-EQPX-29-01) of the programme Investisse-
ments d’Avenir supervised by the Agence Nationale pour la Recherche.
†Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France.

email: jerome.lelong@univ-grenoble-alpes.fr

1

models or stochastic interest rates. We assume that P is a risk neutral measure. We consider a
Bermudan option with exercising dates 0 = t0 ≤ T1 < T2 < · · · < TN = T and discounted
payoff ZTk if exercised at time Tk. We assume that the discrete time payoff process (ZTk)0≤k≤N
is adapted to the filtration (FTk)0≤k≤N and satisfies max0≤k≤N |ZTk | ∈ L2. This framework
naturally encompasses the case of path-dependent options, ie. when the payoff process writes
Z̃Tk = φk((Su; 0 ≤ u ≤ Tk)) for any 0 ≤ k ≤ N .

Standard arbitrage pricing theory defines the discounted value of the Bermudan option at
times (Tk)0≤kN by {

UTN = ZTN
UTk = max

(
ZTk ,E[UTk+1

|FTk]
) (1)

Solving this backward recursion known as the dynamic programming principle has been a chal-
lenging problem for years and various approaches have been proposed to approximate its solu-
tion. The real difficulty lies in the computation of the conditional expectation E[UTk+1

|FTk] at
each time step of the recursion. If we were to classify the different approaches, we could say that
there are regression based approaches (see Carriere [1996], Tsitsiklis and Roy [2001] and quan-
tization approaches (see Bally and Pages [2003], Bronstein et al. [2013]). We refer to Bouchard
and Warin [2012] and Pagès [2018] for a survey of the different techniques to price Bermudan
options.

Among all the available algorithms to compute U using the dynamic programming principle,
the one proposed by Longstaff and Schwartz [2001] has the favour of practitioners. Their ap-
proach is based on iteratively selecting the optimal policy. Let τk be the smallest optimal policy
after time Tk, then{

τN = TN

τk = Tk1{ZTk≥E[Zτk+1
|FTk]} + τk+11{ZTk<E[Zτk+1

|FTk]}, for 1 ≤ k ≤ N − 1
(2)

All these methods based on the dynamic programming principle either as value iteration (1)
or policy iteration (2) require a Markovian setting to be implemented such that the conditional
expectation knowing the whole past can be replaced by the conditional expectation knowing only
the value of a Markov process at the current date. The theory of the Snell envelope states that the
sequence U also satisfies

UTk = sup
τ∈TTk,T

E[Zτ |FTk]. (3)

When the discounted payoff process writes ZTk = φk(XTk), for any 0 ≤ k ≤ N , where
(Xt)0≤t≤T is an adapted Markov process, the conditional expectation involved in (2) simplifies
into

E[Zτk+1
|FTk] = E[Zτk+1

|XTk] = ψk(XTk) (4)

where ψk solves the following minimization problem

inf
ψ∈L2(L(XTk))

E
[∣∣Zτk+1

− ψ(XTk)
∣∣2]

2

with L2(L(XTk)) being the set of all measurable functions f such that E[f(XTk)
2] < ∞. The

real challenge comes from properly approximating the space L2(L(XTk)) by a finite
dimensional vector space: one typically uses polynomials or local bases. In both cases, to
ensure a decent accuracy, the dimension of the approximation of L2(L(XTk)) increases
exponentially fast with the dimension of X . When X is a high dimensional process, high
performance computing can help but it is well known that solving the least square problem does
not scale well and then deteriorates the efficiency of the parallel implementation, see for
instance Pagès and Wilbertz [2011], Pagès et al. [2016].

In this work, we target truly path dependent options, i.e. options for which the payoff cannot
be written as a function of a Markov process X with reasonable size. In this case, (4) does not
hold anymore and computing the conditional expectation knowing Ftk becomes really challeng-
ing. The new idea proposed in this work consists in computing an approximation of ZTk+1

for
which the conditional expectation knowing FTk is known in a closed form. This will be achieved
by using Wiener chaos expansion. Then, we rely on the orthogonality of the chaos expansion to
introduce a high degree of parallelism in the algorithm.

In Section 2, we briefly recall the general ideas sustaining Wiener chaos expansion and how it
can be used to approximate conditional expectations. Then, we present our algorithm in Section 3
and explain how to efficiently implement it in parallel. Section 4 is devoted to the study of the
convergence of the algorithm. We conclude with some numerical experiments in Section 5,
which emphasize the impressive scalability of the the parallel implementation and the efficiency
of the algorithm for some complex path dependent options.

Notation
In this section, we gather some extensively used notation in the paper

• For α ∈ Nd, |α|1 =
∑d

i=1 αi. Similarly, for α ∈ (Nn)d, |α|1 =
∑d

j=1

∑n
i=1 α

j
i .

• For α ∈ Nd, α! =
∏d

i=1 αi!. Similarly, for α ∈ (Nn)d, α! =
∏d

j=1

∏n
i=1 α

j
i !.

• For d, n, p ∈ N, we define the set of multi-indices with total degree smaller than p by

A⊗dp,n =
{
α ∈ (Nn)d : |α|1 ≤ p

}
• For d, n, p ∈ N, and k ≤ n we define the set of multi-indices with total degree smaller than
p and no degree after k by

A⊗dp,n|k =
{
α ∈ A⊗dp,n : ∀j ∈ {1, . . . , d}, ∀i > k, αji = 0

}
.

• For i ∈ N, Hi denote the i− th Hermite polynomial.

• For α ∈ (Nn)d, x1, . . . , xn ∈ Rd, the multi-variate Hermite polynomials write

H⊗dα (x1, . . . , xn) =
d∏
j=1

n∏
i=1

Hαji
(xji).

3

2 Wiener chaos expansion

2.1 General framework
In this section, we briefly recall the principles of Wiener chaos expansion and its basic
properties. We refer to Nualart [1998] for theoretical details.

Let Hi be the i− th Hermite polynomial defined by

H0(x) = 1; Hi(x) = (−1)i ex
2/2 di

dxi
(e−x

2/2), for i ≥ 1.

They satisfy for all integer i, H ′i = Hi−1 with the convention H−1 = 0. We recall that if (X, Y)
is a standard random normal vector in R2, E[Hi(X)Hj(Y)] = i! (E[XY])i 1{i=j}.

It is well-known that every square integrable FT -measurable random variable F admits the
following orthonormal decomposition

F = E[F] +
∑

α∈(NN)d

λα

d∏
j=1

∏
i≥1

Hαji

(∫ T

0

ηji (t)dB
j
t

)
where

(
(ηji)1≤j≤d

)
i≥1

is an orthonormal basis of L2([0, T],Rd). We denote by L2
1([0, T],Rd) the

set of functions f = (f1, . . . , fd) ∈ L2([0, T],Rd) such that for all 1 ≤ i ≤ d,
∫ T

0
f 2
i (t)dt = 1.

For all p ≥ 0, we define the Wiener chaos of order p by

Hp = spanL2(Ω,FT)

{
d∏
j=1

Hpj

(∫ T

0

f jt dB
j
t

)
: f ∈ L2

1([0, T],Rd),
d∑
j=1

pj = p

}
.

We denote the projection of a random variable F ∈ L2(FT) onto
p⊕
`=0

H` by Cp(F). Note that

the spacesH` are orthogonal to each other thanks to the properties of the Hermite polynomials.
Consider the indicator functions of the grid defined by 0 = t0 < t1 < · · · < tn = T with

values in Rd defined by

f ji (t) =
1{]ti−1,ti]}(t)√
ti − ti−1

ej, i = 1, . . . , n, j = 1, . . . , d

where (e1, . . . , ed) denotes the canonical basis of Rd. Based on the definition ofHp, we introduce
the truncated Wiener chaos of order up to p

Cp,n = span
{
H⊗dα (G1, . . . , Gn) : α ∈ (Nn)d, |α|1 ≤ p

}
where

H⊗dα (G1, . . . , Gn) =
d∏
j=1

n∏
i=1

Hαji
(Gj

i) with Gj
i =

Bj
ti −B

j
ti−1√

ti − ti−1

.

From the orthogonality of the Hermite polynomials, we immediately deduce the following
result.

4

Proposition 2.1 Let F be a real valued random variable in L2(Ω,FT ,P). Its L2 projection onto
Cp,n writes

Cp,n(F) =
∑

α∈A⊗dp,n

λαH
⊗d
α (G1, . . . , Gn)

where

A⊗dp,n =
{
α ∈ (Nn)d : |α|1 ≤ p

}
and the coefficients λα are obtained as a dot product

λα =
1

α!
E[FH⊗dα (G1, . . . , Gn)]. (5)

The random variableCp,n(F) is called the truncated chaos expansion of order p of the random
variable F . With an obvious abuse of notation, we write, for λ ∈ RA⊗dp,n ,

Cp,n(λ) =
∑

α∈A⊗dp,n

λαH
⊗d
α (G1, . . . , Gn). (6)

We recall the main result concerning the convergence of the truncated chaos expansion (see
Theorem 1.1.1 and Proposition 1.1.1 of Nualart [1998])

Proposition 2.2 Let F be a real valued random variable in L2(Ω,FT ,P). Then, Cp,n(F) con-
verges to F in L2(Ω,FT ,P) when both p and n go to infinity.

The space of truncated Wiener chaos Cp,n has the key property of being stable by the conditional
expectation operator. More precisely, the following result explains how to compute, in a closed
form, the conditional expectation of an element of Cp,n.

Proposition 2.3 Let F be a real valued random variable in L2(Ω,FT ,P) and let k ∈ {1, . . . , n}
and p ≥ 0

E[Cp,n(F)|Ftk] =
∑

α∈A⊗d
p,n|k

λα H
⊗d
α (G1, . . . , Gn)

where A⊗dp,n|k is the set of multi-indices vanishing after time tk

A⊗dp,n|k =
{
α ∈ A⊗dp,n : ∀j ∈ {1, . . . , d}, ∀i > k, αji = 0

}
.

Proof. Taking the conditional expectation in (6) leads to

E[Cp,n(F)|Ftk] =
∑

α∈A⊗dp,n

λα

(
k∏
i=1

d∏
j=1

Hαji
(Gj

i)

)
E

[
n∏

i=k+1

d∏
j=1

Hαji
(Gj

i)
∣∣∣Ftk

]
. (7)

5

Since the Brownian increments after time tk are independent of Ftk and are independent of one
another, E

[∏n
i=k+1

∏d
j=1 Hαji

(Gj
i)
∣∣∣Ftk] =

∏n
i=k+1

∏d
j=1 E

[
Hαji

(Gj
i)
]
, which is zero as soon as∑n

i=k+1

∑d
j=1 α

j
i > 0. Hence, the sum in (7) reduces to the sum over the set of multi-indices

α ∈ A⊗dp,n such that αji = 0 for all i > k and 1 ≤ j ≤ d, which is exactly the definition of the set
A⊗dp,n|k. �

Since the sum appearing in E[Cp,n(F)|Ftk] is reduced to a sum over the set of multi-indices
α ∈ A⊗dp,n|k, it actually only depends on the first k increments (G1, . . . , Gk). One can easily
check that E[Cp,n(F)|Ftk] is actually given by the chaos expansion of F on the first k Brownian
increments. Hence, computing a conditional expectation simply boils down to dropping the
non measurable terms. While it may look like a naive way to proceed, it is indeed correct in
this setting. To denote the chaos expansion on the time grid (t0, . . . , tn) truncated to the first k
increments, we introduce the notation

Cp,n|k(F) =
∑

α∈A⊗d
p,n|k

λα H
⊗d
α (G1, . . . , Gn) = E[Cp,n(F)|Ftk]. (8)

With an obvious abuse of notation, we write for λ ∈ A⊗dp,n|k,

Cp,n|k(λ) =
∑

α∈A⊗d
p,n|k

λα H
⊗d
α (G1, . . . , Gn).

2.2 Application to the approximation of conditional expectations
In this section, we explain how to use the truncated Wiener chaos expansion of a random variable
F ∈ L2(Ω,FT ,P), to compute its conditional expectation.

Assume that we need M samples of the conditional expectations. We sample M paths
(B

(m)
t1 , . . . , B

(m)
tn , F (m)) of (Bt1 , . . . , Btn , F) and thanks to Proposition 2.3 we approximate

E[F |Ftk] on the sample path with index m by

C
(m)
p,n|k(λ̂

M) =
∑

α∈A⊗d
p,n|k

λ̂Mα H⊗dα (G
(m)
1 , . . . , G

(m)
k)

where

λ̂Mα =
1

Mα!

M∑
`=1

F (`)H⊗dα (G
(`)
1 , . . . , G

(`)
k).

Using the strong law of large numbers, we clearly have that for every α ∈ A⊗dp,n|k, λ̂Mα converges

a.s. to λα when M goes to infinity. Then, we deduce that for any fixed m, C(m)
p,n|k(λ̂

M) converges

almost surely to C(m)
p,n|k(λ) when M →∞.

6

Remark 2.4 Note that we use the same samples to compute the coefficients of the chaos expan-
sion λ̂Mα and to approximate C(m)

p,n|k. It could have been possible to use different set of samples
for the two parts and would have even simplified the theoretical analysis of the algorithm but the
price to pay in terms of computational time is prohibitive. Using independent sets of samples
would require to simulate new samples of the whole path at each date Tk.

3 The algorithm

3.1 Description of the algorithm
We aim at solving the dynamic programming equation (2) to obtain τ1. Then, the time−0 price
of the Bermudan option writes

U0 = max(Z0,E[Zτ1]).

For all n ≥ N , consider a time grid 0 < t0 < t1 < · · · < tn = T of [0, T], such that
{T1, . . . , TN} ⊂ {t1, . . . , tn}. We assume that limn→∞ sup0≤k≤n−1 |tk+1 − tk| = 0. For k ≤ N ,
we define σk ∈ N such that

tσk = Tk.

Even though, we do not make the dependency on n explicit, it is clear that σk is an increasing
function of n.

Now, we introduce some successive approximations of (2). First, we replace the true con-
ditional expectation E[Zτk+1

|FTk] by the conditional expectation of the truncated Wiener chaos
expansion of Zτk+1{

τ p,nN = TN

τ p,nk = Tk1{ZTk≥Cp,n|σk (λk)} + τ p,nk+11{ZTk<Cp,n|σk (λk)}, for 1 ≤ k ≤ N − 1

where the λk’s are the coefficients of the truncated expansion of Zτp,nk+1

λk,α =
1

α!
E[Zτp,nk+1

H⊗dα (G1, . . . , Gσk)] for α ∈ A⊗dp,n|σk

The standard approach is to sample a bunch of paths of the model S(m)
T0

, S
(m)
T1

, . . . , S
(m)
TN

along with
the corresponding payoff paths Z(m)

T0
, Z

(m)
T1

, . . . , Z
(m)
TN

, for m = 1, . . . ,M . We denote by B(m)

the Brownian path used to sample S(m)
T0

, S
(m)
T1

, . . . , S
(m)
TN

. Note that B is sampled on the finer grid
t0, . . . , tn, which enables us to deal with model discretization issues. The vectorG(m)

1 , , G
(m)
n

corresponds to the increments of the Brownian motion B on the finer time grid. To compute the
τk’s on each path, one needs to compute the conditional expectations E[Zτk+1

|FTk] for k =

7

1, . . . , N − 1. Then, we introduce the final approximation of the backward iteration policy, in
which the truncated chaos expansion is computed using a Monte Carlo approximation{

τ̂
p,n,(m)
N = TN

τ̂
p,n,(m)
k = Tk1{Z(m)

Tk
≥C(m)

p,n|σk
(λ̂Mk)

} + τ̂
p,n,(m)
k+1 1{

Z
(m)
Tk

<C
(m)
p,n|σk

(λ̂Mk)
}, for 1 ≤ k ≤ N − 1

where the λ̂Mk are computed as described in Section 2.2. For k = 1, . . . , N − 1, the vector λ̂Mk is
an element of RA

⊗d,σk
p,n and for every α ∈ A⊗d,σkp,n ,

λ̂Mk,α =
1

Mα!

M∑
`=1

Z
(`)

τ̂
p,n,(`)
k+1

H⊗dα (G(`)). (9)

Then, we finally approximate the time−0 price of the option by

Up,n,M
0 = max

(
Z0,

1

M

M∑
m=1

Z
(m)

τ̂
p,n,(m)
1

)
. (10)

The pseudo code of our approach corresponds to Algorithm 3.1.

Remark 3.1 From a practical point of view, we advise to consider in the money paths in the
chaos expansion as it was already noticed in Longstaff and Schwartz [2001]. Hence, the set
{Z(m)

Tk
≥ C

(m)
p,n|σk(λ̂

M
k)} is replaced by {Z(m)

Tk
> 0} ∪ {Z(m)

Tk
≥ C

(m)
p,n|σk(λ̂

M
k)} and the coefficients

of the chaos expansion are given by

λ̂Mk,α =
1

Mα!

M∑
`=1

Z
(`)

τ̂
p,n,(`)
k+1

1{
Z

(`)
Tk
>0
}H⊗dα (G(`)).

This modification does not change the theoretical analysis of the algorithm but improves its
numerical behavior.

Our algorithm is designed as a black box taking as inputs simulations of the Brownian mo-
tion and the corresponding payoff process. From a practical point of view, you can design the
implementation in such as way that pricing a new product simply amounts to implementing the
discretization of the model and the computation of the payoff.

3.2 Comments on the algorithm
The obvious and generic way to deal with truly path-dependent options or non Markovian
model using the standard Longstaff Schwartz algorithm would be to consider the whole path as
a regressor. It is very much unlikely that one can easily build a set of basis functions which are
orthogonal for the law of the discretized path process. Hence, the regression problem would
grow exponentially fast and as explained in Benguigui and Baude [2012], parallelism would not
help much. Going beyond the Markovian setting requires an orthogonality property, which turns

8

1 Generate (G(1), Z(1)), . . . , (G(M), Z(M)) M i.i.d. samples following the law of
(Zti , Gti)1≤i≤N

2 τ̂
p,n,(m)
N ← T for all m = 1, . . . ,M

3 for k = N − 1, . . . , 1 do
4 for α ∈ A⊗dp,n|σk do
5

λ̂Mk,α =
1

Mα!

M∑
`=1

Z
(`)

τ̂
p,n,(`)
k+1

H⊗dα (G(`))

6 end
7 for m = 1, . . . ,M do
8

τ̂
p,n,(m)
k = Tk1{Z(m)

Tk
≥C(m)

p,n|σk
(λ̂Mk)

} + τ̂
p,n,(m)
k+1 1{

Z
(m)
Tk

<C
(m)
p,n|σk

(λ̂Mk)
}

9 end
10 end
11

Up,n,M
0 = max

(
Z0,

1

M

M∑
m=1

Z
(m)

τ̂
p,n,(m)
1

)

Algorithm 3.1: Dynamic programming principle using Wiener chaos expansion

the regression problem into a series of independent inner-products. Of course, it is always
possible to pretend everything is Markovian, but then you have no guaranty on the error you are
making.

Our algorithm may be related to a regress later method as investigated by Glasserman and
Yu [2004a], Balata and Palczewski [2018]. At time Tk, a regress later approach is typically
composed of two steps: first Zτk+1

is decomposed on a set of FTk+1
measurable basis functions,

which looks like a least squares approximation of the conditional expectation with respect to
FTk+1

. Then, the conditional expectation of each basis function is computed analytically to ob-
tain an approximation of E[Zτk+1

|FTk]. Our algorithm can also be seen as a two stage method:
first we compute the chaos expansion of Zτk+1

and then we compute its conditional expectation.
Although this way of formulating the algorithm is mathematically correct, it would be totally
inefficient to implement it this way. As a matter of fact, taking the conditional expectation of a
Wiener chaos expansion simply amounts to dropping non measurable terms and because every
coefficient is computed on its own using an inner product, we can directly compute the condi-
tional expectation of the chaos expansion by actually computing a chaos expansion with respect
to the Brownian increments up to time Tk only. This more pragmatic way of understanding our

9

algorithm makes it actually closer to a regress now approach.
Closely looking at Algorithm 3.1, it is clear that the central part of the algorithm is the

computation of the chaos expansion. Conveniently implementing this step plays a major role in
the efficiency of the algorithm. In our C++ implementation, the chaos expansion is performed
using the generic multivariate polynomial toolbox from Lelong [2007-2017].

3.3 Complexity analysis
Most of the computational time is spent computing the coefficients of the chaos expansions. Re-
member that the cardinality ofA⊗dp,n|k is given by

(
σkd+p
nσk

)
= (σkd+p)···(σkd+1)

p!
. As the optimal policy

is only updated on the in-the-money paths at each time step (see Remark 3.1), the complexity of
iteration k of the loop on line 3 of Algorithm 3.1 is proportional to

]{in-the-money paths at time Tk} ×
(
σkd+ p

nσk

)
.

It is worth noting that the complexity decreases when time decreases. The order p of the expan-
sion plays a major role in the computational time of the algorithm. So, when the order of the
expansion increases from p to p+ 1, the computational time is multiplied by σkd+p+1

p+1
.

3.4 The parallel implementation
The key computational trick of our algorithm is that the chaos coefficients λ are written as in-
dependent expectations and can therefore be parallelized both across α and the number M of
Monte Carlo samples. Simply put, Algorithm 3.1 can be reduced to computing several indepen-
dent Monte Carlo averages and is therefore very well suited for parallel programming. For a
fixed time Tk, there are two ways of introducing parallelism.

(i) The coefficients of the truncated Wiener chaos expansion can be computed in parallel. For
two multi-indices α, β ∈ A⊗dp,n|σk , the computations of λ̂Mk,α and λ̂Mk,β are independent and can

therefore be carried out simultaneously. The update of all the τ̂ p,n,(m)
k can also be performed

in parallel. This approach looks very promising provided that the cardinality of A⊗dp,n|σk is
large enough, at least larger than the number of available computing resources. Note that

#A⊗dp,n|σk =

(
σk d + p

σk d

)
where we recall that σk → 0 when k → 0. This approach will be efficient for large enough
k but will inevitably fail to scale when k decreases, ie for smaller dates.

(ii) Alternatively, we can use the number of Monte Carlo samples as the leverage for paral-
lelism. Since the number of samples remains fixed during the whole algorithm, the par-
allelism will be as efficient for large k as for small ones. Assume we have R computing
resources at our disposal, then each resource handles MR = M/R sample paths and runs

10

the sequential algorithm 3.1 on these paths except that at each time step, a reduction fol-
lowed by a broadcast are done right before updating the τ̂ p,n,(m)

k , m = 1, . . . ,M . In this
way, the chaos expansions are computed using the M paths. We precisely describe this
parallel algorithm in Algorithm 3.2.

We have followed the approach (ii) for our parallel implementation to make sure all the resources
are always fully busy, which is the least requirement to ensure a decent scalability. The compari-
son of Algorithms 3.1 and 3.2 shows that the sequential and parallel algorithms differ very little.
We even managed to merge the sequential and parallel implementations into a single code, which
is hardly ever feasible especially when using MPI. Each computing resource samples a bunch of
paths, on which it updates the optimal stopping policy and contributes to the computation of the
λ̂Mk ’s. At each time step, we compute an average (a reduction) to get the value of the λ̂Mk ’s and
then we send (broadcast) the coefficients to every resources. In practice, we actually use the
AllReduce1 method from MPI.

It was noted in Benguigui and Baude [2012], Pagès et al. [2016], that using mini-batches to
introduce parallelism in least-square Monte Carlo was not convincingly efficient, mainly because
the backward induction is essentially sequential. This is due to the regression step itself, which
cannot be solved efficiently when Monte Carlo paths are allocated by blocks on each proces-
sor. In any parallel implementation of least-squares Monte Carlo, the regression step eventually
becomes the bottleneck because of its bad scalability. To circumvent this main issue with least-
square Monte Carlo, Pagès and Wilbertz [2011] replaced the regression step by a quantization
approach, which allows for natural parallelism. Similarly, Gobet et al. [2016] used stratification
to introduce conditional independence between the samples used in each strata. It may look as
a mini-batch approach while they have to use new stratified sampling at each time step because
they work in a backward stochastic differential setting. Hence, interpreting their approach in
terms of mini-batches is not straightforward. In our approach, we rely on the orthogonality of
the chaos expansion to replace the regression step by inner products computed by Monte Carlo.
Therefore, our approach naturally fits into the mini-batch paradigm with no extra cost.

4 Convergence of the algorithm
In this section, we basically follow the lines of the methodology introduced in Clément et al.
[2002]. The statements of the convergence results are quite similar even if some assumptions
had to be modified to match our framework, but the proofs differ to adapt to the new formulation
of the regression step.

There are two independent parts in this section. In Section 4.2, we study the convergence
of the algorithm with respect to the chaos expansion when all expectations are assumed to be
computed exactly (no Monte Carlo approximation). In Section 4.3, we fix the order and the dis-
cretization used in the chaos expansion and we study the convergence with respect to the number

1See https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/ for an explana-
tion of how reduce and broadcast can be efficiently coupled.

11

https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/

1 MR ←M/R
2 In parallel do
3 Generate (G(1), Z(1)), . . . , (G(MR), Z(MR)) MR i.i.d. samples following the law of

(Zti , Gti)1≤i≤N

4 τ̂
p,n,(m)
N ← T for all m = 1, . . . ,MR

5 for k = N − 1, . . . , 1 do
6 for α ∈ A⊗dp,n|σk do
7

λ̂MR
k,α =

1

MRα!

MR∑
`=1

Z
(`)

τ̂
p,n,(m)
k+1

H⊗dα (G(`))

8 end
9 Reduce the λ̂MR

k,α to obtain λ̂Mk,α
10 Broadcast λ̂Mk,α for α ∈ A⊗dp,n|σk
11 for m = 1, . . . ,MR do
12

τ̂
p,n,(m)
k = Tk1{Z(m)

Tk
≥C(m)

p,n|σk
(λ̂Mk)

} + τ̂
p,n,(m)
k+1 1{

Z
(m)
Tk

<C
(m)
p,n|σk

(λ̂Mk)
}

13 end
14 end
15

Up,n,MR
1 =

1

MR

MR∑
m=1

Z
(m)

τ̂
p,n,(m)
1

16 end
17 Reduce the Up,n,MR

1

18 Up,n,M
0 = max (Z0, U

p,n
1)

Algorithm 3.2: Parallel algorithm for solving the dynamic programming principle using
Wiener chaos expansion

12

of Monte Carlo samples. This is achieved by first proving that the Monte Carlo approximations
of the chaos expansion at each time step converge to the true coefficients.

4.1 Notation
To avoid over expanding notation, we simply write G instead of (G1, . . . , Gn) in the chaos ex-
pansions. At some points, it may be important to make precise which Brownian increments are
used in the chaos expansion. To do so, we introduce the notation

Cp,n(λ;G) =
∑

α∈A⊗dp,n

λαH
⊗d
α (G).

First, it is important to note that the paths τ p,n,(m)
1 , . . . , τ

p,n,(m)
N for m = 1, . . . ,M are identi-

cally distributed but not independent since the Monte Carlo computation of the chaos expansion
coefficients λ̂Mk mixes all the paths. We define the vector Λ of the coefficients of the successive
expansions Λ = (λ1, . . . , λN−1) and its Monte Carlo approximation Λ̂M = (λ̂M1 , , λ̂

M
N−1).

Now, we recall the notation used by Clément et al. [2002] to study the convergence of the
original Longstaff Schwartz approach.

Given a parameter ` = (`1, . . . , `N−1) in RA⊗d
p,n|σ1 × · · · × RA⊗d

p,n|σN−1 and vectors z = z1, . . . , zN
in RN and g = (g1, . . . , gn) in (Rd)n, we define the vector field F = F1, . . . , FN by{

FN(`, z, g) = zN

Fk(`, z, g) = zk1{zk≥Cp,n|σk (`;g)} + Fk+1(`, z, g)1{zk<Cp,n|σk (`;g)}, for 1 ≤ k ≤ N − 1.

Note that Fk(`, z, x) does not depend on the first k−1 components of `, ie `1, . . . , `k−1. Moreover,

Fk(Λ, Z,G) = Zτp,nk ,

Fk(Λ̂
M , Z(m), G(m)) = Z

(m)

τ̂
p,n,(m)
k

.

For k = 1, . . . , N , we also define the functions φk : RA⊗d
p,n|σ1 × · · · × RA⊗d

p,n|σN−1 → R and

ψk : RA⊗d
p,n|σ1 × · · · × RA⊗d

p,n|σN−1 → RA⊗d
p,n|σk by

φk(`) = E[Fk(`, Z,G)] and ψk(`) =
(
E[Fk(`, Z,G)H⊗dα (G)]

)
α∈A⊗d

p,n|σk
.

Note that φk and ψk actually only depends on `k, . . . , `N−1 but not on the first k− 1 components
of `.

4.2 Chaos approximation of conditional expectations
Proposition 4.1 For all k = 1, . . . , N , limp,n→∞ E[Zτp,nk |FTk] = E[Zτk |FTk] in L2(Ω).

13

Proof. We proceed by induction. The result is true for k = N as τN = τ p,nk = T . Assume it
holds for k + 1 (k ≤ N − 1), we will prove it is true for k.

E[Zτp,nk − Zτk |FTk]

= ZTk

(
1{ZTk≥Cp,n|σk (λk)} − 1{ZTk≥E[Zτk+1

|FTk]}
)

+ E
[
Zτp,nk+1

1{ZTk<Cp,n|σk (λk)} − Zτk+1
1{ZTk<E[Zτk+1

|FTk]}|FTk
]

= (ZTk − E[Zτk+1
|FTk])

(
1{ZTk≥Cp,n|σk (λk)} − 1{ZTk≥E[Zτk+1

|FTk]}
)

+ E
[
Zτp,nk+1

− Zτk+1
|FTk

]
1{ZTk<Cp,n|σk (λk)}.

By the induction assumption, the term E
[
Zτp,nk+1

− Zτk+1
|FTk

]
goes to zero in L2(Ω) as p, n both

go to infinity. So, we just have to prove that

Ak = (ZTk − E[Zτk+1
|FTk])

(
1{ZTk≥Cp,n|σk (λk)} − 1{ZTk≥E[Zτk+1

|FTk]}
)

converges to zero in L2(Ω).

|Ak| ≤
∣∣ZTk − E[Zτk+1

|FTk]
∣∣ ∣∣∣1{ZTk≥Cp,n|σk (λk)} − 1{ZTk≥E[Zτk+1

|FTk]}
∣∣∣

≤
∣∣ZTk − E[Zτk+1

|FTk]
∣∣ ∣∣∣1{E[Zτk+1

|FTk]>ZTk≥Cp,n|σk (λk)} − 1{Cp,n|σk (λk)>ZTk≥E[Zτk+1
|FTk]}

∣∣∣
≤
∣∣ZTk − E[Zτk+1

|FTk]
∣∣1{|ZTk−E[Zτk+1

|FTk]|≤|Cp,n|σk (λk)−E[Zτk+1
|FTk]|}

≤
∣∣Cp,n|σk(λk)− E[Zτk+1

|FTk]
∣∣

≤
∣∣Cp,n|σk(λk)− Cp,n|σk(E[Zτk+1

|FTk])
∣∣+
∣∣Cp,n|σk(E[Zτk+1

|FTk])− E[Zτk+1
|FTk]

∣∣ . (11)

Note that Cp,n|σk(λk) = Cp,n|σk(E[Zp,n
τk+1
|FTk]). The truncated chaos expansion Cp,n|σk being an

orthogonal projection on the space of random variables measurable with respect to the Brownian
increments G1, . . . , Gk, we clearly have that

E
[∣∣Cp,n|σk(λk)− Cp,n|σk(E[Zτk+1

|FTk])
∣∣2]

≤ E
[∣∣∣E[Zτp,nk+1

|FTk]− E[Zτk+1
|FTk]

∣∣∣2]
≤ E

[∣∣∣E[Zτp,nk+1
|FTk+1

]− E[Zτk+1
|FTk+1

]
∣∣∣2]

where the last inequality comes from the orthogonal projection feature of the conditional expec-
tation. Then, the induction assumption for k + 1 yields that Cp,n|σk(λk)− Cp,n|σk(E[Zτk+1

|FTk])
goes to zero in L2(Ω) as p, n go to infinity. So, the first term on the r.h.s of (11) goes to zero.

As Cp,n|σk(E[Zτk+1
|FTk]) = Cp,n(E[Zτk+1

|FTk]), the second term on the r.h.s of (11) goes to
zero in L2(Ω) thanks to Proposition 2.2. Combining these two results yields the convergence
statement of the proposition. �

14

Remark 4.2 When the discrete time payoff process (ZTk)0≤k≤N is measurable for the filtration
generated by the discrete time Brownian increments (Gk)0≤k≤N = (σ(BTi+1

−BTi , i ≤ k))0≤k≤N ,
the result of Proposition 4.1 simplifies to limp→∞ E[Zτp,Nk

|FTk] = E[Zτk |FTk] in L2. There is no
need to let n go to infinity, it is sufficient to take n = N . From a practical point of view, one
should choose n in order to monitor the discretization error between the true payoff process Z
and its implementable discretization Zn on a time grid with n steps. Then, the parameter n has
to be considered as being fixed and we actually compute the price of the Bermudan option with
payoff process Zn instead of Z. Therefore, when the model can be exactly sampled, one should
choose n = N .

4.3 Convergence of the Monte Carlo approximation
In the following, we assume that p and n are fixed and we study the convergence with respect to
the number of samples M .

4.3.1 Strong law of large numbers

To start, we prove the convergence of the coefficients of the chaos expansions.

Proposition 4.3 Assume that for every k = 1, . . . , N , P(ZTk ∈ Cp,n|σk) = 0. Then, for every
k = 1, . . . , N , Λ̂M

k converges to Λk a.s. as M →∞.

The proof of Proposition 4.3 based on the following key lemma from Clément et al. [2002]. The
assumption P(ZTk ∈ Cp,n) = 0 may look surprising but a very similar assumption was already
required in [Clément et al., 2002, Lemma 3.2]. This assumption combined with the following
lemma proves that the vector field F (a, Z,G) is a.s. continuous w.r.t the expansion coefficients a.

Lemma 4.4 For every k = 1, . . . , N − 1,

|Fk(a, Z,G)− Fk(b, Z,G)| ≤

(
N∑
i=k

|ZTi |

)(
N−1∑
i=k

1{|ZTi−Cp,n|σi (bi)|≤|ai−bi|‖Cp,n|σi‖}

)

where

‖Cp,n‖ = sup
|λ|=1

|Cp,n(λ)| .

Proof (Proof of Proposition 4.3). We proceed by induction. For k = N − 1, the result directly
follows from the standard strong law of large numbers. Choose k ≤ N −2 and assume the result
holds for k + 1, . . . , N − 1 , we aim at proving this is true for k.

λ̂Mk,α =
1

Mα!

M∑
m=1

Fk+1(Λ̂M
k+1, Z

(m), G(m))H⊗dα (G(m)).

15

By the standard strong law of large number, 1
Mα!

∑M
m=1 Fk+1(Λ̂k+1, Z

(m), G(m))H⊗dα (G(m)) con-
verges a.s. to 1

α!
E[Fk+1(Λ̂k+1, Z,G)H⊗dα (G)] = λk,α. Then, it is sufficient to prove that

ΨM =
1

M

M∑
m=1

(
Fk+1(Λ̂M

k+1, Z
(m), G(m))− Fk+1(Λ̂k+1, Z

(m), G(m))
)
H⊗dα (G(m))→ 0 a.s.

Then, using Lemma 4.4, we have

|ΨM | ≤
1

M

M∑
m=1

∣∣∣Fk+1(Λ̂M
k+1, Z

(m), G(m))− Fk+1(Λ̂k+1, Z
(m), G(m))

∣∣∣ ∣∣H⊗dα (G(m))
∣∣

≤ 1

M

M∑
m=1

N∑
i=k+1

∣∣∣Z(m)
Ti+1

∣∣∣(N−1∑
i=k+1

1{∣∣∣Z(m)
Ti
−C(m)

p,n|σi
(Λi)

∣∣∣≤|Λ̂Mi −Λi| ‖Cp,n|σi‖
}
)∣∣H⊗dα (G(m))

∣∣
From the induction assumption for k + 1, . . . , N − 1, we have that for i = k + 1, . . . , N − 1,
Λ̂M
i → Λi. Then, for any ε > 0, we have

lim sup
M

|ΨM |

≤ lim sup
M

1

M

M∑
m=1

N∑
i=k+1

∣∣∣Z(m)
Ti+1

∣∣∣(N−1∑
i=k+1

1{∣∣∣Z(m)
Ti
−C(m)

p,n|σi
(Λi)

∣∣∣≤ε‖Cp,n|σi‖}
)∣∣H⊗dα (G(m))

∣∣
≤ E

[
N∑

i=k+1

∣∣ZTi+1

∣∣(N−1∑
i=k+1

1{|ZTi−Cp,n|σi (Λi)|≤ε‖Cp,n|σi‖}

)∣∣H⊗dα (G)
∣∣]

where the last equality follows from the strong law of large numbers. As P(ZTk ∈ Cp,n|σk) = 0
for all k, we can let ε go to 0 to obtain that lim supM |ΨM | = 0 a.s. �

Once the convergence of the expansion is established, we can now study the convergence of
Up,n,M

0 to Up,n
0 when M →∞.

Theorem 4.5 Assume that for every k = 1, . . . , N , P(ZTk ∈ Cp,n) = 0. Then, for q = 1, 2 and
all k = 1, . . . , N ,

lim
M→∞

1

M

M∑
m=1

(
Z

(m)

τ̂
p,n,(m)
k

)q
= E

[(
Zτp,nk

)q]
a.s.

Proof. Note that E[(Zτp,nk)q] = E[Fk(Λ̂, Z,G)q] and by the strong law of large numbers

lim
M→∞

1

M

M∑
m=1

Fk(Λ̂, Z
(m), G(m))q = E[Fk(Λ̂, Z,G)q] a.s.

Hence, we have to prove that

∆FM =
1

M

M∑
m=1

(
Fk(Λ̂

M , Z(m), G(m))q − Fk(Λ̂, Z(m), G(m))q
)

a.s−−−−→
M→∞

0.

16

For any x, y ∈ R, and q = 1, 2, |xq − yq| = |x− y| |xq−1 + yq−1|. Using Lemma 4.4 and that
|Fk(γ, z, g)| ≤ maxk≤j≤N |zj|, we have

|∆FM | ≤
1

M

M∑
m=1

∣∣∣Fk(Λ̂M
k , Z

(m), G(m))q − Fk(Λ̂k, Z
(m), G(m))q

∣∣∣
≤ 2

1

M

M∑
m=1

N∑
i=k

max
k≤j≤N

∣∣∣Z(m)
Tj

∣∣∣ ∣∣∣Z(m)
Ti+1

∣∣∣(N−1∑
i=k

1{∣∣∣Z(m)
Ti
−C(m)

p,n|σi
(Λi)

∣∣∣≤|Λ̂Mi −Λi| ‖Cp,n|σi‖
}
)

Using Proposition 4.3, Λ̂M
i → Λi for all i = 1, . . . , N − 1. Then for any ε > 0,

lim sup
M

|∆FM |

≤ 2 lim sup
M

1

M

M∑
m=1

N∑
i=k

max
k≤j≤N

∣∣∣Z(m)
Tj

∣∣∣ ∣∣∣Z(m)
Ti+1

∣∣∣(N−1∑
i=k

1{∣∣∣Z(m)
Ti
−C(m)

p,n|σi
(Λi)

∣∣∣≤ε‖Cp,n|σi‖}
)

≤ 2E

[
N∑
i=k

max
k≤j≤N

∣∣ZTj ∣∣ ∣∣ZTi+1

∣∣(N−1∑
i=k

1{|ZTi−Cp,n|σi (Λi)|≤ε‖Cp,n|σi‖}

)]

where the last inequality follows from the strong law of large numbers as E[maxk≤j≤N
∣∣ZTj ∣∣2] <

∞. We conclude that lim supM |∆FM | = 0 by letting ε go to 0 and by using that for every
k = 1, . . . , N , P(ZTk ∈ Cp,n) = 0. �

The case q = 1 proves the strong law of large numbers for the algorithm. Consider-
ing that all the paths are actually mixed through the chaos expansion, it is unlikely that
the estimators 1

M

∑M
m=1 Z

(m)

τ̂
p,n,(m)
k

for k = 1, . . . , N are unbiased. We recall that Up,n,M
k =

1
M

∑M
m=1 Fk(Λ̂

M , Z(m), G(m)) and Zτp,nk = Fk(Λ, Z,G). Then,

E
[
Up,n,M
k

]
− E

[
Zτp,nk

]
= E

[
1

M

M∑
m=1

(
Fk(Λ̂

M , Z(m), G(m))− Fk(Λ, Z(m), G(m))
)]

= E
[
Fk(Λ̂

M , Z(1), G(1))− Fk(Λ, Z(1), G(1))
]

where we have used that all the random variables have the same distribution. Hence, the bias of
our estimator is directly linked to the gap between Λ̂M and the true value Λ. Let p < p′, then
for any α ∈ A⊗dp,n, α ∈ A⊗dp′,n and the corresponding value λ̂Mk,α is the same for p and p′. This
means that when p increases, the length of Λ̂M increases with the first components remaining
unchanged. Therefore,

∣∣∣Λ̂M − Λ
∣∣∣ increases with p, which suggests that, for a fixed M , the bias

also increases with p. Moreover, it was already noted in Glasserman and Yu [2004b] that for a
fixed number of samples M , the mean square error on the coefficients of the regression explodes

with the number of regressors. In our framework, this means that, for a fixed M, E
[∣∣∣Λ̂M − Λ

∣∣∣2]
will increase with p.

17

4.3.2 Discussion on the rate of convergence

From Theorem 4.5, we deduce that the standard empirical variance estimator applied to our
algorithm converges. For every k = 1, . . . , N ,

lim
M→∞

1

M

M∑
m=1

(
Z

(m)

τ̂
p,n,(m)
k

)2

−

(
1

M

M∑
m=1

Z
(m)

τ̂
p,n,(m)
k

)2

= Var(Zτp,nk) a.s. (12)

The convergence rate analysis carried out in Clément et al. [2002] applies steadily to our ap-
proach. Then, under suitable assumptions, the vector(

√
M

(
1

M

M∑
m=1

Z
(m)

τ̂
p,n,(m)
k

− E[Zτp,nk]

))
k=1,...,N

(13)

converges in law to a normal distribution with mean zero. As noted in Clément et al. [2002],
determining the asymptotic variance directly from the data generated by a single run of the
algorithm is almost impossible. From the proof of the central limit theorem for their algorithm,
we have, when M goes to infinity, in the L2 sense

√
M

(
1

M

M∑
m=1

Z
(m)

τ̂
p,n,(m)
k

− E[Zτp,nk]

)

=
√
M

(
1

M

M∑
m=1

Z
(m)

τ
p,n,(m)
k

− φk(Λ)

)
+
√
M(φk(Λ̂

M)− φk(Λ)). (14)

Remember that Z(m)

τ
p,n,(m)
k

= Fk(Λ, Z
(m), G(m)). By the standard central limit theorem,

√
M

(
1
M

∑M
m=1 Z

(m)

τ
p,n,(m)
k

− φk(Λ)

)
converges in law to a normal distribution with variance

Var(Zτp,nk). Then, using the empirical variance of the estimator as a measurement of the algo-
rithm converge actually misses part of the variance since from (12), we know that the empirical
variance only takes into account the first term on the r.h.s of (14).

5 Numerical experiments
In this section, we carry out several numerical experiments using our algorithm. In the different
tables, the “Price” column corresponds to the value of Up,n,M

0 averaged over 25 independent runs
of the algorithm and the “Variance” column is the variance of Up,n,M

0 computed on these 25
independent runs. The first two experiments, which deal with put options, enable us to compare
the accuracy of our method with the standard Longstaff Schwartz algorithm using only the in-the-
money paths at each time step, whose price is reported in the “LS” column. Then, we consider
more sophisticated truly path dependent options for which the use of the standard Longstaff
Schwartz algorithm becomes prohibitive because of the well-known curse of dimensionality. In
all the examples, we use N = n, ie we do not subdiscretize the grid given by the exercising dates
to compute the chaos expansions.

18

5.1 Examples in the Black Scholes model
The d−dimensional Black Scholes model writes for j ∈ {1, . . . , d}

dSjt = Sjt (rtdt+ σjLjdBt)

where B is a Brownian motion with values in Rd, σ = (σ1, . . . , σd) is the vector of volatilities,
assumed to be deterministic and positive at all times and Lj is the j-th row of the matrix L defined
as a square root of the correlation matrix Γ, given by

Γ =

1 ρ . . . ρ

ρ 1
.

... ρ
ρ . . . ρ 1

where ρ ∈]− 1/(d− 1), 1] to ensure that Γ is positive definite.

5.1.1 Assessing the method on the one-dimensional put option

Before investigating more elaborate numerical example, we want to test our method on the
Bermudan put option. As standard as this example might be, getting a trustworthy reference
price is not an easy task. We rely on prices computed by a convolution method in Lord et al.
[2008] and later used as reference prices in Fang and Oosterlee [2009]. We report in Table 1
our values compared to the reference prices for two different volatilities. Our prices are already
very close the true prices even with a second order expansion p = 2. On these examples, we are
within 0.2% of the reference prices.

σ p M Price Variance Reference price
0.2 2 1E5 10.48 7E-4 10.4795
0.2 2 1E6 10.47 7E-5
0.2 3 1E5 10.48 6E-4
0.2 3 1E6 10.47 6E-5

0.25 2 1E5 11.96 1E-3 11.987
0.25 2 1E6 11.94 2E-4
0.25 3 1E5 11.96 9E-4
0.25 3 1E6 11.96 1E-4

Table 1: Put option with r = 0.1, T = 1, K = 110, S0 = 100 and
N = 10.

5.1.2 A put basket option

We consider a put basket option with payoff(
K −

d∑
i=1

ωiS
i
T

)
+

,

19

which can be priced using the classical Longstaff Schwartz algorithm and therefore enables us to
test the accuracy of our approach in a multidimensional setting. We test our algorithm in dimen-
sion 5 and report the results in Table 2 for different numbers of samples M and different orders p
of chaos expansion. The values reported in the “LS” column correspond to the prices computed
with the Longstaff Schwartz algorithm with 106 samples and using as regression functions the
set of polynomials of total order 3 completed with the payoff function.

We notice that an expansion of order p = 2 already gives a price fairly close to the “LS” one
for a quite reasonable computational time. Increasing p to 3 improves the accuracy only when the
number of samples M is also increased. Indeed, we can see that the prices obtained for K = 90
and p = 3 for small values of M (M = 5E4 or M = 1E5) are above the dual price. This clearly
happens because p is too large compared to M , which induces a bias. We refer the reader to the
discussion following Theorem 4.5 for more information on this point. Hence, in a brand new
setting, we advise to start with p = 2 and to monitor the variance to fix how many Monte Carlo
samples are required M . Then, if need be, one can try p = 3 with keeping in mind that M should
be increased at the same time. In our example, we basically add an order of magnitude to M ,
when going from p = 2 to p = 3.

T K N p M Price Variance LS Dual price
3 100 20 2 5E4 4.01793 0.00039 4.07 4.3
3 100 20 2 1E5 4.00769 0.00028
3 100 20 2 1E6 3.99801 2.15E-05
3 100 20 3 5E4 4.2544 0.00041
3 100 20 3 1E5 4.1965 0.00024
3 100 20 3 1E6 4.06587 2.19E-05
3 90 20 2 5E4 1.29423 0.00013 1.32 1.47
3 90 20 2 1E5 1.27274 0.00011
3 90 20 2 1E6 1.25166 2.242E-05
3 90 20 3 5E4 1.52426 8.84E-05
3 90 20 3 1E5 1.49847 0.00010
3 90 20 3 1E6 1.31845 2.72E-05

Table 2: Basket option with r = 0.05, d = 5, σi = 0.2, ωi = 1/d,
Si0 = 100 and ρ = 0.2.

5.1.3 Asian option

For this example, we consider a one dimensional Black Scholes model, d = 1. We consider an
Asian with payoff Zt = (K −Xt)+ with X0 = S0 and for t > 0

Xt =
1

t

∫ t

0

Sudu.

We approximate the continuous time integral by an arithmetic average and we compare our
results with the one reported by Hull and White [1993] (in the “HW” column in Table 3), which,

20

despite being quite old, is still considered as a benchmark by many papers investigating American
Asian options.

T K N p M Price Variance HW
1 45 20 2 1E6 8.55 1E-4 8.55
1 45 20 3 1E6 8.47 1E-4
1 45 20 3 1E7 8.61 3E-6
1 50 20 2 1E6 4.81 1E-4 4.89
1 50 20 3 1E6 4.7 1E-4
1 50 20 3 1E7 4.79 4E-6
2 45 20 2 1E6 10.63 2E-4 10.62
2 45 20 3 1E6 10.46 2E-4
2 45 20 3 1E7 10.66 6E-6
2 50 20 2 1E6 7.28 2E-4 7.33
2 50 20 3 1E6 7.24 2E-4
2 50 20 3 1E7 7.29 7E-6

Table 3: Asian option with r = 0.1, d = 1, σ = 0.3, S0 = 50 and
N = 40 (resp. 80) for T = 1 (resp. T = 2).

It is known that although the payoff does not seem to be Markovian in dimension 1, if we
augment the state space and consider the pair (S,X), then the option becomes Markovian again.
Hence, Asian options can serve as a good example to assess the efficiency of our algorithm by
considering the non Markovian representation of the Asian option in our method. As in the
previous example, we notice that a second order expansion p = 2 already gives very accurate
price, within 1% of the benchmark price computed by Hull and White [1993] using a tree method.
Increasing p to 3 does not significantly improve the accuracy of the process but does require to
increase the number of Monte Carlo samples.

5.1.4 Moving average option

For this example, we consider a one dimensional Black Scholes model, d = 1. We consider a
moving average option with payoff Zt = (St −Xt)+ for t ≥ δ + ` with

Xt =
1

δ

∫ t−`

t−δ−`
Sudu

where δ > 0 is the length of the averaging window and ` is a delay.
We approximate the continuous time integral by an arithmetic average and compare our

results with the benchmark prices computed by Bernhart et al. [2011]. Let Nδ = δ
T
N and

N` = `
T
N . For every Ti ≥ δ + `, we approximate Xti by

XN
Ti

=
1

Nδ

i−N`∑
j=i−Nδ−N`+1

STj .

21

The benchmark prices reported in the “LS” column come from Bernhart et al. [2011] and were
computed using the standard Longstaff Schwartz algorithm with regression factors at time Ti
given by (

STi−Nδ−N`+1
, STi−Nδ−N`+2

, . . . , STi−N`

)
.

This leads to a regression problem with Nδ variables, which makes it very CPU demanding.
While our approach may also look like a multi variate regression, the main difference lies in
the choice of an orthogonal basis function which turns the computation of the coefficients of
the regression from a linear system into a bunch of independent Monte Carlo computations.
Although this seems a minor change, it is indeed a huge improvement as it breaks the bottleneck
of the standard Longstaff Schwartz algorithm and makes it easy to parallelize.

We run two series of tests on the moving average option, which is a typical example of a true
path-dependent option in the sense that the size of the underlying Markov process X (see (4))
is basically the number of exercising dates. We report in Table 4 the results for the non delayed
option, ie N` = 0 and in Table 5 the results for the option with delay. When there is no delay
(Table 4), we are able to recover the prices computed with the Longstaff Schwartz method using
the full list of regressors. Our results are already very accurate for a chaos expansion of order
p = 2. To really benefit from a more accurate chaos expansion of order p = 3, one also needs to
increase the number of samplesM to cut down the bias. Note the price> 4.268 in the “LS-price”
column for w = 0.04. In Bernhart et al. [2011], they did not succeed in computing the price of
this option using the Longstaff Schwartz method using the full list of regressors, so they only
provided a non Markovian approximation 4.268, which is always below the true price. Hence,
the value 4.30329 obtained for p = 3 and M = 106 does make sense. We also report in the
column “Dual price” of Table 4 the upper bound obtained from Lelong [2018]. A small gap
remains between the lower and upper bounds, but it can be considered as more than acceptable
considering the numerical challenges represented by the highly path-dependent products. Since
the work by Bernhart et al. [2011], new methods have been developed to handle high dimensional
regressions mostly by using machine learning techniques. For instance, we can cite the recent
works Becker et al. [2019a,b]. It would be very interesting to use these algorithms to build a
price comparator for the non-Markovian settings.

δ p M Price Variance LS-Price Dual price
0.02 2 1E5 3.53118 8.97E-06 3.531 3.76
0.02 2 1E6 3.53863 9.7E-07
0.02 3 1E5 3.45177 7.05E-06
0.02 3 1E6 3.52758 7.12E-07
0.04 2 1E5 4.30318 1.7E-04 > 4.268 4.52
0.04 2 1E6 4.31781 8.82E-07
0.04 3 1E5 4.18467 1.31E-04
0.04 3 1E6 4.30239 1.10E-06

Table 4: Moving average option with S0 = 100, σ = 0.3, r =
0.05, T = 0.2, N = n = 50 and ` = 0 (no delay).

22

p M Price Variance
2 5E4 6.62011 7.5E-4
2 1E5 6.67733 2.5E-4
2 1E6 6.74565 2.00E-05
3 5E4 6.28484 4.2E-4
3 1E5 6.36383 3.1E-4
3 1E6 6.65446 8.02E-06

Table 5: Moving average option with S0 = 100, σ = 0.3, r =
0.05, T = 0.2, N = n = 50, ` = 0.08 (N` = 20) and δ = 0.02
(Nδ = 5).

5.2 A put option in the Heston model
We start with a put option in the Heston model to assess the accuracy of our algorithm. We recall
the definition of the Heston model

dSt = St(rtdt+
√
σt(ρdW

1
t +

√
1− ρ2dW 2

t))

dσt = κ(θ − σt)dt+ ξ
√
σtdW

1
t .

d p M Price Variance
1 2 1E5 1.71756 4.68E-05
1 2 1E6 1.69802 7.68E-06
1 2 1E7 1.69699 4.37E-07
1 3 1E5 1.73389 8.43E-05
1 3 1E6 1.72354 6.63E-06
1 3 1E7 1.72274 8.53E-07

Table 6: Put option in the Heston model with S0 = K = 100,
T = 1, σ0 = 0.01, ξ = 0.2, θ = 0.01, κ = 2, ρ = −0.3, r = 0.1,
N = 20

For the put option used in the numerical experiments of Table 6, the Longstaff Schwartz
algorithm gives 1.74 using degree 3 polynomials for the regression and 106 samples. Note that
as we only consider in the money paths for the regression step, the payoff function is actually a
linear function of the underlying asset — a degree one polynomial. So there is no need to add the
payoff function to the regression basis as for more sophisticated options. Obviously, we consider
both the asset price and the volatility process as regression factors.

Clearly, we see in the figures of Table 6 that going from 1E6 to 1E7 samples does not make
any difference on the prices. On the contrary, the prices obtained with M = 1E5 are always
a little higher, which may look surprising. This is a actually related to the bias phenomenon
described at the end of Section 4.3.1. The variance of the coefficients of the chaos expansion is
responsible for introducing a bias into the price. To avoid this, one needs to use sufficiently many

23

Monte Carlo samples to compute the chaos expansions. Anyway, the prices obtained with p = 3
and M = 1E6 or M = 1E7 are within 1% of the standard Longstaff Schwartz price.

5.3 Scalability of the parallel implementation
The scalability tests were run on a BullX DLC supercomputer containing 3204 cores. The code is
written in C++ using the OpenMPI library to handle the communication and the PNL library Le-
long [2007-2017] to compute the chaos expansions in a generic way for any order p. We report
in Table 7 the evolution of the efficiency with respect to the number of resources used. We recall
that the efficiency is defined as the ratio between the sequential running time and the product
of the parallel running time times the number of resources. Clearly, the efficiency takes values
between 0 and 1 and the closer to one, the better. In the example used for the scalability study,
we managed to cut down the computational time from an hour and a half to 14 seconds while
maintaining the efficiency at almost 0.7, which represents an astonishing improvement in terms
of scalability. For a fixed size problem, it is well-known that the efficiency eventually decreases
to zero when the number of processors go to infinity as every algorithm has a purely sequen-
tial part which becomes predominant in the end. Hence, the efficiency value of 0.7 has to be
considered together with the absolute computational time. We refer to Dung Doan et al. [2008],
Dung Doan et al. [2010] for experiments on the scalability of different parallel approaches for
Bermudan options. Although their framework is a bit different from ours, we can assert that our
0.7 efficiency proves a very good scalability.

#Procs Time (sec.) Efficiency
1 4768 1
2 2402 0.99
4 1234 0.97

16 353 0.84
32 173 0.86
64 89 0.84

128 47 0.79
256 24 0.76
512 14 0.68

Table 7: Scalability of the parallel algorithm on the moving aver-
age option with delay used of Table 5 with M = 106 and p = 3.

6 Conclusion
In this work, we have presented a new algorithm to price Bermudan option in non Markovian
settings: the non Markovian feature can either come from the truly path dependent feature of the
option or from the use of rough volatility models for instance. Our algorithm makes it easy to

24

design a generic American option pricer, actually not more difficult than for a European option
pricer. Although this may sound a bit ambitious, our algorithm is designed as a black box taking
as inputs sample paths of the underlying multi-dimensional Brownian motion and the associated
samples of the payoff process, which is basically the same as for European options. The smart
design of our algorithm combined with orthogonality feature of the Wiener chaos expansion
leads to an embarrassingly parallel algorithm, in which each node samples a bunch of paths,
on which it updates the optimal stopping policy. Each node contributes to the computation of
the λ̂Mk ’s and at each time step, we make a reduction to get the value of the λ̂Mk ’s and then a
broadcast makes the coefficients available to everyone. The parallel implementation requires
very few communications and therefore shows an impressive efficiency.

The methodology developed in this work in a Brownian setting could be adapted to Lévy
processes by adding Charlier polynomials to the Hermite polynomials. We refer to Geiss and
Labart [2017] for the use of chaos expansions with jumps.

References
A. Balata and J. Palczewski. Regress-later Monte-Carlo for optimal inventory control with ap-

plications in energy. arXiv e-prints, page arXiv:1703.06461, Mar 2018.

V. Bally and G. Pages. A quantization algorithm for solving multidimensional discrete-time
optimal stopping problems. Bernoulli, 9(6):1003–1049, 2003.

S. Becker, P. Cheridito, and A. Jentzen. Deep optimal stopping. Journal of Machine Learning
Research, 20(74):1–25, 2019a.

S. Becker, P. Cheridito, A. Jentzen, and T. Welti. Solving high-dimensional optimal stopping
problems using deep learning, 2019b.

M. Benguigui and F. Baude. Towards parallel and distributed computing on GPU for American
basket option pricing. In 4th IEEE International Conference on Cloud Computing Technology
and Science Proceedings, pages 723–728. IEEE, 2012.

M. Bernhart, P. Tankov, and X. Warin. A finite-dimensional approximation for pricing moving
average options. SIAM J. Financial Math., 2(1):989–1013, 2011.

B. Bouchard and X. Warin. Monte-carlo valuation of American options: facts and new algorithms
to improve existing methods. In R. A. Carmona, P. Del Moral, P. Hu, and N. Oudjane, editors,
Numerical Methods in Finance, volume 12 of Springer Proceedings in Mathematics, pages
215–255. Springer Berlin Heidelberg, 2012.

A. L. Bronstein, G. Pagès, and J. Portès. Multi-asset American options and parallel quantization.
Methodology and Computing in Applied Probability, 15(3):547–561, 2013.

J. F. Carriere. Valuation of the early-exercise price for options using simulations and nonpara-
metric regression. Insurance: mathematics and Economics, 19(1):19–30, 1996.

25

E. Clément, D. Lamberton, and P. Protter. An analysis of a least squares regression method for
American option pricing. Finance and Stochastics, 6(4):449–471, 2002.

V. Dung Doan, A. Gaikwad, F. Baude, and M. Bossy. ”Gridifying” classification Monte-Carlo
algorithm for pricing high-dimensional Bermudan-American options. In Workshop on high
performance computational finance, WHPCF Austin, TX - November 16th, 2008, pages 1–8,
Austin, United States, Nov. 2008.

V. Dung Doan, A. Gaiwad, M. Bossy, F. Baude, and I. Stokes-Rees. Parallel pricing algorithms
for multimensional Bermudan/American options using Monte Carlo methods. Mathematics
and Computers in Simulation, 81(3):568–577, 2010.

F. Fang and C. W. Oosterlee. Pricing early-exercise and discrete barrier options by fourier-cosine
series expansions. Numerische Mathematik, 114(1):27, 2009.

C. Geiss and C. Labart. Simulation of BSDEs with jumps by Wiener chaos expansion. Stochastic
Processes and their Applications, 127(3), 2017.

P. Glasserman and B. Yu. Simulation for American options: regression now or regression later?
In H. Niederreiter, editor, Monte Carlo and Quasi-Monte Carlo Methods 2002, pages 213–
226, Berlin, Heidelberg, 2004a. Springer Berlin Heidelberg.

P. Glasserman and B. Yu. Number of paths versus number of basis functions in American option
pricing. The Annals of Applied Probability, 14(4):2090–2119, 2004b.

E. Gobet, J. G. López-Salas, P. Turkedjiev, and C. Vázquez. Stratified regression Monte-Carlo
scheme for semilinear PDEs and BSDEs with large scale parallelization on GPUs. SIAM
Journal on Scientific Computing, 38(6):C652–C677, 2016.

J. C. Hull and A. D. White. Efficient procedures for valuing European and American path-
dependent options. The Journal of Derivatives, 1(1):21–31, 1993.

J. Lelong. Pnl : a free scientific library. https://pnlnum.github.io/pnl, 2007-2017.

J. Lelong. Dual pricing of American options by Wiener chaos expansion. SIAM J. Finan. Math.,
9(2), 2018. doi: 10.1137/16M1102161.

F. Longstaff and R. Schwartz. Valuing American options by simulation : A simple least-square
approach. Review of Financial Studies, 14:113–147, 2001.

R. Lord, F. Fang, F. Bervoets, and C. W. Oosterlee. A fast and accurate FFT-based method for
pricing early-exercise options under Lévy processes. SIAM Journal on Scientific Computing,
30(4):1678–1705, 2008.

D. Nualart. Analysis on Wiener space and anticipating stochastic calculus. In B. Springer-Verlag,
editor, Lectures on Probability Theory and Statistics (Saint- Flour, 1995), pages 123–227.
1998.

26

https://pnlnum.github.io/pnl

G. Pagès. Numerical Probability: An Introduction with Applications to Finance. Springer, 2018.
doi: 10.1007/978-3-319-90276-0.

G. Pagès and B. Wilbertz. GPGPUs in computational finance: massive parallel computing for
American style options. Concurrency and Computation: Practice and Experience, Special
Issue:12 p., 2011.

G. Pagès, O. Pironneau, and G. Sall. The parareal algorithm for American options. Comptes
Rendus Mathematique, 354(11):1132 – 1138, 2016.

J. Tsitsiklis and B. V. Roy. Regression methods for pricing complex American-style options.
IEEE Trans. Neural Netw., 12(4):694–703, 2001.

27

	Introduction
	Wiener chaos expansion
	General framework
	Application to the approximation of conditional expectations

	The algorithm
	Description of the algorithm
	Comments on the algorithm
	Complexity analysis
	The parallel implementation

	Convergence of the algorithm
	Notation
	Chaos approximation of conditional expectations
	Convergence of the Monte Carlo approximation
	Strong law of large numbers
	Discussion on the rate of convergence

	Numerical experiments
	Examples in the Black Scholes model
	Assessing the method on the one-dimensional put option
	A put basket option
	Asian option
	Moving average option

	A put option in the Heston model
	Scalability of the parallel implementation

	Conclusion

