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Abstract

One-period expected returns on futures contracts with different
maturities differ because of risk premia in the spreads between futures
and spot prices. We analyze the expected returns for futures contracts
with different maturities using the information that is present in the
current term structure of futures prices. A simple affine one-factor
model that implies a constant covariance between the pricing kernel
and the cost-of-carry can not be rejected for heating oil and German
Mark futures contracts. For gold and soybean futures the risk premia
depend on the slope of the current term structure of futures prices,
while for live cattle futures the evidence is mixed.
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1 Introduction

In the literature on both financial and commodity futures markets1 a large
body of empirical evidence exists that futures prices differ from expected fu-
ture spot prices because of risk premia (e.g. Fama, 1984a, Fama & French,
1987, Bessembinder, 1992). Investors expect to earn these spot-futures pre-
mia by taking positions in the futures market and holding these until the
maturity date of the contracts. One-period expected returns on futures con-
tracts on the other hand, do not only depend on these spot-futures premia
but also on the risk premia in the futures spreads. Risk premia in futures
spreads cause differences in the expected one-period returns on futures con-
tracts with different maturities. The aim of this is paper to analyze risk
premia in futures contracts with different maturities.

We define the annualized spread between the spot and futures price as
the yield. By a no-arbitrage argument the yield is the difference between the
interest rate and the net cash flow that accrues to the marginal owner of the
asset. These net cash flows consist e.g. of dividends, foreign interest rates,
and convenience yields, net of storage costs. Long maturity yields can be
decomposed in an expected future short maturity yield plus a risk premium,
in the same way as long interest rates can be decomposed in expected future
short interest rates and a liquidity premium. These risk premia in the term
structure of yields are equal to the differences in one-period risk premia
on futures contracts with different maturities. We will maintain this dual
interpretation of the risk premia throughout the paper.

Our analysis focuses on the information that is present in the current
term structure of futures prices with respect to expected future yields and
risk premia in the yields. This is similar to the analysis of forward currency,
interest, and commodity markets in Fama (1984a,b,c) and Fama & French
(1987). However, these papers focus on the predictive power of futures prices
for future spot prices and on spot-futures risk premia. The approach in this
paper is different, because we study the differences in one-period risk premia
between futures contracts with different maturities. A related part of the
literature focuses on the relation between yields and spot price changes (see
e.g. Fama & French, 1988, Bessembinder et al., 1995a), but it does not
consider the yields and yield changes themselves. The aim here is to fill this

1We will ignore the difference between futures and forward contracts. For a detailed
discussion of the difference between these two types of contracts, see, e.g., Cox, Ingersoll,
& Ross (1981).
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gap.
Pricing forward and futures contracts for maturities that are not (yet)

traded, or pricing other derivative securities on the assets underlying the
futures contracts, requires knowledge about the covariance of the pricing
kernel and the yields. These covariances can be derived from a simple affine
one-factor model for the yields, that encompasses both a Vasicek and a Cox-
Ingersoll-Ross (CIR) like model as special cases. It is only in the special case
that the Vasicek-like model is valid, that the covariances of the kernel with
the yields are constant. This implies that risk premia are constant and that
the term structure of futures prices contains no information about risk premia
in the yields. With a CIR-like specification the covariance of the kernel and
the yields are dependent on the current level of the short yield, implying that
the risk premia depend on the current slope of the term structure of futures
prices.

The empirical analysis is conducted for five futures contracts: gold, heat-
ing oil, live cattle, soybeans, and German Mark futures contracts. We use
observations both at a low frequency, which is equal to the frequency of the
delivery dates of the specific contract, and at a daily frequency. The results
show that for heating oil and German Mark futures the data are consistent
with a Vasicek-like model for the term structure of yields. For heating oil we
can not reject the hypothesis that the risk premia in the term structure of
yields are constant. Also, for these contracts the estimated risk premia are
always negative. This implies that one-period expected returns on heating
oil futures are lower for the longer maturity contracts. For German Mark fu-
tures we can not reject the hypothesis that the premia are zero. Finally, gold
and soybean futures show evidence that risk premia depend on the current
slope of the futures term structure, while the evidence for live cattle futures
is mixed. Of course, these results have clear implications for hedging and
portfolio decisions, as well as for pricing other derivative securities.

The outline of this paper is as follows. In section 2 we will show how
to derive information about risk premia from the term structure of futures
prices. Section 3 shows the implications of a simple one-factor model for the
term structure of futures prices. In Section 4 we will present the empirical
analysis. Finally, Section 5 contains the concluding remarks.
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2 The information in futures prices with dif-

ferent maturities

When buying an asset on the spot market at time t and simultaneously taking
a short position in the futures market for delivery at time t+ n, an investor
can lock in a certain return if both the spot and the futures position are
held until maturity2. We will refer to this certain return as the (continuously

compounded) yield, y
(n)
t :

y
(n)
t ≡

f
(n)
t − st
n

, (1)

where f
(n)
t is the log futures price for delivery at t+ n, and st is the log spot

price. This yield is also known as the annualized spread or the slope of the
futures term structure. By a no arbitrage argument, the yield is equal to
the n-period interest rate minus the net cash flow (as a percentage of the
spot price) that accrues to the marginal owner of the asset. This net cash
flow consists for instance of dividends, foreign interest rates, or convenience
yields, net of any storage costs that have to be paid for holding the asset.

Similarly, the forward yield (or annualized forward spread), h(k,n)
t , is the

yield that an investor can earn from time t+ k to t+n, which he can lock in
at time t by taking simultaneously a long position in a futures contract that
matures at t + k, and a short position in a futures contract that matures at
t+ n:

h
(k,n)
t ≡

f
(n)
t − f

(k)
t

n − k
=
ny

(n)
t − ky

(k)
t

n− k
. (2)

It is obvious that the term structure of (forward) yields can be derived from
spot and futures prices in the same way that the term structure of (forward)
interest rates can be derived from bond and bond futures prices.

Focussing on one-period changes in spot and futures prices, the forward
yield h

(1,n)
t can be decomposed in the expected future yield Et[y

(n−1)
t+1 ] and a

risk premium θ
(n)
t :

h
(1,n)
t ≡

ny
(n)
t − y

(1)
t

n− 1
= Et[y

(n−1)
t+1 ] +

θ
(n)
t

n− 1
. (3)

In terms of spot and futures prices, equation (3) can be rewritten as:

θ
(n)
t = Et[st+1 − f

(1)
t ]− Et[f

(n−1)
t+1 − f (n)

t ]. (4)

This equation shows that the risk premium θ
(n)
t equals the expected one

period return on a spreading strategy that involves a long position in a futures

2We will ignore transaction costs that are associated with possible delivery.
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contract with one period to maturity and a short position in a futures contract
with n periods to maturity. Alternatively, −θ(n)

t is the expected one period
return on a futures contract with n periods to maturity, in excess of the
return on a one period futures contract. Thus, the different premia θ(n)

t that
are present in the term structure of yields, also show up as the differences in
the one period expected returns on futures contracts with different maturities.

Although the risk premia θ
(n)
t ultimately arise from uncertainty in the

yields, i.e., in dividends, convenience yields, etc., equation (4), which is in
terms of spot and futures prices, provides a convenient way of communicating
empirical results with respect to the term structure. Equation (4) shows
that the forward spread between the n-period futures price and the 1-period
futures price, f

(n)
t − f

(1)
t , contains information about next period’s (n− 1)-

period spread, f (n−1)
t+1 − st+1, and about the risk premium θ

(n)
t . It is well

known from a series of papers by Fama (1984a,b,c, 1986) that the extent to

which variation in both the future spread f
(n−1)
t+1 − st+1, and variation in the

risk premium θ
(n)
t show up in the variance of the forward spread f

(n)
t − f

(1)
t

can be analyzed by the complementary regressions:

f
(n−1)
t+1 − st+1 = α1 + β1(f

(n)
t − f

(1)
t ) + η1,t+1, (5)

(st+1 − f
(1)
t )− (f

(n−1)
t+1 − f (n)

t ) = α2 + β2(f
(n)
t − f

(1)
t ) + η2,t+1.

The error term η1,t+1(= −η2,t+1) is the prediction error of next period’s

spread, i.e. η1,t+1 = (f
(n−1)
t+1 − st+1) − Et[f

(n−1)
t+1 − st+1]. The first regression

in (5) answers the question whether forward spreads have power to predict
future spreads. If this is the case, then this will result in an estimate of β1

which is different from zero. The predictive power of forward spreads for
future spreads is diminished if there is variation in the risk premia θ(n)

t that
shows up in the forward spread. This will result in the estimate of β2 in
the second regression in (5) being different from zero (and the estimate of β1

being different from one).
The analysis presented in this section isolates the information that is

present in the term structure of futures prices with respect to expected fu-
ture yields and risk premia in yields. Earlier studies concentrated on the
information in futures prices with respect to future spot prices and risk pre-
mia in spot market returns (e.g. Fama, 1984a,b,c, 1986, Fama & French,
1987) or on the interaction of yields and spot prices (e.g. Fama & French,
1988, Bessembinder et al., 1995a,b), rather than on the yields themselves, as
we do here. In the next section we will show that in a simple one-factor model
for the term structure of yields, the covariances of the yields with the pricing
kernel can be derived from the term structure of futures prices. Knowledge
of these covariances can be used to price many other derivative securities on
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the asset underlying the futures contracts. The one-factor model will also
provide testable implications for the coefficients α and β in (5).

3 A one-factor model for the term structure

of yields

3.1 An affine one-factor model

In equilibrium, in frictionless markets, the risk premium θ
(n)
t is determined by

the covariance of y(n−1)
t+1 and the stochastic discount factor, or pricing kernel,

mt+1:

θ
(n)
t = Covt[mt+1, (n− 1)y

(n−1)
t+1 ]. (6)

The stochastic discount factor is known to be proportional to the marginal
(derived) utility of rational agents, given their optimal portfolio and con-
sumption choice (see e.g. Ingersoll, 1987). It is straightforward to show that
equation (6) follows from the first order conditions of the portfolio and con-
sumption problem. Using a suitable specification of the process for the short
yield, y

(1)
t , it is possible to characterize the covariances of the pricing kernel

with the yields and to make testable statements about the term structure of
futures prices. In this section we will show the implications of an affine one-
factor model for the term structure of yields. This discussion closely follows
the one-factor models for the term structure of interest rates as outlined for
instance in Campbell (1994).

Assume that the short yield, y
(1)
t , follows a first order autoregressive pro-

cess, with possibly heteroskedastic innovations, of the following form:

y
(1)
t+1 = µ+ ρ(y(1)

t − µ) + ((1− ω) + ωy
(1)
t )εt+1. (7)

Here 0 ≤ ω ≤ 1 and εt+1 is an i.i.d. random variable with Et[εt+1] =
0, and V art[εt+1] = σ2

ε . We will also assume that the covariance of εt+1

with the stochastic discount factor is constant, i.e. Covt[εt+1,mt+1] = σεm.

Although the process for y(1)
t is exogenously given here, (7) may very well

be the reduced form of a model in which y
(1)
t is the (endogenous) result of

the optimal decisions about consumption, production, and storage made by
rational agents. Since here the aim is to derive the information about risk
premia and future yields that is present in the term structure of futures
prices, we take the model for the short yield as given.

The process in (7) encompasses two special cases if ω is either 0 or 1. If
ω = 0, then the process in (7) is similar to the process for the short term

6



interest rate specified by Vasicek (1977). In this case, (7) is also similar
to the model for the convenience yield in Brennan (1991), referred to as the
autonomous convenience yield model. If ω = 1 then we obtain a specification
that is similar to the interest rate process specified by Cox, Ingersoll, & Ross
(CIR, 1985). If 0 < ω < 1, then a mixture of the two processes is obtained.

Substituting the AR(1) model in (7) into (3) and (6), we can solve all
yields and risk premia as functions of the short term yield. The yield for any
maturity can be written as:

y
(n)
t = A(n) +B(n)y

(1)
t ,

with:

A(n) = ((1− ρ)µ+ (1− ω)σεm)

(
1−

1

n

(ρ + ωσεm)− (ρ+ ωσεm)n

1− (ρ+ ωσεm)

)
(8)

B(n) =
1

n

1− (ρ+ ωσεm)n

1− (ρ+ ωσεm)
.

Similarly, the covariances of the yields with the pricing kernel, or the risk
premia, are given by:

θ
(n)
t = (n− 1)B(n−1)((1− ω) + ωy

(1)
t )σεm. (9)

Thus, all yields and risk premia are affine functions of a single factor, the
short yield y

(1)
t

3. In the special case that ω = 0, i.e., when the process for

the short yield is homoskedastic, the risk premia do not depend on y(1)
t , but

are constant for each value of n. For all other values of ω the risk premia
will be time-varying, where are all variation is captured by y(1)

t .
In the model presented here, knowing only the spot price and one futures

price (i.e., one spread), in principle allows us to determine the complete term
structure of futures prices at a given date, since both the expected future
yields and the covariances of the kernel with the yields depend on the short
yield only. As stated before, this term structure can then be used in pricing
other derivative securities on the asset underlying the futures contract. For
instance, in valuing European options on an asset, under a risk neutral mea-
sure the expected spot price of the asset at the maturity date of the option
will typically be replaced by the futures price of the asset, for the same matu-
rity as the option. If a futures contract on the asset with the same maturity

3Of course it is also possible to derive the model starting from a continuous version of
the process for the short yield, as in Vasicek (1977) and Cox, Ingersoll, & Ross (1981).
This would only affect the constant terms in Equations (8) and (9), but not the slope
coefficients.
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as the option is not traded, the one-factor model can provide the necessary
input to determine the option price. This is true for many other derivative
securities as well4.

3.2 Empirical implications of the one-factor model

In the one-factor model for the term structure of yields presented above, all
variation in (expected) yields and risk premia is due to variation in one factor,
which may be the short yield. Since the regressions in (5) are specified in
terms of spreads (yields) only, the regression parameters are fully determined
by the model parameters given above. In particular, if the one-factor model
is valid, the slope coefficients β1 and β2 from (5) can be written as:

β1 =
ρ

ρ+ ωσεm
, β2 =

ωσεm

ρ+ ωσεm
, (10)

while the constant α1 (α2 = −α1) is given by:

α1 =
1− ρn−1

1− ρ
(1− ω)σεm. (11)

For one thing, these solutions show that in the one-factor model the slope
coefficients in (5) do not depend on the maturity n, but are the same for all
spreads along the term structure. Differences in maturity only show up in
the intercepts. The absolute values of the intercept are increasing functions
of the maturity.

If the process of the short yield is homoskedastic, i.e., ω = 0, and if
ρ 6= 0, then the slope coefficient β1 will be equal to one, and β2 will be
equal to zero. Thus, if the short yield follows a Vasicek-like process with
ρ 6= 0, i.e., the short yield is not expected to revert to its long term average
immediately, then all variation in the forward spreads is due to variation in
expected future spreads, which could be expected since the homoskedastic
model implies constant risk premia. If ω = 0 and ρ 6= 0, then the intercept
α1 gives a direct estimate of the risk premium θ(n).

The opposite extreme case where β1 is zero and β2 is equal to one, is ob-
tained if ρ = 0 and ωσεm 6= 0. In this situation expected future short yields
do not depend on the current short yield, but are constant. Therefore, cur-
rent spreads do not contain any information about expected future spreads,
implying that β1 will indeed be equal to zero. The condition that ωσεm 6= 0
means that the short yield is heteroskedastic and therefore that variation in

4Similarly, Carr & Jarrow (1995) present a framework to price derivative securities
based on binomial trees, that starts from the term structure of futures prices.
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the short yield does cause variation in the risk premia. This variation nat-
urally shows up in the coefficient β2. Also note that if ρ = 0, the intercepts
α1 and α2 no longer depend on n, but are the same for all maturities.

Summarizing, the fact that ρ 6= 0 implies that expected future short yields
depend on the current short yield. This shows up in the slope coefficient β1

in (5) being different from zero, i.e. in the forward spread having predictive
power for future spreads. The fact that ωσεm 6= 0 implies that (co)variances

of the yields y
(n)
t+1 depend on the current level of the short yield, y

(1)
t . This is

also true for the covariance of the kernel mt+1 with the yields, resulting in
time-varying risk premia that are affine functions of the current short yield.
This shows up in the slope coefficient β2 in (5) being different from zero, i.e.
in the forward spread having predictive power for excess returns.

4 Empirical results

4.1 Description of the data

In the previous two sections it was shown how information about risk premia
and future spreads could be obtained from the current futures term structure
and what the implications of a simple one-factor model for the futures term
structure are. In this section we will analyze the futures term structure for
five contracts: gold, German Mark, heating oil, live cattle, and soybeans.
The starting point of the analysis will be equation (5).

Since equation (5) requires that in every period we observe at least futures
contracts with one period to maturity and one other maturity, the observation
frequency of the futures contracts can not exceed the delivery frequency. As
each month is not a delivery month for all futures contracts considered, the
observation frequency is different for the respective futures contracts. For
instance, gold futures contracts are traded for delivery in February, April,
June, August, October, and December. Therefore, the observation frequency
for gold futures is once every two months and one period refers to two months
for gold futures. Table 1 contains summary statistics for the yields of the five
futures for several maturities. Column 2 of Table 1 also contains information
about the length of one period. In Section 4.2 we will present empirical
results for the futures term structure based on these low frequency data. In
Section 4.3 a similar analysis will be given based on daily data.

[Please insert Table 1]

We use data from the Futures Industry Institute for the period starting
from March 1970 or from the start of trading in the contract, until December
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1993 . Because for many commodities futures prices are more reliable than
spot prices, we use the futures price at the delivery date as the spot price,
rather than the spot price itself.

4.2 Empirical results for low frequency data

[Please insert Table 2]

Table 2 presents the OLS estimates for the regressions in (5). Recall that
α2 = −α1, and β2 = 1 − β1. Therefore, Table 2 only presents estimates
of α1 and β1. For three contracts - heating oil, live cattle, and German
Marks - the slope coefficients β1 are less than one standard deviation away
from one. If the coefficient β1 is indeed one for these futures contracts, then
this implies that all variation in the current spread (f

(n)
t − f

(1)
t ) is due to

variation in expected future spreads and not to variation in risk premia. For
these contracts then, the expected next period’s spread Et[(f

(n−1)
t+1 − st+1)]

only differs from the current spread, (f
(n)
t − f

(1)
t ), by a constant α1.

The constant α1 is equal to the risk premium that investors expect to
earn by holding an n-period futures contract rather than a 1-period futures
contract. This is also the interpretation that follows directly from the second
regression in (5). The fact that the coefficient β2 is less than one standard
deviation away from zero for the three contracts mentioned above, provides
direct evidence for a constant risk premium, which is then equal to −α2. For
instance, in buying a 1-month heating oil contract rather than a 2-month
contract, an investor expects to earn an extra return of 0.73% per month.
The negative risk premia imply that expected returns are always smaller for
longer maturity contracts.

For gold and soybean contracts the current spreads contain information
about future spreads and about risk premia, since both the estimates of β1

and of β2 are significantly different from zero for these contracts. Also, for
these contracts, the R2’s are usually rather high for both regressions, while
for the other three contracts R2

2 is always approximately equal to zero. Since
for both gold and soybean contracts the estimated β2 is larger than zero, the
expected excess returns on long term contracts over short term contracts is
smaller (larger) when the spread between long and short term contracts is
large (small).

Alternatively, the results in Table 2 can be interpreted in terms of the term
structure of interest rates and net cash flow yields. Assuming for instance
that for heating oil and live cattle the risk and magnitude of convenience
yields is far more important than of interest rates, Table 2 provides direct
evidence on the term structure of convenience yields. In these terms, the
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fact that the estimated coefficient β1 (β2) is not significantly different from
one (zero) means that a version of the expectations hypothesis with constant
risk premia can not be rejected for the convenience yields of heating oil
and live cattle: expected future convenience yields only differ from forward
convenience yields by constant risk premia. Taking the example of heating
oil again: the 2-month convenience yield for heating oil equals the average
of the current and next period’s expected 1-month convenience yields, minus
a constant premium of 1

2
∗ 0.73 = 0.37% per month. This represents a risk

premium that is also significant in economic terms.
For German Marks we can not even reject the hypothesis that the risk

premia are zero. Since the spread (yield) consists in this case of the difference
of two interest rates, this suggests that the liquidity premium in the term
structure of interest rates of the U.S. and Germany are approximately of the
same magnitude and cancel out in the futures returns.

As pointed out in Section 3.2, if the simple one-factor model for the yields
is true, then one implication is that in the regressions in (5) differences in
maturity, i.e., n, show up in αi, i = 1, 2, while βi is the same for all maturities
n. From the results in Table 2 it appears that for heating oil, live cattle, and
German Mark futures the estimated βi are indeed approximately the same
for all maturities, which is consistent with a one-factor model. Moreover,
for these contracts we can not reject the hypothesis that β1 = 1, suggesting
that a Vasicek-like model for the yields may be a reasonable model. For
gold and soybean futures on the other hand, the fact that β1 is significantly
smaller than one implies that the Vasicek-specification is not valid. If the
term structures of yields can be modelled with an affine one-factor model,
then the short yield must include a heteroskedastic innovation as in the CIR-
specification to explain the results in Table 2.

[Please insert Table 3]

Direct evidence on whether the Vasicek-model or the CIR-model provides
a valid description of the term structure of yields is given in Table 3. Recall
that an affine one-factor model for the term structure of yields implies that
the risk premia are affine functions of the short term yield. From (4) and (9)
we have that:

θ
(n)
t = Et[f

(n−1)
t+1 − st+1]− (f (n)

t − f
(1)
t )

= (n − 1)B(n−1)((1− ω) + ωy
(1)
t )σεm

= γ(n) + δ(n)y
(1)
t ,
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which defines γ(n) and δ(n). Based on this, Table 3 provides SUR-estimates
for the following system:

(f
(n−1
t+1 − st+1)− (f

(n)
t − f

(1)
t ) = γ(n) + δ(n)y

(1)
t + u

(n)
t+1, (12)

y
(1)
t+1 = c+ ρy

(1)
t + ((1− ω) + ωy

(1)
t )εt+1,

for n = 1, 2, ..., K, and where we choose ω = 0 or ω = 1, i.e. a Vasicek or a
CIR-like model. If ω is either one or zero, then we know the exact relation-
ship between the coefficients γ(n), δ(n), and ρ. These relationships impose
nonlinear restrictions on the coefficients in (12). Table 3 also presents Wald-
tests for the nonlinear restrictions imposed by the hypothesis that ω = 0
(labelled Vasicek) and by the hypothesis that ω = 1 (labelled CIR). The
reported test-statistics are for the restrictions imposed by the two specifica-
tions on both the intercepts and the slope coeffecients as well as on the slope
coefficients only. Since under the hypothesis that ω = 1 the AR(1) process
for the short yield in (12) is heteroskedastic, the Wald test for this hypothesis
is based on GLS-estimates of the system in (12). All other reported results
in Table 3 are for the homoskedastic case however.

As in Table 2, the results in Table 3 show first of all that the risk premia
of heating oil, live cattle, and German Mark futures do not depend on the
short yield, y

(1)
t , while for gold and soybean futures they do. For heating oil

and live cattle futures the risk premia are constant and significantly different
from zero, while for German Mark futures, we are again not able to reject the
hypothesis that risk premia are zero. The Wald test rejects the hypothesis
that the Vasicek-like model (ω = 0) provides a good specification of the term
structure of yields for gold and soybean futures, as well as for live cattle
futures, but not for heating oil and German Mark futures. If we only test the
restrictions imposed on the slope coefficients however, the Vasicek-like model
can be rejected for the heating oil futures as well. A formal test shows that
the CIR-like model (ω = 1) is rejected for all contracts except the German
Mark futures. The fact that we can not reject the two models for the German
Mark futures however, is due to the fact that the risk premia for German
Mark futures are essentially zero. This latter conclusion is consistent with
the results of e.g. Hakkio & Leiderman (1986) who can not reject the joint
hypothesis of uncovered interest parity and the expectations hypothesis for
monthly data. McCurdy & Morgan (1987) on the other hand, do reject this
joint hypothesis using weekly data. Summarizing, except for heating oil and
German Mark futures, neither the Vasicek-like model, nor the CIR-model
provides a good specification of the term structure of yields for the futures
contracts considered here.

12



4.3 Empirical results for daily data

As pointed out above, if we base our analysis on the regressions in (5) then

we need to observe y
(1)
t every period, implying that the frequency of the

observations can not exceed the frequency of the delivery dates. A drawback
of using those low frequency data is that much information is lost because
only a limited number of the observations can be used. On the other hand,
using daily data the condition that there are observations for y

(1)
t every period

is clearly not fulfilled, since futures contracts expire at most once per month.
A similar analysis as in the preceding section can be performed for daily data
as well however, if we start from the decomposition of h(k,n)

t rather than from

the decomposition of h
(1,n)
t :

(n− k)h(k,n)
t = ny

(n)
t − ky

(k)
t (13)

= Et[(n− k)y
(n−k)
t+k ] + Θ

(k,n)
t ,

Θ
(n,k)
t ≡

k−1∑
i=0

θ
(n−i)
t .

Equation (13) is a straightforward generalization of the decomposition in (3).
Again, it is convenient to express (13) in terms of spreads between futures
and spot prices rather than in terms of yields. This gives the following
generalization of the regressions in (5):

f
(n−k)
t+k − st+k = α1 + β1(f

(n)
t − f

(k)
t ) + η1,t+k (14)

(st+k − f
(k)
t )− (f (n−k)

t+k − f (n)
t ) = α2 + β2(f

(n)
t − f

(k)
t ) + η2,t+k.

Obviously, the interpretation of (14) is completely analogous to the in-
terpretation of (5). The first regression in (14) answers the question whether

the current forward spread between f
(n)
t and f

(k)
t has predictive power for

the (n − k)-period spread k periods ahead. If this is the case, then β1 will
be different from zero. The second regression investigates whether there is
variation in the k-period risk premium Θ

(k,n)
t that shows up in the current

spread. Note that the left-hand-side of the second regression is the return
on a spreading strategy that involves a long position in a k-period futures
contract and a short position in an n-period futures contract, and holding
these positions for k periods. The expected return on this strategy equals
−Θ

(k,n)
t .

[Please insert Table 4]

Table 4 presents estimates of the regressions in (14) for daily observations
of the futures contracts. Note that n and k are measured in days now. Each
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regression is based on daily observations of a pair of contracts, where the
first column in Table 4 indicates which contracts are used. For instance,
1 , 2 means that the nearest-to-maturity and the second nearest-to-maturity
contracts are used. Since delivery dates are fixed, if at day t we observe
contracts with n and k days to maturity, then at day t+1 we observe contracts
with n − 1 and k − 1 days to maturity (unless day t is a delivery day).
This implies that the observations are overlapping for at most n − k days.
Therefore, the standard errors in Table 4 are calculated as in Newey & West
(1987).

As with the low frequency observations, the estimates of β1 and β2 for
heating oil and German Mark futures show that it is mainly variation in
the future spreads that shows up in the forward spreads, while the forward
spreads do not contain much information about risk premia, i.e. about ex-
pected holding returns on spreading strategies. The only exception with
regard to these contracts are the spreads between the nearest-to-maturity
and second nearest-to-maturity oil contracts, where the estimate of β2 is sig-
nificantly different from zero, indicating that the forward spread does contain
information about risk premia. The results for the German Mark futures are
especially close to the results of the low frequency data in Table 2, showing
intercepts close to zero and slope coefficients β1 (β2) close to one (zero).

The estimates for live cattle in Table 4 are different from the low frequency
results in that variation in risk premia now shows up in variation in the
forward spreads, except for the longest-to-maturity spread. This can be seen
from the estimates of β2 which are significantly different from zero. For the
daily data the results for live cattle futures are now similar to the results for
gold and soybean futures. For these three contracts the risk premia depend
on the slope of the current futures term structure.

Again, the results in Table 4 can be interpreted in terms of spreads and
returns on spreading strategies, as well as in terms of the term structure of
yields. For instance, the estimates for German Mark futures again suggest
that the expectations hypothesis for the yields (i.e., for the interest differ-
ential) can not be rejected and that risk premia are zero. Although this is
consistent with the low frequency results in the previous section as well as
with the results for monthly observations in Hakkio & Leiderman (1986),
these findings do not confirm the results of McCurdy & Morgan (1987) for
weekly observations.

Similar to Section 3.2, we can express the regression coefficients in (14)
in terms of the parameters of the affine one-factor model. Specifically, the
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one-factor model implies that the slope coefficients can be written as:

β1 =
ρk

(ρ+ ωσεm)k
, β2 = 1−

ρk

(ρ+ ωσεm)k
, (15)

and that the constant α1 (= −α2) equals:

α1 = Ψ

{
ϕ− ϕn−k

1− ϕ
− ρk

1− ϕn−k

1− ϕ

}
, (16)

with Ψ ≡ (1− ρ)µ + (1− ω)σεm,

ϕ ≡ ρ+ ωσεm.

If ω = 0 and ρ 6= 0, i.e., if the process for the short term yield y
(1)
t is

homoskedastic and the short yield does not immediately revert to its long
term average, then we obtain again that β1 = 1 and that β2 = 0. Similarly,
the opposite extreme case in which β1 = 0 and β2 = 1 is obtained when
ρ = 0 and ωσεm 6= 0, as before. More importantly, note from (15) and (16)
that both the intercepts and the slope coefficients are of the form f ± gk,
with g ≥ 0. It is computationally convenient to impose the condition that
g is nonnegative. Also, this condition prevents the coefficients (and the risk
premia) to show a switching pattern when the number of days to maturity
is either odd or even. Table 5 reports estimates of the regressions in (14)
in which the parameters are functions of k, the maturity of the nearest-to-
maturity contract:

f
(n−k)
t+k − st+k = (a1 ± c

k
1) + (b1 ± d

k
1)(f

(n)
t − f

(k)
t ) + η1,t+k

(st+k − f
(k)
t )− (f

(n−k)
t+k − f (n)

t ) = (a2 ± c
k
2) + (b2 ± d

k
2)(f

(n)
t − f

(k)
t ) + η2,t+k,

where we impose that ci > 0 and di > 0, i = 1, 2. Note that these regressions
are again complementary in that a1 = −a2, ck1 = −ck2, b1 = 1 − b2, and
dk1 = −dk2.

[Please insert Table 5]

According to equation (15) b1 should be equal to zero and d1 should be
equal to the estimated slope coefficient β1 for the low frequency results in
Table 3, unless the Vasicek model is true, i.e., ω = 0, in which case it is also
possible that b1 = 1 and d1 = 0. The hypothesis that b1 = 0 can almost
always be rejected. For heating oil and German Mark futures however, the
hypothesis that b1 = 1 and that d1 = 0 can not be rejected, which is in
accordance with a Vasicek-like model for these contracts. For most other
contracts both the hypothesis that b1 = 0 and that b1 = 1 are rejected and
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there the evidence contradicts the one-factor model. Finally, the intercept
for German Mark futures appears to be equal to zero again, lending more
support to the expectations hypothesis with a zero risk premia for the yields
on these contracts.

5 Summary and conclusions

This paper analyzes differences in one-period risk premia for futures contracts
with different maturities. These differences are caused by risk premia in the
term structure of yields, where the yield is defined as the annualized spread
between the futures and the spot price, which is determined by interest rates,
dividend yields, convenience yields, storage costs, etc.

Our analysis focuses on the information in the current term structure of
futures prices (yields) about expected future spreads (yields) and risk premia
therein. Using a simple affine one-factor model for the term structure of
yields, that has a Vasicek and CIR-like model as special cases, more precise
statements about the information in the term structure of futures prices can
be made. We show that it is only in the Vasicek specification of the term
structure that risk premia are constant and that the futures term structure
does not contain any information about risk premia.

The empirical analysis shows that the Vasicek model can not be rejected
for heating oil and German Mark futures contracts. If the Vasicek model is
valid, it is relatively straightforward to derive the covariances of the pricing
kernel and all yields from the term structure of futures prices. For heating
oil we find evidence that risk premia are constant and negative, implying
that expected one-period returns are always higher for the short maturity
contracts. Of course this has clear implications for hedging and portfolio
decisions. For German Mark futures we can not reject the hypothesis that
risk premia are zero. Since the yield for German Mark futures is the differ-
ential between the German and U.S.-interest rates, this means that for this
interest differential we can not reject the expectations hypothesis with zero
risk liquidity premia.

For gold and soybean futures we find evidence that the expected one
period futures returns depend on the slope of the futures term structure,
where the expected return on long term contracts relative to short term
contracts is smaller (larger) when the spread between the long and short term
contracts is larger (smaller), i.e. when the term structure is more upward
sloping. Finally, for live cattle futures the evidence is mixed. Although
for these latter three contracts the risk premia depend on the slope of the
futures term structure, the variation in the risk premia can not be captured
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by a simple one-factor model such as the CIR-model. This suggests that in
future research it may be useful to model the term structure of yields with a
multi-factor model.
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Table 1

Summary statistics for yields
One period Average Std.dev. Minimum Maximum AR(1)

Contract

gold y
(1)
t 2 months 0.71% 0.34% 0.01% 1.72% 0.75

(N = 114) y
(2)
t 1.03% 0.47% 0.21% 2.46% 0.89

y
(3)
t 1.15% 0.52% 0.28% 2.78% 0.91

y
(4)
t 1.21% 0.53% 0.31% 2.91% 0.91

heating oil y
(1)
t 1 month -1.27% 4.53% -30.29% 5.66% 0.46

(N = 155) y
(2)
t -0.92% 3.48% -23.43% 3.79% 0.52

y
(3)
t -0.72% 2.76% -17.89% 3.06% 0.59

y
(4)
t -0.62% 2.32% -14.64% 2.86% 0.64

live cattle y
(1)
t 2 months -1.78% 4.06% -10.22% 7.80% 0.33

(N = 102) y
(2)
t -1.35% 3.00% -8.34% 5.08% 0.49

y
(3)
t -0.92% 2.17% -5.33% 3.63% 0.56

y
(4)
t -0.68% 1.69% -4.04% 3.04% 0.60

soybeans y
(1)
t 2 months 0.40% 2.30% -9.32% 6.89% 0.30

(N = 137) y
(2)
t 0.40% 2.62% -18.01% 3.89% 0.36

y
(3)
t 0.31% 2.74% -20.59% 3.05% 0.47

y
(4)
t 0.29% 2.32% -15.47% 2.86% 0.58

German Mark y
(1)
t 3 months 0.76% 1.00% -1.65% 2.96% 0.73

(N = 76) y
(2)
t 0.79% 0.88% -1.55% 2.43% 0.81

y
(3)
t 0.68% 0.83% -1.48% 2.12% 0.81

Table 1: The table contains summary statistics for yields on futures contracts
which are defined as the annualized spread between the spot and futures
price. Observations are from March 1970, or from the beginning of trading in
the contract, until December 1993. Average, standard deviaton, maximum,
and minimum are in percentage per period, where the length of one period
is indicated in the first column.
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Table 2

Premium regressions for low frequency data

f
(n−1)
t+1 − st+1 = α1 + β1(f

(n)
t − f

(1)
t ) + η1,t+1

(st+1 − f
(1)
t ) − (f

(n−1)
t+1 − f (n)

t ) = α2 + β2(f
(n)
t − f

(1)
t ) + η2,t+1

Contract n α1 β1 s.d.(α) s.d.(β) R2
1 R2

2 D.W.
(−α2) (1− β2)

gold 2 0.09% 0.45 0.04 0.03 0.70 0.78 2.00
3 0.14% 0.70 0.09 0.03 0.82 0.47 1.85
4 0.18% 0.79 0.15 0.03 0.84 0.28 1.81

heating oil 2 -0.73% 1.00 0.30 0.11 0.37 0.00 2.25
3 -0.95% 1.04 0.42 0.09 0.47 0.00 2.25
4 -1.03% 1.00 0.45 0.07 0.56 0.00 2.20

live cattle 2 -0.84% 1.03 0.27 0.09 0.59 0.00 1.89
3 -1.71% 1.07 0.40 0.09 0.58 0.01 1.66
4 -1.90% 1.03 0.43 0.09 0.59 0.00 1.73

soybeans 2 -0.30% 0.15 0.19 0.05 0.06 0.66 1.54
3 -0.58% 0.36 0.40 0.06 0.23 0.48 2.02
4 -0.42% 0.62 0.57 0.07 0.38 0.17 2.10

German Mark 2 0.07% 1.05 0.09 0.09 0.67 0.01 2.22
3 0.13% 0.93 0.15 0.07 0.70 0.01 2.09

Table 2: The table contains estimates for the regressions specified in the top
row of the table. Observations are from March 1970, or from the beginning
of trading in the contract, until December 1993. Note that one period refers
to one month for heating oil contracts, two months for gold, live cattle, and
soybean contracts, and three months for German Mark contracts.

20



Table 3

Tests for the Vasicek and CIR models

(f (n−1
t+1 − st+1)− (f (n)

t − f
(1)
t ) = γ(n) + δ(n) ∗ y(1)

t + u
(n)
t+1

y
(1)
t+1 = c+ ρ ∗ y(1)

t + εt+1

gold n γ(n) s.d.(γ(n)) δ(n) s.d.(δ(n)) R2

2 0.01% 0.05 -0.94 0.07 0.65
3 0.01% 0.10 -0.98 0.12 0.36
4 0.00% 0.15 -0.96 0.19 0.20

c s.d.(c) ρ s.d.(ρ)
0.17% 0.05 0.75 0.06 0.57

Vasicek: 900.30∗∗ CIR: 1169.70∗∗

(slopes only) 280.23∗∗ 203.96∗∗

heating oil n γ(n) s.d.(γ(n)) δ(n) s.d.(δ(n)) R2

2 -0.76% 0.30 -0.03 0.07 0.00
3 -1.00% 0.43 -0.01 0.09 0.00
4 -1.06% 0.46 -0.02 0.10 0.00

c s.d.(c) ρ s.d.(ρ)
-0.69% 0.34 0.46 0.07 0.22

Vasicek: 10.82 CIR: 15.44∗∗

(slopes only) 9.40∗ 4.00

live cattle n γ(n) s.d.(γ(n)) δ(n) s.d.(δ(n)) R2

2 -0.83% 0.28 0.02 0.07 0.01
3 -1.52% 0.42 0.14 0.10 0.02
4 -1.65% 0.45 0.16 0.10 0.02

c s.d.(c) ρ s.d.(ρ)
-1.17% 0.42 0.33 0.10 0.11

Vasicek: 18.80∗∗ CIR: 29.71∗∗

(slopes only) 6.90 6.82
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Table 3 (continued)

soybeans n γ(n) s.d.(γ(n)) δ(n) s.d.(δ(n)) R2

2 0.16% 0.32 -0.52 0.14 0.09
3 0.49% 0.55 -0.62 0.24 0.05
4 0.27% 0.63 -0.34 0.27 0.01

c s.d.(c) ρ s.d.(ρ)
0.24% 0.19 0.30 0.08 0.08

Vasicek: 47.65∗∗ CIR: 25.91∗∗

(slopes only) 42.88∗∗ 21.25∗∗

German Mark n γ(n) s.d.(γ(n)) δ(n) s.d.(δ(n)) R2

2 0.07% 0.09 0.05 0.07 0.01
3 -0.05% 0.15 0.11 0.12 0.01

c s.d.(c) ρ s.d.(ρ)
0.15% 0.10 0.77 0.08 0.57

Vasicek: 0.88 CIR: 3.73
(slopes only) 0.88 0.82

Table 3: The table contains SUR estimates for the regressions specified in
the top row of the table. Vasicek is a Wald test for the restrictions imposed
on the intercepts and slope coefficients by the Vasicek model, i.e. for ω = 0.
CIR is a Wald test for therestrictions imposed on the intercepts and slope
coefficients by the CIR model, i.e. for ω = 1. These test statisticsare χ2

5

except for the German Mark, where they are χ2
3. The line ’(slopes only)’

presents the test statistics for the restrictions imposed by the Vasicek and
CIR models on the slope coefficients only. For the Vasicek-like model these
statistics are χ2

3 and for the CIR-like model χ2
2, except for the German Mark

futures, where they are χ2
2 and χ2

1 resp. Observations are from March 1970,
or from the beginning of trading in the contract, until December 1993. Note
that one period refers to one month for heating oil contracts, two months for
gold, live cattle, and soybean contracts, and three months for German Mark
contracts.
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Table 4

Premium regressions for daily data

f
(n−k)
t+k − st+k = α1 + β1(f

(n)
t − f

(k)
t ) + η1,t+k

(st+k − f
(k)
t )− (f (n−k)

t+k − f (n)
t ) = α2 + β2(f

(n)
t − f

(k)
t ) + η2,t+k

Contract α1 β1 s.d.[α] s.d.[β] R2
1 R2

2

(−α2) (1− β2)
gold 1 , 2 0.18% 0.28 0.17 0.13 0.02 0.11

1 , 3 0.20% 0.64 0.19 0.07 0.26 0.10
1 , 4 0.24% 0.76 0.19 0.04 0.56 0.12

heating oil 1 , 2 -2.31% 1.48 0.87 0.20 0.13 0.02
1 , 3 0.09% 1.06 0.31 0.11 0.66 0.01
1 , 4 -0.56% 1.20 0.51 0.14 0.70 0.06

live cattle 1 , 2 1.47% 1.31 0.20 0.06 0.77 0.16
1 , 3 0.96% 1.16 0.39 0.06 0.75 0.06
1 , 4 0.68% 1.05 0.45 0.05 0.75 0.01

soybeans 1 , 2 1.56% 0.62 0.21 0.09 0.36 0.17
1 , 3 1.49% 0.81 0.37 0.09 0.59 0.07
1 , 4 1.37% 0.93 0.59 0.12 0.66 0.01

German Mark 1 , 2 0.04% 0.96 0.07 0.07 0.80 0.01
1 , 3 0.02% 1.00 0.09 0.05 0.90 0.00

Table 4: The table contains estimates for the regressions specified in the
top row of the table. The first column indicates that i-th and j-th nearest-
to-maturtiy contracts are used. Observations are for the period March 1970
until December 1993. For all contracts 3000 observations are available, except
for heating oil, for which respectively 2626, 2442, and 2008 observations are
available. Reported standard errors are Newey-West standard errors.
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Table 5

Premium regressions for daily data with time-varying parameters

f
(n−k)
t+k − st+k = (a1 ± ck1) + (b1 ± dk1) ∗ (f (n)

t − f
(k)
t ) + η1,t+k

(st+k − f
(k)
t )− (f (n−k)

t+k − f (n)
t ) = (a2 ± ck2) + (b2 ± dk2) ∗ (f (n)

t − f
(k)
t ) + η2,t+k

Contract a1 c1 b1 d1 R2
1 R2

2

gold 1,2 0.15% -0.25% 0.29 0.56 0.02 0.11
[0.18] [0.04] [0.13] [0.15]

1,3 0.18% -0.58% 0.07 0.46 0.27 0.10
[0.20] [0.06] [0.07] [0.05]

1,4 0.24% -0.82% 0.75 0.37 0.57 0.12
[0.19] [0.10] [0.04] [0.03]

heating oil 1,2 -2.34% 2.34% 1.56 -0.46 0.13 0.02
[0.87] [0.84] [0.32] [0.41]

1,3 0.05% 0.40% 1.04 0.33 0.66 0.01
[0.31] [0.35] [0.12] [0.18]

1,4 -0.59% 0.84% 1.21 -0.05 0.70 0.06
[0.53] [0.49] [0.15] [0.16]

live cattle 1,2 1.45% 0.81% 1.31 -0.13 0.77 0.16
[0.20] [0.22] [0.06] [0.08]

1,3 0.94% 1.04% 1.17 -0.12 0.75 0.06
[0.39] [0.37] [0.06] [0.07]

1,4 0.65% 1.31% 1.05 -0.01 0.75 0.01
[0.46] [0.45] [0.05] [0.06]

soybeans 1,2 1.55% 0.39% 0.63 0.02 0.36 0.17
[0.21] [0.16] [0.09] [0.09]

1,3 1.47% 0.52% 0.81 0.03 0.59 0.07
[0.38] [0.25] [0.09] [0.08]

1,4 1.36% 0.61% 0.93 -0.02 0.66 0.01
[0.60] [0.38] [0.12] [0.09]

German Mark 1,2 0.04% - - 0.96 -0.04 0.80 0.01
[0.07] - - [0.07] [0.05]

1,3 0.02% 0.05% 1.00 -0.02 0.90 0.00
[0.09] [0.06] [0.05] [0.03]

Table 5: The table contains estimates for the regressions specified in the
top row of the table. The first column indicates that i-th and j-th nearest-
to-maturtiy contracts are used. Observations are for the period March 1970
until December 1993. For all contracts 3000 observations are available, except
for heating oil, for which respectively 2626, 2442, and 2008 observations are
available. A minus sign for c1 and d1 means that the time intercept and the
slope coefficients should be read as a1− ck1 and b1− dk1 respectively, where c1

and d1 themselves are always positive. Reported standard errors are Newey-
West standard errors. 24


