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Abstract

The classical Cauchy continuum theory is suitable to model highly homogeneous materials. However,
many materials, such as porous media or metamaterials, exhibit a pronounced microstructure. As a re-
sult, the classical continuum theory cannot capture their mechanical behaviour without fully resolving the
underlying microstructure. In terms of finite element computations, this can be done by modelling the
entire body, including every interior cell. The relaxed micromorphic continuum offers an alternative method
by instead enriching the kinematics of the mathematical model. The theory introduces a microdistortion
field, encompassing nine extra degrees of freedom for each material point. The corresponding elastic energy
functional contains the gradient of the displacement field, the microdistortion field and its Curl (the micro-
dislocation). Therefore, the natural spaces of the fields are [H 1]3 for the displacement and [H (curl)]3 for
the microdistortion, leading to unusual finite element formulations. In this work we describe the construc-
tion of appropriate finite elements using Nédélec and Raviart-Thomas subspaces, encompassing solutions to
the orientation problem and the discrete consistent coupling condition. Further, we explore the numerical
behaviour of the relaxed micromorphic model for both a primal and a mixed formulation. The focus of our
benchmarks lies in the influence of the characteristic length Lc and the correlation to the classical Cauchy
continuum theory.

Key words: relaxed micromorphic continuum, Nédélec elements, Raviart-Thomas elements, Piola transfor-
mations, the orientation problem, tetrahedral finite elements, consistent coupling condition, metamaterials,
generalized continua.
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1 Introduction

A common problem in the computation of materials with a pronounced micro-structure is the internal complexity
of the geometry. In order to fully capture the kinematics one might resolve the underlying micro-structure. This
can be done either with multi-scale finite element methods [21] or by modelling the finite element mesh to fully
incorporate the microstructure. In both cases, the computational cost increases, leading to longer computation
times and decreasing applicability of such approaches. Alternatively, one may enrich the mathematical model
in order to account for the increase in the kinematical complexity. This approach gives rise to generalized
continuum theories such as higher order gradient methods [29, 36, 48] or micromorphic continua [28, 44, 67].
Micromorphic continuum theories extend the kinematics of the material point with additional degrees of freedom,
the choice of which defines the specific theory. Common examples are micropolar Cosserat [27,39], microstretch
[60], and microstrain models [23, 26]. The latter represent sub-types of the micromorphic continuum. In its
most general case, micromorphic continua assume an affine deformable microbody for each material point. As
such, this deformation, called here the microdistortion P , is fully captured by three-by-three matrices and
introduces nine extra degrees of freedom. The full micromorphic continuum, as introduced by Eringen and
Mindlin [22, 37], incorporates the gradient of the microdistortion DP into the free energy functional. The
resulting hyperstress term is a third order tensor. As such, it is unclear how this term is to be interpreted
or applied. Typically, micromorphic continuum theories introduce a characteristic length scale parameter Lc,
which abstractly relates the dimension of the micro-body to that of the macro-body. In the full micromorphic
model, when the characteristic length Lc becomes very large, the microdistortion P must become constant in
order for the theory to generate finite energies, which may lead to boundary layer problems [66].

The relaxed micromorphic continuum theory [46] takes a different approach by instead incorporating only the
Curl of the microdistortion CurlP into the free energy function. The latter term, known as the micro-dislocation,
remains a second order tensor and as such, induces a matrix-valued right-hand-side, known as the micro-moment
M . Further, large characteristic lengths Lc maintain finite energies [47, 66]. The theory aims to capture the
mechanical behaviour of both highly homogeneous materials and materials with a pronounced microstructure
by governing the relation to the classical Cauchy continuum using the characteristic length Lc [6] and shows
great promise with respect to applications utilizing metamaterials, such as band-gap materials [7,16,34,35] and
shielding against elastic waves [54, 59]. Furthermore, analytical solutions have been derived for bending [56],
torsion [55], shear [57], and extension [58] kinematics. The inclusion of the Curl of microdistortion in the free
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energy function implies the existence of unique solutions [24,45] in the space X = [H 1]3×[H (curl)]3, as shown in
Section 3.1.1. While the construction of finite elements for the space H 1 is well-known in the field of mechanics,
H (curl)-finite elements are commonly used for the Maxwell equations, for example in magnetostatics [64]. For
the construction of finite elements for H (curl) one may use Nédélec subspaces [40,41]. The formulation of higher
order elements is detailed in [68]. For large characteristic length values Lc the computation with the primal
formulation (X h ⊂ X = [H 1]3 × [H (curl)]3) becomes unstable [66]. However, it can be re-stabilised by using
a mixed formulation. The latter requires the employment of Raviart-Thomas- [53] or Brezzi-Douglas-Marini
elements [13] and fully discontinuous finite elements as per the de Rham diagram [5,19,20].

In this work we demonstrate the existence and uniqueness of the primal formulation using the Lax-Milgram
theorem, Section 3.1.1. Further, we introduce a mixed formulation, which is stable for large characteristic
length Lc values, Section 3.1.3. In Section 3.2 we derive the corresponding convergence rates for the discrete
spaces. The construction of lower order finite elements for both formulations is explained in Section 4, with
focus on a solution to the orientation problem and application of the discrete consistent coupling condition.
Section 5 is devoted to numerical benchmarks of the finite element formulations but also features the convergence
characteristics of higher order elements using NETGEN/NGSolve [61, 63]. Finally, we present our conclusions
and outlook in Section 6.

2 The linear relaxed micromorphic continuum

The linear relaxed micromorphic continuum [43,45,46] is described by its free energy functional, incorporating
the gradient of the displacement field, the microdistortion and its Curl

I(u,P ) =
1

2

∫
Ω

〈Ce sym(Du− P ), sym(Du− P )〉+ 〈Cmicro symP , symP 〉 (2.1)

+ 〈Cc skew(Du− P ), skew(Du− P )〉+ µmacro L
2
c ‖CurlP ‖2 dX −

∫
Ω

〈u, f〉+ 〈P ,M〉dX ,

with u : Ω ⊂ R3 → R3 and P : Ω ⊂ R3 → R3×3 representing the displacement and the non-symmetric
microdistortion, respectively. Here, Ce and Cmicro are standard fourth order elasticity tensors and Cc is a
positive semi-definite coupling tensor for (infinitesimal) rotations. The macroscopic shear modulus is denoted
by µmacro and the parameter Lc ≥ 0 represents the characteristic length scale motivated by the geometry of the
microstructure. The body forces and micro-moments are denoted with f and M , respectively. The differential
operators are defined as

Du =

u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 u3,2 u3,3

 , CurlP =

(curl
[
P11 P12 P13

]
)T

(curl
[
P21 P22 P23

]
)T

(curl
[
P31 P32 P33

]
)T

 , curlv = ∇× v . (2.2)

For isotropic materials the material tensors have the following structure

Ce = 2µe S+λe 1⊗1 , Cmicro = 2µmicro S+λmicro 1⊗1 , Cc = 2µc A , (2.3)

where S : R3×3 7→ Sym(3) and A : R3×3 7→ so(3) are the fourth order symmetry and anti-symmetry tensors,
respectively. Taking variations with respect to the displacement u

δuI =

∫
Ω

〈Ce sym Dδu, sym(Du− P )〉+ 〈Cc skew Dδu, skew(Du− P )〉 − 〈δu, f〉dX , (2.4)

and the microdistortion P

δP I =

∫
Ω

− 〈Ce sym δP , sym(Du− P )〉 − 〈Cc skew δP , skew(Du− P )〉+ 〈Cmicro sym δP , symP 〉

+ µmacro L
2
c 〈Curl δP , CurlP 〉 − 〈δP ,M〉dX , (2.5)

3



ΩM

f

ΓD = ΓuD = ΓPD

ΓuD : u = ũ

ΓPD : P ×ν = Dũ× ν

ν

τ ΓN = ΓuN = ΓPN

Figure 1: Depiction of the reference domain Ω with an underlying micro-structure, the Dirichlet boundary ΓD
according to the consistent coupling condition and the Neumann boundaries ΓuN and ΓPN for the displacement
and the microdistortion, respectively. The vector ν is the unit normal vector on the boundary. The unit tangent
vectors are illustrated with τ . The body force is given by f and the micro-moment by M .

yields the symmetric bilinear form

a({δu, δP }, {u, P }) =

∫
Ω

〈Ce sym(Dδu− δP ), sym(Du− P )〉+ 〈Cmicro sym δP , symP 〉

+ 〈Cc skew(Dδu− δP ), skew(Du− P )〉+ µmacro L
2
c 〈CurlδP , CurlP 〉dX , (2.6)

and the linear form for the load

l({δu, δP }) =

∫
Ω

〈δu, f〉+ 〈δP ,M〉dX . (2.7)

The corresponding strong form follows from partial integration, see Appendix A

−Div[Ce sym(Du− P ) + Cc skew(Du− P )] = f in Ω , (2.8a)

−Ce sym(Du− P )− Cc skew(Du− P ) + Cmicro symP +µmacro L
2
c Curl(CurlP ) = M in Ω , (2.8b)

u = ũ on ΓuD , (2.8c)

P ×ν = P̃ × ν on ΓPD , (2.8d)

[Ce sym(Du− P ) + Cc skew(Du− P )]ν = 0 on ΓuN , (2.8e)

CurlP ×ν = 0 on ΓPN , (2.8f)

where ν denotes the outer unit normal vector, such that P ×ν is the projection to the tangent surface on
the boundary. The terms ũ and P̃ are the prescribed displacement and microdistortion fields on ΓuD and ΓPD,
respectively, see Fig. 1.

From a physical point of view, it is impossible to control the micro-movements of the material point on the
Dirichlet boundary without also controlling the displacement. Consequently, the relaxed micromorphic theory
introduces the so called consistent coupling condition [17]

P × ν = Dũ× ν on ΓPD , (2.9)

where the prescribed displacement ũ on the boundary automatically prescribes the tangential component of the
microdistortion P on the same boundary, effectively inducing the definition ΓD = ΓPD = ΓuD.

3 Solvability and limit problems

3.1 Continuous case

In this section existence and uniqueness of the weak formulation of the relaxed micromorphic continuum for both
a primal and a mixed method is discussed. In order to simplify the proof, homogeneous boundary conditions
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are assumed on the entire boundary, ΓuD = ∂Ω. The proof can be easily adjusted for mixed or inhomogeneous
boundary conditions as long as the Dirichlet boundary does not vanish |ΓuD| > 0.

For the following formulations, we define corresponding Hilbert spaces and their particular norms

L2(Ω) = {u : Ω 7→ R | ‖u‖2L2 <∞} , ‖u‖2L2 =

∫
Ω

‖u‖2 dX , (3.1a)

L2
0(Ω) =

{
u ∈ L2(Ω) |

∫
Ω

udX = 0

}
, (3.1b)

H 1(Ω) = {u ∈ L2(Ω) | ∇u ∈ [L2(Ω)]3} , ‖u‖2H 1 = ‖u‖2L2 + ‖∇u‖2L2 , (3.1c)

H 1
0 (Ω) = {u ∈ H 1(Ω) |u = 0 on ∂Ω} , (3.1d)

H (curl, Ω) = {p ∈ [L2(Ω)]3 | curl p ∈ [L2(Ω)]3} , ‖p‖2H (curl) = ‖p‖2L2 + ‖ curl p‖2L2 , (3.1e)

H0(curl, Ω) = {p ∈ H (curl, Ω) |p× ν = 0 on ∂Ω} , (3.1f)

H (div, Ω) = {p ∈ [L2(Ω)]3 |div p ∈ L2(Ω)} , ‖p‖2H (div) = ‖p‖2L2 + ‖ div p‖2L2 , (3.1g)

H0(div, Ω) = {p ∈ H (div, Ω) | 〈p, ν〉 = 0 on ∂Ω} , (3.1h)

from which we derive the corresponding spaces for our higher dimensional problem

H (Curl,Ω) = [H (curl,Ω)]3 , H (Div,Ω) = [H (div,Ω)]3 , (3.2)

where both spaces are to be understood as row-wise matrices of the vectorial spaces.

Remark 3.1. In the following sections we assume a contractible domain Ω for all proofs.

3.1.1 Primal form

The proof of existence and uniqueness has already been given in [46] and subsequently generalized to the
dynamic setting in [24]. For the reader’s convenience and for later use we present a proof based on the Lax–
Milgram theorem and Korn’s inequalities for incompatible fields [8, 9, 31–33, 49, 50], similar to [45], where
only the case µc = 0 together with ΓPD = ∂Ω has been considered. Therefore, we define the product space
X = [H 1

0 (Ω)]3 × H (Curl,Ω) with its standard product norm ‖{u,P }‖2X = ‖u‖2H 1 + ‖P ‖2H (Curl) and examine

the problem: Find {u,P } ∈ X such that

a({u,P }, {δu, δP }) = l({δu, δP }) ∀ {δu, δP } ∈ X , (3.3)

where a(·, ·) and l(·) are defined as in (2.6) and (2.7), respectively.

Theorem 3.1. Let µmacro, Lc > 0, f ∈ [L2(Ω)]3,M ∈ [L2(Ω)]3×3, and Ce,Cmicro be positive definite on Sym(3).
Further, assume that Cc is positive definite on so(3), or positive semi-definite and ΓPD 6= ∅. Then Problem 3.3
is uniquely solvable and there holds the stability estimate

‖{u,P }‖X ≤ c (‖f‖L2 + ‖M‖L2) , c = c(Ce,Cc,Cmicro, µmacro, Lc).

Proof. We show continuity and coercivity of (2.6). During the proof we denote with c > 0 a generic constant
which may change from line to line. Continuity follows immediately with Cauchy-Schwarz inequality

|a({u,P }, {δu, δP })| ≤ c
(

(‖u‖H 1 + ‖P ‖L2)(‖δu‖H 1 + ‖δP ‖L2) + ‖ symP ‖L2‖ sym δP ‖L2 + ‖CurlP ‖L2‖Curl δP ‖L2

)
≤ c
(

(‖u‖H 1 + ‖P ‖H (Curl))(‖δu‖H 1 + ‖δP ‖H (Curl)) + ‖P ‖H (Curl)‖δP ‖H (Curl)

)
≤ c(‖u‖H 1 + ‖P ‖H (Curl))(‖δu‖H 1 + ‖δP ‖H (Curl)) ≤ c‖{u,P }‖X‖{δu, δP }‖X .
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For the coercivity we first consider the case of positive definiteness of the tensors

〈Ce S,S〉 ≥ ce‖S‖2 ∀S ∈ Sym(3) , 〈Cmicro S,S〉 ≥ cmicro‖S‖2 ∀S ∈ Sym(3) , 〈CcA,A〉 ≥ cc‖A‖2 ∀A ∈ so(3),

to deduce with c1 = min{ce, cc}

a({u,P }, {u,P }) ≥ c1(‖ sym(Du− P )‖2L2 + ‖ skew(Du− P )‖2L2) + cmicro‖ symP ‖2L2 + µmacro L
2
c‖CurlP ‖2L2 .

First, we consider the symmetric terms. Analogously to [66], with Young’s inequality1 and Korn’s inequality2 [42]
we obtain

c1‖ sym(Du− P )‖2L2 + cmicro‖ symP ‖2L2 = c1
(
‖ sym Du‖2L2 − 2〈sym Du, symP 〉L2 + ‖ symP ‖2L2

)
+ cmicro‖ symP ‖2L2

Young

≥ c1(1− ε)‖ sym Du‖2L2 + (c1 −
c1
ε

+ cmicro)‖ symP ‖2L2

Korn
≥ cKc1(1− ε)‖Du‖2L2 + (c1 −

c1
ε

+ cmicro)‖ symP ‖2L2 . (3.4)

We can choose ε = 1
2 (1 + c1

c1+cmicro
) such that both terms are positive. Next, we estimate the skew-symmetric

part

‖ skew(Du− P )‖2L2 = ‖ skew Du‖2L2 − 2〈skew Du, skewP 〉L2 + ‖ skewP ‖2L2

Young

≥ (1− 1

δ
)‖ skew Du‖2L2 + (1− δ)‖ skewP ‖2L2

1− 1
δ<0

≥ (1− 1

δ
)‖Du‖2L2 + (1− δ)‖ skewP ‖2L2 . (3.5)

With 0 < δ < 1 only the second term is positive. By combining both estimates we conclude by choosing
δ = 1

2 (1 + 1
1+cK(1−ε) )

a({u,P }, {u,P }) ≥ c1(cK − cKε+ 1− 1

δ
)‖Du‖2L2 + (c1 −

c1
ε

+ cm)‖ symP ‖2L2 + (1− δ)‖ skewP ‖2L2 + c‖CurlP ‖2L2

≥ c(‖Du‖2L2 + ‖P ‖2H (Curl)). (3.6)

Thus, with Poincarè-Friedrich’s inequality3 we obtain the coercivity

a({u,P }, {u,P }) ≥ c(‖Du‖2L2 + ‖P ‖2H (Curl)) ≥ C‖{u,P }‖
2
X . (3.7)

In the case of a positive semi-definite Cc (even Cc = 0 is allowed: absence of rotational coupling) together
with ΓPD 6= ∅ we must use the generalized Korn’s inequality for incompatible fields, cf. [9, 9, 24,32,33,49,50]

‖ symP ‖2L2 + ‖CurlP ‖2L2 ≥ c‖P ‖2H (Curl), ∀P ∈ H (Curl,Ω) with P × ν = 0 on ΓPD (3.8)

and estimate

a({u,P }, {u,P }) ≥ ce‖ sym(Du− P )‖2L2 + cmicro‖ symP ‖2L2 + µmacro L
2
c‖CurlP ‖2L2

Young, (3.8)

≥ (1− ε)‖ sym Du‖2L2 + (1− 1

ε
)‖ symP ‖2L2 +

cmicro

2
‖ symP ‖2L2 + c‖P ‖2H (Curl)

Korn
≥ cK(1− ε)‖Du‖2L2 + (1− 1

ε
+
cmicro

2
)‖ symP ‖2L2 + c‖P ‖2H (Curl)

≥ c(‖Du‖2L2 + ‖P ‖2H (Curl)). (3.9)

Continuity of the right-hand side l is obvious and thus we can apply the Lax–Milgram theorem finishing the
proof.

1Young: a b ≤ εa2

2
+ b2

2ε
, ∀ a, b ∈ R, ε > 0 .

2Korn: ‖ sym Du‖L2 ≥ cK‖Du‖L2 ∀u ∈ [H 1
0 (Ω)]3 .

3Poincarè-Friedrich: ‖u‖L2 ≤ cF ‖Du‖L2 ∀u ∈ [H 1
0 (Ω)]3 .
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Remark 3.2. The proof above fails if we consider P ∈ [H 1(Ω)]3×3 instead of H (Curl,Ω). In fact, a(·, ·) is
then no longer coercive as we cannot bound ‖P ‖2L2 + ‖CurlP ‖2L2 ≥ c‖P ‖2H 1 uniformly in P . In [66] and [65]
it is demonstrated that already in two spatial dimensions a loss of optimal convergence rates is obtained when
using P ∈ [H 1(Ω)]2×2.

Remark 3.3. Note that in [51,52] it is shown that for certain sufficiently smooth data, the regularity of P can
yet be improved to P ∈ [H 1(Ω)]3×3.

3.1.2 Limit of vanishing characteristic length Lc → 0

In the limit Lc → 0 the bilinear form (2.6) reduces to

a({δu, δP }, {u, P }) =

∫
Ω

〈Ce sym(Dδu− δP ), sym(Du− P )〉+ 〈Cmicro sym δP , symP 〉

+ 〈Cc skew(Dδu− δP ), skew(Du− P )〉dX . (3.10)

Therefore, we lose control over the Curl of P yielding a loss of regularity for P from H (Curl,Ω) to [L2(Ω)]3×3.
We emphasise that the proof of Theorem 3.1 can be directly applied with the adapted product space X =
[H 1

0 (Ω)]3 × [L2(Ω)]3×3 together with the requirement of positive definite Cc on the set of skew-symmetric
matrices. Otherwise, control over the skew-symmetric part of P is completely lost in the limit leading to
unstable results. Note that in this case no prescription of boundary conditions for P is possible.

Eq. (2.8b) can be reformulated as

−Ce sym(Du− P )− Cc skew(Du− P ) + Cmicro symP = M , (3.11)

and used to express P algebraically

P = (Ce +Cmicro)−1 Ce sym Du + skew Du +M . (3.12)

Setting M = 0 in Eq. (3.11) implies Cc skew(Du−P ) = 0 and consequently

Ce sym(Du−P ) = Cmicro symP , symP = (Ce +Cmicro)−1 Ce sym Du . (3.13)

Applying the latter to Eq. (2.8a) yields

−Div(Cmacro sym Du) = f , Cmacro = Cmicro(Ce +Cmicro)−1 Ce . (3.14)

The upper definition is derived in [6] and relates the meso- and micro-elasticity tensors to the classical macro-
elasticity tensor Cmacro of the Cauchy continuum, allowing to extract the macro material constants in the
isotropic case

µmacro =
µe µmicro

µe + µmicro
, 2µmacro +3λmacro =

(2µe + 3λe)(2µmicro + 3λmicro)

(2µe + 3λe) + (2µmicro + 3λmicro)
. (3.15)

In fact, Cmacro contains the material constants that arise from classical homogenization for large periodic
structures.

From Eq. (3.12) we observe that in general P is not a gradient field, even if M = 0. Therefore, by setting
λe = λmicro = 0 we obtain that skewP = skew Du and symP = µe

µe+µmicro
sym Du. As µmicro > 0 we deduce

that P is not a gradient field. This is a significant deviation from the two dimensional relaxed micromorphic
model of antiplane shear analyzed in [66], where a gradient field as a right-hand side leads to a gradient field
for the microdistortion.

3.1.3 Mixed form

A major aspect of the relaxed micromorphic continuum is the relation to the classical Cauchy continuum theory.
This relation is governed by the material constants, where the characteristic length Lc plays a significant role.
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We are therefore interested in robust computations with respect to Lc. To that end, we reformulate the problem
as a mixed formulation. The first step consists in introducing the new unknown

D = µmacro L
2
c CurlP ∈ H (Div,Ω) , (3.16)

reminiscent of the micro-dislocation, and examining its distribution with a test function∫
Ω

〈CurlP , δD〉 − 1

µmacro L2
c

〈D, δD〉dX = 0 . (3.17)

In fact, D must be solenoidal as

DivD = µmacro L
2
c Div CurlP = 0 (3.18)

and thus the appropriate space for D is

◦
H (Div,Ω) = H (Div,Ω) ∩ ker(Div) = {D ∈ H (Div,Ω) | DivD = 0}. (3.19)

We again assume that Dirichlet boundary conditions are prescribed on the whole boundary and thus, from
P ∈ H0(Curl,Ω) there follows D ∈ H0(Div,Ω) as Dν = CurlPν = 0.

The (bi-)linear forms are now given by

a({u,P }, {δu, δP }) =

∫
Ω

〈Ce sym(Du− P ), sym(Dδu− δP )〉+ 〈Cmicro symP , sym δP 〉

+ 〈Cc skew(Du− P ), skew(Dδu− δP )〉dX , (3.20a)

b({u,P }, δD) =

∫
Ω

〈CurlP , δD〉dX , (3.20b)

d(D, δD) =

∫
Ω

〈D, δD〉dX , (3.20c)

l(δu, δP ) =

∫
Ω

〈δu, f〉+ 〈δP ,M〉dX , (3.20d)

and the resulting mixed formulation reads: Find ({u,P },D) ∈ X ×
◦

H0(Div,Ω) such that

a({u,P }, {δu, δP }) + b({δu, δP },D) = l(δu, δP ) , ∀ {δu, δP } ∈ X , (3.21a)

b({u,P }, δD)− 1

µmacro L2
c

d(D, δD) = 0 , ∀ δD ∈
◦

H0(Div,Ω) , (3.21b)

where the Lagrange multiplier D has the physical meaning of a hyperstress. Notice we now approximate
the hyperstress directly with its own variable, therefore recovering lost precision due to differentiation.

For the following proofs we will make use of the Helmholtz decomposition [25], splitting a vector field into
a curl and gradient potential. For all u ∈ [L2(Ω)]3 there exists q ∈ H0(curl,Ω) and Ψ ∈ H 1(Ω)\R such that

u = curl q +∇Ψ , ‖q‖H (curl) ≤ c‖u‖L2 , ‖Ψ‖H 1 ≤ c‖u‖L2 . (3.22)

Further, if u ∈
◦

H0(div,Ω) then there exists q ∈ H0(curl,Ω) such that

u = curl q , ‖q‖H (curl) ≤ c‖u‖L2 . (3.23)

Theorem 3.2. Problem 3.21 is uniquely solvable and there holds the stability estimate

‖{u,P }‖X + ‖D‖H (Div) ≤ c ‖l‖L2 , c 6= c(Lc).

Proof. We use the extended Brezzi-theorem [12, Thm. 4.11]. The continuity of a(·, ·), b(·, ·), d(·, ·) and non-
negativity of a(·, ·) and d(·, ·) are obvious.
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Therefore, we have to prove that a(·, ·) is coercive on the kernel of b(·, ·)

ker(b) = {{u,P } ∈ X | b({u,P }, δD) = 0 , ∀ δD ∈
◦
H (Div,Ω)} = {{u,P } ∈ X | CurlP = 0} . (3.24)

The last equality follows from the exact property Curl
(
H0(Curl,Ω)

)
=
◦

H0(Div,Ω). However, we already know
that a({u,P }, {δu, δP }) + 〈CurlP ,Curl δP 〉L2 is coercive, compare the proof of Theorem 3.1. This leaves us
with the Ladyzhenskaya–Babuška–Brezzi (LBB) condition to be satisfied

∃β2 > 0 : sup
{u,P }∈X

b({u,P },D)

‖{u,P }‖X
≥ β2 ‖D‖H (Div) , ∀D ∈

◦
H0(Div,Ω) . (3.25)

We choose u = 0 and P such that CurlP = D with ‖P ‖H (Curl) ≤ c‖D‖L2 leading to

sup
{u,P }∈X

b({u,P },D)

‖{u,P }‖X
= sup
{u,P }∈X

∫
Ω
〈D,CurlP 〉dX

‖P ‖L2 + ‖CurlP ‖L2

≥ c
‖D‖2L2

‖D‖L2

= c ‖D‖H (Div). (3.26)

The existence of such a potential P for D ∈
◦

H0(Div,Ω) follows directly from the theory of stable Helmholtz
decompositions (3.23).

Thus, with Brezzi’s theorem [11], there exists a unique solution independent of Lc for 1
µmacro L2

c
≤ 1 fulfilling

the stability estimate

‖{u,P }‖X + ‖D‖H (Div) ≤ c ‖l‖L2 , (3.27)

where the constant c does not depend on Lc.

Remark 3.4. In the proof we made use of the exactness property of the de Rham complex by restricting the space
of D to be divergence free. Otherwise we cannot prove the LBB condition in the limit Lc → ∞. Numerically
we observed that this restriction is necessary, otherwise the resulting matrix becomes singular.

The limit case limLc →∞ of Eq. (3.21) is well-defined, resulting in the problem: Find ({u∞,P∞},D∞) ∈
X ×

◦
H0(Div,Ω) such that

a({u∞,P∞}, {δu, δP }) + b({δu, δP },D∞) = l(δu, δP ) , ∀ {δu, δP } ∈ X , (3.28a)

b({u∞,P∞}, δD) = 0 , ∀ δD ∈
◦

H0(Div,Ω) . (3.28b)

Consequently, at the limit limLc → ∞ we have CurlP = 0, i.e. the rows of P are gradient fields. This
can be observed by considering that δD only tests functions in range(Curl), where the range is fully given by

range(Curl) =
◦
H (Div). As such, by the Helmholtz decomposition only the gradient part of the microdistortion

P remains. The latter is also clearly observable through the minimization of the energy function, as P = DΨ
is needed for finite energies. Therefore, the consistent coupling condition is crucial, prescribing only gradient
fields as Dirichlet boundary conditions for P . From the theory of mixed methods we obtain, analogously to the
2D case in [66], quadratic convergence in Lc towards the limit case

‖{u∞ − u,P∞ − P }‖X + ‖D∞ −D‖H (Div) ≤
c

L2
c

‖l‖L2 , c 6= c(Lc) . (3.29)

Remark 3.5. Note that for the limit Lc →∞ one finds P → DΨ, inducing finite energies due to Curl DΨ = 0.
Since Lc defines a zoom into the microstructure, the latter can be interpreted as the entire domain being the
micro-body. Consequently, setting f = 0 yields

−Div[Ce sym(Du− P ) + Cc skew(Du− P )] = 0 , (3.30)

and as such, taking the divergence of Eq. (2.8b) results in

Div(Cmicro sym DΨ) = DivM . (3.31)

The divergence of the micro-moment DivM can be interpreted as the micro body-force. The latter implies that
the limit Lc →∞ defines again a classical Cauchy continuum theory with a finite stiffness Cmicro, representing
the upper limit of the stiffness for the relaxed micromorphic continuum. Further, due to the consistent coupling
condition and Eq. (3.30) there holds DΨ = Du (for a thorough derivation see [6]).
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3.1.4 Reformulation of the mixed divergence free constraint

The construction of finite elements which are exactly divergence free,
◦
V h ⊂

◦
H (Div,Ω), is possible for higher

polynomials, [68]. However, at least for the lowest order shape functions, one has to use an additional Lagrange
multiplier q ∈ [L2

0(Ω)]3, compare Remark 3.6 below, forcing DivD = 0. We now show how the mixed formula-

tion has to be adapted leading to a method which can be directly implemented. By defining X̃ = X ×[L2
0(Ω)]3

we introduce the adapted bilinear forms

ã({u,P ,q}, {δu, δP , δq}) = a({u,P }, {δu, δP }) , (3.32a)

b̃({u,P ,q}, δD) =

∫
Ω

〈CurlP , δD〉+ 〈q,Div δD〉dX (3.32b)

and the problem reads: find ({u,P ,q},D) ∈ X̃ ×H0(Div,Ω) such that

ã({u,P ,q}, {δu, δP , δq}) + b̃({δu, δP , δq},D) = l(δu, δP ) , ∀ {δu, δP , δq} ∈ X̃ , (3.33a)

b̃({u,P ,q}, δD)− 1

µmacro L2
c

d(D, δD) = 0 , ∀ δD ∈ H0(Div,Ω) . (3.33b)

Theorem 3.3. Problem 3.33 is uniquely solvable and the solution solves also Problem 3.21.

Proof. The kernel of the bilinear form b is now given by

ker(b) = {{u,P ,q} ∈ X̃ | b({u,P ,q}, δD) = 0 ∀δD ∈ H0(Div,Ω)} = {{u,P ,q} ∈ X̃ | CurlP = 0 and q = 0} .
(3.34)

The last equality follows by choosing on the one hand D = CurlP ∈ H0(Div,Ω) yielding CurlP = 0 and on
the other hand from the de Rham sequence we find that Div (H0(Div,Ω)) = L2

0(Ω) such that we can choose
D ∈ H0(Div,Ω) such that DivD = q. With the same argument as in the proof of Theorem 3.2 the kernel
coercivity follows. For the LBB condition we use the Helmholtz decomposition (3.22) D = CurlQ + DΨ,
Q ∈ H0(Curl,Ω) and Ψ ∈ [H 1(Ω)\R]3, and define u = 0, P = Q, and q = DivD −Ψ ∈ [L2

0(Ω)]3. Then there
holds

sup
{u,P ,q}∈X̃

b({u,P ,q},D)

‖{u,P ,q}‖X̃
= sup
{u,P ,q}∈X̃

∫
Ω
〈D,CurlP 〉+ 〈q,DivD〉dX
‖P ‖L2 + ‖CurlP ‖L2 + ‖q‖L2

≥
∫

Ω
〈CurlQ+ DΨ,CurlQ〉 − 〈Ψ,Div DΨ〉+ ‖DivD‖2 dX

‖Q‖L2 + ‖CurlQ‖L2 + ‖DivD −Ψ‖L2

≥
∫

Ω
‖CurlQ‖2 + ‖DivD‖2 + ‖DΨ‖2 dX

‖Q‖L2 + ‖CurlQ‖L2 + ‖DivD‖L2 + ‖Ψ‖L2

≥ c‖D‖H (Div).

Now, with Brezzi’s theorem we conclude that Problem 3.33 is uniquely solvable with a stability constant
independent of Lc.

Due to the exactness property of the de Rham complex the additional Lagrange multiplier q enforces that

D ∈
◦

H0(Div,Ω). Therefore, taking ({u,P },D) ∈ X ×
◦

H0(Div,Ω) from the solution solves also Problem 3.21.

Remark 3.6. In case of prescribed Dirichlet boundary conditions on ΓPD for P ∈ H (Curl,Ω), due to the de
Rham complex, compatible Dirichlet conditions have to be used for D ∈ H (Div,Ω). If ΓPD = ∂Ω then from
P ∈ H0(Curl,Ω) there follows D ∈ H0(Div,Ω). Thus, with Div(H0(Div,Ω)) = [L2

0(Ω)]3 the space for q has a
zero mean. Consequently, another vector valued variable in R3 is needed for numerics to ensure the zero average
over the domain of q, since elements of L2 cannot be prescribed on the boundary.

3.2 Discrete case

We note that existence and uniqueness in the primal formulation is given by the Lax-Milgram theorem. As a
result, the use of a commuting diagram for the relation between the displacement u and the microdistortion P is
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[H 1(Ω)]3 H (Curl,Ω)
D Curl

H (Div,Ω)
Div

[L2(Ω)]3

Figure 2: The classical de Rham exact sequence. The range of each operator is exactly the kernel of the next
operator in the sequence.

not necessary. However, the relaxed micromorphic model introduces the so called consistent coupling condition
on the Dirichlet boundary, which can be satisfied exactly in the general case, if commuting interpolants are
employed. Further, the mixed formulation requires the coercivity on the kernel of the bilinear form b({u,P },D)
to also be satisfied in the discrete case. Consequently, we rely on the commuting de Rham diagram for the
construction of our finite elements. Specifically, for the lower order elements we make use of linear and quadratic
tetrahedral Lagrangian elements, linear elements from the first and second Nédélec spaces and lowest-order
Raviart-Thomas elements, see Fig. 3.

We denote in the following

uh, δuh ∈ V h ⊂ [H 1(Ω)]3 , P h, δP h ∈ Uh ⊂ H (Curl,Ω) ,

Dh, δDh ∈ Σh ⊂ H (Div,Ω) , qh, δqh ∈ Qh ⊂ [L2(Ω)]3 .

On each tetrahedral element T we define P p(T ) as the set of all polynomials up to order p, P p(T ) = {xiyjzl
∣∣ i+

j + l ≤ p, i, j, l ≥ 0} and denote with P p(Ω) the set of piece-wise polynomials of order p on the triangulation of
Ω.

Remark 3.7. The Raviart-Thomas element from the space RT 0 can only produce constant normal projec-
tions on an element’s outer surface. Further, the dimension of the space is smaller than the full linear space,
dimRT 0 = 4 < dim[P1]3 = 12.

The lowest-order Brezzi–Douglas–Marini elements BDM1 have linear normal components as the full linear
polynomial space is considered. On the one hand better L2-estimates are therefore possible, however, on the
other hand the range of the divergence operator is not increased. There holds the sequence

[P 0(Ω)]3 ( RT 0 ( BDM1 = [P 1(Ω)]3 ( RT 1 ( BDM2 = [P 2(Ω)]3 ( . . . . (3.35)

From Section 3.1.3 we know that the hyperstress field D ∈ H (Div,Ω) is solenoidal, DivD = 0. Therefore,
aside from the lowest order case RT 0, it is desirable to use a basis for RT p (or BDMp) where all higher-order
shape functions are divergence-free. We denote the adapted space by RT p0 = {d ∈ RT p | d ∈ RT 0 or div d =
0} and the corresponding interpolation operator as Πp

d. With such a construction, we can on the one hand save
several redundant degrees of freedom, reducing the computational costs for assembly and solution steps without
any loss of accuracy, and on the other hand, only a constant correction term q ∈ [P 0(Ω)]3 is required to enforce
DivD = 0 for the remaining lowest-order RT 0 shape functions in the mixed formulation since

Div[RT p0]3 = Div[RT 0]3 = [P 0(Ω)]3 .

In the numerical examples we use NGSolve for the high-order elements where such high-order divergence-free
shape functions exist following the construction of [68].

Remark 3.8. The polynomial order of the sequence can be increased by using the Nédélec elements of the first
type N 1

I instead of N 1
II , increasing the range of the curl differential operator. We note that both types yield

a tangential projection of the same polynomial power on the outer boundaries of the element. Similar to the
Raviart–Thomas and Brezzi–Douglas–Marini elements there holds

[P 0(Ω)]3 ( N 0
I ( N

1
II = [P 1(Ω)]3 ( N 1

I ( N
2
II = [P 2(Ω)]3 ( . . . . (3.36)

In the Lax–Milgram setting we define X h = V h×Uh. Due to X h ⊂ X the solvability of the discrete problem
follows directly from the continuous case [10, 15]. We use Cea’s lemma for the quasi-best approximation as a
basis for the convergence estimate

‖{u,P } − {uh,P h}‖2X ≤ c(Lc, µmacro,Ce,Cc,Cmicro) inf
{δuh,δP h}∈Xh

‖{u,P } − {δuh, δP h}‖2X .
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[H 1(Ω)]3 H (Curl,Ω)
D Curl

H (Div,Ω)
Div

[L2(Ω)]3

[P1(Ω)]3 [N 0
I(Ω)]3

D Curl
[RT 0(Ω)]3

Div
[P0(Ω)]3

Π1
g ΠI,0

c ΠRT ,0d Π0
o

[H 1(Ω)]3 H (Curl,Ω)
D Curl

H (Div,Ω)
Div

[L2(Ω)]3

[P2(Ω)]3 [N 1
II(Ω)]3

D Curl
[RT 0(Ω)]3

Div
[P0(Ω)]3

Π2
g ΠII,1

c ΠRT ,0d Π0
o

Figure 3: The de Rham complex for linear (upper) and quadratic (lower) sequences. The differential and
interpolation operators commute between the continuous and the discrete spaces.

Remark 3.9. When using the canonical interpolation operators in the de Rham complex depicted in Figure 3
additional smoothness of the function spaces has to be assumed, as e.g., point evaluation is not well-defined
for functions u ∈ H 1(Ω), Ω ⊂ Rd in dimension d > 1. First commuting, but non-local projections without
additional regularity assumptions were constructed in [62] and [14]. Very recently, local L2-bounded and com-
muting projection operators from the function spaces into the finite element spaces have been established in [4].
Therefore, in the theoretical proofs we will make use of these novel projection operators, whereas for the finite
element implementations the usual canonical operators are considered.

Lemma 3.1. Assume that the exact solution {u,P } is in H p+1(Ω)×H p(Curl,Ω), where H p(Curl,Ω) = {P ∈
[H p(Ω)]3×3 | CurlP ∈ [H p(Ω)]3×3}. If [P p(Ω)]3 ⊂ V h and Uh = [N p−1

I ]3 then the discrete solution {uh,P h} ∈
X h converges with optimal rate

‖u− uh‖H 1 + ‖P − P h‖H (Curl) ≤ c(Lc, µmacro,Ce,Cc,Cmicro)hp. (3.37)

Proof. During the proof ΠI,p−1
c denotes, with an abuse of notation, the projection operator without extra reg-

ularity assumptions, see Remark 3.9. With Cea’s lemma and the approximation properties of the interpolation
operators [11,15] we obtain

‖{u,P } − {uh,P h}‖2X ≤ c inf
{δuh,δP h}∈Xh

‖{u,P } − {δuh, δP h}‖2X

≤ c
(
‖u−Πp

gu‖2H 1 + ‖P −ΠI,p−1
c P ‖2L2 + ‖CurlP − Curl ΠI,p−1

c P ‖2L2

)
= c
(
‖u−Πp

gu‖2H 1 + ‖P −ΠI,p−1
c P ‖2L2 + ‖(id−Πp−1

d )(CurlP )‖2L2

)
≤ c h2p

(
|u|2Hp+1 + |P |2Hp + |CurlP |2Hp

)
,

where | · |Hp denotes the standard Sobolev semi-norm.

When using the Nédélec elements of second type N p−1
II instead of N p−1

I , we lose one order of convergence
for the microdistortion tensor due to the decreased range of the curl. This should also lead to sub-optimal
convergence of the displacement. For example, the quadratic sequence depicted in Figure 3 would only have

12



linear convergence for u although quadratic elements are used. In the extreme case of vanishing characteristic
length Lc = 0 the optimal convergence rates are achieved since only the L2-norm of P is considered, compare
Section 3.1.2. On the subspace U0 = {v ∈ H (curl,Ω) | curl v = 0} the Nédélec elements of first and second
kind coincide, N p

I = N p
II , leading to optimal rates, which corresponds to the limit case Lc = ∞. However,

in the numerical experiments we continued to observe improved convergence rates for the L2-norm of P and
H 1-norm of u for Lc ∈ (0,∞). Under the assumption of an s-regular problem we can prove improved estimates
for these norms with an Aubin-Nitsche technique. We call Problem 3.3 s-regular if there holds for the solution
{u,P } ∈ X with s ∈ (0, 1]

|u|H1+s + ‖P ‖Hs(Curl) ≤
(
‖f‖L2 + ‖M‖L2

)
, (3.38)

where ‖P ‖2Hs(Curl) = ‖P ‖2Hs + ‖CurlP ‖2Hs .

Corollary 3.1. Adopt the assumptions from Lemma 3.1 only changing Uh = [N p−1
II ]3 and p > 1. Further

assume that Problem 3.3 is s-regular with s ∈ (0, 1]. Then

‖u− uh‖H 1 + ‖P − P h‖L2 ≤ c (Lc, µmacro,Ce,Cc,Cmicro)hp−1+s . (3.39)

Proof. We solve the following dual problem, where the differences u − uh and P − P h are used as right-hand
side: find {w,Q} ∈ X such that

a({δu, δP }, {w,Q}) =

∫
Ω

〈u− uh, δu〉+ 〈P − P h, δP 〉dX ∀{δu, δP } ∈ X .

By using the test-function {δu, δP } = {u − uh,P − P h} and the Galerkin-orthogonality a({u − uh,P −
P h}, {vh,Qh}) = 0 for all {vh,Qh} ∈ Xh we can insert the corresponding natural interpolation operators Πp

gw
and Πp−1

c Q (Remark 3.9) leading to

‖u− uh‖2L2 + ‖P − P h‖2L2 = a({u− uh,P − P h}, {w −Πp
gw,Q−Πp−1

c Q})

≤ c‖{u− uh,P − P h}‖X(‖w −Πp
gw‖H 1 + ‖Q−Πp−1

c Q‖H (Curl))

≤ c‖{u− uh,P − P h}‖Xhs(|w|H1+s + ‖Q‖Hs(Curl))

≤ chs‖{u− uh,P − P h}‖X(‖u− uh‖L2 + ‖P − P h‖L2) .

Using Young’s inequality on the left side, dividing through ‖u − uh‖L2 + ‖P − P h‖L2 , and using that ‖{u −
uh,P − P h}‖X ≤ chp−1 for P h ∈ [N p−1

II ]3 yields the claim for the L2-norm of u and P . For the H 1-norm we
first note that with the Galerkin-orthogonality, adding and subtracting Πp

gu, and the specific structure of the
bilinear form we obtain

0 = a({u− uh,P − P h}, {vh,0}) =

∫
Ω

〈(Ce +Cc)
(

D(u− uh)− (P − P h)
)
,D vh〉dX

= a({u−Πp
gu,P − P

h}, {vh,0}) +

∫
Ω

〈(Ce +Cc) D(Πp
gu− uh),D vh〉dX .

Thus, we can estimate√∫
Ω

〈(Ce +Cc) D(Πp
gu− uh),D(Πp

gu− uh)〉dX = sup
vh∈V h

∫
Ω
〈(Ce +Cc) D(Πp

gu− uh),Dvh〉dX√∫
Ω
〈(Ce +Cc) D vh,D vh〉dX

= sup
vh∈V h

−a({u−Πp
gu,P − P

h}, {vh,0})√∫
Ω
〈(Ce +Cc) D vh,D vh〉dX

≤ c(‖u−Πp
gu‖H 1 + ‖P − P h‖L2) ≤ chp−1+s ,

where we used Cauchy-Schwarz and the explicit structure of the bilinear form. With the triangle inequality
‖D(u − uh)‖L2 ≤ ‖D(Πp

gu − uh)‖L2 + ‖D(u − Πp
gu)‖L2 and positive definiteness of Ce +Cc (in combination

with the generalized Korn’s inequality for incompatible tensor fields if Cc = 0) the claim follows.

13



Remark 3.10. We do not discuss the s-regularity of Problem 3.3 in this work, but mention that for the Laplace
as well as for Maxwell’s equations there holds s = 1 for convex domains Ω.

Corollary 3.1 also shows that we cannot expect improved convergence for u in the L2-norm compared to the
H 1-norm, which is confirmed by the numerics.

Unfortunately, the approximation constant depends a priori on Lc. As we are interested in the limit Lc →∞
robust estimates with respect to Lc are desirable. We show such an estimate with the help of the equivalent
mixed formulation of the problem.

Normally, in contrast to the primal formulation, the kernel coercivity as well as the LBB-condition for the
discrete case are not inherited from the continuous proof. However, thanks to the de Rham complex and a
discrete Helmholtz decomposition [3], these properties hold also in the discrete case as long as the appropriate
conforming finite element spaces are employed [11]. Consequently, Cea’s lemma yields

‖{u,P ,q} − {uh,P h,qh}‖2
X̃

+ ‖D −Dh‖2H (Div) ≤ c inf
({δuh,δP h,δqh},δD)∈X̃×H (Div)

(‖{u,P ,q} − {δuh, δP h, δqh}‖2
X̃

+ ‖D − δDh‖2H (Div))

Lemma 3.2. Assume that the exact solution {u,P ,D,q} is in H p+1(Ω)× H p(Curl,Ω)× H p(Ω)× H 1(Ω). If
[P p(Ω)]3 ⊂ V h, Uh = [N p−1

I ]3, Σh = [RT p−1
0 ]3, and [P 0(Ω)]3 = Qh then the discrete solution ({uh,P h,qh},Dh) ∈

X̃
h × Σh converges with optimal rate

‖u− uh‖H 1 + ‖P − P h‖H (Curl) + ‖D −Dh‖H (Div) + hp−1‖q− qh‖L2 ≤ c hp c 6= c(Lc) . (3.40)

Additionally, with {u∞,P∞,D∞,q∞} for the (smooth) solution of the limit problem one obtains

‖u∞ − uh‖H 1 + ‖P∞ − P h‖H (Curl) + ‖D∞ −Dh‖H (Div) ≤
c1
L2

c

+ c2 h
p , ‖q∞ − qh‖L2 ≤ c1

L2
c

+ c2 h . (3.41)

Proof. The proof of the first claim starts by following the same lines as in the primal case. The estimates for
D and q are shown in detail

‖D −Πp−1
d D‖2H (Div) + ‖q−Π0

oq‖2L2 = ‖D −Πp−1
d D‖2L2 + ‖(id−Πp−1

o ) DivD︸ ︷︷ ︸
=0

‖2L2 + ‖q−Π0
oq‖2L2

≤ c(h2p|D|2Hp + h2|q|2H1),

where we used that the exact hyperstress D is divergence free. This estimate, however, would only yield
linear convergence for all fields. By noting that on the subspace of divergence free hyperstresses the solution is
independent of q we obtain the optimal rates for uh, P h, and Dh.

For the second inequality we add and subtract the exact solution, use the triangle inequality, and (3.29) and
(3.40).

Remark 3.11. Note that only linear convergence is obtained for the correction term q. If one is interested in this
quantity, a cheap post-processing step can be applied element-wise to obtain a high-order approximation [30]. For
Uh = [N p−1

II ]3 the results of Lemma 3.2 can directly be adapted by following the same lines as in Corollary 3.1.
Inequalities (3.41) show that besides the model error in Lc, also the approximation error has to be considered

for convergence studies in the limit Lc →∞.

4 Finite element formulations

In this work we employ tetrahedral finite elements. The construction of H 1, H (div), H (curl), and L2-conforming
finite elements to obtain the lowest order combination is presented in the following in detail. Higher order
elements are used from the open source finite element software NETGEN/NGSolve4 [61,63] and we refer to [68]
for the construction of higher order finite elements.

4www.ngsolve.org
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Figure 4: Barycentric mapping from the reference element to the physical domain.

The elements are mapped from the reference element to the physical element using the barycentric base
functions

b1(ξ, η, ζ) = 1− ξ − η − ζ , b2(ξ, η, ζ) = ξ , b3(ξ, η, ζ) = η , b4(ξ, η, ζ) = ζ , (4.1)

x(ξ, η, ζ) = (1− ξ − η − ζ) x1 + ξ x2 + η x3 + ζ x4 , J =
[
x2 − x1 x3 − x1 x4 − x1

]
, (4.2)

where xi are the vertex coordinates of each tetrahedron on the physical domain and J is the corresponding
Jacobi matrix, see Fig. 4. The entire domain is given by the union

Ω =

n⋃
e=1

Ωe ⊂ R3 . (4.3)

4.1 Lagrangian base

For the primal formulation we make use of Lagrangian base functions. These have the nodal degrees of freedom

lij(u) = δij u

∣∣∣∣
xj

, (4.4)

where δij is the Kronecker delta. Defining the reference element to be the unit tetrahedron

T = {ξ, η, ζ ∈ [0, 1] | ξ + η + ζ ≤ 1} , (4.5)

the linear Lagrangian element is given by the barycentric base functions Eq. (4.1). For the quadratic polynomial
space P2, one finds the following ten base functions

n1(ξ, η, ζ) = 2 (η + ξ + ζ − 0.5) (η + ξ + ζ − 1) , n2(ξ, η, ζ) = 2 ξ (ξ − 0.5) , (4.6a)

n3(ξ, η, ζ) = 2 η (η − 0.5) , n4(ξ, η, ζ) = 2 ζ (ζ − 0.5) , (4.6b)

n5(ξ, η, ζ) = 4 ξ (1− η − ξ − ζ) , n6(ξ, η, ζ) = 4 η ξ , (4.6c)

n7(ξ, η, ζ) = 4 η (1− η − ξ − ζ) , n8(ξ, η, ζ) = 4 ζ (1− η − ξ − ζ) , (4.6d)

n9(ξ, η, ζ) = 4 ξ ζ , n10(ξ, η, ζ) = 4 η ζ , (4.6e)

where the first four are vertex base functions and the next six are edge base functions defined on the edge
midpoint, see Fig. 5. Gradients with respect to the physical space are given by the standard chain rule

∇xni = J−T∇ξni . (4.7)
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Figure 5: Vertex and edge nodes on the reference element, vertex base function n1 and edge base function n7

of the Lagrangian basis.

The interpolation of the displacement field is generated using the N -matrix and the union operator

u =

n⋃
e=1

Nue , (4.8)

N1 =
[
b1 1 b2 1 b3 1 b4 1

]
∈ R3×12 , (4.9)

N2 =
[
n1 1 n2 1 n3 1 n4 1 n5 1 n6 1 n7 1 n8 1 n9 1 n10 1

]
∈ R3×30 , (4.10)

where 1 is the three-dimensional identity matrix. Consequently, in each element, the displacement vector is
interpolated by 12 Lagrangian base functions in the linear case and 30 in the quadratic case.

4.2 Nédélec base

For the interpolation of the microdistortion tensor P we make use of Nédélec base functions of the first and
second types [40,41,68]. The edge degrees of freedom are defined by the functionals

lij(p) =

∫
si

qj〈p, τ 〉ds ∀ qj ∈
{

Pp−1(si) for N I

Pp(si) for N II
, (4.11)

where si is the curve of an edge on the element and qj is a test function. In accordance with the de Rham
complex, the appropriate polynomial space for the linear sequence is

R1 = [P0]3 ⊕ S 1 , S 1 =

{
p ∈

[
P̃

1
]3
| 〈p, ξ〉 = 0

}
, dim R1 = 6 , (4.12)

where P̃ is the space of homogeneous polynomials. The corresponding test function qj = 1 yields the base
functions on the reference element (see Fig. 6)

ϑ1 =

1− η − ζ
ξ
ξ

 , ϑ2 =

−ηξ
0

 , ϑ3 =

 η
1− ξ − ζ

η

 ,
ϑ4 =

 ζ
ζ

1− ξ − η

 , ϑ5 =

−ζ0
ξ

 , ϑ6 =

 0
−ζ
η

 , (4.13)

representing the base of the lowest order Nédélec element of the first type N 0
I . For the sequence of the quadratic

element we employ the linear Nédélec elements of the second type N 1
II . The corresponding polynomial space

reads

[P1]3 = [span{1, ξ, η, ζ}]3 , dim[P1]3 = 12 . (4.14)
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(a) ϑ1 (b) ϑ2
(c) ϑ3 (d) ϑ4 (e) ϑ5

(f) ϑ6

Figure 6: Lowest order Nédédelec base functions of the first type on the reference tetrahedron.

In other words, the space is given by 12 Nédélec functions. Using the ansatz

ϑ =

a0 + a1ξ + a2η + a3ζ
b0 + b1ξ + b2η + b3ζ
c0 + c1ξ + c2η + c3ζ

 ∈ [P1]3 , (4.15)

and the degrees of freedom from Eq. (4.11) for each edge on the reference element

lij(ϑ) =

∫
µi

qj〈ϑ, ς〉dµ = δij , q1(µi) =
d− µi
d

, q2(µi) = µi , d =

∫
µi

dµ , (4.16)

where µi is the parameter for the corresponding edge, we find the base functions (see Fig. 7)

ϑ1 =

1− ξ − η − ζ
0
0

 , ϑ2 =

ξξ
ξ

 , ϑ3 =

0
ξ
0

 , (4.17a)

ϑ4 =

−η0
0

 , ϑ5 =

 0
1− ξ − η − ζ

0

 , ϑ6 =

ηη
η

 , (4.17b)

ϑ7 =

 0
0

1− ξ − η − ζ

 , ϑ8 =

ζζ
ζ

 , ϑ9 =

0
0
ξ

 , (4.17c)

ϑ10 =

−ζ0
0

 , ϑ11 =

0
0
η

 , ϑ12 =

 0
−ζ
0

 . (4.17d)

Remark 4.1. The resulting Nédélec base functions are not unique in the sense that they are determined by the
choice of the test functions qj. In our case we chose the linear Lagrangian base on µ, leading to a Nédélec-
Lagrangian base.

Remark 4.2. Note that the decrease in polynomial order of the second discrete sequence (see Fig. 2) can be
alleviated by employing first order Nédélec elements of the first type N 1

I . This increases the interpolation power
of the solenoidal part of the microdistortion field P , but not of the irrotational part.

The base functions are defined on the reference element. In order to preserve their tangential projection on
edges in the physical domain∫

si

qj〈θ, τ 〉ds =

∫
µi

q̂j〈ϑ, ς〉dµ , q̂j = qj ◦ x , (4.18)
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(l) ϑ12

Figure 7: Nédélec N 1
II -base functions on the reference element.

we make use of the transformation of curves via the Jacobi matrix (see Eq. (4.2))

ds = τ ds = J dµ = J ς dµ , (4.19)

to find the covariant Piola transformation [38]

〈θ, ds〉 = 〈θ, J dµ〉 = 〈ϑ, dµ〉 ⇐⇒ θ = J−Tϑ . (4.20)

Further, for the transformation of the curl we find

curlx θ = ∇x × θ = (J−T∇ξ)× (J−Tϑ) = Cof(J−T ) curlξ ϑ =
1

detJ
J curlξ ϑ , (4.21)

which is the so called contravariant Piola transformation. The formula is derived using the identity5 ∇x × J−T = 0.
The microdistortion can now be interpolated by

P =

n⋃
e=1

ΘP e , (4.22)

ΘI =

θ1 o o θ2 o o θ6 o o
o θ1 o o θ2 o · · · o θ6 o
o o θ1 o o θ2 o o θ6

 ∈ R9×18 , (4.23)

ΘII =

θ1 o o θ2 o o θ12 o o
o θ1 o o θ2 o · · · o θ12 o
o o θ1 o o θ2 o o θ12

 ∈ R9×36 . (4.24)

In other words, the microdistortion is interpolated by 18 Nédélec base functions in the linear case and 36 in the
quadratic case on each element.

5∇x × J−T = (Anti∇x)(Dx ξ)T = 0, where Anti(·) maps the vector to its corresponding anti-symmetric matrix.
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(a) φ1 (b) φ2 (c) φ3
(d) φ4

Figure 8: Raviart-Thomas RT 0-base functions on the reference element.

4.3 Raviart-Thomas base

For the mixed formulation we also require Raviart-Thomas [53, 68] elements. The lowest order face degrees of
freedom of Raviart-Thomas elements are defined as

li(p) =

∫
Ai

〈p, ν〉dΓ . (4.25)

The polynomial space for the construction of base functions is given by

RT p = [Pp]3 ⊕ ξ P̃
p
, (4.26)

where P̃ is the space of homogeneous polynomials. In the lowest order one finds

RT 0 = R3 ⊕ ξR = span


1

0
0

 ,
0

1
0

 ,
0

0
1

 ,
ξη
ζ

 , dimRT 0 = 4 . (4.27)

Using the ansatz

φ =

a0 + a1 ξ
b0 + b1 η
c0 + c1 ζ

 ∈ RT 0 , (4.28)

and the degrees of freedom from Eq. (4.25) for each face on the reference tetrahedron

li(φj) =

∫
Γi

〈φj , %〉dΛ = δij , (4.29)

where Λ denotes a face on the reference tetrahedron, we find the base functions (see Fig. 8)

φ1 =

 −ξ−η
1− ζ

 , φ2 =

 ξ
η − 1
ζ

 , φ3 =

ξη
ζ

 , φ4 =

1− ξ
−η
−ζ

 . (4.30)

Raviart-Thomas base functions are defined using the normal projections on the element’s faces. In order to
preserve the normal projection ∫

Ai

〈ϕj , ν〉dΓ =

∫
Γi

〈φj , %〉dΛ , (4.31)

we consider the transformation of surfaces

dΓ = ν dΓ = (Cof J)% dΛ = (Cof J)dΛ . (4.32)
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Consequently, the base functions are mapped using the contravariant Piola transformation

〈ϕj , dΓ〉 = 〈ϕj , (Cof J) dΛ〉 = 〈φj , dΛ〉 ⇐⇒ ϕj =
1

detJ
J φj (4.33)

Remark 4.3. Note that this the same transformation as in Eq. (4.21) since curlθ ∈ H (div) , θ ∈ H (curl).

Considering the divergence of functions undergoing a contravariant Piola transformation we observe∫
Ω

q divxϕ dX =

∮
∂Ω

q 〈ϕ, ν〉dΓ−
∫

Ω

〈Dx q, ϕ〉dX

=

∮
∂Ξ

q̂ 〈 1

detJ
J φ, det(J)J−T%〉dΛ−

∫
Ξ

〈J−T Dξ q̂,
1

detJ
J φ〉 detJ dΞ

=

∮
∂Ξ

q̂ 〈φ, %〉dΛ−
∫

Ξ

〈Dξ q̂, φ〉dΞ

=

∫
Ξ

q̂ divξ φ dΞ =

∫
Ω

q divξ(φ)
1

detJ
dX ∀ q ∈ C∞(Ω) , (4.34)

where q̂ = q ◦ x. As a result, one finds

divxϕ =
1

detJ
divξ φ . (4.35)

Thus, the hyperstress field is interpolated by

D =

n⋃
e=1

ΦDe , Φ =

ϕ1 o o ϕ2 o o ϕ4 o o
o ϕ1 o o ϕ2 o · · · o ϕ4 o
o o ϕ1 o o ϕ2 o o ϕ4

 ∈ R9×12 , (4.36)

such that, on each element 12 Raviart-Thomas base functions define the hyperstress.

Remark 4.4. An increase of the Nédélec element in the second discrete sequence to N 1
I would allow to employ

either first order Raviart-Thomas elements RT 1 or linear Brezzi-Douglas-Marini elements BDM1 [13].

4.4 Discontinuous basis

Finally, for the discontinuous elements in L2 we employ piece-wise constants

qi = 1 , qi ∈ P0 . (4.37)

The entire space has the dimension dim[P0]3 = 3 and the interpolation reads

q =

n⋃
e=1

1qe , (4.38)

resulting in three discontinuous base functions on each element.

4.5 The orientation problem

The co- and contravariant Piola transformations do not suffice to assert the consistent orientation of the tangen-
tial or normal projections of the Nédélec and Raviart-Thomas base functions, respectively. The transformations
control the size of the projections, but not whether these are parallel or anti-parallel with respect to neighbouring
elements. Consistent projections is a key requirement in ensuring no jumps occur in the trace of the respective
space and as such, there exist various methods for dealing with this so called orientation problem [1, 2, 66, 68].
In this work we present a solution based on the sequencing of vertices and the separation of orientational data.
We define the following rule for the orientation of edges

e = {vi, vj} s.t. i < j . (4.39)
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T2 = {v1, v2, v3, v5}

Figure 9: Consistent orientations using vertex sequences. Edges are oriented from the lower to the higher vertex
and faces according to the left-hand rule starting from the lowest vertex across the middle to the highest.

This means each edge starts at the lower vertex index and ends at the higher vertex index. This definition
determines the orientation of the edge tangent vector (see Fig. 4) and consequently, the tangential projection
of the Nédélec base functions. Analogously, for surfaces we define

f = {vi, vj , vk} s.t. i < j < k , (4.40)

such that each surface is given by a sequence of increasing vertex indices. The orientation of the surface normal
is given according to the left-hand rule. In other words, the direction of the normal is determined by the cross
product of the vectors arising from the edges {vi, vj} and {vi, vk}

νijk ‖ τ ij × τ ik . (4.41)

The orientation of the Nédélec- and Raviart-Thomas base functions is according to these rules. Consequently,
in order to map each tetrahedron in the mesh to this orientation, we define each element as an increasing
vertex-index sequence (see Fig. 9)

T = {vi, vj , vk, vl} s.t. i < j < k < l . (4.42)

The latter ensures the consistent orientation of the base functions, since they are all mapped from the same
reference domain. However, integration in the reference element is determined by the determinant of the Jacobi
matrix ∫

Ωe

dX =

∫
Ξ

detJ dΞ , (4.43)

which may be negative due to a reflection of the element in the mapping from the reference to the physical
domain. We correct for the error by taking only the absolute value of the determinant∫

Ωe

dX =

∫
Ξ

|detJ |dΞ . (4.44)

Consequently, consistency is guaranteed by mapping from a single reference element and the use of correction
functions or considerations of neighbouring elements are circumvented.

Remark 4.5. The absolute value of detJ is only used for the integration over the element. In all other
use-cases, the information of the sign is necessary.

4.6 The discrete consistent coupling condition

In order to exactly satisfy the consistent coupling, one may use the degrees of freedom from [20] to set the
boundary conditions, ensuring a commuting projection. However, this requires the solution of a Dirichlet type
problem for every edge on ΓD. Alternatively, one can first find the Lagrangian interpolation of the boundary
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condition of the displacement on each edge and derive the boundary condition for the microdistortion directly
from it. We observe that on each element’s edge, the displacement is given by

Π1
gu(µ)

∣∣∣∣
s

= ũ

∣∣∣∣
v1

n1(µ) + ũ

∣∣∣∣
v2

n2(µ) = ũ

∣∣∣∣
v1

(1− µ) + ũ

∣∣∣∣
v2

µ , (4.45)

Π2
gu(µ)

∣∣∣∣
s

= ũ

∣∣∣∣
v1

n1(µ) + ũ

∣∣∣∣
m

n2(µ) + ũ

∣∣∣∣
v2

n3(µ) = ũ

∣∣∣∣
v1

(2µ− 1)(µ− 1) + ũ

∣∣∣∣
m

4µ (1− µ) + ũ

∣∣∣∣
v2

µ (2µ− 1) ,

where ni are the Lagrangian base functions on the reference edge and m is the mid-point of the edge. The
consistent coupling condition on a curve transforms according to the covariant Piola transformation

〈Dx Πgu, τ 〉 = 〈J−T Dξ Πgu, J ς〉 = 〈Dξ Πgu, ς〉 = 〈Πcp, ς〉 , (4.46)

where p represents a row of the microdistortion P and 〈Πcp, ς〉 results from the transformations of the tangent
vector Eq. (4.19) and the Nédélec base functions Eq. (4.20). The gradient of the Lagrangian interpolation of
the displacement Πgu can be reformulated in dependence of the curve parameter µ ∈ [0, 1]

〈Dξ Πgu, ς〉 = (Πgu),µ 〈Dξ µ, ς〉 . (4.47)

We note that in order to maintain an invariant transformation, the tangent vectors on the reference domain are
given by

ς = ξ,µ =
d

dµ
[(1− µ) ξv1 + µ ξv2 ] = ξv2 − ξv1 , (4.48)

and are not necessarily unit vectors, consider edges {v2, v3}, {v2, v4}, {v3, v4} in Fig. 4. Consequently, one
finds

(Πgu),µ 〈Dξ µ, ς〉 = (Πgu),µ 〈Dξ µ, ξ,µ〉 = (Πgu),µ . (4.49)

As a result, we can simplify the consistent coupling condition to

〈ΠI,0
c p, ς〉 = (Π1

gu),µ = ũ

∣∣∣∣
v2

−ũ
∣∣∣∣
v1

, (4.50)

〈ΠII,1
c p, ς〉 = (Π2

gu),µ = ũ

∣∣∣∣
v1

(4µ− 3) + ũ

∣∣∣∣
m

(4− 8µ) + ũ

∣∣∣∣
v2

(4µ− 1) . (4.51)

For the linear element, each edge has one Nédélec base function of the first type with a constant tangential
projection

〈ϑi, ς〉
∣∣∣∣
µj

= δij , (4.52)

allowing to easily embed the consistent coupling condition

pi : 〈ΠI,0
c p, ς〉

∣∣∣∣
µi

= pi = (Π1
gu),µ

∣∣∣∣
µi

= ũ

∣∣∣∣
v2

−ũ
∣∣∣∣
v1

. (4.53)

Consequently, on each boundary edge the interpolation of one row of the microdistortion is given by

ΠI,0
c p

∣∣∣∣
si

= pi θi . (4.54)

In the quadratic sequence, each edge is associated with two Nédélec base functions of the second type ϑv1 , ϑv2 .
Their projections on the tangent vector at their respective vertices is one and zero on the other vertex

〈ϑvi , ς〉
∣∣∣∣
vj

= δij . (4.55)
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Consequently, it suffices to control the tangential projection of each base function at its respective vertex in
order to impose the boundary condition

pv1 : 〈ΠII,1
c p, ς〉

∣∣∣∣
v1

= pv1 = (Πgu),µ

∣∣∣∣
v1

= (Πgu),µ

∣∣∣∣
µ=0

= −3 ũ

∣∣∣∣
v1

+4 ũ

∣∣∣∣
m

−ũ
∣∣∣∣
v2

,

pv2 : 〈ΠII,1
c p, ς〉

∣∣∣∣
v2

= pv2 = (Πgu),µ

∣∣∣∣
v2

= (Πgu),µ

∣∣∣∣
µ=1

= ũ

∣∣∣∣
v1

−4 ũ

∣∣∣∣
m

+3 ũ

∣∣∣∣
v2

. (4.56)

The resulting interpolation of one row of the microdistortion at the boundary edge reads

ΠII,1
c p

∣∣∣∣
si

= pv1θv1 + pv2θv2 . (4.57)

For both sequences the above demonstrated methodology satisfies the discrete consistent coupling condition
exactly by construction.

4.7 Element stiffness matrices

The matrices N , Θ, Φ, and 1 define the interpolation for each element. The resulting finite element stiffness
matrices for the primal formulation read

Kuu =

∫
Ωe

(DN)T (Ce +Cc) DN dX , KuP =

∫
Ωe

(DN)T (Ce +Cc) Θ dX ,

KPu =

∫
Ωe

ΘT (Ce +Cc) DN dX , KPP =

∫
Ωe

ΘT (Ce +Cc +Cmicro) Θ + µmacro L
2
c (Curl Θ)T Curl Θ dX ,

Ke =

[
Kuu KuP

KPu KPP

]
. (4.58)

The linear element’s stiffness matrix has the dimensions Ke ∈ R30×30 and the matrix of the quadratic element
the dimensions Ke ∈ R66×66. The load vector of the primal formulation is given by

fe =

∫
Ωe

[
NT f

ΘTM

]
dX , (4.59)

with the dimensions fe ∈ R30 for the linear sequence and fe ∈ R66 for the quadratic sequence, respectively.
The mixed formulation induces the following additional stiffness matrices

KPP =

∫
Ωe

ΘT Cmicro Θ dX , KPD =

∫
Ωe

(Curl Θ)TΦ dX ,

KDP =

∫
Ωe

ΦT Curl Θ dX , KDD = − 1

µmacro L2
c

∫
Ωe

ΦTΦ dX ,

KDq =

∫
Ωe

(Div Φ)T 1 dX =

∫
Ωe

(Div Φ)T dX , KqD =

∫
Ωe

1Div Φ dX =

∫
Ωe

Div Φ dX ,

Ke =


Kuu KuP 0 0
KPu KPP KPD 0

0 KDP KDD KDq

0 0 KqD 0

 , (4.60)

where Kuu, KuP , and KPu remain unchanged with respect to the primal formulation. The linear sequence
yields the matrix dimensions Ke ∈ R45×45, whereas the quadratic sequence results in Ke ∈ R81×81. The load
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vector changes its dimensions in the mixed formulation, but not its content

fe =

∫
Ωe

 NT f

ΘTM
0

 dX , (4.61)

with dimensions corresponding to the element stiffness matrix.

Remark 4.6. Note that the symmetry and anti-symmetry operators have been dropped. This is because the
material tensors are defined as Ce, Cmicro : R3×3 7→ Sym(3) and Cc : R3×3 7→ so(3), implying the former. For
materials where this is not guaranteed, the operators can be recovered by modifying the material tensors

Ce symP = Ce SP = C̃eP , Cmicro symP = Cmicro SP = C̃microP , Cc skewP = Cc AP = C̃cP . (4.62)

5 Numerical examples

In the following we test the convergence rates of the model. The behaviour with respect to the characteristic
length Lc is crucial, as this parameter governs the impact of the micro-structure on the displacement field u
and the relation to the Cauchy continuum.

In order to study convergence we construct artificial analytical solutions for the displacement field ũ and the
microdistortion field P̃ (see Appendix A) and compare them with the numerical approximation of the model.
Errors are measured in the L2-norm

‖ũ− u‖L2 =

√√√√ n∑
e=1

∫
Ωe

‖ũ− u‖2 dX , ‖P̃ − P ‖L2 =

√√√√ n∑
e=1

∫
Ωe

‖P̃ − P ‖2 dX . (5.1)

5.1 Convergence for Lc → 0

In this benchmark the domain is defined as the axis-symmetric cube Ω = [−1, 1]3. For simplicity the material
constants in the isotropic case are set to

λe, µe, µc, λmicro, µmicro, µmacro = 1 . (5.2)

The characteristic length is varied between Lc ∈ (0, 1] in order to test the stability of the formulations. The
prescribed fields are defined as

ũ =

 0
0

(1− x)2 (1 + x)2

 , P̃ = (1− x) (1 + x)

−y − z x x
−y − z x x
−y − z x x

 , (5.3)

being of higher polynomial order than the quadratic element. The entire boundary is set to ∂Ω = ΓD. By
applying the strong form one finds the force

f =

 −6x2 + 6x y + 6x z + 2
x2 + 4x y + 4x z − 1
−23x2 + 4x y + 4x z + 7

 , (5.4)

and micro-moment

M =

 (x− 1) (x+ 1) (−4x+ 6y + 6z) (x− 1) (x+ 1) (−3x+ y + z) (x− 1) (x+ 1) (−3x+ 1y + 1z)
(x− 1) (x+ 1) (−1x+ 3y + 3z) (x− 1) (x+ 1) (−8x+ 2y + 2z) 4x

(
1− x2

)
−9x3 + 3x2y + 3x2z + 9x− 3y − 3z 4x

(
1− x2

)
(x− 1) (x+ 1) (−8x+ 2y + 2z)


+ L2

c

0 8x 8x
0 8x 8x
0 8x 8x

 . (5.5)
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Figure 10: Convergence rates for Lc → 0 and µc = 1 for the quadratic sequence. The convergence remains
stable for Lc → 0.

Reducing the characteristic length Lc or setting it to zero does not disturb the stability of the computation,
even though control of the Curl of P is lost, as proven by the convergence rates in Fig. 10. This is a direct
result of the derivation in Section 3.1.2, asserting stable computations for P ∈ [L2(Ω)]3×3.

In an alternative example we take the Cosserat couple modulus µc = 0 (i.e., Cc = 0), resulting in the force

f =

 x (−4x+ 6 y + 6 z)
2x (−x+ y + z)

−14x2 + 2x y + 2x z + 4

 , (5.6)

and the micro-moment

M =

 (x− 1) (x+ 1) (−4x+ 6y + 6z) 2 (x− 1) (x+ 1) (−x+ y + z) −6x3 + 2x2y + 2x2z + 6x− 2y − 2z
2 (x− 1) (x+ 1) (−x+ y + z) (x− 1) (x+ 1) (−8x+ 2y + 2z) 4x

(
1− x2

)
−6x3 + 2x2y + 2x2z + 6x− 2y − 2z 4x

(
1− x2

)
(x− 1) (x+ 1) (−8x+ 2y + 2z)


+ L2

c

0 8x 8x
0 8x 8x
0 8x 8x

 . (5.7)

The primal formulation maintains its stability up to small Lc-values coupled with small elements, see Fig. 11.
For Lc = 10−10 the formulation becomes completely unstable and the matrix singular. The deterioration in the
convergence is clearly depicted in Fig. 12. Since µc = 0 and Lc → 0, no term controls the skew-symmetric part
of the microdistortion and the formulation only converges for the displacement u, up to Lc = 10−10, where the
stiffness matrix becomes singular.

5.2 Robustness in Lc

To test for robustness of the formulation in the characteristic length Lc we again consider Ω = [−1, 1]3, the
parameters

λe = µe = µc = λmicro = µmicro = µmacro = 1 and µc = 0, (5.8)

and the following exact solution fields

ũ =

 0
0

(1− x)2 (1 + x)

 , P̃ =

x(y2 − 1) y(x2 − 1) 0
0 y(z2 − 1) z(y2 − 1)

x(z2 − 1) 0 z(x2 − 1)

+
10

L2
c

(1− x)(1− y)(1− z)

−y x 0
0 −z y
z 0 −x

 ,
(5.9)
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Figure 11: Convergence rates for Lc → 0 and µc = 0 for the quadratic sequence. Convergence is lost for small
characteristic length Lc values.

(a)

(b)

(c) (d)

Figure 12: (a) Initial geometry with 1080 elements, (b) displacement field, (c) first row of the microdistortion
field with Lc = 10−6, (d) first row of the microdistortion field with Lc = 10−8.
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Figure 13: Convergence behavior for the quadratic sequence with primal (left) and mixed (right) method for
Lc = 100, 101, . . . , 109.

where the first part of P̃ is curl-free. The second term is scaled by L−2
c to obtain a well-defined limit for

Lc →∞. The corresponding right-hand sides read

f =

x2 + 4xz + 3y2 − 4
4xy + y2 + 3z2 − 4
−9x2 + 4yz + z2

+
1

L2
c

−10x2z + 10x2 − 10xy + 10xz + 30y2z − 30y2 + 10yz2 − 30yz + 30y − 10z2

10x2z − 10x2 − 10xy2 + 10xy + 30xz2 − 30xz + 10y2 − 10yz − 30z2 + 30z
30x2y − 30x2 + 10xy2 − 30xy − 10xz + 30x− 10y2 − 10yz2 + 10yz + 10z2

 ,

M =2

x2z + 3xy2 + yz2 x2y −2x3 + xz2

x2y x2z + xy2 + 3yz2 y2z
−2x3 + xz2 y2z 3x2z + xy2 + yz2


+ 2

−20xz + 17x− y + 14z − 15 20yz − 21y − 15z + 15 −5x2 + 6x+ 5y2 − 5y
−5y2 + 4y + 5z2 − 5z −20xy + 14x+ 17y − z − 15 20xz − 15x− 21z + 15
20xy − 19x− 15y + 15 5x2 − 5x− 5z2 + 4z −x− 20yz + 14y + 17z − 15


+

(x− 1)(y − 1)(z − 1)

L2
c

20(x+ 3y + z) −20x −20z
−20x 20(x+ y + 3z) −20y
−20z −20y 20(3x+ y + z)

 .
We use NGSolve in combination with the direct solver UMFPACK [18] for inverting the arising stiffness

matrix for the primal and mixed method. As can be clearly observed in Figure 13 for larger values of Lc ≥ 106

the primal method becomes unstable, whereas the mixed method still converges optimally.

5.3 Convergence for Lc →∞
Next, we consider the convergence to the limit solution Lc → ∞. Rewriting the exact solution (5.9) in the
mixed formulation (3.28) and taking the limit Lc →∞ yields the following displacement, microdistortion, and
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Figure 14: Convergence rates for Lc →∞ with quadratic sequence for primal (left) and mixed (right) method
with 1× 1× 1, 2× 2× 2, . . . , 16× 16× 16 grids consisting of 6, 48, 384, 3072, and 24576 elements, respectively.

hyperstress fields

ũ =

 0
0

(1− x)2 (1 + x)

 , P̃ =

x(y2 − 1) y(x2 − 1) 0
0 y(z2 − 1) z(y2 − 1)

x(z2 − 1) 0 z(x2 − 1)

 ,
D̃ = Curl(10(1− x)(1− y)(1− z)

−y x 0
0 −z y
z 0 −x

)

= 10

 x(1− x)(1− y) y(1− x)(1− y) −(z − 1)(4xy − 3x− 3y + 2)
−(x− 1)(4yz − 3y − 3z + 2) y(1− y)(1− z) z(1− y)(1− z)

x(1− x)(1− z) −(y − 1)(4xz − 3x− 3z + 2) z(1− x)(1− z)

 .
(5.10)

Note, that Curl P̃ = 0 and Div D̃ = 0. The hyperstress field D̃ acts as Lagrange multiplier forcing the
microdistortion tensor to be curl-free. By taking the limit Lc →∞ we obtain directly the forces

f =

x2 + 4xz + 3y2 − 4
4xy + y2 + 3z2 − 4
−9x2 + 4yz + z2

 ,

M = 2

x2z + 3xy2 + yz2 x2y −2x3 + xz2

x2y x2z + xy2 + 3yz2 y2z
−2x3 + xz2 y2z 3x2z + xy2 + yz2


+ 2

−20xz + 17x− y + 14z − 15 20yz − 21y − 15z + 15 −5x2 + 6x+ 5y2 − 5y
−5y2 + 4y + 5z2 − 5z −20xy + 14x+ 17y − z − 15 20xz − 15x− 21z + 15
20xy − 19x− 15y + 15 5x2 − 5x− 5z2 + 4z −x− 20yz + 14y + 17z − 15

 .
We consider five different structured tetrahedral grids consisting of 6, 48, 384, 3072, and 24576 elements

and solve the primal and mixed formulation with NGSolve and UMFPACK using different values for Lc. As
depicted in Figure 14 the expected quadratic convergence rate in Lc (3.29) is observed until the discretization
error is reached (3.41). For finer grids we can reduce this error. However, the primal method again becomes
unstable for large values of Lc. The mixed method, where also the limit problem with Lc =∞ is well defined,
is again completely stable with respect to Lc.

28



5.4 Comparison to the Cauchy continuum

Considering Eq. (3.15), we recognize the meso parameters Ce can be retrieved from the micro and macro
parameters

µe =
µmicro µmacro

µmicro−µmacro
, 2µe +3λe =

(2µmicro +3λmicro)(2µmacro +3λmacro)

(2µmicro +3λmicro)− (2µmacro +3λmacro)
. (5.11)

Assuming micro to be always stiffer than macro, we set the macro and micro parameters

λmacro = 115.4 , µmacro = 76.9 , λmicro = 10λmacro = 1154 , µmicro = 10µmacro = 769 , (5.12)

and retrieve the meso parameters

λe = 128.2 , µe = 85.4 . (5.13)

Finally, we set µc = µe. The characteristic length Lc acts as a scaling parameter between highly homogeneous
materials and materials with a pronounced micro-structure. Namely, for Lc = 0 the continuum yields the result
of classical linear elasticity with the macro parameters. We define the domain Ω = [−3, 3]× [−1, 1]2, illustrating

a bending beam (see Fig. 16), and apply the constant volume load f =
[
0 0 −10

]T
. The Dirichlet boundary

conditions

ũ = 0 , P̃ × ν = Dũ× ν = 0 , (5.14)

are applied at x = −3 and x = 3. The characteristic length Lc is varied between 103 and 10−3 and the deviation
from the linear elastic response of the Cauchy continuum is measured by ‖uCauchy−urelaxed‖L2 and the internal
energy of each formulation. The internal energy of the relaxed micromorphic continuum is extracted from
Eq. (2.1) and reads

Irelaxed =
1

2

∫
Ω

〈Ce sym(Du− P ), sym(Du− P )〉+ 〈Cmicro symP , symP 〉

+ 〈Cc skew(Du− P ), skew(Du− P )〉+ µmacro L
2
c ‖CurlP ‖2 dX . (5.15)

For isotropic linear elasticity one finds

ICauchy =

∫
Ω

1

2
〈Cmacro sym Du, sym Du〉dX , Cmacro = 2µmacro S+λmacro 1⊗1 . (5.16)

The behaviour of the deviation in both the displacement and the energy in Fig. 15 and Fig. 16 demonstrates the
derivation in Eq. (3.14). Further, it is apparent that this characteristic strongly depends on the approximation
capacity of the finite subspace. In other words, the use of p-refinement greatly influences the result. Decreasing
the element size (h-refinement) can also be used to alleviate the error. For example taking 19264 elements with
87742 degrees of freedom in the linear sequence with Lc = 10−3 results in

‖uCauchy − urelaxed‖L2

‖uCauchy‖L2

= 0.095 , ICauchy = 81.549 , Irelaxed = 73.333 , (5.17)

improving over the result with 1031 elements and 5890 degrees of freedom

‖uCauchy − urelaxed‖L2

‖uCauchy‖L2

= 0.289 , ICauchy = 72.922 , Irelaxed = 51.588 . (5.18)

However, this does not compare to the order of improvement achieved with 1031 elements with 15688 degrees
of freedom of the quadratic sequence

‖uCauchy − urelaxed‖L2

‖uCauchy‖L2

= 0.035 , ICauchy = 82.932 , Irelaxed = 79.62 . (5.19)
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Figure 15: Displacement and energy comparison with the Cauchy continuum model with 1031 elements.
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Figure 16: (a) Initial geometry with 1031 elements, (b) displacement field of the quadratic element for Lc = 103,
(c) displacement field of the quadratic element for Lc = 10−3.
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5.5 Bounded stiffness

In the example in Section 5.4 one can observe the influence of the characteristic length Lc on the reaction of
the system. In fact, the characteristic length acts as an interpolation parameter between the micro-stiffness and
the macro-stiffness, as shown in Remark 3.5 and Section 3.1.2. In order to demonstrate this phenomenon, we
employ the axis-symmetric cubic domain Ω = [−1, 1]3 and the material parameters from the previous example.
The characteristic length Lc is varied in [10−3, 103]. The Dirichlet boundary is set to

ũ =

1 + z
0
0

 , P̃ = Dũ =

0 0 1
0 0 0
0 0 0

 , ΓD = ∂Ω ∩ {x ∈ ∂Ω | z = ±1} . (5.20)

Note that while the problem is reminiscent of simple shear [57], it is different since we are using a finite volume
and only the upper and lower parts of the boundary are constrained. The problem is defined entirely as a
boundary value problem and no body forces or micro-moments are applied. In order to extract an indicator for
the stiffness of the system we measure the Lebesgue integral of the displacement reaction forces in x-direction
on the upper Dirichlet boundary

rx =

∫
Γ1
D

tx dX , Γ1
D = ΓD ∩ {x ∈ ∂Ω | z = 1} , (5.21)

where tx represents the equivalent traction in x-direction (see Appendix B).
Considering Fig. 17, it is clear that the linear finite element formulation largely overestimates the stiffness

of the system by about a factor of 28% in the lower limit for the finer discretization. Further, the effects of
mesh refinement are considerable. From the depiction of the displacement field we recognize a transition from
a nearly linear displacement field for large Lc values to a higher order displacement function for low Lc values.
Lastly, we observe that the intensity of the microdistortion field (first row of P ) shifts from the centre to the
sides of the domain for a decreasing characteristic length Lc.

Remark 5.1. The lower limit Cmacro was estimated using 6000 finite elements of the quadratic sequence in the
primal formulation while setting the characteristic length to Lc = 0. In order to approximate the upper limit
Cmicro, we make use of the quadratic sequence in the mixed formulation with Lc = 109 and 6000 elements,
since the mixed formulation is stable for very large values of the characteristic length.

6 Conclusions and outlook

Existence and uniqueness in the primal formulation of the relaxed micromorphic model requires the employment
of Nédélec elements, since N p

I ,N
p
II ⊂ H (curl). The construction of the lowest order Nédélec elements was

demonstrated along with a solution to the arising orientation problem, such that no correction functions are
necessary and a single reference element suffices.

While not being a mixed formulation, the use of the exact de Rham sequence is still recommended in order
to exactly satisfy the discrete consistent coupling condition, as shown in Section 4.6. This is otherwise not
possible for the general case if the exact sequence is not respected.

The example in Section 5.4 depicted the behaviour of the relaxed micromorphic theory with Lc → 0 as given
by the derivation in Eq. (3.14). Clearly, the characteristic length Lc is a crucial component of the theory as it
governs the relation to the classical Cauchy continuum. Further, it is demonstrated that the latter comparison is
strongly dependent on the approximation capacity of the finite subspace. Due to the relatively large error with
respect to the expected result using the linear finite element sequence, ‖uCauchy − urelaxed‖L2/‖uCauchy‖L2 ≥
9.5%, it is recommended to use at least quadratic or higher order finite elements. This conclusion is further
supported by the example in Section 5.5, where the linear formulation largely overestimated the expected
stiffness of the system for Lc →∞.

While the primal formulation is relatively robust in Lc, it may become unstable as Lc →∞. As demonstrated
in the example in Section 5.2, the computation can be re-stabilised by using a mixed formulation. As per the
de Rham complex, this requires the usage of H (div) elements, such as Raviart-Thomas RT or Brezzi-Douglas-
Marini BDM, and completely discontinuous finite elements. Further, for efficient simulations with higher order
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Figure 17: (a) Reaction forces with varying characteristic lengths Lc, (b) initial geometry with 3072 elements, (c)
cutout view of the displacement field of the quadratic element with Lc = 103, (d) cutout view of the displacement
field of the quadratic element with Lc = 1, (d) cutout view of the displacement field of the quadratic element
with Lc = 10−3, (f) microdistortion field of the quadratic element with Lc = 103, (g) microdistortion field of
the quadratic element with Lc = 10−3.
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elements it is advantageous to split the H (div) elements into source and solenoidal parts as the hyperstress
field D is completely solenoidal, meaning the source part of the interpolant should be dropped or must be
otherwise compensated. The construction of the lowest order Raviart-Thomas elements along with the lowest
order discontinuous elements was demonstrated in Section 4.3 and Section 4.4, respectively. The orientation
problem for the latter elements is circumvented by the same methodology as for the Nédélec elements.

For further development we note the computation time increases rapidly with more elements and higher
order polynomials. The development of an efficient preconditioner is to be considered for future works.
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A Derivation of the strong form and analytical solutions

The variation of the free energy functional with respect to the displacement field u reads

δuI =

∫
Ω

〈Ce sym Dδu, sym(Du− P )〉+ 〈Cc skew Dδu, skew(Du− P )〉 − 〈δu, f〉dX ∀ δu ∈ C 1
ΓD (Ω,R3) ,

(A.1)

where C 1
ΓD (Ω,R3) denotes the set of differentiable functions which are zero at the Dirichlet boundary.

By using the Green-type identity∫
Ω

〈Dv, T 〉dX =

∫
∂Ω

〈v, Tν〉dA−
∫

Ω

〈v, DivT 〉dX , v ∈ C 1(Ω,R3) ,T ∈ C 1(Ω,R3×3) , (A.2)

and splitting the boundary ∂Ω = ΓD ∪ ΓN , such that ΓD ∩ ΓN = ∅, one finds

δuI =

∫
ΓuN

〈δu, [Ce sym(Du− P ) + Cc skew(Du− P )]ν〉dA

−
∫

Ω

〈δu, Div[Ce sym(Du− P ) + Cc skew(Du− P )]− f〉dX , ∀ δu ∈ C 1
ΓD (Ω,R3) , (A.3)

where u on ΓuD is directly embedded in the space.
The variation of the energy with respect to the microdistortion field P reads

δP I =

∫
Ω

− 〈Ce sym δP , sym(Du− P )〉 − 〈Cc skew δP , skew(Du− P )〉+ 〈Cmicro sym δP , symP 〉

+ µmacro L
2
c 〈Curl δP , CurlP 〉 − 〈δP ,M〉dX , ∀ δP ∈ C 1

ΓD (Ω,R3×3) . (A.4)

Applying the Green-type identity for the Curl-operator∫
Ω

〈CurlQ, T 〉dX =

∫
∂Ω

〈Q ,T × ν〉dA+

∫
Ω

〈Q, CurlT 〉dX , Q, T ∈ C 1(Ω,R3×3) , (A.5)

along with the split of the boundary yields

δP I =−
∫

Ω

〈δP ,Ce sym(Du− P ) + Cc skew(Du− P )− Cmicro symP −µmacro L
2
c Curl CurlP +M〉dX

+ µmacro L
2
c

∫
ΓPN

〈δP , CurlP ×ν〉dA , ∀ δP ∈ C 1
ΓD (Ω,R3×3) , (A.6)

where P ×ν on ΓPD is directly embedded into the space.
Consequently, the strong form reads

−Div[Ce sym(Du− P ) + Cc skew(Du− P )] = f in Ω , (A.7a)

−Ce sym(Du− P )− Cc skew(Du− P ) + Cmicro symP +µmacro L
2
c Curl CurlP = M in Ω , (A.7b)

u = ũ on ΓuD , (A.7c)

P ×ν = P̃ × ν on ΓPD , (A.7d)

[Ce sym(Du− P ) + Cc skew(Du− P )]ν = 0 on ΓuN , (A.7e)

CurlP ×ν = 0 on ΓPN . (A.7f)

By pushing predefined displacement ũ and microdistortion P̃ fields into the strong form we can derive
corresponding forces and micro-moments

f = −Div[Ce sym(Dũ− P̃ ) + Cc skew(Dũ− P̃ )] , (A.8)

M = −Ce sym(Dũ− P̃ )− Cc skew(Dũ− P̃ ) + Cmicro sym P̃ + µmacro L
2
c Curl Curl P̃ . (A.9)
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Employing the latter forces and micro-moments in the domain while constraining the entire boundary with the
prescribed fields

ΓD = ∂Ω , u

∣∣∣∣
ΓD

= ũ , P ×ν
∣∣∣∣
ΓD

= P̃ × ν , (A.10)

ensures the prescribed fields to be the analytical solution.

B Equivalent traction

The traction on the Neumann boundary is defined using Eq. (A.3)

t = [Ce sym(Du− P ) + Cc skew(Du− P )]ν . (B.1)

Consequently, the primal formulation can be rewritten with an equivalent traction on the Dirichlet boundary
as

a({u,P }, {δu, δP }) = l({δu, δP }) +

∫
ΓD

〈δu, t〉dA ∀ {δu, δP } ∈ [H 1(Ω)]3 ×H (Curl,Ω) , (B.2)

from which the equivalent traction can be extracted∫
ΓD

〈δu, t〉dA = a({u,P }, {δu, δP })− l({δu, δP }) . (B.3)

The extraction is achieved by redefining the test function to unity on the upper Dirichlet boundary in the
x-direction

δu = v =

{
ex on Γ1

D

ψ otherwise
, (B.4)

where the vector ψ ∈ [H 1(Ω)]3 is arbitrary. The discrete form now reads∫
ΓD

〈vh, t〉dA = a({uh,P }, {vh, δP })− l({vh, δP }) , (B.5)

resulting in the corresponding scalar product∫
ΓD

〈vh, t〉dA = 〈Kud, vd〉 − 〈fd, vd〉 , (B.6)

where ud and vd are the discrete vectors of the node values of the trial and test functions, respectively. The
vector of the discrete values of the body forces and micro-moment is given by fd. The vector vd is now defined,
such that its nodal values reflect a unity function in the x-direction on the upper Dirichlet boundary.

Remark B.1. Note that using the latter, no new computation of the stiffness matrix K, the nodal values vector
ud or the force vector fd is required.
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