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Abstract. In this paper, we give an algorithm for output-sensitive construction of anf -
face convex hull of a set ofn points in general position inE4. Our algorithm runs inO((n+
f ) log2 f ) time and usesO(n+ f ) space. This is the first algorithm within a polylogarithmic
factor of optimalO(n log f + f ) time over the whole range off . By a standard lifting map,
we obtain output-sensitive algorithms for the Voronoi diagram or Delaunay triangulation
in E3 and for the portion of a Voronoi diagram that is clipped to a convex polytope. Our
approach simplifies the “ultimate convex hull algorithm” of Kirkpatrick and Seidel inE2

and also leads to improved output-sensitive results on constructing convex hulls inEd for
any even constantd > 4.

1. Introduction

Geometric structures induced byn points in Euclideand-dimensional space, such as
the convex hull, Voronoi diagram, or Delaunay triangulation, can be of larger size than
the point set that defines them. In many practical situations, however, they do not at-
tain the worst-case size.Output-sensitive algorithms, which compute structures in time
depending on their size, are therefore appealing.
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In this paper, we consider computing the convex hull of a set ofn points in general po-
sition in Ed, concentrating ond = 4. The dual problem corresponds to computing the in-
tersection ofn half-spaces [14], [21]. In both problems, the output is a (convex) polytope.
Because Delaunay triangulations and Voronoi diagrams inEd−1 are related to convex
hulls and half-space intersections inEd by a lifting map [3], [17], our output-sensitive
convex hull algorithm gives output-sensitive algorithms for these problems as well.

In Ed, the convex hull ofn points is a polytope with as many as2(nbd/2c) faces [14],
[30]. Ford = 2 andd = 3,2(n logn) worst-case time is both necessary and sufficient
to compute the facial lattice of the polytope [34]. For any constant dimensiond, Chazelle
[8] has given a worst-case optimal algorithm running inO(n logn+ nbd/2c) time.

For randomly generated point sets [12], [35] and point sets used in practice, however,
convex hulls often have fewer faces than the worst-case bound. Thus, a number of convex
hull (or half-space intersection) algorithms have been analyzed not only in terms ofn,
the size of the input, but also in terms off , the number of faces of the output polytope.
The only known lower bound in terms ofn and f isÄ(n log f + f ) time.

In 1986 Kirkpatrick and Seidel [23] published a paper entitled “The Ultimate Planar
Convex Hull Algorithm?” which computes the convex hull ofn points in the plane in
O(n log f ) time. This algorithm is, therefore, output-sensitive and worst-case optimal.
The “ultimate algorithm” is a divide-and-conquer algorithm based on a “marriage before
conquest” principle: it computes the merge of two subproblems before it recursively
solves the subproblems. Edelsbrunner and Shi [18] applied “marriage before conquest”
in three dimensions to obtain anO(n log2 f ) time convex hull algorithm. Using a different
approach, Chazelle and Matouˇsek [10] have reported that derandomizing an algorithm of
Clarkson and Shor [11] gives anO(n log f ) time algorithm in three dimensions. Recently,
Chan [5] has obtained a simpleO(n log f ) time method for both two-dimensional and
three-dimensional convex hulls.

In dimensions higher than three, the fastest output-sensitive algorithms currently
known (excluding the results of this paper) are an improvement of the “gift-wrapping”
method [22], [38] by Chan [4] and an improvement of Seidel’s “shelling” algorithm [37]
by Matoušek [27]. The former runs inO(n log f + (n f )1−1/(bd/2c+1) logO(1) n) time and
the latter runs inO(n2−2/(bd/2c+1) logO(1) n+ f logn) time.

In this paper we give a convex hull algorithm in four dimensions that runs inO((n+
f ) log2 f ) time and usesO(n+ f ) space. Our basic strategy is divide-and-conquer. In
order to obtain an output-sensitive method, the subproblems we solve cannot have asymp-
totically more faces than the original polytope. Therefore, we make each subproblem
compute some restricted portion of the original polytope. For each of the subproblems
defined, we show that sufficiently many input points can be removed without changing
the subproblem. As in “marriage before conquest” and quicksort-like recursions, the
merge step is trivial once we have devised a partitioning scheme for dividing a problem
into subproblems.

In the next section we set up notation and point out some preliminary facts about the
construction of convex hulls. Section 3 gives a simpleO(n log f )convex hull algorithm in
the plane and compares it with Kirkpatrick and Seidel’s algorithm [23]. Section 4 details
and analyzes the algorithm in four dimensions. We briefly describe the application to
Voronoi diagrams in Section 5. An extension of our four-dimensional algorithm to higher
dimensions is given in Section 6.
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Note. A preliminary version of this paper, written for the problem of computing
half-space intersections rather than convex hulls, appears in [6]. The four-dimensional
intersection algorithm given there and its two-dimensional specialization are dualizations
of the convex hull algorithms in this paper. We feel that the present version, in the primal
setting, is clearer and provides a better understanding of the method.

2. Preliminaries

We first review some standard definitions, introduce key concepts concerning the divide-
and-conquer computation of convex hulls, and then describe tools that we need.

2.1. Polytopes

A polytopeP ⊆ Ed is the intersection of a finite set of (closed) half-spaces. Suppose that
P has a nonempty interior. Ifh is a hyperplane that intersects the boundary ofP but not
its interior, thenh∩P is afaceof P. A face is aj -face(0≤ j < d) if it has dimension
j —that is, if it is contained in somej -flat but not in a( j − 1)-flat. A (d − 1)-face is
called afacet, a (d − 2)-face is called aridge, a 1-face is called anedge, and a 0-face
is called avertex. Note that the faces ofP, together with the empty set∅ andP itself,
form a lattice under inclusion, and the union of the facets ofP is the boundary ofP.

2.2. Convex Hulls and Upper Hulls

Suppose that we are given a setP ⊆ Ed of n points, whered is a fixed constant.
To avoid degenerate cases, we make a general position assumption on our input. This
assumption is not really necessary in our two-dimensional algorithm but is needed in
our four-dimensional algorithm and its higher-dimensional extension. Specifically, we
assume that nod+1 points ofP lie in a common hyperplane and nod points ofP lie in a
vertical hyperplane. (Throughout this paper, the terminology “vertical,” “above/below,”
and “upward/downward” are with respect to the last coordinate.) Perturbation techniques
[16], [19] can be used to simulate general position, with the possible cost of increasing
the output size for degenerate polytopes.

Theconvex hullof P is defined as the smallest convex set containingP, or equivalently,
the intersection of all half-spaces containingP. It is well known that the convex hull is
a polytope, and our goal is to compute the facial structure of the polytope.

For convenience, we focus our attention only on the upper portion of the convex hull
called theupper hull(see Fig. 1(a)). It consists of faces of the convex hull that have an
upward outer normal vector. The upper hull ofP can be thought of as the bounded faces
of the convex hull ofP ∪ {(0, . . . ,0,−∞)}. Once we have a method for computing
the upper hull ofP, we can also compute the lower hull ofP in a similar manner by
reflection and join the two hulls to form the convex hull ofP.

Notation. Let F(P), R(P), and V(P) be the set of all facets, ridges, and vertices
(respectively) of the upper hull ofP.
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Fig. 1. (a) The upper hull of a point set inE3, and (b) the vertical projection of its facets.

2.3. Facets and Their Duals

To simplify representational issues, we require our algorithm to output only the set
F(P) of all facets of the upper hull ofP. From this set, we can then generate all
faces and build the complete lattice structure of the faces (the Hasse diagram) using a
dictionary inO(|F(P)| log|F(P)|) time; this additional cost will be absorbed in the cost
of the algorithm. Our algorithm for computingF(P) is based on divide-and-conquer: to
compute all the facets inF(P), we partitionF(P) into suitable subsets and recursively
compute these subsets of facets.

The following provides a simple characterization ofF(P). First by the nondegeneracy
assumption,F(P) consists only of(d−1)-dimensional simplices with vertices all from
P. Let f be such simplex and leth( f ) denote the unique hyperplane containingf . Then
f ∈ F(P) iff all points of P lie on or belowh( f ).

Before we discuss further properties of facets of the upper hull, we first introduce
some useful notation used throughout the paper.

Notation. Let ↓ denote thevertical projectionoperator:p↓ = (x1, . . . , xd−1) if p =
(x1, . . . , xd), andP↓ = {p↓: p ∈ P} for any P ⊆ Ed. Given P ⊆ Ed andS⊆ Ed−1,
let P|S = {p ∈ P : p↓ ∈ S} be therestriction of P to S. Let intSdenote the interior of
Sand∂Sdenote the boundary ofS.

Observe that the vertical projection of the facets inF(P) forms a collection of(d−1)-
dimensional simplices inEd−1 that have disjoint interiors, that is, int( f↓)∩ int( f ′↓) = ∅
for any two distinct facetsf , f ′ ∈ F(P). In fact, the vertical projection of all faces of
the upper hull forms asimplicial complex. For example, ifd = 3, then{ f↓: f ∈ F(P)}
forms a triangulation in the plane, as shown in Fig. 1(b). Thus, one possible divide-and-
conquer approach is to use these vertical projections to partitionF(P).

An equally natural approach is to use the vertical projections of the facets’dualsto
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partition F(P). For eachf ∈ F(P), we can define a pointf D ∈ Ed via the standard
duality transformation of [14]: if the hyperplaneh( f ) is given by{(x1, . . . , xd): xd =
ξ1x1+ · · · + ξd−1xd−1− ξd}, then we letf D = (ξ1, . . . , ξd). The projection of the dual
f D↓ = (ξ1, . . . , ξd−1) is geometrically just the gradient ofh( f ); for example, ifd = 2,
then this is just the slope.

To allow us to speak about the two divide-and-conquer approaches more succinctly,
we make the following definitions:

Definition. Given setsS, 1 ⊆ Ed−1, let FS(P) = { f ∈ F(P) : f ↓ ⊆ S} be the
primal restriction of F(P) to S and F1(P) = { f ∈ F(P) : f D↓ ∈ 1} be thedual
restriction of F(P) to1.

As we will see, duality [14], [34] plays a crucial role in the design of our algorithms.
In the remainder of the section, we discuss specific tools that our algorithms use.

2.4. Cuttings for Divide and Conquer

The work of many researchers, notably Matouˇsek [24], [25] and Chazelle [7], has de-
veloped(1/r )-cuttings for divide-and-conquer algorithms for hyperplanes. Acutting in
Ed is a covering ofEd with closed (possibly unbounded) simplices with disjoint interi-
ors: thesizeof the cutting is the number of simplices. For a setH of n hyperplanes, a
cutting4 is a (1/r )-cutting if any simplex of4 intersects at mostn/r hyperplanes of
H . Chazelle and Friedman [9] showed that(1/r )-cuttings of sizeO(r d) exist. Several
theorems have been proved about their deterministic construction—we use a relatively
simple one.

Theorem 2.1[28, Theorem 6.1]. Given n hyperplanes in a fixed dimension d, a (1/r )-
cutting of size O(r d) can be computed in O(nrd) time.

We need this theorem only for the special case whenr is just a constant, say 2.

2.5. Queries on Polytopes

A number of researchers [27], [29] have devised data structures for answering queries
on a polytopeP ⊆ Ed defined as an intersection ofn half-spaces. Two common types of
queries that have been studied areray shooting(identify the point where a query rayρ
intersectsP assuming that the origin of the ray lies inP), andlinear programming(find
the pointξ ∈ P that maximizesa · ξ for a query vectora ∈ Ed). It turns out that one can
answer these queries efficiently without having to construct the polytopeP explicitly.

The following theorem is a direct consequence of applying the ray shooting struc-
ture of Matoušek and Schwarzkopf [29] and the linear programming structure of
Matoušek [27] and choosing appropriate trade-offs between processing and query time
(see, e.g., [4]).
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Theorem 2.2. An(on-line) sequence of q ray shooting and linear programming queries
on a polytope defined by n half-spaces in Ed can be performed in O((n + q +
(nq)1−1/(bd/2c+1)) logO(1) n) time.

By dualizing points into half-spaces, we can use this result to answer queries on the
convex hull of ann-point set. For example, given a pointq ∈ Ed−1, we can find a facet
f ∈ F(P)with q ∈ f↓ (if one exists) by performing a linear programming query on the
dual polytope; given a facetf ∈ F(P) and a ridger ∈ R(P) incident on f , we can find
the other facetf ′ ∈ F(P) thatr is incident on (if it exists) by performing a ray shooting
query in dual space. Theorem 2.2 is used in an extension of our convex hull algorithm
in higher dimensions.

2.6. Counting the Cost

To evaluate the cost of our recursive convex hull algorithm, we prove a general lemma
concerning recursion trees. LetT be a rooted tree in which each nodeν is assigned a
costc(ν) ∈ (0,∞). We say that the cost functionc is α-fadingfor a constantα ∈ (0, 1)
if c(µ) ≤ αc(ν) for every nodeµ and its parentν. As part of the analysis of their
three-dimensional output-sensitive convex hull algorithm, Edelsbrunner and Shi [18,
Lemma 3.1] proved that the total cost in such a tree is asymptotically bounded by the
per-level cost times the logarithm of the number of nodes. Their proof uses a path
compression operation that transformsT into a balanced tree. We give a simple, short
proof of their result that avoids path compression altogether; we then improve the bound
to depend on the number of leaves rather than the number of nodes.

Lemma 2.3. In a recursion tree T with m nodes and` leaves and anα-fading cost
function c, if the sum of the costs at each level is bounded by C, then the sum of the costs of
all nodes in T is(i) less than C(log1/α m+2)and(ii) less than C(log1/α `+1+1/(1−α)).

Proof. Number the levels of the tree 0, 1, 2, . . . with the root at level zero. Letk =
blog1/α mc. The sum of the costs at levels 0, 1, . . . , k is bounded byC(k + 1) ≤
C(log1/α m+1). Furthermore, by theα-fading property, each node on a level greater than
k has cost bounded byCαk+1 < C/m; hence, the sum of the costs at levelk+1, k+2, . . .
is bounded byC. Part (i) follows.

To prove part (ii), we choosek = blog1/α `c instead. As before, the sum of the costs
at levels 0, 1, . . . , k is bounded byC(k + 1) ≤ C(log1/α ` + 1). Thus, we just have
to account for the costs of nodes at levels greater thank. Note that each node belongs
to some root-to-leaf path inT . By theα-fading property, the sum of the costs at levels
k+ 1, k+ 2, . . . along such a path is bounded by

Cαk+1+ Cαk+2+ · · · = Cαk+1

1− α <
C

(1− α)` .

Since there arè root-to-leaf paths in total, the sum of the costs at levelsk+1, k+2, . . .
is bounded byC/(1− α). Part (ii) follows.
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3. A Simplified “Ultimate Planar Convex Hull Algorithm”

Our four-dimensional convex hull algorithm grows out of the following simple convex
hull algorithm in the plane. This algorithm is in turn based on the “prune-and-search”
linear programming algorithm of Dyer [13] and Megiddo [31]. Rather than using pruning
to search, we use pruning for divide-and-conquer.

Given ann-point setP ⊆ E2, we want to compute the upper hull ofP. We first pair
the points ofP arbitrarily and calculate the slope of the line through each pair. We then
find the median slopem and compute the upper-hull vertexpm that has a supporting
line of slopem; this vertex can be computed by taking the maximum along a certain
projection of P. The x-coordinate ofpm is then used to divideP into two parts:P̀ ,
which containspm and all points to its left, andPr , which containspm and all points to
its right.

Now, if a pair has slope less thanm, then the right point in the pair cannot participate
in the upper hull ofP̀ and thus can be pruned fromP̀ . Similarly, if a pair has slope
greater thanm, then its left point cannot participate in the upper hull ofPr and can be
pruned fromPr . Since half (i.e.,n/4) of the pairs have slope less than the medianm
and half have slope greater thanm, pruning ensures thatP̀ andPr each contain at most
3n/4 points. We then recursively compute the upper hull ofP̀ andPr . See Fig. 2 for an
example.

The pseudocode of the algorithm is given below. For convenience, we assume that
the leftmost and rightmost pointsp` and pr of P have been identified and we letn
be the cardinality of the setP• = P − {p`, pr } instead. In the interest of practical
efficiency, line 1 has been added to the algorithm; it does not affect asymptotic worst-
case performance.

Fig. 2. Pairing and pruning points in the plane. Points marked L belong toP̀ , points marked R belong to
Pr , and points marked X belong to neither sets.
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Algorithm Hull2 (P•, p`, pr )

[ Given n-point setP• ⊆ E2 and pointsp`, pr ∈ E2 such thatx[ p`] <
x[ p] < x[ pr ] for all p ∈ P•, return the set of edges of the upper hull of
P = P• ∪ {p`, pr }. ]

1. discard points fromP• that lie belowp`pr

2. if P• = ∅ then return{p`pr }
if P• = {p} then return{p`p, ppr }

3. arbitrarily choosebn/2c disjoint pairs {{s1, t1}, . . . , {sbn/2c, tbn/2c}}
from P• and order each pair so thatx[si ] < x[ti ]

4. letmi = (y[ti ] − y[si ])/(x[ti ] − x[si ]), i = 1, . . . , bn/2c
andm= median of〈m1, . . . ,mbn/2c〉

5. let pm = point in P that maximizesy[ pm] −m · x[ pm]
6. let P•` = {p ∈ P•: x[ p] < x[ pm]} − {ti : mi ≤ m}

P•r = {p ∈ P•: x[ p] > x[ pm]} − {si : mi ≥ m}
7. if pm = pr then returnHull2 (P•` , p`, pr )

if pm = p` then returnHull2 (P•r , p`, pr )

otherwise returnHull2 (P•` , p`, pm) ∪ Hull2 (P•r , pm, pr )

As median-finding (line 4) can be done in linear time, the running time of the algorithm
satisfies the following recurrence (wheren is the number of input points excludingp`
and pr , f is the number of output edges, andc is some constant):

T(n, f ) ≤


c if n ≤ 1,
T(n`, f )+ cn if n ≥ 2 and fr = 0,
T(nr , f )+ cn if n ≥ 2 and f` = 0,
T(n`, f`)+ T(nr , fr )+ cn if n ≥ 2 and f`, fr ≥ 1,

for some 0≤ n`, nr ≤ d3n/4e and f`, fr ≥ 0 with n` + nr < n and f` + fr = f .
Using the concavity of the logarithm, one can then prove thatT(n, f ) = O(n log f )

by induction. We note that a simpler proof follows from using Lemma 2.3 to analyze the
recursion tree. It is clear that the sum of the costs at each level of the tree is bounded bycn
and that the cost function satisfies the(3/4)-fading property. Since the number of leaves
is at most f (as a new edge is discovered at every leaf), Lemma 2.3(ii) immediately
implies that the total cost of the algorithm is bounded bycn log4/3 f + O(n). We have
thus shown:

Theorem 3.1. Algorithm Hull2 () computes the f-edge upper hull of an n-point set
P ⊆ E2 in O(n log f ) time and O(n) space.

Remarks. 1. Hull2 () can be viewed as a simplification of the recursive algorithm of
Kirkpatrick and Seidel [23]. Their algorithm uses prune-and-search to find a hull edge at
each node of the recursion tree. Our algorithm finds only a hull vertex at each node and
thus requires a simpler partitioning strategy: “pruning” is done in the same manner but
“searching” is bypassed entirely. In terms of running time, our algorithm is faster by a
constant factor: if finding the median ofn numbers takesbn time, then in the worst case,
Kirkpatrick and Seidel’s algorithm spends 3bn log2 f + O(n) time and our algorithm
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spends1
2bn log4/3 f + O(n) ≈ 1.2bn log2 f + O(n) time in median-finding (which is

the most costly operation in both algorithms).
2. One can also viewHull2 () as a variant of QuickHull [34], since it recursively uses

an extreme vertex to divide a convex hull into two. But as pruning is not done in Quick-
Hull, its worst-case complexity can be2(n f ). We learned recently that Wenger [39] has
proposed a randomized version of QuickHull that performs pruning. His algorithm, with
an O(n log f ) expected running time, is similar to ours, except that finding the median
slope in line 4 is replaced by randomly selecting a slope. Chan [5] has recently reported a
different deterministic algorithm that can also compute two-dimensional convex hulls in
O(n log f ) time. Chan’s algorithm is likely to be faster in terms of worst-case complexity
as it does not need median-finding.

4. An Output-Sensitive Algorithm in E4

We now extend algorithmHull2 () to four dimensions. A high-level description of the
extension is as follows. Recall that in line 4 of algorithmHull2 (), the median of a set
of n/2 numbers is computed. Since the median can be thought of as a one-dimensional
(1/2)-cutting from Section 2.4, we extend this step tod dimensions by computing the
(1/2)-cutting of a set ofn/2 hyperplanes inEd−1. In line 5, a vertexpm, used for dividing
the hull, is computed by taking the maximum of a set of numbers formed by projecting
the input points along a direction of slopem. Of course, the maximum of a set of numbers
can be interpreted as the upper hull of a one-dimensional point set. Ind dimensions,pm

then becomes a collection of ridges computed by projecting the input points along certain
directions and taking the upper hulls of the resulting(d−1)-dimensional point sets. For
d = 4, these upper hulls are three-dimensional and are therefore of linear size.

In the two-dimensional algorithm,pm divides the upper hull ofP into two parts: the
portion of the hull to the left ofpm and the portion to the right ofpm. Observe that the left
hull is also the portion with slope less thanm, and similarly the right hull is the portion
with slope greater thanm. We have thus usedpm to partition the upper hull in two ways:
(i) by x-coordinate and (ii) by slope. The restriction of the upper hull withx-coordinate
inside a given interval is just primal restriction, in the terminology of Section 2.3, and
the restriction of the upper hull with slope within a given interval is just dual restriction.
In our extension to four dimensions, we adopt the same strategy of using both primal
and dual restrictions to partition the upper hull.

In the planar case, dividing the point set byx-coordinate ensures that the two subprob-
lems do not share any input points except for the vertexpm, and pruning by slope ensures
that each of the two subproblems has at most three-quarters of the input points. In the
same manner forE4, dividing by primal restrictions controls the sum of the sizes of the
subproblems, and pruning by dual restrictions guarantees that no subproblem receives
more than a fixed fraction of the input. Subproblems can now share more than one input
point, but we argue that the number of points shared is proportional to the size of the
output. The analysis then follows from an application of Lemma 2.3: primal dividing
bounds the per-level cost of the recursion tree and dual pruning ensures theα-fading
property.
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Fig. 3. A simple regionSof the point set in Fig. 1.

4.1. Primal Dividing

Our convex hull algorithm computes the primal restrictions ofF(P) to certain regions
in Ed−1 recursively. The regions are not arbitrary but are of a special form that we call
simple regions.

Definition. A set S⊆ Ed−1 is asimple regionof P if it is the vertical projection of a
union of facets inF(P).

Figure 3 shows an example of a simple region. A simple regionSmay be disconnected.
There may even exist a nonempty open(d − 1)-ball centered on∂S, of an arbitrarily
small radius, whose intersection with intSis not homeomorphic to any(d−1)-ball. This
intersection cannot be empty however, asS is a union of full-dimensional simplices; in
particular, this rules out “spikes,” e.g.,(d−2)-simplices that are attached to the boundary.

The following lemma lists some useful properties concerning simple regions and
primal restrictions. Part (a) is an identity that follows from definition and is important
for proving other parts of the lemma. Parts (b) and (c) discuss when points can be removed
without changing the primal restriction. Parts (d) and (e) provide bounds on the number
of vertices and ridges restricted to a simple region. Finally, (f) and (g) describe properties
of the boundary of a simple region.

Lemma 4.1. Let S be a simple region of P. The following statements are true:

(a)
⋃

f ∈FS(P)
f ↓ = S. (The projection of the facets of the primal restriction to S

covers the region S.)
(b) If Q ⊆ P contains all vertices of the facets in FS(P), then S is a simple region

of Q and FS(P) = FS(Q). (Points that do not contribute to facets in FS(P) can
be removed from P without affecting FS(P).)
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(c) S is a simple region of the restricted point set P|S and the restricted facets
FS(P|S) = FS(P).

(d) |V(P|S)| ≤ d|FS(P)|. (The number of facets in the primal restriction gives a
bound for the number of vertices.)

(e) |{r ∈ R(P) : r ↓ ⊆ S}| ≤ d|FS(P)|. (The number of facets in the primal
restriction gives a bound for the number of ridges.)

(f) ∂S is the vertical projection of a union of ridges in R(P). Thus, we can represent
∂S as a set of at most d|FS(P)| ridges.

(g) P|∂S = {v: v is a vertex of some ridge r in∂S}, and |P|∂S| ≤ d|FS(P)|. (The
number of vertices in the boundary∂S is bounded.)

Proof. Recall that{int( f ↓): f ∈ F(P)} are disjoint. Then (a) is immediate from the
definition of the primal restrictionFS(P).

To prove (b), first note thatFS(P) ⊆ FS(Q) follows directly from the hypothesis.
This implies thatS is a simple region ofQ. Now, (a) says that

⋃
f ∈FS(P)

f ↓ = S =⋃
f ∈FS(Q)

f↓. We therefore must have equality:FS(P) = FS(Q).
Statement (c) is a direct consequence of (b).
To prove (d), letp be a point inV(P|S). Since the projectionp↓ ∈ S, by (a) we have

p↓ ∈ f↓ for some facetf ∈ FS(P). Sincep ∈ V(P|S), p must be a vertex off . Then
(d) follows as each facet hasd vertices incident on it (by the nondegeneracy assumption).

To prove (e), observe that each ridger with r ↓ ⊆ S is incident on some facet in
FS(P), by (a). Then (e) follows as each facet hasd ridges incident on it.

The first part of (f) is immediate from the definition of a simple region. The cardinality
bound is just a consequence of (e).

The first part of (g) follows from (f) and the nondegeneracy assumption. The cardi-
nality bound is just a consequence of (e).

The first part of (g) follows from (f) and the nondegeneracy assumption. In particular,
this implies thatP|∂S ⊆ V(P) and, consequently,P|∂S ⊆ V(P|S). So the second part
follows from (d).

To compute the primal restrictionFS(P) for a simple regionSof P, our divide-and-
conquer algorithm first subdividesS into smaller simple regions{Si } with disjoint inte-
riors and then recursively computesFSi (P) for each of theSi ’s. In computingFSi (P)we
may consider only those input points that belong toP|Si = P| int Si∪P|∂Si by Lemma 4.1(c).
Since intSi are disjoint, the points shared between subproblems are points restricted to
the boundary of theSi ’s and we can bound the size of these boundaries in terms of the
number of output facets by Lemma 4.1(f, g).

Note that whend = 2, the boundary of a connected simple region consists of just two
points. In higher dimensions, the boundary becomes more complex and its manipulation
demands more care.

4.2. Dual Pruning

To find a good strategy for subdividing a simple region, we switch to dual space. We
show how to partitionEd−1 into a constant number of simplices such that in computing
the dual restriction ofF(P) to each of the simplices, a fraction of the points ofP can
be pruned.
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Lemma 4.2. In O(|P|) time, one can find closed simplices11, . . . , 1k ⊆ Ed−1 and
P1, . . . , Pk ⊆ P such that(i)

⋃k
i=11i = Ed−1 and{int1i } are disjoint, (ii) F1i (P) =

F1i (Pi ), and (iii) |Pi | ≤ α|P|, for all i = 1, . . . , k. Here, k and0 < α < 1 are both
constants depending only on d(assuming that|P| exceeds a certain constant).

Proof. A proof of this lemma in the dual setting can be found in Edelsbrunner’s expo-
sition [14] of Megiddo’s linear programming algorithm [31]. The algorithm is based on
the prune-and-search paradigm, and this lemma represents its “prune step.” In Megiddo’s
original approach, the constantk is quite large andα is very close to 1. We observe an
alternative solution using results on cuttings.

Let |P| = n. First, form the setH of dual hyperplanes by mapping each point
p = (p1, . . . , pd)of P to the hyperplane{(ξ1, . . . , ξd): ξd = p1ξ1+· · ·+pd−1ξd−1−pd}.
Then each facetf of the upper hull ofP corresponds to a vertex of the lower envelope of
H . (Thelower envelopeof H consists of faces of the polytopeP = {ξ ∈ Ed: ξ is below
every hyperplane ofH}.) Furthermore, if1 ⊆ Ed−1, then a facetf in the dual restriction
F1(P) corresponds to a vertex of the lower envelope that has vertical projection in1.

Arbitrarily pair then hyperplanes inH , compute the intersection of each pair, and
vertically project these intersections. This gives usn/2 hyperplanes inEd−1. Compute
a constant-sized(1/2)-cutting{1i } of these(d− 1)-dimensional hyperplanes by Theo-
rem 2.1. Consider a simplex1i from the cutting. At least half of then/2 pairs have an
intersection whose vertical projection lies completely outside1i . For such a pair, one of
the two hyperplanes cannot participate in the restriction of the lower envelope ofH to
1i and is thus redundant. Therefore, in computing the dual restrictionF1i (P), at least
n/4 of the points can be pruned. This proves the lemma withα = 3/4.

Remark. In practice, one would compute the cutting using a random sampling ap-
proach [11], [32] rather than using Theorem 2.1. Furthermore, a different notion of
cutting known asshallow cuttings[26] can be used to prove Lemma 4.2; this alternative
approach may reduce the value of the constantk in higher dimensions.

4.3. Converting from Dual to Primal

In this subsection we show how to convert the partitioning{1i }of the dual space obtained
from Lemma 4.2 into a partitioning in the primal space. Specifically, we show that for
any simplex1 ⊆ Ed−1, we can define a regionS1 = S1(P) ⊆ Ed−1 such that the
primal restriction ofF(P) to S1 is the same as the dual restriction ofF(P) to1 (i.e.,
FS1(P) = F1(P)).

We start with the case when1 is just a half-space. Without loss of generality, assume
that1 has the form{(ξ1, . . . , ξd−1): ξ1 + m2ξ2 + · · · + md−1ξd−1 ≤ md}. Define a
projectionπ1: Ed → Ed−1 that sends a point(x1, . . . , xd) to (x2 − m2x1, . . . , xd −
mdx1). Consider the upper hull of the(d−1)-dimensional point setπ1(P): its facets are
projection of ridges in the upper hull ofP, that is,F(π1(P)) ⊆ {π1(r ): r ∈ R(P)}. Let
“boundary”B1 be the union of allr↓with π1(r ) ∈ F(π1(P)). ThenB1 is monotone in
the following sense: a line of the form{(x1+ t, x2+m2t, . . . , xd−1+md−1t): t real} can
intersectB1 at most once. We defineS1 to be the region “right of”B1: (x1, . . . , xd−1) ∈
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Fig. 4. (a) The regionS1 and (b) the intersection of its interior with the interior of the simple regionS from
Fig. 3.

S1 iff (x1 + t, x2 +m2t, . . . , xd−1 +md−1t) ∈ B1 for somet ≤ 0. Figure 4(a) shows
an example withm2 = · · · = md−1 = 0.

The following lemma can now be established for a half-space by1 verifying defini-
tions.

Lemma 4.3. FS1(P) = F1(P).

Remark. In the dual setting, as described in the proof of Lemma 4.2, the(d − 1)-
dimensional upper hull of the projected point setπ1(P) corresponds to the(d − 1)-
dimensional intersection of the lower envelope ofH with ∂1. Thus, ridges appearing in
B1 correspond to edges of the lower envelope ofH that intersect∂1.

We now extend the definition ofS1 to the case when1 is a simplex rather than a
half-space: Since1 is a simplex, write1 as an intersection of a constant number of
half-spaces{δj }. Then defineS1 to be a region with interior

⋂
j int Sδj . It is not difficult

to see that Lemma 4.3 holds for simplices1 as well.

4.4. Specializing for d= 4

We now show that the regionS1 as defined in the previous subsection satisfies some nice
computational properties ifd = 4. We first consider the case in which1 is a half-space.

For d = 4, the projected point setπ1(P) is three-dimensional. We can compute the
facets of the upper hullF(π1(P)), and thus, the boundaryB1, in O(|P| log|V(P)|)
time by either Chazelle and Matouˇsek’s algorithm [10] or Chan’s algorithm [5]. This
permits computations involving the regionS1 to be done efficiently, such as deciding if
a point lies in the interior ofS1.
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Lemma 4.4. Suppose that d= 4.Then the restricted point set P| int S1 can be computed
in O(|P| log|V(P)|) time using O(|P|) space.

Proof. Compute the facets of the three-dimensional upper hullF(π1(P)) and store
{π1(r )↓: π1(r ) ∈ F(π1(P))}, which is a set ofO(|V(P)|) triangles inE2 with disjoint
interiors, in a planar point location structure [15], [33], [36]; this takesO(|P| log|V(P)|)
time. For eachp ∈ P, we can then test whetherp↓ ∈ int S1 in logarithmic time by
finding a facetπ1(r ) of F(π1(P)) with π1(p)↓ ∈ π1(r )↓ and then determining which
side ofr↓ the pointp↓ lies on.

Another operation on the regionS1 that we need is that of intersectingS1 with a
simple region (see Fig. 4(b)). To ensure that the resulting region is simple, we intersect
their interiors only. We represent a simple regionS by its boundary, which is a set of
O(|FS(P)|) ridges by Lemma 4.1(f). We assume that each ridger of ∂S is given an
orientation to indicate which side ofr↓ the regionS lies on.

Lemma 4.5. Suppose that d= 4.Given the boundary∂S for a simple region S of P,one
can construct the boundary∂S′ for a new simple region S′ of P withint S′ = int S∩ int S1
in O((|P| + |FS(P)|) log|V(P)|) time using O(|P| + |FS(P)|) space.

Proof. Call a subset ofS a subregionif it is the closure of a connected component of
Ed−1−(∂S∪B1). A subregion is a simple region, so we can define the new simple region
S′ to be the union of all subregions contained inS1. The boundary∂S′ is made up of
boundary components, which are connected components of the boundary of subregions.
To decide whether a given boundary componentB contributes to∂S′, take a pointq near
B but inside the region bounded byB (this requires an examination of the orientation of a
ridge inB), and then test ifq ∈ int S1 using the point location method from the previous
lemma. Therefore, to compute∂S′, it suffices to produce all the boundary components.
This is done using depth-first search as follows.

We first record the ridges of the boundaries∂S and B1 in a dictionary; as the
(d − 1)-dimensional upper hullF(π1(P)) and the boundaryB1 can be computed in
O(|P| log|V(P)|) time for d = 4, this takesO((|P| + |FS(P)|) log|V(P)|) time. We
make two copies of a ridge to represent the two “sides” of a ridge and assign different
orientations to them. We then generate all the(d − 3)-subfaces of these ridges, and for
each such(d − 3)-faceσ , we create the list of ridges incident toσ in sorted order and
storeσ in a dictionary for(d − 3)-faces. The ordering of these ridges is based on the
angles made by their vertical projections with a fixed hyperplane throughσ↓ in Ed−1.

Then, given an (oriented) ridge in a boundary componentB, we can identify itsd−1
adjacent ridges inB in constant time by following pointers. (Here, two oriented ridges
r1 andr2 areadjacentin B if there is a common(d − 3)-subfaceσ incident on both
ridges and there is no other ridger ′ in B thatσ is incident on, such thatr ′↓ lies within
the angle range defined byr1↓ andr2↓ aroundσ↓.) Using a depth-first search to visit
the adjacent ridges recursively, we can then trace all ridges that belong to the same
boundary componentB, as indicated in Fig. 5. All boundary components can then be
generated by ensuring that all ridges in∂S are visited. The time required by the depth-
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Fig. 5. Tracing a boundary component(d = 3).

first search is proportional to the number of ridges in∂S andB1 and is therefore only
O(|FS(P)| + |V(P)|).

It remains to extend the above lemmas to the case when1 is a simplex rather than a
half-space. Recall that we have definedS1 such that intS1 =

⋂
j int Sδj , if 1 is written

as an intersection of a constant number of half-spaces{δj }. By applying Lemmas 4.4
and 4.5 to each half-spaceδj individually, we see that the lemmas are also true for the
simplex1.

4.5. The Algorithm

We now have all the pieces needed for an output-sensitive convex hull algorithm inE4.
Let Dual-Partition (P) represent a dual partitioning{(Pi ,1i )}ki=1 obtained from
Lemma 4.2. LetRestrict-Interior (P,1) represent the restricted point setP| int S1
as computed by Lemma 4.4 and letRestrict-Boundary (P, B,1) be the boundary
of the simple regionS′ returned in Lemma 4.5 forB = ∂S. The following provides an
outline of our recursive algorithm.

Algorithm Hull4 (P•, B)
[ Given P• = P| int S andB = ∂Sfor a simple regionSof a point setP ⊆ E4

whereB 6= ∅ is represented as a set of (oriented) ridges, return the set of
facetsFS(P). ]

1. P← P• ∪ {v: v is a vertex of some ridger in B}
2. if |P| ≤ n0 for a constantn0 then returnFS(P) in constant time
3. {(Pi ,1i )}ki=1 ← Dual-Partition (P) by computing a(1/2)-

cutting (Lemma 4.2)
4. for i = 1, . . . , k do
5. P•i ← Pi ∩ P• ∩ Restrict-Interior (P,1i ) by computing a

3-d upper hull and performing 2-d point location (Lemma 4.4)
6. Bi ← Restrict-Boundary (P, B,1i ) by computing a 3-d up-

per hull and performing depth-first search on the boundary ridges
(Lemma 4.5)

7. return
⋃{Hull4 (P•i , Bi ): Bi 6= ∅}
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We first argue that the algorithm indeed computes the primal restrictionFS(P). In the
first line of the algorithm, we resetP to the point setP| int S∪ P|∂S = P|S, according to
Lemma 4.1(g); the justification is provided by Lemma 4.1(c):FS(P) = FS(P|S). Line 2
provides the base case. Line 3 gives us a constant number of simplices{1i }with disjoint
interiors, coveringEd−1; for each1i , we are also given a subsetPi of P, of cardinality
at mostα|P|, such thatF1i (P) = F1i (Pi ).

Let Si denote the simple region with interior intS∩ int S1i . SinceFS1i
(P) = F1i (P)

by Lemma 4.3, we know that theSi ’s have disjoint interiors and that their union isS.
Furthermore, asFSi (P) ⊆ FS1i

(P) = F1i (P) = F1i (Pi ), all facets inFSi (P) have
vertices fromPi , which implies thatFSi (P) = FSi (Pi ) by Lemma 4.1(b).

In line 5 we setP•i = Pi ∩ P• ∩ P| int S1i
= Pi | int Si , and in line 6 we letBi be the

boundary ofSi . Then line 7 returns
⋃

i FSi (Pi ) =
⋃

i FSi (P) = FS(P), as claimed.
Having argued thatHull4 () correctly computes the primal restrictionFS(P), we can

use the algorithm to compute the setF(P) of all facets of the upper hull. The initial
simple regionS0 we use is just the convex hull ofP↓, which can be computed using
the three-dimensional algorithm of Chazelle and Matouˇsek [10] or Chan [5]. Thus, by
letting P• = {p ∈ P: p↓ is not a vertex ofS0} andB = ∂S0, a call toHull4 (P•, B)
then returnsF(P), as desired.

4.6. Analysis

We now analyze the running time of the algorithm. We do so by counting the cost of the
recursion tree produced by the calls toHull4 (). Letn be the number of input points and
let f be the number of facets of the upper hull. LetPν andSν denote the input point set
and the simple region associated with a nodeν of the recursion tree. Letnν = |Pν| int Sν |
and fν = |FSν (Pν)|.

By Lemmas 4.2, 4.4, and 4.5, the nonrecursive part of the algorithm (lines 1–6)
requiresO((|Pν | + |FSν (Pν)|) log|V(Pν)|) = O((|Pν | + fν) log fν) time at nodeν,
since|V(Pν)| = |V(Pν|Sν )| ≤ d|FSν (Pν)| by Lemma 4.1(d). To get the total running
time, we just have to sum this cost over all nodes in the recursion tree.

We first analyze the cost contributed by theO(|Pν | log fν) term. By Lemma 4.2(iii),
this cost isα-fading, so we can apply Lemma 2.3. To sum the costs on a given level
of the tree, we write|Pν | = |Pν| int Sν | + |Pν|∂Sν | ≤ nν + d fν by Lemma 4.1(g). Since
the Sν ’s have disjoint interiors over all nodesν of one level, we have

∑
ν nν < n and∑

ν fν = f for each level of the recursion tree. This gives us anO((n+ f ) log f ) bound
on the cost-per-level. The tree hasO( f ) leaves, as each leaf discovers at least one facet
(note thatFSν (Pν) = ∅ only if ∂Sν = ∅ by definition of a simple region). Lemma 2.3(ii)
says that the total contribution isO((n+ f ) log2 f ).

Next we analyze the cost contributed by theO( fν log fν) term. This cost may not be
α-fading, so we cannot apply Lemma 2.3. But since

∑
ν fν = f and the recursion tree

has depth at most log1/α n by Lemma 4.2(iii), we can bound the sum of these costs by
O( f log f logn), which never dominatesO((n+ f ) log2 f ).

We conclude that the total running time of the algorithm isO((n+ f ) log2 f ). Total
space isO(n+ f ) as long as we free up the space used to store the boundaryB before
we make the recursive calls in line 7.
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Theorem 4.6. Algorithm Hull4 () computes the f -face upper hull of an n-point set
P ⊆ E4 in O((n+ f ) log2 f ) time and O(n+ f ) space.

Remarks. 1. Algorithm Hull4 () can be considered as a primal-based divide-and-
conquer algorithm since it recursively computes the primal restriction ofF(P) to a simple
region. Alternatively, one may consider an algorithm that computes the dual restriction of
F(P) to a simplex recursively. This dual-based approach is perhaps less complex since
simplices are easier to handle than boundaries of simple regions. However, the problem
with this approach is that the dual analogue of Lemma 4.1(b) is not true in general: that
Q ⊆ P contains all vertices of the facets inF1(P) does not necessarily imply that
F1(P) = F1(Q)—one can construct a counterexample using three-dimensional point
sets and a triangle for1.

2. Although the cutting techniques used for dual pruning in our algorithm have been
well studied, our strategy for primal dividing appears new. This strategy provides a
simple way to guarantee that the total problem size at any level of the recursion is
O(n+ f ); it would be difficult to obtain such a bound using the existing cutting techniques
alone. Previously, primal dividing was used only in two and three dimensions, notably
in the algorithms of Kirkpatrick and Seidel [23] and Edelsbrunner and Shi [18], and
our algorithm can be regarded as an extension of these approaches. In fact, the three-
dimensional version of our algorithm simplifies Edelsbrunner and Shi’s algorithm in
the same way as our two-dimensional algorithm simplifies Kirkpatrick and Seidel’s.
The “contour”-based approach used in a recent parallel three-dimensional convex hull
algorithm by Amatoet al. [1] can also be interpreted as a form of primal dividing.
There, contours play a role similar to the lower-dimensional upper hulls ofπ1(P) in
Section 4.3 and are used to ensure that the total problem size at any level of the recursion
remainsO(n); but since they describe their method in the dual setting, its geometry is
less apparent in some places.

3. Hull4 () can return not onlyF(P) but also a point location structure for the
set{ f ↓: f ∈ F(P)} of tetrahedra inE3. We simply maintain the recursion tree and
store the planar point location structures from Lemma 4.4 at every node; this requires
O((n+ f ) log f ) space. Then we can find a facet of which the vertical projection contains
our given query point by just following a path down the recursion tree. Since the tree
has depth at most log1/α n, the query time isO(log2 n). For small output sizef , we
can further reduce the space and query time bound toO( f log f ) and O(log2 f ) by
first callingHull4 () to identify the verticesV(P) and then building the point location
structure forV(P) instead ofP (as F(V(P)) = F(P)). We thus achieve the same
performance as Goodrich and Tamassia’s three-dimensional point location structure
[20].

4. Some practical issues. With no additional work,Hull4 () can return the incidence
structure between facets and ridges; this fact can be used to reduce the number of
dictionary operations needed. Moreover, with an appropriate choice of coordinate system,
it is not necessary to compute the upper and lower hulls separately; we choose to do so
here merely because vertical projections are easier to visualize. We should mention that
degeneracies may occur in the projected point setπ1(P) even though the point setP is
itself nondegenerate; in such a situation, we may wish to apply a perturbation to1.
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5. Clipped Voronoi Diagrams

In this section we describe one important application of our four-dimensional convex
hull algorithm, namely the output-sensitive computation of Voronoi diagrams in three
dimensions. LetP be a set ofn point sites inEd. TheVoronoi region of a site p∈ P
consists of all pointsq ∈ Ed such thatq is closer top than to any other point inP (with
respect to Euclidean distance). TheVoronoi diagram of Pis the collection of all Voronoi
regions.

For a given sitep = (p1, . . . , pd) ∈ P, we can use a “lifting map” [14], [17] to define
a half-spacep∗ in Ed+1: p∗ = {(x1, . . . , xd+1): xd+1 ≥ 2p1x1+· · ·+2pdxd− p · p}. It
is well known that the Voronoi regions are just the vertical projection of the facets of the
polytope

⋂
p∈P p∗. Thus, the computation of a Voronoi diagram inEd is reduced to the

computation of an intersection of half-spaces inEd+1. Since computing an intersection
of half-spaces is equivalent to computing convex hulls by duality, Theorem 4.6 has the
following consequence:

Theorem 5.1. The Voronoi diagram of n point sites in E3 can be computed in O((n+
f ) log2 n) time and O(n+ f ) space, where f is the size of the Voronoi diagram(Ä(n) =
f = O(n2)).

In certain applications, only the portion of a Voronoi diagram lying in a given area
is needed, and the size of this portion may be much smaller than the size of the entire
Voronoi diagram. What we want is then an output-sensitive algorithm to compute the
Voronoi diagram of P clipped to a region W, defined simply as the collection of all
nonempty intersections of the Voronoi regions withW.

Suppose thatW is a k-dimensional polytope(
⋂
0) ∩ F , where F is a set ofm

half-spaces andF is ak-flat in Ed. Lift each half-spaceγ ∈ 0 to a vertical half-space
denoted byγ ∗ and lift the k-flat to a vertical(k + 1)-flat denoted byF∗. Then the
clipped Voronoi diagram is just the vertical projection of the facets of the polytope⋂

p∈P p∗ ∩ ⋂γ∈0 γ
∗ ∩ F∗. Thus, the clipped Voronoi diagram can be computed by

constructing the intersection of the half-spaces{p∗ ∩ F∗ : p ∈ P} ∪ {γ ∗ ∩ F∗ : γ ∈ 0}
inside the(k+ 1)-flat F∗. If k = 3, we can use Theorem 4.6 to compute the intersection
of thesen+m half-spaces of dimensionk+ 1.

Theorem 5.2. Let d ≥ 4 be a constant. The Voronoi diagram of n point sites in Ed

clipped to a three-dimensional polytope defined by m half-spaces can be computed in
O((n+m+ f ) log2 f ) time and O(n+m+ f ) space, where f is the size of the clipped
Voronoi diagram(Ä(1) = f = O(n2)).

6. Extensions

In this section, we describe one way that algorithmHull4 () can be extended to higher
dimensions. It suffices to provide higher-dimensional analogues of Lemmas 4.4 and 4.5
from Section 4.4, since other parts of the algorithm work in any fixed dimension. Again
we may assume that1 is a half-space.
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The main difficulty that arises whend > 4 is that we do not have control of the size of
the(d−1)-dimensional upper hull of the projected point setπ1(P). Ford ≤ 4, the size
is O(|V(P)|), which we can bound byO(|FS(P)|) if P↓ ⊆ S by Lemma 4.1(d). For
d > 4, we can only bound the size byO(|F(P)|) and this can be much larger than the
actual output size|FS(P)|, since there may exist facets inF(P) with vertical projection
outsideS even if P↓ ⊆ S. To overcome this difficulty, we do not construct all the hull
facets inF(π1(P)) but instead apply the results in Section 2.5 to perform queries on
F(π1(P)).

Lemma 6.1. Suppose that d> 4.Then the restricted point set P| int S1 can be computed
in O((|P| + (|P||V(P)|)1−1/dd/2e) logO(1)|P|) time.

Proof. As in the proof of Lemma 4.4, we can test whetherp↓ ∈ int S1 for a given
point p ∈ P by finding a facetπ1(r ) of F(π1(P)) with π1(p)↓ ∈ π1(r )↓ and then
determining which side ofr↓ the pointp↓ lies on. This facet can be found by performing
a linear programming query on a polytopeP defined by|P| dual half-spaces inEd−1

corresponding to the|P| points in the projected point setπ1(P) ⊆ Ed−1. As we need
|P| queries for each pointp ∈ P, the cost isO(|P|2−2/dd/2e logO(1)|P|) by Theorem 2.2.

To further reduce the running time, we first identify the verticesπ1(v) of V(π1(P))
(v ∈ V(P)); using an output-sensitive algorithm for computing extreme points by Chan
[4], this requiresO((|P| + (|P||V(P)|)1−1/dd/2e) logO(1)|V(P)|) time (remember that
the point setπ1(P) is just of dimensiond−1). BecauseF(π1(P)) = F(V(π1(P))), we
only need the half-spaces corresponding to these≤ |V(P)|vertices to define our polytope
P. The cost of the|P| queries is then onlyO((|P| + (|P||V(P)|)1−1/dd/2e) logO(1)|P|),
according to Theorem 2.2.

Lemma 6.2. Suppose that d> 4.Given∂S for a simple region S of P,we can construct
∂S′ for a new simple region S′ of P with int S′ = int S∩ int S1 in O((|P| + |FS(P)| +
(|P||FS(P)|)1−1/dd/2e) logO(1)|P|) time.

Proof. As in the proof of Lemma 4.5, it suffices to compute all the boundary com-
ponents. Then we can select which boundary components contribute to the boundary
∂S′—that is, which boundary components correspond to a subregion insideS1—by the
techniques of the previous lemma. This requires at mostO(|FS(P)|) linear programming
queries on|P| half-spaces inEd−1, and thus can be done withinO((|P| + |FS(P)| +
(|P||FS(P)|)1−1/dd/2e) logO(1)|P|) time.

The boundary computation is again based on depth-first search, but now we cannot
generate all the ridges of the boundaryB1 in advance as we cannot afford to compute
all the facets inF(π1(P)); rather, a ridge is generated when it is needed.

As before, we store the ridges in∂S (but not B1) and their(d − 3)-subfaces in a
dictionary and sort these ridges around each(d − 3)-faceσ . SupposeB is a boundary
component and we are given a ridger in B (with its orientation). We first describe how
we can generate thed − 1 ridges that are adjacent tor in B.

These adjacent ridges can be classified into two types: (i) ones that are in∂S, and
(ii) ones that are in the boundaryB1. We deal with the adjacent ridges that are in∂S
first. A ridge adjacent tor must share a common(d− 3)-subface, so let us consider one
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(d− 3)-subfaceσ of r . Look up the dictionary to see ifσ is a(d− 3)-face of∂S. If so,
by performing a binary search on the list of ridges thatσ is incident on, we can identify
a candidate ridge in∂S that r may be adjacent to. Repeating this procedure for every
(d − 3)-subfaceσ of r , we get all the ridges in∂S thatr may be adjacent to.

Next we deal with the adjacent ridges that are in the boundaryB1. Again we consider
a(d−3)-subfaceσ of r . Determine whetherπ1(σ) is a ridge ofR(π1(P)); this test can
be reduced to a linear programming query on a(d − 1)-dimensional polytope defined
by |P| dual half-spaces. If the test is true, the linear programming query can be used
to get a facetπ1(r ′) of F(π1(P)) (r ′ ∈ R(P)) thatπ1(σ) is incident on. Then a ray
shooting query in dual space can be used to find (if it exists) the other facetπ1(r ′′) of
F(π1(P)) (r ′′ ∈ R(P)) thatπ1(σ) is also incident on. These ridgesr ′ andr ′′ in B1
give two possible candidates for the adjacent ridges ofr . We repeat this procedure for
every(d − 3)-subfaceσ of r .

We now have a list of possible candidates for ridges that may be adjacent tor in B. By
performing some local tests, we can deduce which of these ridges are actually adjacent.
As in the proof of Lemma 4.5, we can then trace the complete boundary componentB by
visiting the adjacent ridges recursively in a depth-first manner. To compute all boundary
components, we ensure that all ridges in∂Sare visited.

To evaluate total time needed by this computation, observe that the number of ridges
visited by the depth-first search isO(|FS(P)|) by Lemma 4.1(e) since we only generate
ridgesr with r↓ ⊆ S. The work is then dominated byO(|FS(P)|) linear programming
and ray shooting queries inEd−1, which, by Theorem 2.2, requireO((|P| + |FS(P)| +
(|P||FS(P)|)1−1/dd/2e) logO(1)|P|) time.

To get a convex hull algorithm inEd, we just have to replace Lemmas 4.4 and 4.5 by
Lemmas 6.1 and 6.2 in the algorithm outline forHull4 () from Section 4.5. We follow
the same notation from Section 4.6 to analyze the running time.

By Lemmas 6.1 and 6.2, the nonrecursive part of the algorithm now takesO((|Pν | +
|FSν (Pν)| + (|Pν |(|V(Pν) + FSν (Pν)|))1−1/dd/2e) logO(1)|Pν |) = O((|Pν | + fν +
(|Pν | fν)1−1/dd/2e) logO(1)n) time at nodeν, if we recall that|V(Pν)| = |V(Pν|Sν )| ≤
d|FSν (Pν)| by Lemma 4.1(d).

To sum this cost, we recall that
∑

ν nν < n and
∑

ν fν = f over every level of
the recursion tree. Since|Pν | = |Pν| int Sν | + |Pν|∂Sν | ≤ nν + d fν by Lemma 4.1(g),
we also have

∑
ν |Pν | ≤ n + d f . Using Hölder’s inequality, we obtain the following

cost-per-level bound, ignoring polylogarithmic factors:

∑
ν

(|Pν |+ fν+(|Pν | fν)1−1/dd/2e) = O

(
n+ f +n1−2/dd/2e∑

ν

(|Pν |1/dd/2e f 1−1/dd/2e
ν )

)
= O(n+ f + n1−2/dd/2e(n+ f )1/dd/2e f 1−1/dd/2e)
= O(n+ (n f )1−1/dd/2e + f n1−2/dd/2e).

Summing over allO(log1/α n) levels, we get

O((n+ (n f )1−1/dd/2e + f n1−2/dd/2e) logO(1)n)

as the total running time.
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Theorem 6.3. Let d> 4 be a constant. The convex hull of an n-point set in Ed can be
computed in O((n+ (n f )1−1/dd/2e + f n1−2/dd/2e) logO(1)n) time.

For odd dimensionsd, this method is of no use since it is more complicated and not
better than Chan’s method [4]; however, for even dimensionsd, we do not obtain im-
provement over previous results for a certain range off . For example, whenf = 2(n),
both Matoušek’s method [27] and Chan’s method [4] achievesO(n2−2/(bd/2c+1) logO(1)n)
time; the method here achievesO(n2−2/dd/2e logO(1)n) time. In general, if the output size
is linear or sublinear, Theorem 6.3 provides the best upper bound currently known for
the convex hull problem, ignoring polylogarithmic factors.

An important problem that is left open is then to find a convex hull algorithm inEd

(d > 4) with close toO(n log f + f ) running time for the whole range of output size
f . Improving ourO((n+ f ) log2 f ) bound inE4 would also be interesting.

Note. After the submission of this paper, Amato and Ramos [2] have recently an-
nounced an extension of our four-dimensional algorithm to five dimensions, running in
O((n+ f ) log3 f ) time. They also describe how to adapt our four-dimensional algorithm
to work with degenerate point sets.
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