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Abstract. In this paper, we give an algorithm for output-sensitive construction df-an
face convex hull of a set af points in general position iE*. Our algorithm runs ir0 ((n +
f)log?® ) time and use® (n+ f) space. Thisis the first algorithm within a polylogarithmic
factor of optimalO(nlog f + f) time over the whole range df. By a standard lifting map,

we obtain output-sensitive algorithms for the Voronoi diagram or Delaunay triangulation
in E® and for the portion of a Voronoi diagram that is clipped to a convex polytope. Our
approach simplifies the “ultimate convex hull algorithm” of Kirkpatrick and Seide#in

and also leads to improved output-sensitive results on constructing convex higan

any even constamt > 4.

1. Introduction

Geometric structures induced biypoints in Euclideard-dimensional space, such as
the convex hull, Voronoi diagram, or Delaunay triangulation, can be of larger size than
the point set that defines them. In many practical situations, however, they do not at-
tain the worst-case siz@utput-sensitive algorithmsvhich compute structures in time
depending on their size, are therefore appealing.
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ship, an NSERC Research Grant, a B.C. Advanced Systems Institute Fellowship, and NSF Grants #CCR-87-
03458 and #CCR-94-02464. The first author’s present address is: Department of Mathematics and Computer
Science, University of Miami, Coral Gables, FL 33124, USA.
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In this paper, we consider computing the convex hull of a sefufints in general po-
sitionin EY, concentrating od = 4. The dual problem corresponds to computing the in-
tersection ofi half-spaces [14], [21]. In both problems, the output is a (convex) polytope.
Because Delaunay triangulations and Voronoi diagrandn' are related to convex
hulls and half-space intersectionsid by a lifting map [3], [17], our output-sensitive
convex hull algorithm gives output-sensitive algorithms for these problems as well.

In EY, the convex hull of points is a polytope with as many @nl%/?)) faces [14],

[30]. Ford = 2 andd = 3, ®(nlogn) worst-case time is both necessary and sufficient
to compute the facial lattice of the polytope [34]. For any constant dimedsiGhazelle
[8] has given a worst-case optimal algorithm runningitm logn + n9/2)) time.

For randomly generated point sets [12], [35] and point sets used in practice, however,
convex hulls often have fewer faces than the worst-case bound. Thus, a number of convex
hull (or half-space intersection) algorithms have been analyzed not only in terms of
the size of the input, but also in terms bf the number of faces of the output polytope.
The only known lower bound in terms ofand f is Q(nlog f + f) time.

In 1986 Kirkpatrick and Seidel [23] published a paper entitled “The Ultimate Planar
Convex Hull Algorithm?” which computes the convex hullropoints in the plane in
O(nlog f) time. This algorithm is, therefore, output-sensitive and worst-case optimal.
The “ultimate algorithm” is a divide-and-conquer algorithm based on a “marriage before
conquest” principle: it computes the merge of two subproblems before it recursively
solves the subproblems. Edelsbrunner and Shi [18] applied “marriage before conquest”
inthree dimensions to obtain &1nlog? f) time convex hull algorithm. Using a different
approach, Chazelle and MatrK[10] have reported that derandomizing an algorithm of
Clarksonand Shor[11] gives &\(nlog f)time algorithmin three dimensions. Recently,
Chan [5] has obtained a simp@(nlog f) time method for both two-dimensional and
three-dimensional convex hulls.

In dimensions higher than three, the fastest output-sensitive algorithms currently
known (excluding the results of this paper) are an improvement of the “gift-wrapping”
method [22], [38] by Chan [4] and an improvement of Seidel’s “shelling” algorithm [37]
by Matowsek [27]. The former runs i@ (nlog f + (nf)1~Y14/2+D |og®D n) time and
the latter runs irQ(n?-%/(14/21+1 1og®® n 4 f Jogn) time.

In this paper we give a convex hull algorithm in four dimensions that ru(im +
f)log? f) time and use®©(n + f) space. Our basic strategy is divide-and-conquer. In
order to obtain an output-sensitive method, the subproblems we solve cannot have asymp-
totically more faces than the original polytope. Therefore, we make each subproblem
compute some restricted portion of the original polytope. For each of the subproblems
defined, we show that sufficiently many input points can be removed without changing
the subproblem. As in “marriage before conquest” and quicksort-like recursions, the
merge step is trivial once we have devised a partitioning scheme for dividing a problem
into subproblems.

In the next section we set up notation and point out some preliminary facts about the
construction of convex hulls. Section 3 gives asinpl@ log f ) convex hull algorithmin
the plane and compares it with Kirkpatrick and Seidel’s algorithm [23]. Section 4 details
and analyzes the algorithm in four dimensions. We briefly describe the application to
Voronoi diagrams in Section 5. An extension of our four-dimensional algorithm to higher
dimensions is given in Section 6.
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Note A preliminary version of this paper, written for the problem of computing
half-space intersections rather than convex hulls, appears in [6]. The four-dimensional
intersection algorithm given there and its two-dimensional specialization are dualizations
of the convex hull algorithms in this paper. We feel that the present version, in the primal
setting, is clearer and provides a better understanding of the method.

2. Preliminaries

We first review some standard definitions, introduce key concepts concerning the divide-
and-conquer computation of convex hulls, and then describe tools that we need.

2.1. Polytopes

A polytopeP C EYis the intersection of a finite set of (closed) half-spaces. Suppose that
P has a nonempty interior. i is a hyperplane that intersects the boundarf diut not

its interior, therh N P is afaceof P. A face is aj-face(0 < j < d) if it has dimension
j—that is, if it is contained in somg-flat but not in a(j — 1)-flat. A (d — 1)-face is
called afacet a (d — 2)-face is called aidge, a 1-face is called aadge and a O-face

is called avertex Note that the faces P, together with the empty sétand?P itself,

form a lattice under inclusion, and the union of the facet® @ the boundary oP.

2.2. Convex Hulls and Upper Hulls

Suppose that we are given a t< EY of n points, whered is a fixed constant.

To avoid degenerate cases, we make a general position assumption on our input. This
assumption is not really necessary in our two-dimensional algorithm but is needed in
our four-dimensional algorithm and its higher-dimensional extension. Specifically, we
assume that nd+ 1 points ofP lie in a common hyperplane and dgoints ofP liein a

vertical hyperplane. (Throughout this paper, the terminology “vertical,” “ajdosiew,”

and “upwargdownward” are with respect to the last coordinate.) Perturbation techniques
[16], [19] can be used to simulate general position, with the possible cost of increasing
the output size for degenerate polytopes.

Theconvex hulbf P is defined as the smallest convex set contailingr equivalently,
the intersection of all half-spaces containiRglt is well known that the convex hull is
a polytope, and our goal is to compute the facial structure of the polytope.

For convenience, we focus our attention only on the upper portion of the convex hull
called theupper hull(see Fig. 1(a)). It consists of faces of the convex hull that have an
upward outer normal vector. The upper hull®tan be thought of as the bounded faces
of the convex hull ofP U {(0, ..., 0, —oc0)}. Once we have a method for computing
the upper hull ofP, we can also compute the lower hull Bfin a similar manner by
reflection and join the two hulls to form the convex hull@f

Notation. Let F(P), R(P), andV (P) be the set of all facets, ridges, and vertices
(respectively) of the upper hull d?.
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Fig. 1. (a) The upper hull of a point set i3, and (b) the vertical projection of its facets.

2.3. Facets and Their Duals

To simplify representational issues, we require our algorithm to output only the set
F(P) of all facets of the upper hull oP. From this set, we can then generate all
faces and build the complete lattice structure of the faces (the Hasse diagram) using a
dictionary inO(|F (P)|log|F (P)]) time; this additional cost will be absorbed in the cost
of the algorithm. Our algorithm for computirfg§(P) is based on divide-and-conquer: to
compute all the facets iR (P), we partitionF (P) into suitable subsets and recursively
compute these subsets of facets.

The following provides a simple characterizatiorrafP). First by the nondegeneracy
assumptionF (P) consists only ofd — 1)-dimensional simplices with vertices all from
P. Let f be such simplex and lét f) denote the unique hyperplane containingrhen
f € F(P) iff all points of P lie on or belowh(f).

Before we discuss further properties of facets of the upper hull, we first introduce
some useful notation used throughout the paper.

Notation. Let | denote thesertical projectionoperator:p| = (Xg, ..., Xg—1) if p =
(X1, ..., %), andP| = {p}: p € P} foranyP c EY. GivenP c EYandS c E%1,
let Bs = {p € P : pl € S} be therestriction of P to SLet intS denote the interior of
Sanda S denote the boundary &

Observe that the vertical projection of the facetE {tP) forms a collection ofd — 1)-
dimensional simplices iE4~* that have disjoint interiors, that s, ifft]) Nint(f'}) = @
for any two distinct facets, f' € F(P). In fact, the vertical projection of all faces of
the upper hull forms aimplicial complexFor example, ifl = 3, then{f: f € F(P)}
forms a triangulation in the plane, as shown in Fig. 1(b). Thus, one possible divide-and-
conquer approach is to use these vertical projections to parktiéh.

An equally natural approach is to use the vertical projections of the fade#dsto
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partition F (P). For eachf € F(P), we can define a point® e E¢ via the standard
duality transformation of [14]: if the hyperplaid f) is given by{(Xq, ..., Xg): X4 =
E1X1+ - + Eg_1Xd_1 — &4}, then we letf P = (&, ..., &). The projection of the dual
f0| = (&, ..., &_1) is geometrically just the gradient bf f); for example, ifd = 2,
then this is just the slope.

To allow us to speak about the two divide-and-conquer approaches more succinctly,
we make the following definitions:

Definition. Given setsS, A € E%1 let Fg(P) = {f € F(P) : f| C S} be the
primal restriction of {P) to SandF2(P) = {f € F(P) : fP| € A} be thedual
restriction of K(P) to A.

As we will see, duality [14], [34] plays a crucial role in the design of our algorithms.
In the remainder of the section, we discuss specific tools that our algorithms use.

2.4. Cuttings for Divide and Conquer

The work of many researchers, notably Mateki124], [25] and Chazelle [7], has de-
veloped(1/r)-cuttings for divide-and-conquer algorithms for hyperplanesugingin

EY is a covering ofE? with closed (possibly unbounded) simplices with disjoint interi-
ors: thesizeof the cutting is the number of simplices. For a sbbf n hyperplanes, a
cutting E is a(1/r)-cutting if any simplex ofZ intersects at most/r hyperplanes of

H. Chazelle and Friedman [9] showed tliatr)-cuttings of sizeO(r9) exist. Several
theorems have been proved about their deterministic construction—we use a relatively
simple one.

Theorem 2.1[28, Theorem 6.1]. Given n hyperplanes in afixed dimensigadl/r)-
cutting of size @r?) can be computed in @r9) time

We need this theorem only for the special case whisrjust a constant, say 2.

2.5. Queries on Polytopes

A number of researchers [27], [29] have devised data structures for answering queries
on a polytopeP? < EY defined as an intersectioniwhalf-spaces. Two common types of
queries that have been studied exg shooting(identify the point where a query ray
intersectsP? assuming that the origin of the ray lies#), andlinear programmingfind

the pointé e P that maximizes - £ for a query vectoa e E9). It turns out that one can
answer these queries efficiently without having to construct the polyRogeplicitly.

The following theorem is a direct consequence of applying the ray shooting struc-
ture of Matowsek and Schwarzkopf [29] and the linear programming structure of
Matouwsek [27] and choosing appropriate trade-offs between processing and query time
(see, e.q., [4]).
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Theorem 2.2. An(on-line) sequence of q ray shooting and linear programming queries
on a polytope defined by n half-spaces i Ean be performed in Qn + q +
(nq)~Y/14/21+Dy |og®M n) time,

By dualizing points into half-spaces, we can use this result to answer queries on the
convex hull of am-point set. For example, given a poipte E9~1, we can find a facet
f € F(P)withqg e f| (if one exists) by performing a linear programming query on the
dual polytope; given a facdt € F(P) and aridge € R(P) incident onf, we can find
the other facef’ € F(P) thatr is incident on (if it exists) by performing a ray shooting
query in dual space. Theorem 2.2 is used in an extension of our convex hull algorithm
in higher dimensions.

2.6. Counting the Cost

To evaluate the cost of our recursive convex hull algorithm, we prove a general lemma
concerning recursion trees. LE&tbe a rooted tree in which each nodés assigned a
costc(v) € (0, 00). We say that the cost functianis a-fadingfor a constant € (0, 1)

if c(u) < ac(v) for every nodeu and its parenv. As part of the analysis of their
three-dimensional output-sensitive convex hull algorithm, Edelsbrunner and Shi [18,
Lemma 3.1] proved that the total cost in such a tree is asymptotically bounded by the
per-level cost times the logarithm of the number of nodes. Their proof uses a path
compression operation that transforimsnto a balanced tree. We give a simple, short
proof of their result that avoids path compression altogether; we then improve the bound
to depend on the number of leaves rather than the number of nodes.

Lemma 2.3. In a recursion tree T with m nodes addeaves and amx-fading cost
function ¢ if the sum of the costs at each level is bounded éh the sum of the costs of
allnodesin T igi) lessthan Glog, , m+2) and(ii) less than Glog, , £+1+1/(1-a)).

Proof. Number the levels of the tree D, 2, ... with the root at level zero. Let =
llog,,, m]. The sum of the costs at levels ...,k is bounded byC(k + 1) <
C(log,,, m+1). Furthermore, by the-fading property, each node on a level greater than
k has cost bounded lyo*t1 < C/m; hence, the sum of the costs at lekel1, k+2, . ..
is bounded byC. Part (i) follows.

To prove part (i), we chooske = |log, , ¢] instead. As before, the sum of the costs
at levels 01, ...,k is bounded byC(k + 1) < C(log,,, ¢ + 1). Thus, we just have
to account for the costs of nodes at levels greater kidtote that each node belongs
to some root-to-leaf path if. By thea-fading property, the sum of the costs at levels
k+1,k+2,...along such a path is bounded by

CakJrl C
= < .
l1-« 11—t

Cak+1+Cak+2+

Since there aréroot-to-leaf paths in total, the sum of the costs at lekelsl, k+ 2, . ..
is bounded byC /(1 — «). Part (ii) follows. |
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3. A Simplified “Ultimate Planar Convex Hull Algorithm”

Our four-dimensional convex hull algorithm grows out of the following simple convex
hull algorithm in the plane. This algorithm is in turn based on the “prune-and-search”
linear programming algorithm of Dyer [13] and Megiddo [31]. Rather than using pruning
to search, we use pruning for divide-and-conquer.

Given ann-point setP € E2, we want to compute the upper hull Bf We first pair
the points ofP arbitrarily and calculate the slope of the line through each pair. We then
find the median slopen and compute the upper-hull vertgx, that has a supporting
line of slopem; this vertex can be computed by taking the maximum along a certain
projection of P. The x-coordinate ofp, is then used to dividd® into two parts:Py,
which containgpy, and all points to its left, ané;, which containg,, and all points to
its right.

Now, if a pair has slope less tham then the right point in the pair cannot participate
in the upper hull ofP, and thus can be pruned froR. Similarly, if a pair has slope
greater thamm, then its left point cannot participate in the upper hullRpfand can be
pruned fromP;. Since half (i.e.n/4) of the pairs have slope less than the median
and half have slope greater thampruning ensures th&, and P, each contain at most
3n/4 points. We then recursively compute the upper huPoandP; . See Fig. 2 for an
example.

The pseudocode of the algorithm is given below. For convenience, we assume that
the leftmost and rightmost pointg, and p, of P have been identified and we Iat
be the cardinality of the séP* = P — {p,, pr} instead. In the interest of practical
efficiency, line 1 has been added to the algorithm; it does not affect asymptotic worst-
case performance.

median slope m

Fig. 2. Pairing and pruning points in the plane. Points marked L belorg t@oints marked R belong to
P;, and points marked X belong to neither sets.
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Algorithm Hull2 (P*, pe, pr)
[ Given n-point setP* < E? and pointsp,, p € E? such thatx[p,] <
X[p] < X[pr] for all p € P*, return the set of edges of the upper hull of
P=P U{p, pr}]
1. discard points fronfP* that lie belowp, pr
2. if P* = @ then return{p,pr}
if P* = {p} then return{p,p, PRr}
3. arbitrarily chooseln/2] disjoint pairs {{sy, t1}, ..., {Sin/2), tin/21}}
from P* and order each pair so thefts ] < x][t;]
4. letmy = (y[t] — y[sD/X[t] —x[s]D,i =1,...,n/2]
andm = median ofimy, ..., Myn2))
. let pn = point in P that maximizes/[ pm] — M - X[ Pm]
. letP? = {p e P*: x[p] < X[pm]} — {ti: mj <=m}
P*={pe P x[p] > x[pm]} — {s: mi = m}
7. if pm = pr thenreturrHull2 (P?, pe, Pr)
if pm = p¢ then returrHull2 (RP*, p¢, pr)
otherwise returtdull2 (P;, ps, pm) U HUI2 (P, pm, pr)

o Ol

As median-finding (line 4) can be done in linear time, the running time of the algorithm
satisfies the following recurrence (wherés the number of input points excluding
andpy, f is the number of output edges, ants some constant):

c if n<1,
T(ng, f)+cn if n>2andf, =0,
T(n. 1) < T, f)+cn if n>2andf, =0,

Tng, fo) +T(ne, fr) +cn if n>2andf,, f, > 1,

for some 0< ng, N, < [3n/4] and f,, f, > Owithn, +n, <nandf, + f, = f.

Using the concavity of the logarithm, one can then proveThat f) = O(nlog f)
by induction. We note that a simpler proof follows from using Lemma 2.3 to analyze the
recursion tree. Itis clear that the sum of the costs at each level of the tree is bourmded by
and that the cost function satisfies (13¢4)-fading property. Since the number of leaves
is at mostf (as a new edge is discovered at every leaf), Lemma 2.3(ii) immediately
implies that the total cost of the algorithm is boundecthyog, ; f + O(n). We have
thus shown:

Theorem 3.1. AlgorithmHull2 () computes the f-edge upper hull of an n-point set
P € E?in O(nlog f) time and Qn) space

Remarks. 1.Hull2 () can be viewed as a simplification of the recursive algorithm of
Kirkpatrick and Seidel [23]. Their algorithm uses prune-and-search to find a hull edge at
each node of the recursion tree. Our algorithm finds only a hull vertex at each node and
thus requires a simpler partitioning strategy: “pruning” is done in the same manner but
“searching” is bypassed entirely. In terms of running time, our algorithm is faster by a
constant factor: if finding the median nihumbers takebn time, then in the worst case,
Kirkpatrick and Seidel's algorithm spendbr8og, f + O(n) time and our algorithm
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spend%bnlogm f + O(n) ~ 1.2bnlog, f + O(n) time in median-finding (which is
the most costly operation in both algorithms).

2.0ne can also viewull2 () as a variant of QuickHull [34], since it recursively uses
an extreme vertex to divide a convex hull into two. But as pruning is not done in Quick-
Hull, its worst-case complexity can li®(nf). We learned recently that Wenger [39] has
proposed a randomized version of QuickHull that performs pruning. His algorithm, with
anO(nlog f) expected running time, is similar to ours, except that finding the median
slope inline 4 is replaced by randomly selecting a slope. Chan [5] has recently reported a
different deterministic algorithm that can also compute two-dimensional convex hulls in
O(nlog f) time. Chan’s algorithmiis likely to be faster in terms of worst-case complexity
as it does not need median-finding.

4. An Output-Sensitive Algorithm in E*

We now extend algorithraiull2 () to four dimensions. A high-level description of the
extension is as follows. Recall that in line 4 of algoritituall2 (), the median of a set
of n/2 numbers is computed. Since the median can be thought of as a one-dimensional
(1/2)-cutting from Section 2.4, we extend this steitdimensions by computing the
(1/2)-cutting of a set of/2 hyperplanes ift9~1. In line 5, a vertexpn,, used for dividing
the hull, is computed by taking the maximum of a set of numbers formed by projecting
the input points along a direction of slope Of course, the maximum of a set of numbers
can be interpreted as the upper hull of a one-dimensional point sktimensions pm
then becomes a collection of ridges computed by projecting the input points along certain
directions and taking the upper hulls of the resuliidg- 1)-dimensional point sets. For
d = 4, these upper hulls are three-dimensional and are therefore of linear size.

In the two-dimensional algorithnp, divides the upper hull oP into two parts: the
portion of the hull to the left of, and the portion to the right gi,,. Observe that the left
hull is also the portion with slope less tham and similarly the right hull is the portion
with slope greater tham. We have thus usepi, to partition the upper hull in two ways:
(i) by x-coordinate and (ii) by slope. The restriction of the upper hull wittoordinate
inside a given interval is just primal restriction, in the terminology of Section 2.3, and
the restriction of the upper hull with slope within a given interval is just dual restriction.
In our extension to four dimensions, we adopt the same strategy of using both primal
and dual restrictions to partition the upper hull.

Inthe planar case, dividing the point sebbgoordinate ensures that the two subprob-
lems do not share any input points except for the vepigxand pruning by slope ensures
that each of the two subproblems has at most three-quarters of the input points. In the
same manner foE*, dividing by primal restrictions controls the sum of the sizes of the
subproblems, and pruning by dual restrictions guarantees that no subproblem receives
more than a fixed fraction of the input. Subproblems can now share more than one input
point, but we argue that the number of points shared is proportional to the size of the
output. The analysis then follows from an application of Lemma 2.3: primal dividing
bounds the per-level cost of the recursion tree and dual pruning ensuredatang

property.
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Fig. 3. A simple regionS of the point setin Fig. 1.

4.1. Primal Dividing

Our convex hull algorithm computes the primal restriction$@P) to certain regions
in E9-1 recursively. The regions are not arbitrary but are of a special form that we call
simple regions

Definition. A setS c EY1is asimple regiorof P if it is the vertical projection of a
union of facets inF (P).

Figure 3 shows an example of a simple region. A simple re§ioray be disconnected.
There may even exist a nonempty opeh— 1)-ball centered od S, of an arbitrarily
small radius, whose intersection with Bits not homeomaorphic to arig — 1)-ball. This
intersection cannot be empty howeverSas a union of full-dimensional simplices; in
particular, this rules out “spikes,” e.gd — 2)-simplices that are attached to the boundary.

The following lemma lists some useful properties concerning simple regions and
primal restrictions. Part (a) is an identity that follows from definition and is important
for proving other parts of the lemma. Parts (b) and (c) discuss when points can be removed
without changing the primal restriction. Parts (d) and (e) provide bounds on the number
of vertices and ridges restricted to a simple region. Finally, (f) and (g) describe properties
of the boundary of a simple region.

Lemma4.1. Let S be a simple region of.Hhe following statements are true

(@) Uscrgpy L = S (The projection of the facets of the primal restriction to S
covers the region $

(b) If Q € P contains all vertices of the facets i), then S is a simple region
of Q and K(P) = Fs(Q). (Points that do not contribute to facets in®@) can
be removed from P without affecting®).)
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(c) S is a simple region of the restricted point sgt Bnd the restricted facets
Fs(Ps) = Fs(P).

(d) IV(Psg)| < d|Fs(P)|. (The number of facets in the primal restriction gives a
bound for the number of verticgs

() {r € R(P) : r | € S}| < d|Fs(P)|. (The number of facets in the primal
restriction gives a bound for the number of ridges

() 9S isthe vertical projection of a union of ridges if{lR). Thus we can represent
0S as a set of at mostBs(P)| ridges

(9) Pas = {v:v is a vertex of some ridge r iAS}, and |P,s| < d|Fs(P)|. (The
number of vertices in the boundad\s is bounded

Proof. Recall thaf{int(f|): f € F(P)} are disjoint. Then (a) is immediate from the
definition of the primal restrictiofrs(P).

To prove (b), first note thaEs(P) € Fs(Q) follows directly from the hypothesis.
This implies thatS is a simple region oRQ. Now, (a) says thatJ; g p) | = S=
Ufer(Q) f|. We therefore must have equalitys(P) = Fs(Q).

Statement (c) is a direct consequence of (b).

To prove (d), letp be a point inV (Ps). Since the projectiop], € S, by (a) we have
pl € f| for some facetf € Fs(P). Sincep € V(Ps), p must be a vertex of . Then
(d) follows as each facet hdsvertices incident on it (by the nondegeneracy assumption).

To prove (e), observe that each ridgevith r | € Sis incident on some facet in
Fs(P), by (a). Then (e) follows as each facet ltasdges incident on it.

The first part of (f) isimmediate from the definition of a simple region. The cardinality
bound is just a consequence of (e).

The first part of (g) follows from (f) and the nondegeneracy assumption. The cardi-
nality bound is just a consequence of (e).

The first part of (g) follows from (f) and the nondegeneracy assumption. In particular,
this implies thatPys € V(P) and, consequently?ss € V(Ps). So the second part
follows from (d). O

To compute the primal restrictiofs(P) for a simple regiors of P, our divide-and-
conquer algorithm first subdivide&into smaller simple regionsS } with disjoint inte-
riors and then recursively computgg (P) for each of the§'s. In computingFs (P) we
may consider only those input points that belonBto = Pjints UP35 by Lemma4.1(c).
Since int§ are disjoint, the points shared between subproblems are points restricted to
the boundary of th&’s and we can bound the size of these boundaries in terms of the
number of output facets by Lemma 4.1(f, g).

Note that wher = 2, the boundary of a connected simple region consists of just two
points. In higher dimensions, the boundary becomes more complex and its manipulation
demands more care.

4.2. Dual Pruning

To find a good strategy for subdividing a simple region, we switch to dual space. We
show how to partitiorE9~? into a constant number of simplices such that in computing
the dual restriction of (P) to each of the simplices, a fraction of the pointsPotan

be pruned.
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Lemma 4.2. In O(|P]) time, one can find closed simplicesy, ..., Ax € E9* and
Pi. ..., P« € P such thati) U, A; = E9-Land{int A;} are disjoint (i) F2 (P) =
F2i(P), and(iii) |P| < «|P|,foralli = 1,...,k. Herg k and0 < o < 1 are both
constants depending only on(dssuming thatP| exceeds a certain constant

Proof. A proof of this lemma in the dual setting can be found in Edelsbrunner’s expo-
sition [14] of Megiddo’s linear programming algorithm [31]. The algorithm is based on
the prune-and-search paradigm, and this lemma represents its “prune step.” In Megiddo’s
original approach, the constakis quite large and: is very close to 1. We observe an
alternative solution using results on cuttings.
Let |[P] = n. First, form the setH of dual hyperplanes by mapping each point
P = (P ..., pa) of Ptothe hyperplanf&s, . . ., £&4): &g = pr€a+- - -+ Pa-16d-1—Pa}-
Then each facet of the upper hull of° corresponds to a vertex of the lower envelope of
H. (Thelower envelopef H consists of faces of the polytofie= {& € EY: £ is below
every hyperplane dfi}.) Furthermore, ifA € E9-1 then afacef in the dual restriction
F2(P) corresponds to a vertex of the lower envelope that has vertical projectidn in
Arbitrarily pair then hyperplanes irH, compute the intersection of each pair, and
vertically project these intersections. This givesw& hyperplanes ifE?~1. Compute
a constant-sizedl/2)-cutting{A; } of these(d — 1)-dimensional hyperplanes by Theo-
rem 2.1. Consider a simplex; from the cutting. At least half of the/2 pairs have an
intersection whose vertical projection lies completely outaigddg-or such a pair, one of
the two hyperplanes cannot participate in the restriction of the lower enveloget@f
A; and is thus redundant. Therefore, in computing the dual restrigtfonP), at least
n/4 of the points can be pruned. This proves the lemma with 3/4. |

Remark. In practice, one would compute the cutting using a random sampling ap-
proach [11], [32] rather than using Theorem 2.1. Furthermore, a different notion of
cutting known ashallow cuttingg26] can be used to prove Lemma 4.2; this alternative
approach may reduce the value of the constanthigher dimensions.

4.3. Converting from Dual to Primal

Inthis subsection we show how to convert the partitiorjing of the dual space obtained
from Lemma 4.2 into a partitioning in the primal space. Specifically, we show that for
any simplexA € EY-1, we can define a regioBy, = S\(P) < EY-! such that the
primal restriction ofF (P) to S, is the same as the dual restrictionfP) to A (i.e.,
Fs.(P) = FA(P)).

We start with the case whenis just a half-space. Without loss of generality, assume
that A has the form{(&1, ..., &1_1): & + Muér + - -+ + My_1&4_1 < mMg}. Define a
projectionz: EY — E9-1 that sends a poinxy, . .., Xq) t0 (X — MaXq, ..., X4 —
MgyX1). Consider the upper hull of tHe — 1)-dimensional point set, (P): its facets are
projection of ridges in the upper hull &, thatis,F (mA (P)) C {ma(r): r € R(P)}. Let
“boundary” B, be the union of alt | with wa (r) € F (A (P)). ThenB, is monotone in
the following sense: a line of the forfiix; +t, Xo+mat, ..., Xg_1+Mg_1t): t reall can
intersectB, at most once. We defirfg, to be the region “right of' Ba: (X1, ..., X4-1) €
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Fig. 4. (a) The regiorSy and (b) the intersection of its interior with the interior of the simple regidrom
Fig. 3.

Syiff (Xg +t, X0+ mat, ..., Xg_1 + My_1t) € B, for somet < 0. Figure 4(a) shows
an example withm, = --- =my4_; = 0.

The following lemma can now be established for a half-spaca berifying defini-
tions.

Lemma4.3. Fs (P) = F2(P).

Remark. In the dual setting, as described in the proof of Lemma 4.2(dhe 1)-
dimensional upper hull of the projected point gat(P) corresponds to thed — 1)-
dimensional intersection of the lower envelopd-bivith 9 A. Thus, ridges appearing in
B correspond to edges of the lower envelopéiothat intersecb A.

We now extend the definition @, to the case whenr is a simplex rather than a
half-space: Since\ is a simplex, writeA as an intersection of a constant number of
half-spacegé; }. Then define5, to be a region with interioﬂj int ;. Itis not difficult
to see that Lemma 4.3 holds for simplicésas well.

4.4, Specializing for d= 4

We now show that the regid, as defined in the previous subsection satisfies some nice

computational properties if = 4. We first consider the case in whighis a half-space.
Ford = 4, the projected point set, (P) is three-dimensional. We can compute the

facets of the upper hul (A (P)), and thus, the boundarg,, in O(|P|log|V (P)|)

time by either Chazelle and MatseK’s algorithm [10] or Chan’s algorithm [5]. This

permits computations involving the regi® to be done efficiently, such as deciding if

a point lies in the interior 06,.
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Lemma 4.4. Suppose that & 4. Then the restricted point setiRRs, can be computed
in O(|P|log|V (P)]) time using Q|P|) space

Proof. Compute the facets of the three-dimensional upper RutiA (P)) and store
{ma()d: ma(r) € F(a(P))}, whichis aset oD(|V (P)|) triangles inE? with disjoint
interiors, in a planar point location structure [15], [33], [36]; this tak&$sP| log|V (P)|)
time. For eachp € P, we can then test whethgr| € intS, in logarithmic time by
finding a facetr (r) of F (;rA (P)) with A (p)J € ma(r)] and then determining which
side ofr | the pointp] lies on. |

Another operation on the regid8, that we need is that of intersectir®, with a
simple region (see Fig. 4(b)). To ensure that the resulting region is simple, we intersect
their interiors only. We represent a simple regi®iby its boundary, which is a set of
O(|Fs(P))) ridges by Lemma 4.1(f). We assume that each ridgé S is given an
orientation to indicate which side of the regionS lies on.

Lemma4.5. Supposethate 4.Giventhe boundar§S forasimpleregion S of ,Bne
can constructthe bounda#S for a new simple region’®f P withint S = int SNint S,
in O((IP] + |Fs(P)]) log|V (P)|) time using Q| P| + |Fs(P)l) space

Proof. Call a subset of a subregionif it is the closure of a connected component of
Ed-1—(3SUB,). Asubregionis a simple region, so we can define the new simple region
S to be the union of all subregions containeddn. The boundary S is made up of
boundary components/hich are connected components of the boundary of subregions.
To decide whether a given boundary comporigbntributes td S, take a poing near

B but inside the region bounded By(this requires an examination of the orientation of a
ridge inB), and then test if| € int Sy using the point location method from the previous
lemma. Therefore, to compuésS), it suffices to produce all the boundary components.
This is done using depth-first search as follows.

We first record the ridges of the boundari@S and B, in a dictionary; as the
(d — 1)-dimensional upper hulF (A (P)) and the boundarB, can be computed in
O(IP]|log|V (P)|) time ford = 4, this takeO((|P| + |Fs(P)]) log|V (P)|) time. We
make two copies of a ridge to represent the two “sides” of a ridge and assign different
orientations to them. We then generate all tie- 3)-subfaces of these ridges, and for
each suchid — 3)-faceo, we create the list of ridges incidentoin sorted order and
stores in a dictionary for(d — 3)-faces. The ordering of these ridges is based on the
angles made by their vertical projections with a fixed hyperplane throygh E9-1.

Then, given an (oriented) ridge in a boundary componte can identify itsl — 1
adjacent ridges ifB in constant time by following pointers. (Here, two oriented ridges
r, andr, areadjacentin B if there is a commond — 3)-subfaces incident on both
ridges and there is no other ridgein B thato is incident on, such that lies within
the angle range defined by andr,| aroundos |.) Using a depth-first search to visit
the adjacent ridges recursively, we can then trace all ridges that belong to the same
boundary componer, as indicated in Fig. 5. All boundary components can then be
generated by ensuring that all ridges)i8 are visited. The time required by the depth-
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Fig. 5. Tracing a boundary componefut = 3).

first search is proportional to the number of ridge® $iand B, and is therefore only
O(IFs(P)[ + [V (P)]). u

It remains to extend the above lemmas to the case whisra simplex rather than a
half-space. Recall that we have defirgdsuch that inS, = ﬂj intS;, if Ais written
as an intersection of a constant number of half-spg&gs By applying Lemmas 4.4
and 4.5 to each half-spaégindividually, we see that the lemmas are also true for the
simplexA.

4.5. The Algorithm

We now have all the pieces needed for an output-sensitive convex hull algoritBfn in
Let Dual-Partition (P) represent a dual partitioningP,, Aj)}¥_, obtained from
Lemma 4.2. LeRestrict-Interior (P, A) represent the restricted point $&fy s,
as computed by Lemma 4.4 and Rdstrict-Boundary (P, B, A) be the boundary
of the simple regior8 returned in Lemma 4.5 foB = 3S. The following provides an
outline of our recursive algorithm.

Algorithm Hull4 (P*, B)
[GivenP* = PjixrsandB = 9 Sfor a simple regiors of a point setP < E4
whereB #  is represented as a set of (oriented) ridges, return the set of
facetsFs(P). ]
1. P <« P*U{v: vis avertex of some ridgein B}
2. if |P| < ng for a constanhg then returnFs(P) in constant time
3. {(P, AN}, <« Dual-Partition (P) by computing a(1/2)-
cutting (Lemma 4.2)
4. fori =1,...,kdo
5 P* < B N P* N Restrict-Interior (P, Aj) by computing a
3-d upper hull and performing 2-d point location (Lemma 4.4)
6. B < Restrict-Boundary (P, B, Aj) by computing a 3-d up-
per hull and performing depth-first search on the boundary ridges
(Lemma 4.5)
7. return{ J{Hull4 (P*, B)): B # ¢}
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We first argue that the algorithm indeed computes the primal restriEgoR). In the
first line of the algorithm, we resé? to the point sePji, s U Pjss = Ps, according to
Lemma 4.1(g); the justification is provided by Lemma 4.1((P) = Fs(Pjs). Line 2
provides the base case. Line 3 gives us a constant number of sim{@igesith disjoint
interiors, covering=4~1; for eachA;, we are also given a subs@tof P, of cardinality
at mosta|P|, such thatF2i (P) = F2i(P).

Let S denote the simple region with interior iBN Nt Sy, . SinceFSAl (P) = FA(P)
by Lemma 4.3, we know that th&§’s have disjoint interiors and that their union$s
Furthermore, a$s(P) € Fs, (P) = FA(P) = F2(P), all facets inFg (P) have
vertices fromP;, which implies thatrs (P) = Fs (R ) by Lemma 4.1(b).

In line 5 we setP* = B N P* N Pjints, = Pijints, and in line 6 we le; be the
boundary ofS. Then line 7 returns J, F5(R) = |, Fs(P) = Fs(P), as claimed.

Having argued thatlull4 () correctly computes the primal restrictiéi(P), we can
use the algorithm to compute the detP) of all facets of the upper hull. The initial
simple regionS, we use is just the convex hull ¢ |, which can be computed using
the three-dimensional algorithm of Chazelle and Matdu[10] or Chan [5]. Thus, by
letting P* = {p € P: p| is not a vertex ofy} andB = 9%, a call toHull4 (P*, B)
then returnd=(P), as desired.

4.6. Analysis

We now analyze the running time of the algorithm. We do so by counting the cost of the
recursion tree produced by the call$tall4 (). Letn be the number of input points and

let f be the number of facets of the upper hull. IRstandS, denote the input point set
and the simple region associated with a nods the recursion tree. Let, = |P,jints, |
andf, = |Fg (P,)|.

By Lemmas 4.2, 4.4, and 4.5, the nonrecursive part of the algorithm (lines 1-6)
requiresO((|P,| + |Fs, (P loglV(P,)|) = O((P,| + f,)log f,) time at nodev,
since|V(P,)| = |V(P,s)| < d|Fs (P,)| by Lemma 4.1(d). To get the total running
time, we just have to sum this cost over all nodes in the recursion tree.

We first analyze the cost contributed by 1@¢| P, | log f,) term. By Lemma 4.2(iii),
this cost isa-fading, so we can apply Lemma 2.3. To sum the costs on a given level
of the tree, we writgP,| = |Pyjints,| + [Pyjss | < n, + df, by Lemma 4.1(g). Since
the S,’s have disjoint interiors over all nodesof one level, we havé_ n, < n and
>, f, = f foreachlevel of the recursion tree. This gives u€xn+ f) log f) bound
on the cost-per-level. The tree h@s f ) leaves, as each leaf discovers at least one facet
(note thatFs, (P,) = @ only if 3S, = ¥ by definition of a simple region). Lemma 2.3(ii)
says that the total contribution @((n + f)log? f).

Next we analyze the cost contributed by éf, log f,) term. This cost may not be
«-fading, so we cannot apply Lemma 2.3. But sifce f, = f and the recursion tree
has depth at most Iqg, n by Lemma 4.2(jii), we can bound the sum of these costs by
O( f log f logn), which never dominate®((n + f)log? f).

We conclude that the total running time of the algorithrdign + f) log? f). Total
space i90(n + f) as long as we free up the space used to store the bouBdaejore
we make the recursive calls in line 7.
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Theorem 4.6. AlgorithmHull4 () computes the f-face upper hull of an n-point set
P C E*in O((n+ f)log? f) time and Qn + f) space

Remarks. 1. Algorithm Hull4 () can be considered as a primal-based divide-and-
conquer algorithm since itrecursively computes the primal restrictié( Bf) to a simple
region. Alternatively, one may consider an algorithm that computes the dual restriction of
F (P) to a simplex recursively. This dual-based approach is perhaps less complex since
simplices are easier to handle than boundaries of simple regions. However, the problem
with this approach is that the dual analogue of Lemma 4.1(b) is not true in general: that
Q < P contains all vertices of the facets B*(P) does not necessarily imply that
F2(P) = FA(Q)—one can construct a counterexample using three-dimensional point
sets and a triangle fox.

2. Although the cutting techniques used for dual pruning in our algorithm have been
well studied, our strategy for primal dividing appears new. This strategy provides a
simple way to guarantee that the total problem size at any level of the recursion is
O(n+ f); itwould be difficult to obtain such a bound using the existing cutting techniques
alone. Previously, primal dividing was used only in two and three dimensions, notably
in the algorithms of Kirkpatrick and Seidel [23] and Edelsbrunner and Shi [18], and
our algorithm can be regarded as an extension of these approaches. In fact, the three-
dimensional version of our algorithm simplifies Edelsbrunner and Shi's algorithm in
the same way as our two-dimensional algorithm simplifies Kirkpatrick and Seidel’s.
The “contour’-based approach used in a recent parallel three-dimensional convex hull
algorithm by Amatoet al. [1] can also be interpreted as a form of primal dividing.
There, contours play a role similar to the lower-dimensional upper hulig,6P) in
Section 4.3 and are used to ensure that the total problem size at any level of the recursion
remainsO(n); but since they describe their method in the dual setting, its geometry is
less apparent in some places.

3. Hull4 () can return not onlyF(P) but also a point location structure for the
set{f|: f e F(P)} of tetrahedra inE3. We simply maintain the recursion tree and
store the planar point location structures from Lemma 4.4 at every node; this requires
O((n+ f)log f) space. Thenwe can find a facet of which the vertical projection contains
our given query point by just following a path down the recursion tree. Since the tree
has depth at most Igg, n, the query time iSO (log? n). For small output sizef , we
can further reduce the space and query time boun@@blog f) and O(log? f) by
first callingHull4 () to identify the verticed/ (P) and then building the point location
structure forV (P) instead ofP (as F(V(P)) = F(P)). We thus achieve the same
performance as Goodrich and Tamassia’s three-dimensional point location structure
[20].

4. Some practical issuedVith no additional workHull4 () can return the incidence
structure between facets and ridges; this fact can be used to reduce the number of
dictionary operations needed. Moreover, with an appropriate choice of coordinate system,
it is not necessary to compute the upper and lower hulls separately; we choose to do so
here merely because vertical projections are easier to visualize. We should mention that
degeneracies may occur in the projected poinirs€P) even though the point s&t is
itself nondegenerate; in such a situation, we may wish to apply a perturbation to
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5. Clipped Voronoi Diagrams

In this section we describe one important application of our four-dimensional convex
hull algorithm, namely the output-sensitive computation of Voronoi diagrams in three
dimensions. LeP be a set oh point sites inEY. The Voronoi region of a site p= P
consists of all pointg € E9 such thag is closer top than to any other point if® (with
respect to Euclidean distance). TWmronoi diagram of Hs the collection of all Voronoi
regions.

Foragiven sitgp = (p1, ..., pg) € P, we can use a “lifting map” [14], [17] to define
ahalf-space* in E9*L: p* = {(X1, ..., Xd+1): Xd41 = 2PiXi+---+2PpgXq — p- p}. It
is well known that the Voronoi regions are just the vertical projection of the facets of the
polytopeﬂpeP p*. Thus, the computation of a Voronoi diagramif is reduced to the
computation of an intersection of half-spacedift®. Since computing an intersection
of half-spaces is equivalent to computing convex hulls by duality, Theorem 4.6 has the
following consequence:

Theorem 5.1. The Voronoi diagram of n point sites infEan be computed in @n +
f)log?n) time and Qn+ f) spacewhere f is the size of the Voronoi diagraf(n) =
f = O(n?)).

In certain applications, only the portion of a Voronoi diagram lying in a given area
is needed, and the size of this portion may be much smaller than the size of the entire
Voronoi diagram. What we want is then an output-sensitive algorithm to compute the
Voronoi diagram of P clipped to a region Wiefined simply as the collection of all
nonempty intersections of the Voronoi regions with

Suppose thaW is a k-dimensional polytop&\ ') N F, whereF is a set ofm
half-spaces an& is ak-flat in EY. Lift each half-spacg e I' to a vertical half-space
denoted byy* and lift the k-flat to a vertical(k + 1)-flat denoted byF*. Then the
clipped Voronoi diagram is just the vertical projection of the facets of the polytope
ﬂpep p* N ﬂyer y* N F*. Thus, the clipped Voronoi diagram can be computed by
constructing the intersection of the half-spagpsN F*: pe PlU{y*NF*:y e '}
inside the(k + 1)-flat F*. If k = 3, we can use Theorem 4.6 to compute the intersection
of thesen 4+ m half-spaces of dimensidn+ 1.

Theorem 5.2. Letd > 4 be a constantThe Voronoi diagram of n point sites in‘E
clipped to a three-dimensional polytope defined by m half-spaces can be computed in
O((n+m+ f)log? f) time and Qn+m+ f) spacewhere f is the size of the clipped
Voronoi diagram(Q (1) = f = O(n?)).

6. Extensions

In this section, we describe one way that algoritHoil4 () can be extended to higher
dimensions. It suffices to provide higher-dimensional analogues of Lemmas 4.4 and 4.5
from Section 4.4, since other parts of the algorithm work in any fixed dimension. Again
we may assume that is a half-space.
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The main difficulty that arises wheh> 4 is that we do not have control of the size of
the (d — 1)-dimensional upper hull of the projected pointsgi P). Ford < 4, the size
is O(|V (P)]), which we can bound b (|Fs(P))) if P} € Sby Lemma 4.1(d). For
d > 4, we can only bound the size Iy(|F (P)|) and this can be much larger than the
actual output sizgFs(P)|, since there may exist facetsk(P) with vertical projection
outsideSeven if P| C S. To overcome this difficulty, we do not construct all the hull
facets inF (A (P)) but instead apply the results in Section 2.5 to perform queries on
F(ma(P)).

Lemma6.1. Suppose thatd- 4. Then the restricted point set;Rs, can be computed
in O((IP[ + (IP[|V (P)D*~*1%/2) log®¥|P|) time

Proof. As in the proof of Lemma 4.4, we can test whetlpefy € int S, for a given
point p € P by finding a facetr, (r) of F(a(P)) with mo(p)| € ma(r)] and then
determining which side af|, the pointp|, lies on. This facet can be found by performing
a linear programming query on a polytopedefined by|P| dual half-spaces if£9—1
corresponding to thgP| points in the projected point set, (P) € E9-1. As we need
|P| queries for each point € P, the costigO(|P|2%19/21 log°®|P|) by Theorem 2.2.
To further reduce the running time, we first identify the vertiecggv) of V (A (P))
(v € V(P)); using an output-sensitive algorithm for computing extreme points by Chan
[4], this requiresO((|P| + (|P]|V (P))1-¥1d/21) 1og°D |V (P)|) time (remember that
the point setrx (P) isjust of dimensiom — 1). Becausé (74 (P)) = F(V (A (P))), we
only need the half-spaces corresponding to thkepeé (P)| vertices to define our polytope
P. The cost of théP| queries is then onlD ((|P| + (| P[]V (P)|)-Y/14/21) |ogP® | P|),
according to Theorem 2.2. O

Lemma6.2. Supposethatd- 4.GivendS forasimpleregion S of Rve can construct
aS for a new simple region’®f P withint S = intSNint S, in O((|P| + |Fs(P)| +
(IPIIFs(P)*=*/19/21) log®@|P|) time

Proof. As in the proof of Lemma 4.5, it suffices to compute all the boundary com-
ponents. Then we can select which boundary components contribute to the boundary
90 S—that is, which boundary components correspond to a subregion i8sigdy the
techniques of the previous lemma. This requires at @g¢HEs(P)|) linear programming
queries on P| half-spaces irE9~1, and thus can be done withid((|P| + |Fs(P)| +
(IPIIFs(P)*=*/19/21) log®®|P|) time.

The boundary computation is again based on depth-first search, but now we cannot
generate all the ridges of the bound®y in advance as we cannot afford to compute
all the facets inF (75 (P)); rather, a ridge is generated when it is needed.

As before, we store the ridges &85 (but not B,) and their(d — 3)-subfaces in a
dictionary and sort these ridges around eéath- 3)-facec. SupposeB is a boundary
component and we are given a ridgan B (with its orientation). We first describe how
we can generate thie— 1 ridges that are adjacentitan B.

These adjacent ridges can be classified into two types: (i) ones that a8 amd
(i) ones that are in the boundaB, . We deal with the adjacent ridges that are&) &
first. A ridge adjacent to must share a commaid — 3)-subface, so let us consider one
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(d — 3)-subfacer of r. Look up the dictionary to seef is a(d — 3)-face ofd S. If so,

by performing a binary search on the list of ridges thas incident on, we can identify

a candidate ridge iaSthatr may be adjacent to. Repeating this procedure for every
(d — 3)-subfacer of r, we get all the ridges iaSthatr may be adjacent to.

Next we deal with the adjacent ridges that are in the bounBaryAgain we consider
a(d — 3)-subfacer of r. Determine whether 5 (o) is aridge ofR(;r A (P)); this test can
be reduced to a linear programming query ofda- 1)-dimensional polytope defined
by |P| dual half-spaces. If the test is true, the linear programming query can be used
to get a facetrA (r’') of F(a(P)) (r' € R(P)) thatma (o) is incident on. Then a ray
shooting query in dual space can be used to find (if it exists) the othersfacet) of
F(za(P)) (r” € R(P)) thatma (o) is also incident on. These ridgesandr” in By
give two possible candidates for the adjacent ridges &Ye repeat this procedure for
every(d — 3)-subfacer of r.

We now have a list of possible candidates for ridges that may be adjacant® By
performing some local tests, we can deduce which of these ridges are actually adjacent.
As in the proof of Lemma 4.5, we can then trace the complete boundary comihgnt
visiting the adjacent ridges recursively in a depth-first manner. To compute all boundary
components, we ensure that all ridge® Bare visited.

To evaluate total time needed by this computation, observe that the number of ridges
visited by the depth-first search@(|Fs(P)|) by Lemma 4.1(e) since we only generate
ridgesr withr| C S. The work is then dominated b9 (|Fs(P)|) linear programming
and ray shooting queries B9, which, by Theorem 2.2, requi@((|P| + |Fs(P)| +
(IP||Fs(P)*%/14/21) |og®D | P|) time. O

To get a convex hull algorithm iE9, we just have to replace Lemmas 4.4 and 4.5 by
Lemmas 6.1 and 6.2 in the algorithm outline full4 () from Section 4.5. We follow
the same notation from Section 4.6 to analyze the running time.

By Lemmas 6.1 and 6.2, the nonrecursive part of the algorithm now @ké®, | +
IFs(P)| + (IPI(V(P,) + Fs (P)N Y2 1og®P|R,) = O((P)| + f, +
(|P,| f,)3¥19/21) 1og®@n) time at nodev, if we recall that|V (P,)| = [V (P,s)| <
d|Fs,(P,)| by Lemma 4.1(d).

To sum this cost, we recall th3f n, < nand)_ f, = f over every level of
the recursion tree. Sind®,| = |P,jints | + |Pups | < n, + df, by Lemma 4.1(g),
we also have)_, |P,| < n+ df. Using Hilder’s inequality, we obtain the following
cost-per-level bound, ignoring polylogarithmic factors:

Y (PI+f (R )12 = O <n+ fnt 2205 (P, | H19/2 fv“”"m))

— O+ f +n 2142 4 §)YId/2] §1-1/10/21,
— o(n+ (nf)l—l/(d/Z] + fnl—Z/(d/Z]).

Summing over alO(log, ,, n) levels, we get
o((n+ (nf)l—l/(d/ﬂ + fnl—Z/(d/ﬂ) |ogO(1)n)

as the total running time.
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Theorem 6.3. Letd > 4 be a constantThe convex hull of an n-point set irf Ean be
computed in @(n + (nf)Y/19/21 4 fnl-2/1d/21) |og®Dn) time

For odd dimensiond, this method is of no use since it is more complicated and not
better than Chan’s method [4]; however, for even dimensihnge do not obtain im-
provement over previous results for a certain rangé.dfor example, wheri = ©(n),
both Matowsek’s method [27] and Chan’s method [4] achie@ggs?2/(19/21+D |ogO D)
time; the method here achiev@gn?-%/19/21 |og®®n) time. In general, if the output size
is linear or sublinear, Theorem 6.3 provides the best upper bound currently known for
the convex hull problem, ignoring polylogarithmic factors.

An important problem that is left open is then to find a convex hull algorithE4n
(d > 4) with close toO(nlog f + f) running time for the whole range of output size
f. Improving ourO((n + f)log? f) bound inE* would also be interesting.

Note After the submission of this paper, Amato and Ramos [2] have recently an-
nounced an extension of our four-dimensional algorithm to five dimensions, running in
O((n+ f)log® f)time. They also describe how to adapt our four-dimensional algorithm
to work with degenerate point sets.
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