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Primal-dual algorithms and infinite-dimensional Jordan algebras of

finite rank

Leonid Faybusovich∗ T. Tsuchiya†

November, 2001 (Revised: December, 2001 and November, 2002)

Abstract

We consider primal-dual algorithms for certain types of infinite-dimensional optimization
problems. Our approach is based on the generalization of the technique of finite-dimensional Eu-
clidean Jordan algebras to the case of infinite-dimensional JB-algebras of finite rank. This gener-
alization enables us to develop polynomial-time primal-dual algorithms for “infinite-dimensional
second-order cone programs.” We consider as an example a long-step primal-dual algorithm
based on the Nesterov-Todd direction. It is shown that this algorithm can be generalized along
with complexity estimates to the infinite-dimensional situation under consideration. An appli-
cation is given to an important problem of control theory: multi-criteria analytic design of the
linear regulator. The calculation of the Nesterov-Todd direction requires in this case solving one
matrix differential Riccati equation plus solving a finite-dimensional system of linear algebraic
equations on each iteration. The size of this algebraic system is m + 1 by m + 1, where m is a
number of quadratic performance criteria.

Key words: Interior-point algorithms, primal-dual algorithms, second-order cone program-
ming, infinite-dimensional problems, control theory

1 Introduction

Finite-dimensional Euclidean Jordan algebras proved to be very useful for the analysis of interior-
point algorithms of optimization [2, 3, 4, 5, 11, 14]. In the present paper we analyze the possibility

of using infinite-dimensional Jordan algebras of finite rank in a similar fashion for the analysis of
an infinite-dimensional situation. In particular, we concentrate on primal-dual algorithms which
constitute probably the most important class of interior-point algorithms though other classes of
interior-point algorithms can be generalized following the pattern presented here.

Let (V, 〈, 〉) be a Hilbert space, Ω ⊂ V be an open convex cone in V , a, b ∈ V , X ⊂ V be a
closed vector subspace in V . Consider an optimization problem:

〈a, z〉 → min, (1)

z ∈ (b + X) ∩ Ω̄ (2)
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and its dual

〈b, w〉 → min, (3)

w ∈ (a + X⊥) ∩ Ω̄∗. (4)

Here Ω̄ is the closure of Ω (in the topology induced by norm :‖z‖ =
√

〈z, z〉),

Ω̄∗ = {w ∈ V : 〈w, z〉 ≥ 0,∀z ∈ Ω}, (5)

X⊥ is the orthogonal complement of X in V with respect to the scalar product 〈, 〉.
Let

F = [(b + X) ∩ Ω̄] × [(a + X⊥) ∩ Ω̄∗].

We will assume throughout this paper that

int(F ) = [(b + X) ∩ Ω] × [(a + X⊥) ∩ int(Ω̄∗)] 
= ∅. (6)

It is very easy to see that if the pair z̄, w̄ satisfy (2) and (4), respectively, and

〈z̄, w̄〉 = 0,

then z̄ is an optimal solution to (1), (2) and w̄ is an optimal solution to (3), (4), respectively. Given
(z, w) ∈ V × V , we introduce the so-called duality gap:

µ(z, w) =
〈z, w〉

r
, (7)

where r > 0 is some positive constant which will be specified later.
A typical primal-dual algorithm generates a sequence (z(k), w(k)) ∈ int(F ), k = 0, 1, ..., such

that:

µ(z(k+1), w(k+1)) ≤
(

1 − δ

rω

)

µ(z(k), w(k)), (8)

for some positive constants δ and ω.
The following proposition is a direct consequence of (8).

Proposition 1.1 Let 0 < ε < 1 be given and a primal-dual algorithm generates a sequence satis-
fying (8). Then

µ(z(k), w(k)) ≤ ε

for

k ≥ rω

log

(

µ(z(0), w(0))

ε

)

δ

provided δ/rω < 1.

For a proof see e.g. [17]. Observe that the existence of a primal-dual sequence satisfying (8) for
an arbitrary 0 < ε < 1 is highly nontrivial in an infinite-dimensional situation and, in particular,
implies that (1), (2) and (3), (4) have no duality gap.

In the present paper we consider a rather special but important situation where V is a JB-
algebra of a finite rank, and Ω is the so-called “cone of squares.” The classification of JB-algebras
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of finite rank is known (see e.g. [8]) and is briefly described in Section 2 of the paper. It turns out
that each such an algebra is a direct sum of uniquely defined irreducible factors. Each factor is either
an irreducible finite-dimensional Euclidean Jordan algebra or the so-called (infinite-dimensional)
spin-factor. This enables us to reduce the analysis of interior-point algorithms to two cases: a) V

is a finite-dimensional Euclidean Jordan algebra and b) V is a direct sum of a finite number of
infinite-dimensional spin-factors. It is well-known that the cone of squares Ω for a) is the symmetric
cones. The cone of squares for b) is infinite-dimensional second-order cones.

The case a) is very well understood by now (see e.g. [2, 3, 4, 5, 11, 14]). We analyze in detail the
case b) and show that it has a lot of similarities with the second-order cone programming [9, 12, 16].
Specifically, we pick up the long-step path-following algorithm with the Nesterov-Todd direction
as an example and show that the algorithm terminates in O(r log µ0/ε) iterations, where µ0 is the

initial duality gap and ε is the final duality gap, and r is the rank of the associated JB-algebra.
The crucial point in the implementation of primal-dual algorithms is the availability of an

efficient procedure for the calculation of an appropriate “descent direction” which enables one to
move from (z(k), w(k)) to (z(k+1), w(k+1)). In the infinite-dimensional setting this problem is reduced

to solving an infinite-dimensional system of linear equations. In the present paper we consider a
concrete example, a min-max optimization problem with linear constraints in a Hilbert space, and
show that the corresponding infinite-dimensional system can be efficiently solved. This problem

admits a natural control-theoretic interpretation as a multi-criteria problem of the analytic design
of a linear regulator.

2 JB-algebras algebras of finite rank

The purpose of this section is to describe the classification of JB-algebras of finite rank. For further
details see [8].

Let V be a real commutative algebra with the unit element e. Given z ∈ V , consider the
multiplication operator L(z) : V → V ,

L(z)z1 = z ◦ z1, z1 ∈ V.

Definition 2.1 We say that V is a Jordan algebra if the identity

[L(z), L(z2)] = L(z)L(z2) − L(z2)L(z) = 0 (9)

holds for any z ∈ V .

We can introduce the so-called quadratic representation in an arbitrary Jordan algebra V . Given
z ∈ V ,

P (z) = 2L(z)2 − L(z2). (10)

A direct computation shows:

Proposition 2.2 Given z1, z2 ∈ V , we have:

P (P (z1)z2) = P (z1)P (z2)P (z1). (11)

Let V be a Jordan algebra with the unit element e and the multiplication operator ◦.

Definition 2.3 An element z ∈ V is called invertible in V if there exists w ∈ V such that z◦w = e,
z2 ◦ w = z. We denote such an element w by z−1.
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Proposition 2.4 An element z ∈ V is invertible if and only if P (z) is an invertible linear operator.
Moreover, in this case

z−1 = P (z)−1z.

Proposition 2.5 Given an invertible element z ∈ V , a subalgebra generated by z, z−1, e is asso-
ciative.

Definition 2.6 A JB-algebra is a Jordan algebra V with the unit element e endowed with a com-
plete norm ‖ · ‖ such that:

‖z1 ◦ z2‖ ≤ ‖z1‖‖z2‖, ‖z2
1‖ = ‖z1‖2, ‖z2

1 + z2
2‖ ≥ ‖z2

1‖, ∀z1, z2 ∈ V.

Proposition 2.7 In every JB-algebra V the set

Ω̄ = {z2 : z ∈ V } (12)

is a closed convex cone.

Example 2.8 Let K be a compact set and Cont(K) is the vector space of continuous real-valued
functions on K endowed with the norm:

‖f‖ = sup{|f (t)| : t ∈ K}, f ∈ Cont(K).

It is quite obvious that Cont(K) is a JB-algebra. A Jordan-algebraic multiplication in this example
is the pointwise multiplication of functions. The cone Ω̄ is the cone of nonnegative functions from
Cont(K).

Lemma 2.9 For every element z in a JB-algebra V , the closed subalgebra C(z) generated by z and
e is associative.

Proposition 2.10 Let V be a JB-algebra and Ω̄ defined in (12) be its cone of squares. The interior
of Ω̄, which we denote by Ω, has the following properties:

i) Ω is a nonempty open convex cone.

ii) Ω is the connected component of the unit element e in the set of invertible elements of V .

Let L(V ) be the Banach space of bounded linear operators on V . Let, further,

GL(Ω) = {g ∈ L(V ) : g(Ω) = Ω, g is invertible in L(V )}. (13)

Proposition 2.11 The cone Ω is linear homogeneous, i.e., for any z ∈ Ω there exists g ∈ GL(Ω)
such that ge = z.

Denote by Aut(V ) the group of Jordan algebra isomorphisms of a JB-algebra V , i.e., the group
of invertible linear maps on V which preserve the Jordan-algebraic operations.

Proposition 2.12 Given g ∈ Aut(V ), ‖g(x)‖ = ‖x‖,∀x ∈ V . In particular, Aut(V ) ⊂ L(V ).
Every g ∈ GL(Ω) admits a unique representation of the form (the polar decomposition):

g = P (x)g1, x ∈ Ω, g1 ∈ Aut(V ).
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We are now in position to introduce the “JB-algebras of finite rank” and its classification.
Let (Y, (·|·)) be a real Hilbert space. Introduce a multiplication operator on the vector space

V = IR ⊕ Y as follows:
(s, x) ◦ (t, y) = (st + (x|y), sy + tx).

If we denote (1, 0) ∈ V by e, we immediately see that:

e ◦ z = z ◦ e = z, ∀z ∈ V.

It is easy to verify by a direct calculation that (9) holds.
Let p = 1+dim Y , where dim Y is the cardinality of an orthonormal basis in V . We call V the

spin-factor (notation: Vp). It is known that spin-factors are JB-algebras with the norm defined as

follows:
‖(t, y)‖ = |t| +

√

(y|y), (t, y) ∈ V.

Proposition 2.13 Let V be a JB-algebra. The following conditions are equivalent:

i) for every z ∈ V the operator L(z) satisfies a polynomial equation in L(V ) over IR.

ii) there exists a natural number r such that every z ∈ V admits a representation:

z = λ1e1 + λ2e2 + ... + λrer, (14)

where ei ◦ ej = δijei, λi ∈ IR, i, j = 1, 2, ..., r.

Proposition 2.13 singles out a subclass of JB-algebras of finite rank. The number r in Proposition
2.13 is called the rank of V (notation: r = r(V )).

Theorem 2.14 Every JB-algebra of a finite rank admits a unique direct sum decomposition:

V = V1 ⊕ V2 ⊕ ... ⊕ Vk, r(V ) = r(V1) + ... + r(Vk) (15)

and each Vi is either a spin-factor of infinite cardinality or a finite-dimensional irreducible JB-
algebra.

Remark: Since the class of finite-dimensional JB-algebras coincides with the class of Euclidean
Jordan algebras, there is a complete classification of finite-dimensional JB-algebras (see e.g. [1]).

3 Some Jordan-algebraic properties of spin-factors

In what follows we restrict ourselves to the analysis of problems (1), (2) and (3), (4) for the
case where V is a JB-algebra of a finite rank. In view of Theorem 2.14, the only new feature
in the analysis of interior-point algorithms for solving (1), (2) and (3),(4) is a possible presence

of infinite-dimensional spin-factors in the decomposition (15). In this section we describe some
Jordan-algebraic aspects of a spin-factor IR × Y essential for future considerations.

Let z = (s, y) ∈ IR × Y . We start with the description of the multiplication operator L(z). It is

convenient to introduce the following notation. We think of (s, y) ∈ V as a column vector

(

s

y

)

.

Then each linear operator on IR × Y admits the following block partition:
(

α A
B C

)

,
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where α ∈ IR, A : Y → IR, B : IR → Y , C : Y → Y . Then

(

α A
B C

) (

s
y

)

=

(

αs + Ay
Bs + Cy

)

.

Since Y is a Hilbert space, each continuous linear map A : Y → IR has the form:

Ay = (a|y)

for some a ∈ Y . Each map B : IR → Y has the form Bs = sb, b = B1. Given y ∈ Y , introduce
notation:

ly : Y → IR, ly(y1) = (y|y1), y1 ∈ Y.

Observe that lTy : IR → Y has the form:

lTy (s) = sy, s ∈ IR.

Here lTy is the transpose of ly with respect to the given scalar product (·|·) on Y and the standard
scalar product on IR, i.e.,

sly(y1) = (lTy (s)|y1), s ∈ IR, y1 ∈ Y.

With this notation, we have

Proposition 3.1 Let z = (s, y) ∈ IR × Y . Then

L(z) =

(

s ly
lTy sIY

)

. (16)

Here IY is the identity operator on Y .

Proof. The result immediately follows from definitions.

Our next goal is to explicitly calculate the spectral decomposition (14) for the spin-factor IR×Y .

Proposition 3.2 Let (s, y) ∈ IR × Y, y 
= 0. Consider

e1 =
1

2

(

1,
y

‖y‖

)

, e2 =
1

2

(

1,− y

‖y‖

)

λ1 = s + ‖y‖, λ2 = s − ‖y‖, ‖y‖ =
√

(y|y). (17)

Then

(s, y) = λ1e1 + λ2e2, (18)

e2
1 = e1, e2

2 = e2, e1 ◦ e2 = 0. (19)

Proof. A direct calculation.

Proposition 3.3 Let z ∈ (s, y) ∈ IR × Y . Then

z2 − 2sz + (s2 − (y|y))e = 0.

Here e = (1, 0) is the unit element in the Jordan algebra IR × Y .
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Proof. A direct computation.

.
Remark: Following the standard terminology (see e.g. [1]), we introduce the following notation:

tr(z) = 2s, det(z) = s2 − (y|y). (20)

Comparing (17) with (20), we see that

tr(z) = λ1(z) + λ2(z), det(z) = λ1(z)λ2(z). (21)

The next proposition describes the inverse of an element z = (s, y) in a spin-factor IR × Y .

Proposition 3.4 An element z ∈ IR × Y is invertible if and only if det(z) 
= 0. In this case

z−1 =
1

det(z)
(s,−y) = λ1(z)−1e1 + λ2(z)−1e2,

(see (17), (18)).

Proof. A direct computation.

We next describe the quadratic representation (see (10)) in a spin-factor IR × Y . Given y ∈ Y ,
we introduce a linear operator y⊗y ∈ L(Y ) as follows:

y⊗y(y1) = (y|y1)y, y1 ∈ Y. (22)

Proposition 3.5 Let z = (s, y) ∈ IR × Y . Then

P (s, y) = det(z)IV + 2

(

(y|y) sly
slTy y⊗y

)

.

Here IV is the identity map on V = IR × Y .

Proof. By Proposition 3.1

L(z) = sIV +

(

0 ly
lTy 0

)

.

Hence,

L(z)2 = s2IV + 2s

(

0 ly
lTy 0

)

+

(

0 ly
lTy 0

)2

.

But
(

0 ly
lTy 0

)2

=

(

lyl
T
y 0

0 lTy ly

)

.

Further,
lyl

T
y (t) = ly(ty) = t(y|y), t ∈ IR.

Hence, lyl
T
y = (y|y). On the other hand,

lTy ly(y1) = lTy ((y|y1)) = (y|y1)y, y1 ∈ Y,
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i.e.,

L(z)2 = s2IV + 2s

(

0 ly
lTy 0

)

+

(

(y|y) 0

0 y⊗y

)

.

Now,
z2 = (s2 + (y|y), 2sy).

Hence, using Proposition 3.1 again, we obtain:

L(z2) = [s2 + (y|y)]IV + 2s

(

0 ly
lTy 0

)

.

Finally, by (10),

P (z) = 2L(z)2 − L(z2) = det(z)IV + 2s

(

0 ly
lTy 0

)

+ 2

(

(y|y) 0
0 y⊗y

)

.

We now describe the cone of squares in the spin-factor IR × Y .

Proposition 3.6 We have:

Ω = {(s, y) ∈ IR × Y : s > ‖y‖},
Ω̄ = {(s, y) ∈ IR × Y : s ≥ ‖y‖}, (23)

Ω̄∗ = Ω̄, (24)

i.e., the cone Ω̄ is self-dual.

Proof. Let z = (s, y) have the spectral decomposition (18). By (21) and Proposition 3.4, z is

invertible if and only if λ1(z) 
= 0, λ2(z) 
= 0. Using (19), we immediately see that

z2 = λ1(z)2e1 + λ2(z)2e2.

Hence, by Proposition 2.10 w ∈ Ω implies

λ1(w) > 0, λ2(w) > 0. (25)

On the other hand, using (17), (25) is equivalent to s > ‖y‖. Inversely, λ1(w) > 0, λ2(w) > 0
implies w = u2,

u =
√

λ1(w)e1 +
√

λ2(w)e2.

It remains to prove (24). Let (t, x) ∈ Ω̄∗. Then (see (5))

st + (x|y) ≥ 0, ∀(s, y) ∈ Ω̄. (26)

Since by (23) (s, 0) ∈ Ω̄ for s > 0, we deduce from (26) that t ≥ 0. Take ỹ = −x, s̃ = ‖x‖ + ε,

ε > 0. Obviously, (s̃, ỹ) ∈ Ω and (26) yields:

t(‖x‖ + ε) − ‖x‖2 ≥ 0 for ε > 0.

Taking limit as ε → 0, we conclude that t‖x‖ ≥ ‖x‖2, i.e., t ≥ ‖x‖ (in the case ‖x‖ = 0, we have
already proven t ≥ 0). Inversely, let (t, x) ∈ IR × Y and t ≥ ‖x‖. Given (s, y) ∈ Ω̄,

ts + (x|y) ≥ t‖y‖ + (x|y) ≥ t‖y‖ − ‖x‖‖y‖ = (t − ‖x‖)‖y‖ ≥ 0.

Here we used the Cauchy-Schwarz inequality.
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Proposition 3.7 Given z1, z2 ∈ IR × Y ,

det(P (z1)z2) = [det(z1)]
2detz2,

where det(z) is defined in (20).

Proof. A direct computation.

We introduce now a canonical scalar product on IR × Y :

〈z1, z2〉 = tr(z1 ◦ z2)

If zi = (si, yi), i = 1, 2, then by (20):

〈z1, z2〉 = 2(s1s2 + (y1|y2)). (27)

Proposition 3.8 Given z ∈ Ω̄, L(z) ≥ 0, i.e.,

〈L(z)z1, z1〉 ≥ 0, ∀z1 ∈ IR × Y (28)

Proof. Let z = (s, y), z1 = (t, x). Since (s, y) ∈ Ω̄, We have s ≥
√

(y|y) by (23). Evaluating

(28), we see that we need to check that

st2 + 2(x|y)t + s(x|x) ≥ 0, ∀t ∈ IR, x ∈ Y.

We can assume without loss of generality that s > 0 (if s = 0, then y = 0). Thus, we need to check
that the quadratic in t polynomial

t2 +
2(x|y)t

s
+ (x|x)

is everywhere nonnegative. But its discriminant has the form

∆ =
(x|y)2

s2
− (x|x).

Using Cauchy-Schwarz inequality and s2 ≥ (y|y), we obtain:

∆ ≤ (x|x)(y|y)

s2
− (x|x) ≤ 0.

The result follows.
In the next section, we will extend the polynomial-time convergence proof of primal-dual al-

gorithms developed in [5] for finite-dimensional symmetric cone programs to the current infinite-
dimensional setting. For this purpose, we need the following theorem which is an analogue of the

result by Sturm [15] and plays a fundamental role in the analysis of finite-dimensional case.

Theorem 3.9 Let z ∈ Ω. Then L(z) is invertible in L(IR × Y ) (i.e., L(z)−1 is a bounded linear

operator from IR × Y onto itself) and, moreover,

L(z)−1Ω ⊂ Ω.

9



Proof. Let z = (s, y) ∈ Ω and (t, x) ∈ IR × Y . We claim that

L(z)−1

(

t
x

)

=

(

r
u

)

,

r =
st − (x|y)

det(z)
, (29)

u =
1

s

(

x +
(x|y)− st

det(z)
y

)

. (30)

It suffices to check that

L(z)

(

r
u

)

=

(

t
x

)

,

which is a direct computation by using (16).
In order to prove the theorem, given s > ‖y‖ and t > ‖x‖, we need to check that r > ‖u‖ (see

Proposition 3.6). Observe that (s,−y) ∈ Ω. Hence, (29) and Proposition 3.6 imply that r ≥ 0.
Observe that by (29), (30):

u =
1

s
(x − ry)

and consequently

(u|u) =
1

s2
((x|x) + r2(y|y)− 2r(x|y)).

Thus, r2 > (u|u) is equivalent to:

r2(s2 − (y|y)) + 2r(x|y) > (x|x). (31)

Using (29), we can rewrite (31) in the form

(st − (x|y))2 + 2(x|y)(st− (x|y)) > (x|x)det(z)

or
s2t2 − 2st(x|y) + (x|y)2 + 2st(x|y)− 2(x|y)2 > (x|x)(s2 − (y|y))

(Recall that det(z) = s2 − (y|y)). This can be further simplified to:

s2(t2 − (x|x)) > (x|y)2 − (x|x)(y|y).

But the last inequality is obvious, since t2 > (x|x) and |(x|y)|2 ≤ (x|x)(y|y) by Cauchy-Schwarz

inequality.

4 Primal-dual algorithms

We now return to our pair of dual problems (1), (2) and (3), (4). In the remaining part of the
paper we will assume that V is a JB-algebra of a finite rank, Ω is the cone of squares in V and
r = rank(V ) in the definition of the duality gap (7). We continue to assume that the condition (6)

is satisfied. The vector space V is endowed with the canonical Hilbert space structure. First of all
there exists a canonical linear form tr : V → IR. It is defined through the direct sum decomposition
(15). If dim Vi < ∞, then there is a standard way to define the trace operator [1]. Otherwise Vi is

an infinite-dimensional spin-factor and we use (20).

10



The scalar product is then defined as:

〈z, w〉 = tr(z ◦ w), z, w ∈ V.

Proposition 3.6 (along with the standard properties of finite-dimensional Euclidean Jordan
Algebras) enables us to conclude that

Ω̄∗ = Ω̄.

The advantage of the Jordan-algebraic framework suggested in the present paper is that we can

easily carry over literally all interior-point algorithms along with their complexity estimates to the
infinite-dimensional situation. Let us illustrate this point by considering a long-step primal-dual
algorithm based on the Nesterov-Todd direction [13].

The main ingredient in the construction of primal-dual algorithms is the choice of a “descent”
direction which drives the duality gap µ to zero. The class of scaling-invariant “descent” directions
is obtained by solving the following system of linear equations. Given (z, w) ∈ Ω×Ω and g ∈ GL(Ω)
(see (13)), observe first of all that g−T ∈ GL(Ω), since Ω̄∗ = Ω̄. The system of linear equations has

the form:

L(z̃)ξ̃ + L(w̃)η̃ = γµ(z, w)e − z̃ ◦ w̃, (32)

ξ̃ ∈ g(X), η̃ ∈ g−T (X⊥), (33)

z̃ = g(z), w̃ = g−T (w). (34)

Here 0 < γ < 1 is a real parameter and (ξ̃, η̃) is a scaled “descent direction.” For a motivation of
this construction see e.g. [4, 10, 16]. We consider a special choice of the cone automorphism g.

Proposition 4.1 Given (z1, z2) ∈ Ω × Ω, there exists a unique z3 ∈ Ω such that

P (z3)z1 = z2. (35)

Proof. The decomposition (15) leads to the corresponding decomposition of the cone of squares

Ω:
Ω = Ω1 ⊕ Ω2 ⊕ ... ⊕ Ωk, (36)

where Ωi is the cone of squares in Vi, i = 1, 2, ..., k.

Hence, to prove (35) it suffices to consider two cases: a) dim V < ∞ and b) V = IR × Y
is a spin-factor. For the case a) we refer to [4]. We derive an explicit formula for the case b).
The derivation below is a simplified modification of the one given in [16] for the analysis of the

Nesterov-Todd direction for the finite-dimensional second-order cone programming.
Let z1 = (s, y), z2 = (t, x), z3 = (r, u). Consider, first, the case det(z1) = det(z2) = 1. By

Proposition 3.7 we should have det(z3) = 1 or

r2 − (u|u) = 1. (37)

Using Proposition 3.5, we can rewrite (35) in the form:

y + u〈(r, u), (s, y)〉 = x, (38)

s + 2(u|u)s + 2r(u|y) = t, (39)

where
〈(r, u), (s, y)〉 = 2rs + 2(u|y)

11



(Compare with (27)). We can eliminate (u|u) from (39), using (37). We obtain:

r〈(r, u), (s, y)〉 = t + s (40)

Now (38) can be rewritten in the form:

u〈(r, u), (s, y)〉 = x − y. (41)

From (40) and (41), we obtain:

r =
s + t

δ
, u =

x − y

δ
, δ = 〈(r, u), (s, y)〉. (42)

Substituting (41), (42) into (37), we obtain:

δ2 = (t + s)2 − (x − y|x − y) = 2 + 〈(t, x), (s, y)〉, (43)

where we used det(z1) = det(z2) = 1. The formulas (42), (43) give explicit expressions for (r, u),

proving the uniqueness of z3 in (35).
A direct substitution of (42), (43) into (38), (39) shows that z3 = (r, u) solves (35). The general

case can be reduced to the considered case as follows. Let

µi =
1

√

det(zi)
, i = 1, 2.

Then det(µizi) = 1. Let z̃3 ∈ Ω be such that P (z̃3)(µ1z1) = µ2z2. Then

P

(√

µ1

µ2
z̃3

)

z1 = z2,

i.e,

z3 =

√

µ1

µ2
z̃3. (44)

This completes the proof
Combining (42)–(44) we obtain

Corollary 4.2 Let z1, z2 ∈ Ω, z1 = (s, y), z2 = (t, x). Consider z3 = (r, u) with

r =

√

µ1

µ2

µ1s + µ2t
√

2 + µ1µ2〈(s, y), (t, x)〉 ,

u =

√

µ1

µ2

µ2x − µ1y
√

2 + µ1µ2〈(s, y), (t, x)〉,

µi =
1

√

det(zi)
, i = 1, 2.

Then z3 ∈ Ω is a unique solution to (35) for the case V = IR × Y .

Proposition 4.3 Let Ω be the cone of squares in the spin-factor IR × Y and (s, y) ∈ Ω. Consider

z =

(

µ

2
,
y

µ

)

, µ =
√

s + ‖y‖ +
√

s − ‖y‖.

Then z ∈ Ω and z2 = (s, y). Moreover, if

(s, y) = λ1e1 + λ2e2

be the spectral decomposition of (s, y), then

z =
√

λ1e1 +
√

λ2e2.
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Proof. A direct computation.

Remark: We denote z by (s, y)1/2. Given z ∈ Ω, we have P (z1/2)2 = P (z). It easily follows
from (11). Thus

P (z1/2) = P (z)1/2. (45)

Observe that (45) holds for an arbitrary JB-algebra V of a finite rank. It follows from decom-
position (15) and the validity of (45) in the case dim V < ∞ (see [1]).

We use Proposition 4.1 to introduce the so-called Nesterov-Todd direction in the infinite-

dimensional setting. Given z1, z2 ∈ Ω, let z3 ∈ Ω be such that (35) holds. Take g = P (z
1/2
3 ) ∈

GL(Ω). Then

gz1 = g−T z2 = v

and equations (32)–(34) takes the form

ξ̃ + η̃ = γµ(v, v)v−1 − v, (46)

ξ̃ ∈ P (z
1/2
3 )X, η̃ ∈ P (z

−1/2
3 )(X⊥), (47)

v = P (z
1/2
3 )z1 = P (z

−1/2
3 )z2. (48)

Observe that in the original variables, (46)–(48) has the form:

ξ + P (z3)
−1η = γµ(z1, z2)z

−1
2 − z1. (49)

ξ ∈ X, η ∈ X⊥ (50)

It is obvious from (46)–(48) that the Nesterov-Todd direction exists and unique. Indeed, (46) and
(47) show that ξ̃ is the orthogonal projection of the vector γµ(v, v)v−1−v onto the closed vector sub-

space P (z
1/2
3 )X . The existence and uniqueness of other popular directions (e.g., HRVW/KSH/M

direction [16]) can be shown in a similar fashion.
As an example, consider a long-step primal-dual algorithm based on the Nesterov-Todd direc-

tion. Given (z1, z2) ∈ Ω × Ω, let z4 ∈ Ω be such that

v = v(z1, z2) = P (z
1/2
4 )z2 = P (z4)

−1/2z1.

(Observe that z4 = z−1
3 in our previous notation.) Given 0 < β < 1, introduce the so-called

wide-neighborhood in Ω × Ω:

N−∞(β) = {(z1, z2) ∈ Ω × Ω : λmin(v(z1, z2)
2) ≥ (1 − β)µ(z1, z2)}.

Here λmin(z) = min{λi : i = 1, 2, ..., r} in the decomposition (14). We can show that this neigh-
borhood is scaling invariant in exactly the same way as in the case of finite-dimensional Euclidean
Jordan algebra [5]. Note that the duality gap µ is also scaling invariant.

Fix ε > 0. Suppose that (z
(0)
1 , z

(0)
2 ) ∈ int(F ) ∩ N−∞(β) (see (6)). Let (ξk, ηk) be the Nesterov-

Todd direction at the point (z
(k)
1 , z

(k)
2 ) defined as in (49), (50). Let t̄ be the largest value of t ∈ [0, 1]

such that z
(k)
1 + tξ(k), z

(k)
2 + tη(k)) ∈ N−∞(β). Set (z

(k+1)
1 , z

(k+1)
2 ) = (z

(k)
1 + t̄ξk, z

(k)
2 + t̄ηk). We stop

the iteration when µ(z
(k)
1 , z

(k)
2 ) ≤ ε.

Theorem 4.4 For the primal-dual algorithm described above, we have:

µ(z
(k)
1 , z

(k)
2 ) ≤ ε
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for

k ≥ r

log

(

µ(z
(0)
1 , z

(0)
2 )

ε

)

(1 − γ)δ

provided
√

β(1 − β) ≤ 1 − γ and

δ(β, γ) =
2βγ

βγ2/(1 − β) + (1 − γ)2
.

The proof of this theorem is exactly as [5] where the case of general symmetric finite-dimensional

cone programming have been considered. Observe that it is essential that we have Theorem 3.9
at our disposal. A direct proof of the analogous theorem for finite-dimensional second-order cone
programs developed in [16] is also extended in a straightforward way to prove the theorem under

the restriction that Ω is the direct sum of several finite/infinite-dimensional second-order cones.

Corollary 4.5 There exists a sequence (z
(k)
1 , z

(k)
2 ) ∈ int(F ) such that

µ(z
(k)
1 , z

(k)
2 ) → 0

where k → ∞.

The next theorem provides an infinite-dimensional generalization of the optimality criterion for
(1), (2), and (3), (4) (see e.g. [2]).

Theorem 4.6 Suppose that V is a JB-algebra of a finite rank, Ω is a cone of squares in V and (6)
is satisfied. Then problems (1), (2), and (3), (4) both have optimal solutions. The sets of optimal
solutions for both problems are bounded closed convex sets. If z∗ (respectively, w∗) is an optimal
solution to (1), (2), (respectively, (3), (4)), then

〈z∗, w∗〉 = 0. (51)

Inversely, if z∗ satisfies (2), w∗ satisfies (4) and (51) holds, then z∗ is an optimal solution to (1),
(2), and w∗ is an optimal solution to (3), (4).

Proof. Consider the sequence (z(k), w(k)) ∈ int(F ) such that 〈z(k), w(k)〉 → 0, k → +∞. Without

loss of generality, we can assume that

〈z(k), w(k)〉 ≤ 〈z(0), w(0)〉, k = 0, 1, ....

Since z(k) − z(0) ∈ X, w(k) − w(0) ∈ X⊥, we have:

〈z(k) − z(0), w(k) − w(0)〉 = 0, k = 0, 1, ....

Hence,

〈z(k), w(0)〉 + 〈z(0), w(k)〉 = 〈z(0), w(0)〉 + 〈z(k), w(k)〉 ≤ 2〈z(0), w(0)〉, k = 0, 1, ... (52)

Observe that (52) implies that (z(k), w(k)), k = 0, 1, ..., is bounded. Indeed, due to decomposition
(36), it suffices to consider the case where V is irreducible. If dim V < +∞, the result is well-known
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(see e.g. [1]). Let V = IR × Y be a spin-factor. Let (t, x) ∈ IR × Y , t > ‖x‖. Given α > 0, consider
the set

Bα = {(s, y) ∈ IR × Y : s ≥ ‖y‖, st + (y|x) ≤ α}.
If (s, y) ∈ Bα, then by Cauchy-Schwarz inequality:

st + (y|x) ≥ st − ‖y‖‖x‖ = s(t − ‖x‖) + ‖x‖(s − ‖y‖) ≥ s(t − ‖x‖).

Hence,

‖y‖ ≤ s ≤ α

t − ‖x‖ .

Thus, the set Bα is bounded.
Since (z(k), w(k)) is bounded, it follows that there is a subsequence (z(kl), w(kl)), l = 0, 1, ...

which converges weakly to a feasible point (z∗, w∗). Observe that the feasible region F is convex
and closed and, hence, weakly closed. Let us show that

〈z∗, w∗〉 = 0. (53)

To simplify the notation, assume that (z(k), w(k)) weakly converges to (z∗, w∗) when k → ∞. We
have:

〈b − z(k), a − w(k)〉 = 0 or 〈a, b〉+ 〈z(k), w(k)〉 = 〈a, z(k)〉 + 〈b, w(k)〉. (54)

Taking limit in (54), when k → ∞ and using 〈z(k), w(k)〉 → 0, z(k) → z∗ (weakly), w(k) → w∗

(weakly), we obtain:
〈a, b〉 = 〈a, z∗〉 + 〈b, w∗〉. (55)

On the other hand,

〈a − w∗, b − z∗〉 = 0.

Comparing this with (55), we conclude that (53) holds. Let us show that each (z̃, w̃) ∈ F such that
〈z̃, w̃〉 = 0 is a pair of optimal solutions for (1), (2), and (3), (4), respectively. Let z1 be feasible for
(1), (2). Then

〈a, b〉 = 〈b, w̃〉 + 〈a, z̃〉,
〈a, b〉+ 〈z1, w̃〉 = 〈b, w̃〉 + 〈a, z1〉,

Using 〈z, w̃〉 ≥ 0, we obtain:

〈b, w̃〉 + 〈a, z1〉 ≥ 〈b, w̃〉 + 〈a, z̃〉,
i.e., 〈a, z1〉 ≥ 〈a, z̃〉. Thus z̃ is an optimal solution to (1), (2). Similarly, we show that w̃ is an
optimal solution to (3), (4). In particular, (z∗, w∗) constructed above is the pair of optimal solutions

to (1), (2) and (3), (4), respectively. Besides, 〈z∗, w∗〉 = 0. We then immediately see as above that
if 〈z, w〉 > 0 for a feasible pair (z, w),then (z, w) is not a pair of optimal solutions. Take any
(z, w) ∈ int(F ). Then for any optimal pair (z∗, w∗), the condition (53) implies:

〈w, z∗〉 + 〈z, w∗〉 = 〈z, w〉.

Reasoning as in the proof of boundedness of the sequence (z(k), w(k)) above, we conclude that the

set of optimal pairs is bounded.
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5 Example

Consider the following optimization problem:

max
i≤i≤m

‖Wiy‖ → min, (56)

y ∈ c + Z. (57)

Here Wi : Y → Y, i = 1, 2, ..., m, are bounded linear operators on Y , Z is a closed vector subspace

in the Hilbert space Y . Recall that (·|·) the inner product associated with Y .
We can rewrite (56) and (57) in the form:

t → min, (58)

‖Wiy‖ ≤ t, i = 1, ..., m, (59)

y ∈ c + Z. (60)

Our immediate goal is to rewrite (58)–(60) in the form (1), (2).
Let V1 = IR×Y , V = V1× ....×V1 (m times), Ω1 = {(s, y) ∈ IR×Y : s > ‖y‖}, Ω = Ω1× ...×Ω1.

Consider a linear operator

Λ : V1 → V,

Λ(µ, ζ) = ((µ, W1ζ), (µ, W2ζ), ..., (µ, Wmζ)).

Let, further, a = ((1, 0), (0, 0), ..., (0, 0)) ∈ V , b = ((0, W1c), (0, W2c), ..., (0, Wmc)) ∈ V , z =
(z1, ..., zm), zi = (ti, xi) ∈ V1, i = 1, ..., m. The scalar product in V is defined as follows:

〈((t(1)1 , x
(1)
1 ), ..., (t(1)m , x(1)

m )), ((t
(2)
1 , x

(2)
1 ), ..., (t(2)m , x(2)

m ))〉 =
m

∑

i=1

[t
(1)
i t

(2)
i + (x

(1)
i |x(2)

i )].

We now can rewrite (58)–(60) in the form:

〈a, z〉 → min,

z ∈ (b + X) ∩ Ω̄,

where
X = Λ(IR × Z). (61)

An easy calculation shows that the orthogonal complement X⊥ of X in V has the form:

X⊥ = {((r1, u1), ..., (rm, um)) ∈ V : r1 + r2 + ...rm = 0,
m

∑

i=1

W ∗
i ui ∈ Z⊥},

where Z⊥ is the orthogonal complement of Z in Y and W ∗
i is the adjoint of Wi for each i. According

to (3), (4), its dual will be of the form

m
∑

i=1

(Wic|ui) → min

m
∑

i=1

ri = m, ‖ui‖ ≤ ri, i = 1, 2, ..., m,

W ∗
1 u1 + W ∗

2 u2 + ... + W ∗
mum ∈ Z⊥.
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It is easy to see that the condition (6) is satisfied. We can apply Theorem 4.6 in this example.
Consider the Nesterov-Todd direction for our problem. Let (m1, m2) ∈ Ω × Ω. According to (49)
and (50) we need to find (ξ, η) ∈ X × X⊥ such that

P (z)ξ + η = ∆. (62)

Here z ∈ Ω is the scaling point uniquely determined from the equation P (z)m1 = m2 and ∆ ∈ V
is a known vector, depending on m1, m2.

We can rewrite (62) in the form:

P (z)ξ − ∆ ∈ X⊥, ξ ∈ X, (63)

which is equivalent to:

〈P (z)ξ, ξ〉
2

− 〈ξ, ∆〉 → min, (64)

ξ ∈ X. (65)

Using the parameterization (61), we can write (64), (65) in the form:

ρ(µ, ζ) =
〈P (z)ξ, ξ〉

2
− 〈ξ, ∆〉 → min,

(µ, ζ) ∈ IR × Z.

Observe that ρ is a convex quadratic function in variables (µ, ζ). Let z = (z1, ..., zm), zi = (ti, xi) ∈
Ω1, ∆ = ((r∗1, u

∗
1), ..., (r

∗
m, u∗

m)) ∈ V , ξ = (ξ1, ..., ξm) ∈ X. We obviously have:

P (z)ξ = (P (z1)ξ1, ..., P (zm)ξm).

Using Proposition 3.5, we can easily calculate that

ρ(µ, ζ) =
1

2

m
∑

i=1

(t2i − ‖xi‖2)‖Wiζ‖2 +
m

∑

i=1

(xi|Wiζ)2 −
m

∑

i=1

(u∗
i |Wiζ) +

ν1µ
2

2
+ ν2µ,

ν1 =
m

∑

i=1

(t2i + ‖xi‖2), ν2 = 2
m

∑

i=1

ti(xi|Wiζ) −
m

∑

i=1

r∗i .

Hence,

φ(ζ) = min{ρ(µ, ζ) : µ ∈ IR}

=
(ζ, Mζ)

2
+

1

2
(ζ|(

m+1
∑

i=1

εi(vi ⊗ vi))ζ) + (v0|ζ) − (
∑m

i=1 r∗i )2

2ν1

=
(ζ, Mζ)

2
+

1

2

m+1
∑

i=1

εi(vi|ζ)2 + (v0|ζ) − (
∑m

i=1 r∗i )
2

2ν1
, (66)

where

M =
m

∑

i=1

(t2i − ‖xi‖2)W ∗
i Wi,

vi =
√

2W ∗
i xi, i = 1, 2, ..., m,

vm+1 =
2√
ν1

m
∑

i=1

tiW
∗
i xi,

εi = 1, i = 1, ..., m, εm+1 = −1,

v0 =

√

1

ν1
(

m
∑

i=1

r∗i )vm+1 −
m

∑

i=1

W ∗
i u∗

i ,
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and vi ⊗ vi is defined as in (22).
Assume that

(Mζ|ζ) ≥ δ‖ζ‖2, ∀ζ ∈ Z (67)

for some δ > 0. Under this condition, we can show that the problem

φ(ζ) → min, ζ ∈ Z, (68)

where φ is described in (66) can be reduced to solving (m + 1) problems of the form

1

2
(Mζ|ζ) + (v|ζ) → min, ζ ∈ Z (69)

for appropriate choices of v ∈ Y , and the system of (m + 1) × (m + 1) linear algebraic equations.
This observation makes sense because in some applications we have nice efficient algorithms to solve
(69). Below we describe the procedure.

Let ζ0 ∈ Z be the optimal solution to the problem

(ζ|Mζ)

2
+ (v0|ζ) → min, ζ ∈ Z, (70)

and ζi ∈ Z, i = 1, .., m + 1 be the optimal solutions to the problems

(ζ|Mζ)

2
+ (εivi|ζ) → min, ζ ∈ Z. (71)

Let S = [sij ], sij = (ζi|vj), i, j = 1, 2, ..., m + 1, and

(I − S)







δ1
...

δm+1






=







(v0|ζ1)
...

(v0|ζm+1)






, (72)

then

ζ(δ) = ζ0 +
m+1
∑

i=1

δiζi

is an optimal solution to the problem (68). The procedure is a simple modification of the argu-

ment in [7] which deals with a version of the Sherman-Morrison-Woodbury formula in the infinite-
dimensional setting. We give a derivation of (72) in Appendix.

Remark: It is easy to see that if (67) holds at an interior feasible solution z, then the linear operator

W : Y → Y × Y × ... × Y (m times) defined as Wu ≡ (W1u, ..., Wmu) is invertible. Then y ((56)
and (57)) is determined uniquely from z.

Consider now a more concrete situation in control theory which is similar to [6]. Denote by

Ln
2 [0, T ] the vector space of square integrable functions f : [0, T ] → IR

n. Let

Y = Ln
2 [0, T ] × Ll

2[0, T ], T > 0,

and

Z = {(α, β) ∈ Y : α is absolutely continuous on [0, T ],

α(0) = 0, α̇(t) = A(t)α(t) + B(t)β(t), t ∈ [0, T ]}.
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Here A(t) (respectively B(t)) is an n by n (respectively, n by l) continuous matrix-valued function.
Observe that

((α1, β1)|(α2, β2)) =

∫ T

0
[αT

1 (t)α2(t) + βT
1 (t)βT

2 (t)]dt, (αi, βi) ∈ Y, i = 1, 2.

In this case, Z⊥ is easily calculated:

Z⊥ = {(ṗ + AT p,BT p) : p is absolutely continous on [0, T ], ṗ ∈ Ln
2 [0, T ], p(T ) = 0}.

In the following, we deal with the following min-max optimization problem:

max
i

∫ T

0
[(α(t) − ᾱi(t))

TQi(α(t) − ᾱi(t)) + (β(t) − β̄i)
TRi(β(t) − β̄i(t))]dt,→ min (73)

where Qi(t) (respectively Ri(t)) is a continuous matrix-valued function such that Qi(t) = QT
i (t),

Ri(t) = RT
i (t) are positive-definite symmetric matrices for any t ∈ (0, T ] and (ᾱ(t), β̄(t)) ∈ Y . This

problem is a very important problem in control theory, namely, a problem of multi-criteria design

of the analytic regulator. This problem can be solved with our algorithm as follows.
For i = 1, ..., m, let LQi

(t) and LRi
(t) be the lower triangular matrices obtained with the

Cholesky factorizations of Qi(t) and Ri(t), respectively. Letting

Wi ≡
(

LT
Qi

0

0 LT
Ri

)

, i = 1, 2, ..., m

in (58)–(60), we obtain the problem equivalent to (73). In this case, we have

M =

(

Q 0

0 R

)

,

where

Q =
m

∑

i=1

(t2i − ‖xi‖2)Qi, R =
m

∑

i=1

(t2i − ‖xi‖2)Ri.

It is readily seen that (67) is satisfied here. The major part in computation of the Nesterov-Todd

search direction is solution of (69) (with different v) to obtain ζi (i = 0, ..., m + 1). Interestingly,
this can be done as follows just by solving a matrix differential Riccati equation.

Let v = (γ, θ) in (69). Observe that the optimality condition is

Mζ + v ∈ Z⊥.

we are done if we can find ζ = (α, β) satisfying the following condition:

Qα + γ = −ṗ − AT p, α(0) = 0, (74)

Rβ + θ = −BT p, p(T ) = 0, (75)

α̇ = Aα + Bβ. (76)

Let us try to find p in the form:

p = Kα + ρ, K(T ) = 0, ρ(T ) = 0. (77)

where K = K(t) is n × n matrix-valued function. Then

ṗ = K̇α + Kα̇ + ρ̇. (78)
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Substituting this into (74), (75), we arrive at the following system of equations.

K̇ + AT K + KA − KBR−1BTK + Q = 0, K(T ) = 0, (79)

ρ̇ + (AT − KBR−1BT )ρ = −γ + KBθ, ρ(T ) = 0. (80)

The system (79) is a matrix differential Riccati equation which admits a unique solution on the
interval [0, T ] under natural control-theoretic constraints on the pair (A, B). To find ζ = (α, β), we
need to solve a linear system (80) and then find α and β using (74)–(78). Observe that the matrix

differential Riccati equation (79) does not depend on v = (γ, θ), which is εivi (i = 0, 1, .., m + 1) in
our case. This means that (79) needs to be solved just once in one computation of the Nesterov-
Todd direction, and (80) needs to be integrated m + 2 times.

6 Concluding Remarks

In the present paper we have considered infinite-dimensional generalization of interior-point al-

gorithms using the framework of infinite-dimensional Jordan algebras of finite rank. Specifically,
we developed a framework for primal-dual interior-point algorithms associated with the infinite-
dimensional spin-factors and established a polynomial convergence result using the Nesterov-Todd

direction. Though we have analyzed in detail only one primal-dual algorithm based on the Nesterov-
Todd direction, it is pretty clear how to generalize other interior-point algorithms analyzed earlier
in the finite-dimensional setting of Euclidean Jordan algebras.

We showed by considering an important example of a control problem that Nesterov-Todd

direction can be calculated in an efficient way. Other popular directions (e.g., HRVW/KSH/M
direction) can be analyzed in a similar fashion.
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Appendix: Derivation of (72)

First we observe that the functional which gives the optimal solution of (69) is linear with respect
to v. Let MZ be the restriction of superposition of the orthogonal projection to Z with M , to
Z. Since M is positive definite on Z, there exists inverse of MZ . We denote the inverse by M−1

Z .
Furthermore, let ΠZ be the orthogonal projection from X onto Z. Then the optimal solution of

(69) is given as
ζ = −M−1

Z ΠZv. (81)

The optimality condition of (68) is

Mζ + v0 +
m+1
∑

i=1

(vi|ζ)εivi ∈ Z⊥.
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Now, (vi|ζ) is not yet known, but let δi be (vi|ζ), and we continue as if we know δ. Then, we see
that ζ is an optimal solution to (69) with

v = v0 +
m+1
∑

i=1

δiεivi,

Due to (81), we see that the optimal solution of (69) is written as linear combination of the optimal
solutions ζ0 of (70) and ζi, i = 1, ..., m + 1 of (71). Substituting ζ(δ) into (vi|ζ), we obtain

δi = (vi|ζ(δ)) i = 1, ..., m + 1. (82)

This relation is obviously equivalent to (72), and is a necessary condition for ζ(δ) to be the optimal
solution of (68). Observe that such δi is ensured to exist due to solvability of (68). In the following,
we show that (82) is sufficient for ζ(δ) to be an optimal solution of (68). Let δ be the solution of

(72) (and, equivalently, (82)). Due to the definition of ζi, we have

Mζ(δ) + v0 +
m+1
∑

i=1

εivi(vi|ζ(δ)) = Mζ0 + v0 +
m+1
∑

i=1

δi(Mζi + εivi) ∈ Z⊥.

This yields that ζ(δ) is indeed the solution of (68).
Therefore, δi, i = 1, ..., m + 1 determines the optimal solution of (68) if and only if (72) is

satisfied. Since (68) has a unique optimal solution, (72) has a unique solution.
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