# Primal-dual interior-point optimization for penalized least squares estimation of abundance maps in hyperspectral imaging

<u>Saïd Moussaoui</u><sup>1</sup>, Emilie Chouzenoux<sup>2</sup>, Jérôme Idier<sup>1</sup>

<sup>1</sup> Ecole Centrale Nantes, IRCCyN (CNRS UMR 6597), France
 <sup>2</sup> Univ. Paris-Est Marne-Ia-Vallée, LIGM (CNRS UMR 8049), France



4th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing

Shanghai, June 6th, 2012

## 1. Introduction

Let a data cube with L spectral bands and images of N pixels stored in a matrix  $\mathbf{Y} \in \mathbb{R}^{L \times N}$ .

#### 1.1 Linear spectral unmixing

Explain each pixel spectrum as a linear combination of P endmember spectra  $s_p$  (columns of  $S \in \mathbb{R}^{L \times P}$ )

$$oldsymbol{y}_n = \sum_{p=1}^P \, a_{(n,p)} oldsymbol{s}_p + oldsymbol{e}_n, \quad orall n \in \{1,\ldots,n\} \implies oldsymbol{Y} = oldsymbol{S} \,oldsymbol{A} + oldsymbol{E}$$

A is the abundance matrix of size  $P \times N$  (contains the abundance maps in its rows).  $E \in \mathbb{R}^{L \times N}$  is a matrix representing model/measurement errors.

#### 1.2 Constrained estimation of A

(C1) Non-negativity

$$a_{(n,p)} \ge 0, \quad \forall n \in \{1, \dots, n\}, \forall p \in \{1, \dots, P\}$$

(C2) Sum-to-one

$$\sum_{p=1}^{P}a_{(n,p)}=1,\quad orall n\in\{1,\ldots,n\}$$

S. Moussaoui, E. Chouzenoux, J.Idier

Whispers 2012, June 6th, 2012, Shanghai, China

### 1.3 Motivations

- ① Fast processing of large data sets (high image sizes)
- 2 Add prior information on the abundance maps (roughness, sparsity, structural spatial model)
- ③ Need to jointly unmix all the image pixels (rather than a sequential processing)

### 1.4 Our proposal ...

- $\checkmark$  Use regularization methods to add the spatial information
- $\checkmark$  Propose special-purpose inversion algorithms having a fast convergence rate
- ✓ Constrained optimization tools (Interior-point methods)

## Primal-dual interior-point methods for constrained convex optimization

# Outline

## Introduction

## **2** Proposed method of abundance maps estimation

- § Problem statement
- § Equality constraint integration
- § Primal-dual interior-point algorithm

## **③** Illustrative example and discussion

- § Least squares case
- § Penalized least squares case

## **4** Conclusions

## 2. Abundance maps estimation

### 2.1 Problem statement

$$\min_{\boldsymbol{A} \in \mathbb{R}^{P \times N}} \left( F(\boldsymbol{A}) = \|\boldsymbol{Y} - \boldsymbol{S}\boldsymbol{A}\|_F^2 \right) \quad s.t. \quad C1 \text{ and/or } C2$$

where  $\|\cdot\|_F$  is the Frobenius norm.

## Proposed approach

Minimize any strongly convex and differentiable criterion F(A) subject to linear equality and inequality constraints, including C1 and C2.

- Add a variable substitution to integrate the equality constraint C2
- Use a fast interior-point method for solving iteratively the inequality constrained optimization

#### 2.2 Sum-to-one constraint integration

\* Proposition [Armand ; 2000].

Let  $A^{(1)} \in \mathbb{R}^{P imes N}$  and  $Z \in \mathbb{R}^{P imes (P-1)}$  such that

- $\mathbf{1}_{P}^{\mathsf{T}} \mathbf{A} = \mathbf{1}_{P}^{\mathsf{T}} \longrightarrow \mathbf{A}^{(1)}$  satisfies C2.
- $\mathbf{Z}^{\mathsf{T}} \mathbf{1}_{P} = \mathbf{0}_{P-1} \longrightarrow \mathbf{Z}$  formed from the null-space of  $\mathbf{1}_{P}^{\mathsf{T}}$ .

Thus, for any  $C \in \mathbb{R}^{P-1 imes N}$ ,  $A = A^{(1)} + ZC$  will also satisfy the constraint C2

#### **Sonsequence**

The optimization problem is rewritten as

 $\min_{\boldsymbol{C} \in \mathbb{R}^{P-1 \times N}} F(\boldsymbol{A}^{(1)} + \boldsymbol{Z}\boldsymbol{C}) \text{ s.t } (\boldsymbol{Z}\boldsymbol{C} + \boldsymbol{A}^{(1)}) \ge \boldsymbol{0} \iff \min_{\boldsymbol{c} \in \mathbb{R}^{NP-N}} \Phi(\boldsymbol{c}) \text{ s.t. } \boldsymbol{T}\boldsymbol{c} + \boldsymbol{t} \ge \boldsymbol{0}$ 

with  $\boldsymbol{c} = \operatorname{vect}(\boldsymbol{C})$ ,  $t = \operatorname{vect}(\boldsymbol{A}^{(1)})$  and  $\boldsymbol{T} = \boldsymbol{I}_N \otimes \boldsymbol{Z}$ .

The equality constraint will be implicitly satisfied during the optimization

### 2.3 Primal-dual interior-point algorithm

#### **③** Optimality conditions

The optimal values of c and the Lagrange multipliers  $\lambda$  associated to the constraints should satisfy the Karush-Kuhn-Tucker (KKT) conditions

where  $\Lambda = \text{Diag}(\lambda)$ .

#### **Interior-point methods**

- Keep the solution inside the feasible domain by adding a logarithmic barrier function
- Iteratively estimate  $(c_k, \lambda_k)$  from perturbed versions of the KKT conditions

• The perturbation parameter  $\mu_k = \mu_k \mathbf{1}_{N(P-1)}$  is chosen such that  $\lim_{k \to +\infty} \mu_k = 0$ .

#### ❀ In practice ... two steps

- ① Calculation of  $(c_{k+1}, \lambda_{k+1})$  using  $(c_k, \lambda_k)$  by solving approximately the perturbed KKT system using a descent direction method,
- <sup>(2)</sup> Calculation of  $\mu_{k+1}$  using an update rule guaranteeing the convergence.

① Approximate resolution of the perturbed KKT system using a Newton step

$$(oldsymbol{c}_{k+1},oldsymbol{\lambda}_{k+1}) = (oldsymbol{c}_k + lpha_koldsymbol{d}_k^c,oldsymbol{\lambda}_k + lpha_koldsymbol{d}_k^\lambda)$$

• The directions  $d_k^c$  and  $d_k^{\lambda}$  are obtained after a first order development of the perturbed KKT system equalities

$$egin{bmatrix} 
abla^2 \Phi(oldsymbol{c}_k) & -oldsymbol{T}^\intercal \ oldsymbol{\Lambda}_koldsymbol{T} & ext{Diag}(oldsymbol{T}oldsymbol{c}_k+oldsymbol{t}) \end{bmatrix} egin{bmatrix} oldsymbol{d}_k^c \ oldsymbol{d}_k^\lambda \end{bmatrix} = egin{bmatrix} oldsymbol{T}^\intercaloldsymbol{\lambda}_k - 
abla \Phi(oldsymbol{c}_k) \ oldsymbol{\mu}_k - oldsymbol{\Lambda}_k(oldsymbol{T}oldsymbol{c}_k+oldsymbol{t}) \end{bmatrix} \end{bmatrix}$$

• The stepsize  $\alpha_k$  should be calculated to ensure the inequalities fulfillment and make a sufficient decrease of a primal-dual merit function

$$\Psi_{\mu}(\boldsymbol{c},\boldsymbol{\lambda}) = \Phi(\boldsymbol{c}) - \mu \sum_{i=1}^{NP} \ln([\boldsymbol{T}\boldsymbol{c} + \boldsymbol{t}]_i) + \boldsymbol{\lambda}^{\mathsf{T}}(\boldsymbol{T}\boldsymbol{c} + \boldsymbol{t}) - \mu \sum_{i=1}^{NP} \ln(\lambda_i [\boldsymbol{T}\boldsymbol{c} + \boldsymbol{t}]_i)$$

The search is performed by backtracking and the sufficient decrease is checked using Armijo condition applied to  $\Psi_{\mu_k}(\boldsymbol{c}_k + \boldsymbol{\alpha} \boldsymbol{d}_{k+1}^c, \boldsymbol{\lambda}_k + \boldsymbol{\alpha} \boldsymbol{d}_k^{\lambda})$ .

#### **2** Perturbation parameter update

The parameter  $\mu_k$  is updated according to  $\mu_{k+1} = \theta \frac{\delta_{k+1}}{NP}$ , where  $\delta_{k+1} = (\mathbf{T}\mathbf{c}_{k+1} + \mathbf{t})^{\mathsf{T}}\boldsymbol{\lambda}_{k+1}$  is the duality gap and  $\theta \in (0, 1)$  [El Bakary; 1996].

S. Moussaoui, E. Chouzenoux, J.Idier

## 3. Illustrative example and discussion

## 3.1 Mixture synthesis

- ① Randomly select endmember spectra from the USGS library, L=224 and  $P\in\{3,5,10\}$
- ② Simulate abundance maps as a superposition of several Gaussian patterns,  $N \in \{64^2, \ldots, 256^2\}$
- ③ Add a Gaussian noise to get some signal-to-noise ratio,
- ④ Monte Carlo simulation with 30 independent realizations.

## Example Example



## Immixing

- Use an endmember extraction algorithm (VCA [Nascimento and Bioucas Dias ; 2005]),
- **2** Estimate the abundance maps using the FCLS and the proposed method (IPLS).

 $SNR \in \{20, 15, 10, 5\} dB$ 

#### 3.2 Constrained least squares estimation

Solve 
$$\min_{oldsymbol{A}\in\mathrm{R}^{(P imes N)}} \left(F_{\mathrm{LS}}(oldsymbol{A}) = \|oldsymbol{Y}-oldsymbol{S}oldsymbol{A}\|_F^2
ight)$$
 s.t  $oldsymbol{A} \geqslant oldsymbol{0}$  and  $oldsymbol{1}_P^{\intercal}oldsymbol{A} = oldsymbol{1}_N^{\intercal}$ 

❀ Computation time: [MacBookPro - Intel Core 2 Duo 2.4 GHz processor, 4 GB RAM (667 MHz)].



(Left) Computation time of FCLS. (Right) Obtained speedup with the primal-dual approach.

#### **\* Comments**

- Both algorithms are suitable for parallel implementation,
- IPLS can also take into account the sum less or equal to one constraint  $\mathbf{1}_P^{\mathsf{T}} \mathbf{A} \leq \mathbf{1}_N^{\mathsf{T}}$ .

#### 3.3 Constrained penalized least squares estimation

#### **\* Problem formulation**

Solve 
$$\min_{\boldsymbol{A} \in \mathbb{R}^{(P \times N)}} \left( F_{\mathrm{PLS}}(\boldsymbol{A}) = \|\boldsymbol{Y} - \boldsymbol{S}\boldsymbol{A}\|_{F}^{2} + \beta R(\boldsymbol{A}) \right)$$
 s.t  $\boldsymbol{A} \ge \boldsymbol{0}$  and  $\boldsymbol{1}_{P}^{\mathsf{T}}\boldsymbol{A} = \boldsymbol{1}_{N}^{\mathsf{T}}$ 

where  $R(\mathbf{A})$  is a regularization criterion

Roughness penalty: 
$$R(\mathbf{A}) = \sum_{p=1}^{P} \psi(\mathbf{\Delta} \boldsymbol{a}_p)$$

with  $\Delta$  a spatial derivative operator and  $\psi(\cdot)$  a convex, symmetric and differentiable function.

In image restoration,  $(\ell_2-\ell_1)$  functions are preferred for edge-preserving regularization

Regularization parameter  $\beta$  allows a tradeoff between data fidelity and solution roughness



\* Estimation accuracy:  $P = 5, L = 244, N = 256^2, \psi(x) = x^2, \beta = 0.1$ 

NMSE(%) = 
$$\frac{100}{P} \sum_{p=1}^{P} \left( \frac{\|\boldsymbol{a}_p - \hat{\boldsymbol{a}}_p\|^2}{\|\boldsymbol{a}_p\|^2} \right)$$

|        | SNR (dB) |      |      |      |
|--------|----------|------|------|------|
| Method | 20       | 15   | 10   | 5    |
| FCLS   | 0.18     | 0.46 | 1.34 | 3.64 |
| IPLS   | 0.18     | 0.46 | 1.33 | 3.63 |
| IPPLS  | 0.08     | 0.23 | 0.68 | 2.01 |

### **Somputation time:**

IPPLS-1 : Exact Newton step

IPPLS-2 : Inexact Newton step (approximate resolution of primal-dual system)



Whispers 2012, June 6th, 2012, Shanghai, China

**\*** Computation of the primal and dual directions

$$egin{bmatrix} 
abla^2 \Phi(oldsymbol{c}_k) & -oldsymbol{T}^\intercal \ oldsymbol{\Lambda}_koldsymbol{T} & ext{Diag}(oldsymbol{T}oldsymbol{c}_k+oldsymbol{t}) \end{bmatrix} egin{bmatrix} oldsymbol{d}_k^c \ oldsymbol{d}_k^\lambda \end{bmatrix} = egin{bmatrix} oldsymbol{T}^\intercaloldsymbol{\lambda}_k - 
abla \Phi(oldsymbol{c}_k) \ oldsymbol{\mu}_k - oldsymbol{\Lambda}_k(oldsymbol{T}oldsymbol{c}_k+oldsymbol{t}) \end{bmatrix} egin{bmatrix} oldsymbol{d}_k^c \ oldsymbol{d}_k^\lambda \end{bmatrix} = egin{bmatrix} oldsymbol{T}^\intercaloldsymbol{\lambda}_k - 
abla \Phi(oldsymbol{c}_k) \ oldsymbol{\mu}_k - oldsymbol{\Lambda}_k(oldsymbol{T}oldsymbol{c}_k+oldsymbol{t}) \end{bmatrix} \end{array}$$

Variable substitution leads to

$$oldsymbol{d}_k^{oldsymbol{\lambda}} = ext{Diag}(oldsymbol{T}oldsymbol{c}_k + oldsymbol{t})^{-1} \left[oldsymbol{\mu}_k - oldsymbol{\Lambda}_k (oldsymbol{T}oldsymbol{c}_k + oldsymbol{t}) - oldsymbol{\Lambda}_k oldsymbol{T}oldsymbol{d}_k^c 
ight]$$

and

$$[\nabla^2 \Phi(oldsymbol{c}_k) + oldsymbol{T}^{\intercal} ext{Diag}(oldsymbol{T}oldsymbol{c}_k + oldsymbol{t})^{-1} oldsymbol{\Lambda}_k oldsymbol{T}] oldsymbol{d}_k^c = oldsymbol{T}^{\intercal} ext{Diag}(oldsymbol{T}oldsymbol{c}_k + oldsymbol{t})^{-1} oldsymbol{\mu}_k - 
abla \Phi(oldsymbol{c}_k)$$

• Use a preconditioned conjugate gradient to make an approximate resolution of this system,

• The convergence proof for such an inexact Newton scheme is established whatever the number of gradient method iterations.

## 3.4 Application to Cuprite data set (AVIRIS'97)

- Cube size  $[250 \times 191 \text{ pixels}; 188 \text{ bands}]$
- The endmembers are determined using VCA.

**Somputation time (in seconds)** 

|    | Least squares |      | Penalized least squares |         |
|----|---------------|------|-------------------------|---------|
| P  | FCLS          | IPLS | IPPLS-1                 | IPPLS-2 |
| 3  | 29            | 4    | 337                     | 7       |
| 4  | 39            | 7    | 645                     | 14      |
| 5  | 51            | 11   | 623                     | 21      |
| 6  | 62            | 15   | 1520                    | 30      |
| 7  | 76            | 20   | 2260                    | 39      |
| 8  | 93            | 25   | —                       | 47      |
| 10 | 116           | 39   | _                       | 73      |
| 12 | 161           | 61   | —                       | 107     |

### ③ Discussion

- Computation time reduction in the constrained least squares case,
- The approximate resolution of the primal-dual system reduces the computation cost,
- Preconditioned conjugate gradient is used but alternative methods will be preferred to reduce the memory storage.



## **Spatial SNR and abundance sum (15 endmembers)**

S. Moussaoui, E. Chouzenoux, J.Idier

Whispers 2012, June 6th, 2012, Shanghai, China



## **Spatial SNR and abundance sum (20 endmembers)**

S. Moussaoui, E. Chouzenoux, J.Idier

## **\*** Fast interior-point algorithm for the estimation of abundance maps

- ✓ Theoretically convergent and faster than the FCLS algorithm,
- $\checkmark$  Allows to account for any linear equality or inequality constraint,
- ✓ Can be applied for non-Gaussian (but strongly convex) neg-log likelihood criterion,
- $\checkmark$  Adapted to non-quadratic regularization functions.

## Perspectives

- GPU implementation of the constrained least squares estimation algorithm,
- Find a more efficient approximate resolution of the primal-dual system,
- Application to non-linear mixing models (criterion convexity ? convergence issues ?)