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1. Introduction

Let a data cube with L spectral bands and images of N pixels stored in a matrix Y ∈ R
L×N .

1.1 Linear spectral unmixing

Explain each pixel spectrum as a linear combination of P endmember spectra sp (columns of

S ∈ R
L×P )

yn =

P
∑

p=1

a(n,p)sp + en, ∀n ∈ {1, . . . , n} =⇒ Y = SA + E

A is the abundance matrix of size P ×N (contains the abundance maps in its rows).

E ∈ R
L×N is a matrix representing model/measurement errors.

1.2 Constrained estimation of A

(C1) Non-negativity

a(n,p) > 0, ∀n ∈ {1, . . . , n}, ∀p ∈ {1, . . . , P}

(C2) Sum-to-one
P
∑

p=1

a(n,p) = 1, ∀n ∈ {1, . . . , n}
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1.3 Motivations

➀ Fast processing of large data sets (high image sizes)

➁ Add prior information on the abundance maps (roughness, sparsity, structural spatial model)

➂ Need to jointly unmix all the image pixels (rather than a sequential processing)

1.4 Our proposal ...

X Use regularization methods to add the spatial information

X Propose special-purpose inversion algorithms having a fast convergence rate

X Constrained optimization tools (Interior-point methods)

➥ Primal-dual interior-point methods for constrained convex optimization
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2. Abundance maps estimation

2.1 Problem statement

min
A∈RP×N

(

F (A) = ‖Y − SA‖
2
F

)

s.t. C1 and/or C2

where ‖ · ‖F is the Frobenius norm.

C1 non-negative least squares (NNLS) [Lawson and Hanson ; 1974]

C2 sum-to-one constrained least squares (SCLS) [Settle and Drake ; 1993]

C1&C2 fully constrained least squares (FCLS) [Heinz and Chaing ; 2002]

C1&C2 Bayesian and RJ-MCMC method [Dobigeon et al. ; 2008]

⊛ Proposed approach

Minimize any strongly convex and differentiable criterion F (A) subject to linear equality and

inequality constraints, including C1 and C2.

• Add a variable substitution to integrate the equality constraint C2

• Use a fast interior-point method for solving iteratively the inequality constrained optimization
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2.2 Sum-to-one constraint integration

⊛ Proposition [Armand ; 2000].

Let A(1) ∈ R
P×N and Z ∈ R

P×(P−1) such that

• 1
⊺

P
A = 1

⊺

P
−→ A(1) satisfies C2.

• Z⊺1P = 0P−1 −→ Z formed from the null-space of 1⊺

P
.

Thus, for any C ∈ R
P−1×N ,A = A(1) + ZC will also satisfy the constraint C2

⊛ Consequence

The optimization problem is rewritten as

min
C∈RP−1×N

F (A
(1)

+ ZC) s.t
(

ZC + A
(1))

> 0 ⇐⇒ min
c∈RNP−N

Φ(c) s.t. Tc + t > 0

with c = vect(C), t = vect(A(1)) and T = IN ⊗ Z.

The equality constraint will be implicitly satisfied during the optimization
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2.3 Primal-dual interior-point algorithm

⊛ Optimality conditions

The optimal values of c and the Lagrange multipliers λ associated to the constraints should satisfy

the Karush-Kuhn-Tucker (KKT) conditions

➀ ∇Φ(c) − T ⊺λ = 0, ➁ Λ(Tc + t) = 0, ➂ Tc + t > 0, ➃ λ > 0

where Λ = Diag(λ).

⊛ Interior-point methods

• Keep the solution inside the feasible domain by adding a logarithmic barrier function

• Iteratively estimate (ck,λk) from perturbed versions of the KKT conditions

➀ ∇Φ(c) − T ⊺λ = 0, ➁ Λ(Tc + t) = µk, ➂ Tc + t > 0, ➃ λ > 0

• The perturbation parameter µk = µk1N(P−1) is chosen such that lim
k→+∞

µk = 0.

⊛ In practice ... two steps

① Calculation of (ck+1,λk+1) using (ck,λk) by solving approximately the perturbed KKT system

using a descent direction method,

② Calculation of µk+1 using an update rule guaranteeing the convergence.
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① Approximate resolution of the perturbed KKT system using a Newton step

(ck+1,λk+1) = (ck + αkd
c
k,λk + αkd

λ
k)

• The directions dck and dλk are obtained after a first order development of the perturbed KKT system

equalities
[

∇2Φ(ck) −T ⊺

ΛkT Diag(Tck + t)

] [

dck
dλk

]

=

[

T ⊺λk − ∇Φ(ck)

µk − Λk(Tck + t)

]

• The stepsize αk should be calculated to ensure the inequalities fulfillment and make a sufficient

decrease of a primal-dual merit function

Ψµ(c,λ) = Φ(c) − µ

NP
∑

i=1

ln([Tc + t]i) + λ
⊺(Tc + t) − µ

NP
∑

i=1

ln(λi[Tc + t]i)

The search is performed by backtracking and the sufficient decrease is checked using Armijo condition

applied to Ψµk
(ck + αdck+1,λk + αdλk).

② Perturbation parameter update

The parameter µk is updated according to µk+1 = θ
δk+1
NP

, where δk+1 = (Tck+1 + t)⊺λk+1 is the

duality gap and θ ∈ (0, 1) [El Bakary; 1996].
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3. Illustrative example and discussion

3.1 Mixture synthesis

① Randomly select endmember spectra from the USGS library, L = 224 and P ∈ {3, 5, 10}

② Simulate abundance maps as a superposition of several Gaussian patterns, N ∈ {642, . . . , 2562}

③ Add a Gaussian noise to get some signal-to-noise ratio, SNR ∈ {20, 15, 10, 5} dB

④ Monte Carlo simulation with 30 independent realizations.

⊛ Example
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⊛ Unmixing

❶ Use an endmember extraction algorithm (VCA [Nascimento and Bioucas Dias ; 2005]),

❷ Estimate the abundance maps using the FCLS and the proposed method (IPLS).
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3.2 Constrained least squares estimation

Solve min
A∈R(P×N)

(

FLS(A) = ‖Y − SA‖2
F

)

s.t A > 0 and 1
⊺

PA = 1
⊺

N

⊛ Computation time: [MacBookPro - Intel Core 2 Duo 2.4 GHz processor, 4 GB RAM (667 MHz)].
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(Left) Computation time of FCLS. (Right) Obtained speedup with the primal-dual approach.

⊛ Comments

• Both algorithms are suitable for parallel implementation,

• IPLS can also take into account the sum less or equal to one constraint 1⊺

P
A 6 1

⊺

N
.
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3.3 Constrained penalized least squares estimation

⊛ Problem formulation

Solve min
A∈R(P×N)

(

FPLS(A) = ‖Y − SA‖
2
F + βR(A)

)

s.t A > 0 and 1
⊺

PA = 1
⊺

N

where R(A) is a regularization criterion

Roughness penalty: R(A) =
P
∑

p=1

ψ (∆ap)

with ∆ a spatial derivative operator and ψ(·) a convex, symmetric and differentiable function.
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√
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In image restoration, (ℓ2 − ℓ1) functions

are preferred for edge-preserving regularization

Regularization parameter β allows a tradeoff

between data fidelity and solution roughness
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⊛ Estimation accuracy: P = 5, L = 244, N = 2562, ψ(x) = x2, β = 0.1

NMSE(%) =
100

P

∑P
p=1

(

‖ap − âp‖
2

‖ap‖2

)

SNR (dB)

Method 20 15 10 5

FCLS 0.18 0.46 1.34 3.64

IPLS 0.18 0.46 1.33 3.63

IPPLS 0.08 0.23 0.68 2.01

⊛ Computation time:

IPPLS-1 : Exact Newton step

IPPLS-2 : Inexact Newton step (approximate resolution of primal-dual system)
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⊛ Computation of the primal and dual directions

[

∇2Φ(ck) −T ⊺

ΛkT Diag(Tck + t)

] [

dck
dλk

]

=

[

T ⊺λk − ∇Φ(ck)

µk − Λk(Tck + t)

]

Variable substitution leads to

d
λ
k = Diag(Tck + t)

−1
[µk − Λk(Tck + t) − ΛkTd

c
k]

and

[∇
2
Φ(ck) + T

⊺
Diag(Tck + t)

−1
ΛkT ]d

c
k = T

⊺
Diag(Tck + t)

−1
µk − ∇Φ(ck)

• Use a preconditioned conjugate gradient to make an approximate resolution of this system,

• The convergence proof for such an inexact Newton scheme is established whatever the number of

gradient method iterations.
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3.4 Application to Cuprite data set (AVIRIS’97)

• Cube size [250 × 191 pixels; 188 bands]

• The endmembers are determined using VCA.

⊛ Computation time (in seconds)

Least squares Penalized least squares

P FCLS IPLS IPPLS-1 IPPLS-2

3 29 4 337 7

4 39 7 645 14

5 51 11 623 21

6 62 15 1520 30

7 76 20 2260 39

8 93 25 – 47

10 116 39 – 73

12 161 61 – 107

⊛ Discussion

• Computation time reduction in the constrained least squares case,

• The approximate resolution of the primal-dual system reduces the computation cost,

• Preconditioned conjugate gradient is used but alternative methods will be preferred to reduce the

memory storage.
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⊛ Spatial SNR and abundance sum (15 endmembers)

Constraints non-negativity sum less to one sum-to-one

Time (s) 53 137 138

Spatial residual SNR (dB)
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⊛ Spatial SNR and abundance sum (20 endmembers)

Constraints non-negativity sum less to one sum-to-one

Time (s) 70 262 237

Spatial residual SNR (dB)
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4. Conclusions

⊛ Fast interior-point algorithm for the estimation of abundance maps

X Theoretically convergent and faster than the FCLS algorithm,

X Allows to account for any linear equality or inequality constraint,

X Can be applied for non-Gaussian (but strongly convex) neg-log likelihood criterion,

X Adapted to non-quadratic regularization functions.

⊛ Perspectives

• GPU implementation of the constrained least squares estimation algorithm,

• Find a more efficient approximate resolution of the primal-dual system,

• Application to non-linear mixing models (criterion convexity ? convergence issues ?)
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