
Discrete Comput Geom 20:333–357 (1998) Discrete & Computational

Geometry
© 1998 Springer-Verlag New York Inc.

Primal–Dual Methods for Vertex and Facet Enumeration∗

D. Bremner,1 K. Fukuda,2,3 and A. Marzetta4

1Department of Mathematics, University of Washington,
Seattle, WA 98195, USA
bremner@math.washington.edu

2Department of Mathematics,
Swiss Federal Institute of Technology,
Lausanne, Switzerland

3Institute for Operations Research,
Swiss Federal Institute of Technology,
Zurich, Switzerland
fukuda@ifor.math.ethz.ch

4Institute for Theoretical Computer Science,
Swiss Federal Institute of Technology,
Zurich, Switzerland
marzetta@inf.ethz.ch

Abstract. Every convex polytope can be represented as the intersection of a finite set of
halfspaces and as the convex hull of its vertices. Transforming from the halfspace (resp.
vertex) to the vertex (resp. halfspace) representation is calledvertex enumeration(resp.facet
enumeration). An open question is whether there is an algorithm for these two problems
(equivalent by geometric duality) that is polynomial in the input size and the output size.
In this paper we extend the known polynomially solvable classes of polytopes by looking
at the dual problems. Thedual problem of a vertex (resp. facet) enumeration problem is
the facet (resp. vertex) enumeration problem for the same polytope where the input and
output are simply interchanged. For a particular class of polytopes and a fixed algorithm,
one transformation may be much easier than its dual. In this paper we propose a new class
of algorithms that take advantage of this phenomenon. Loosely speaking,primal–dual
algorithms use a solution to the easy direction as an oracle to help solve the seemingly hard
direction.

∗ The first author’s research was supported by NSERC Canada, FCAR Qu´ebec, and the J.W. McConnell
Foundation.

334 D. Bremner, K. Fukuda, and A. Marzetta

1. Introduction

A polytopeis the bounded intersection of a finite set of halfspaces inRd. Theverticesof a
polytope are those feasible points that do not lie in the interior of a line segment between
two other feasible points. Every polytopeP can be represented as the intersection of a
nonredundant set of halfspacesH(P) and as the convex hull of its verticesV(P). The
problem of transforming fromH(P) toV(P) is calledvertex enumeration; transforming
from V(P) toH(P) is calledfacet enumerationor convex hull.

An algorithm is said to bepolynomialif the time to solve any instance is bounded
above by a polynomial in the size of input and output. We consider the input (resp.
output) size to be the number of real (or rational) numbers needed to represent the
input (resp. output); in particular we do not consider the dimension to be a constant. We
assume each single arithmetic operation takes a constant amount of time.1 A successively
polynomial algorithmis one whosekth output is generated in time polynomial ink and
the input sizes, for eachk less than or equal to the cardinality of output. Clearly, every
successively polynomial algorithm is a polynomial algorithm. We assume that a polytope
is full-dimensional and contains the origin in its interior; under these conditions2 vertex
enumeration and facet enumeration are polynomially equivalent, that is, the existence of
a polynomial algorithm for one problem implies the same for the other problem. Several
polynomial algorithms (see, e.g., [3], [6], [7], [9], [17], and [18]) are known under strong
assumptions of nondegeneracy, which restrict input polytopes to be simple in the case of
vertex enumeration and simplicial in the case of facet enumeration. However, it is open
whether there exists a polynomial algorithm in general.

In this paper we extend the known polynomially solvable classes by looking at the
dual problems. Thedual problem of a vertex (resp. facet) enumeration problem is the
facet (resp. vertex) enumeration problem for the same polytope where the input and
output are simply interchanged. For a particular class of polytopes and a fixed algorithm,
one transformation may be much easier than its dual. One might be tempted to explain
this possible asymmetry by observing that the standard nondegeneracy assumption is
not self-dual. Are the dual problems of nondegenerate vertex (facet) enumeration prob-
lems harder? More generally, are the complexities of the primal and the dual problem
distinct?

Here we show in a certain sense that the primal and dual problems are of the same
complexity. More precisely, we show the following theorem: if there is a successively
polynomial algorithm for the vertex (resp. facet) enumeration problem for a hereditary
class of problems, then there is a successively polynomial algorithm for the facet (resp.
vertex) enumeration problem for the same class, where a hereditary class contains all
subproblems of any instance in the class. We propose a new class of algorithms that take
advantage of this phenomenon. Loosely speaking,primal–dualalgorithms use a solution
to the easy direction as an oracle to help solve the seemingly hard direction.

1 This assumption is merely to simplify our discussion. One can easily analyze the complexity of an algo-
rithm in our primal–dual framework for the binary representation model and in general its binary complexity
depends only on that of the associated “base” algorithm.

2 We discuss these assumptions further in Section 2.2.

Primal–Dual Methods for Vertex and Facet Enumeration 335

From this general result relating the complexity of the primal and dual problems, and
known polynomial algorithms for the primal-nondegenerate case, we arrive at a polyno-
mial algorithm for vertex enumeration for simplicial polytopes and facet enumeration for
simple polytopes. We then show how to refine this algorithm to yield an algorithm with
time complexity competitive with the algorithms known for the primal-nondegenerate
case.

The only published investigation of the dual-nondegenerate case the authors are aware
of is in a paper by Gritzmann and Klee [12]. Their approach, most easily understood
in terms of vertex enumeration, consists of intersecting the constraints with each defin-
ing hyperplane and, after removing the redundant constraints, finding the vertices lying
on that facet by some brute-force method. David Avis (private communication) has in-
dependently observed that this method can be extended to any polytope whose facets
are simple (or nearly simple) polytopes. The method of Gritzmann and Klee requires
solving O(m2) linear programs (wherem is the number of input halfspaces) to re-
move redundant constraints. Our approach does not rely on the polynomial solvability
of linear programming if an interior point is known (as is always the case for facet
enumeration).

Notation

We start by defining some notation. Recall thatH(P) (resp.V(P)) is the nonredundant
halfspace (resp. vertex) description ofP. We usem for |H(P)|, n for |V(P)|, andd for
the dimension dimP. The facets ofP are the intersection of the bounding hyperplanes of
H(P)with P. We useO (Ok) and1 (1k) to denote the vector of all zeros (of lengthk) and
all ones (of lengthk), respectively. We treat sets of points and matrices interchangeably
where convenient; the rows of a matrix are the elements of the corresponding set. Given
(row or column) vectorsa andb, we useab to denote the inner product ofa andb. Since
we assume the origin is in the interior of each polytope, each facet defining inequality
can be written ashx ≤ 1 for some vectorh. For a vectorh, we useh+, h−, andh0

to denote the set of pointsx such thathx ≤ 1, hx > 1, andhx = 1, respectively. We
sometimes identify the halfspaceh+ with the associated inequalityhx ≤ 1 where there is
no danger of confusion. We useP(H) to denote the polyhedron{x | Hx ≤ 1}. Similarly
we useH(P) to mean the matrixH whereP = {x | Hx ≤ 1}. For a set of pointsV
we useH(V) to meanH(convV); similarly for a set of halfspacesH , we useV(H)
to meanV(P(H)). We say thath+ is valid for a set of pointsX (or hx ≤ 1 is avalid
inequality) if X ⊆ h+. We make extensive use of duality of convex polytopes in what
follows. Theproper facesof a convex polytope are the intersection of some set of facets.
By adding the twoimproper faces, the polytope itself and the empty set, the faces form a
lattice ordered by inclusion. Two polytopes are said to becombinatorially equivalentif
their face lattices are isomorphic anddual if their face lattices are anti-isomorphic (i.e.,
isomorphic with the direction of inclusion reversed). The following is well known (see,
e.g., [5]).

Proposition 1. If P = convX is a polytope such thatO ∈ int P, then Q= {y | Xy≤
1} is a polytope dual to P such thatO ∈ int Q.

336 D. Bremner, K. Fukuda, and A. Marzetta

2. Primal–Dual Algorithms

In this section we consider the relationship between the complexity of the primal prob-
lem and the complexity of the dual problem for vertex/facet enumeration. We fix the
primal problem as facet enumeration in the rest of this paper, but the results can also be
interpreted in terms of vertex enumeration. For convenience we assume in this paper that
the input polytope is full-dimensional and contains the origin as an interior point. While
it is easy to see this is no loss of generality in the case of facet enumeration, in the case
of vertex enumeration one might need to solve a linear program to find an interior point.
We call a family0 of polytopesfacet-hereditaryif for any P ∈ 0, for anyH ′ ⊂ H(P),
if
⋂

H ′ is bounded, then
⋂

H ′ is also in0. The main idea of this paper is summarized
by the following theorem.

Theorem 1. If there is a successively polynomial vertex enumeration algorithm for
a facet-hereditary family of polytopes, then there is a successively polynomial facet
enumeration algorithm for the same family.

Simple polytopes are not necessarily facet-hereditary, but each simple polytope can be
perturbed symbolically or lexicographically onto a combinatorially equivalent polytope
whose facet defining halfspaces are in “general position,” i.e., the arrangement of facet
inducing hyperplanes defined by the polytope is simple. The family of polytopes whose
facet inducing halfspaces are in general position is obviously facet-hereditary.

Corollary 1. There is a successively polynomial algorithm for facet enumeration of
simple polytopes and for vertex enumeration of simplicial polytopes.

Proof of Theorem 1 is constructive, via the correctness of Algorithm 1. Algorithm 1
takes as input a setV of points inRd, and a subsetH0 ⊂ H(V) such that

⋂
H0 is

bounded. We show below how to compute such a set of halfspaces.
At every step of the algorithm we maintain the invariant that convV ⊆ P(Hcur).

When the algorithm terminates, we know thatV(Hcur) ⊆ V . It follows thatP(Hcur) ⊆
convV . There are two main steps in this algorithm that we have labeled FindWitness and
DeleteVertex. The vertex̃v ∈ V(Hcur)\V is awitnessin the sense that for any such vertex,
there must be a facet ofH(V) not yet discovered whose defining halfspace cuts offṽ.
From the precondition of the theorem there exists a successively polynomial algorithm

Algorithm 1. PrimalDualFacets(V, H0)

Hcur← H0

while ∃ṽ ∈ V(Hcur)\V do FindWitness
Find h ∈ H(V) s.t. ṽ ∈ h− DeleteVertex
Hcur← Hcur∪ {h}

endwhile
returnHcur.

Primal–Dual Methods for Vertex and Facet Enumeration 337

to enumerate the vertices ofHcur. It follows that in time polynomial in|V | we can find
|V | + 1 vertices ofP(Hcur), or discoverV(Hcur) = V . If we discover|V | + 1 vertices,
one of these vertices must be a witness. In order to find the facet cutting off a witness
(the “DeleteVertex” step), we need to solve a separating hyperplane problem for a point
and convex set. The separating hyperplane problem can be solved via the following
linear program: maximizẽvy subject toV y ≤ 1. If y∗ is a basic optimal solution (i.e.,
a solution corresponding to a vertex of the polar polytopeP∗ = {y | V y ≤ 1}) of the
linear program, theny∗x ≤ 1 is the desired separating halfspace. While there are linear
programming algorithms polynomial in the bit size of the input, there are not yet any
known that are polynomial inn = |V | andd, which is what we need for our theorem.
It turns out that because we have a halfspace description of the convex hull of the union
of our two sets, we can solve the separating hyperplane problem via a much simpler
algorithm. The rest of this section is organized as follows. In Section 2.1 we discuss how
to implement the DeleteVertex step without solving a linear program. In Section 2.2 we
discuss how to preprocess to eliminate the various boundedness and full-dimensionality
assumptions made above. Taken together, the results of these two sections will establish
the following stronger version of Theorem 1:

Theorem 2. For any facet-hereditary family of polytopes0 if we can generate k vertices
of an m-facet d-polytope P′ ∈ 0 (or certify that P′ has less than k vertices) in time
O(f (k,m,d)), then we can enumerate the m facets of an n-vertex d-polytope P in time

O

(
nd3+mnd2+m2d +

m∑
i=d+2

f (n+ 1, i − 1,d)

)
.

In certain cases (such as the dual-nondegenerate case considered in Section 3), we may
have a theoretical bound forf (k,m,d) polynomial ink, m, andd. In other cases, such
a theoretical bound may be difficult to obtain, but we may have experimental evidence
that a certain method (e.g., some heuristic insertion order for an incremental algorithm)
is efficient for vertex enumeration for0. In either case the techniques described in this
section can be used to obtain an efficient method for facet enumeration as well. It is
worth noting that there is no restriction of the input points to be in “convex position.”
Redundant (interior) input points will have no effect other than to slow down pivot
operations and tests for membership in the input (i.e.,m will be the total number of input
points, including redundant points).

2.1. Deleting Vertices without Linear Programming

Our main tool here is the pivot operation of the simplex method of linear programming.
Any inequality system

Hx ≤ 1 (1)

can be represented in the standard “dictionary” form (see, e.g., [7]) as follows. We
transform each inequality into an equality by adding a slack variable, to arrive at the

338 D. Bremner, K. Fukuda, and A. Marzetta

following system of linear equations ordictionary:

s= 1− Hx. (2)

More precisely, a dictionary for (1) is a system obtained by solving (2) for some subset of
mslack and original variables (wherem is the row size ofH). A solution to (2) is feasible
for (1) if and only ifs ≥ O. In particular, sinceHO < 1, s= 1 is a feasible solution to
both. The variables are naturally partitioned into two sets. The variables appearing on
the left-hand side of a dictionary are calledbasic; those on the right-hand side are called
cobasic. A pivot operation moves between dictionaries by making one cobasic variable
(theentering variable) basic and one basic variable (theleaving variable) cobasic.

If we have a feasible point for a polytope and a halfspace description, ind pivot
operations we can find a vertex of the polytope. If we ensure that each pivot does not
decrease a given objective function, then we have the following.

Lemma 1 (Raindrop Algorithm). Given H∈ Rm×d, ω ∈ Rd, andv0 ∈ P(H), in time
O(md2) we can findv ∈ V(H) such thatωv ≥ ωv0.

Proof. We start by translating our system by−v0 so that our initial point is the origin.
As a final row to our dictionary we add the the equationz= ωx (theobjective row). Note
that, by construction,x = O is a feasible solution. We start a pivot operation by choosing
some cobasic variablexj to become basic. Depending on the sign of the coefficient of
xj in the objective row, we can always increase or decreasexj without decreasing the
value ofz. As we change the value ofxj , some of the basic slack variables will decrease
as we get closer to the corresponding hyperplane. By considering ratios of coefficients,
we can find one of the first hyperplanes reached. By moving that slack variable to the
right-hand side (making it cobasic), and movingxj to the left-hand side, we obtain a
new dictionary inO(md) time (see, e.g., [7] for details of the simplex method). We can
continue this process as long as there is a cobasicx-variable. After exactlyd pivots, all
x-variables are basic. It follows that the corresponding basic feasible solution is a vertex
(see Fig. 1).

The raindrop algorithm seems to be part of the folklore of Linear Programming; a
generalized version is discussed in [16].

By duality of convex polytopes we have the following.

Fig. 1. The raindrop algorithm.

Primal–Dual Methods for Vertex and Facet Enumeration 339

Fig. 2. Pivoting from a valid inequality to a facet.

Lemma 2 (Dual Raindrop Algorithm). Given V ∈ Rn×d, ω ∈ Rd, and h0 such that
V ⊂ h+0 , in O(nd2) time we can find h∈ H(V) such that hω ≥ h0ω.

Essentially this is the same as the initialization step of a gift-wrapping algorithm (see,
e.g., [6] and [18]), except that we are careful that the pointω is on the same side of our
final hyperplane as the one we started with. Figure 2 illustrates the rotation dual to the
pivot operation in Lemma 1.

We can now show how to implement the DeleteVertex step of Algorithm 1 without
linear programming. Abasis Bfor a vertexv ∈ V(H) is a set ofd rows of H such
that Bv = 1 and rankB = d. We can obviously find a basis in polynomial time; in the
pivoting-based algorithms in the following sections we will always be given a basis forv.

Lemma 3 (DeleteVertex). Given V∈ Rn×d, H0 ⊂ H(V), ṽ ∈ V(H0)\V , and a basis
B for ṽ, we can find h∈ H(V) such thatṽ ∈ h− in time O(nd2).

Proof. Let h̄ = (1/d)∑b∈B b. The inequalityh̄x ≤ 1 is satisfied with equality bỹv
and with strict inequality by everyv ∈ V (sinceṽ is the unique vertex ofP(H0) lying
on h̄0; see Fig. 3). Letγ = maxv∈V h̄v. SinceO ∈ int convV , γ > 0. Let h0 = h̄/γ .
The constrainth0x ≤ 1 is valid for convV , buth0ṽ > 1. The lemma then follows from
Lemma 2.

Fig. 3. Illustrating the proof of Lemma 3.

340 D. Bremner, K. Fukuda, and A. Marzetta

If we are not given a basis for the vertexṽ we wish to cut off, we can use the mean of
the outward normals of all facets meeting atṽ in place of the vector̄h. This mean vector
can be computed inO(|H0|d) time.

Corollary 2. Given V∈ Rn×d, H0 ⊂ H(V),andṽ ∈ V(H0)\V ,we can find h∈ H(V)
such thatṽ ∈ h− in time O(nd2+ |H0|d).

It will prove useful below to be able to find a facet of convV that cuts off a particular
extreme ray or direction of unboundedness for our current intermediate polyhedron.

Lemma 4 (DeleteRay). Given V ∈ Rn×d and r ∈ Rd\{O}, in O(nd2) time we can
find h∈ H(V) such that hr> 0.

Proof. The proof is similar to that of Lemma 3. Letγ = maxv∈V r v. SinceO ∈
int convV , γ > 0. Let h0 = r/γ . The constrainth0x ≤ 1 is valid for convV , but
h0r = (r · r)/γ > 0. By Lemma 2, inO(nd2) time we can computeh ∈ H(V) such
thathr ≥ h0r > 0.

2.2. Preprocessing

We have assumed throughout that the input polytopes are full-dimensional and contain
the origin as an interior point. This is polynomially equivalent to assuming that along
with a halfspace or vertex description ofP, we are given a relative interior point, i.e.,
an interior point ofP in aff P. Given a relative interior point, then (either representation
of) P can be shifted to contain the origin as an interior point and embedded in a space
of dimension dimP in O(Nd2) time by elementary matrix operations, whereN is the
number of input halfspaces or points.

Finding a relative interior point in a set of points requires only the computation of the
centroid. On the other hand, finding a relative interior point of the intersection of a set
of halfspacesH requires solving at least one (and no more than|H |) linear programs.
Since we are interested here in algorithms polynomial inn, m, andd, and there not yet
any such linear programming algorithms, we thus assume that the relative interior point
is given.

In order to initialize Algorithm 1, we need to find some subsetH0 ⊂ H(V) whose
intersection is bounded. We start by showing how to find a subset whose intersection is
pointed, i.e., has at least one vertex.

Lemma 5. Given V∈ Rn×d, in O(nd3) time,Algorithm2computes subset H⊂ H(V)
such that

⋂
H defines a vertex.

Proof. We can compute a parametric representation of the affine subspaceA defined by
the intersection of all hyperplanes found so far inO(d3) time by Gaussian elimination.
With each DeleteRay call in Algorithm 2, we find a hyperplane that cuts off some ray in
the previous affine subspace (see Fig. 4). It follows that the dimension ofA decreases
with every iteration.

Primal–Dual Methods for Vertex and Facet Enumeration 341

Algorithm 2. FindPointedCone

H ← ∅. Er ← x ∈ Rd\{O}.A← Rd.
while |H | < d do

h← DeleteRay(Er ,V)
H ← H ∪ {h}
A← A ∩ h0

Let a andb distinct points inA.
Er ← a− b.

endwhile
returnH

We now show how to augment the set of halfspaces computed by Algorithm 2 so
that the intersection of our new set is bounded. To do so, we use a constructive proof
of Carathéodory’s theorem. The version we use here is based on that presented by
Edmonds [10]. Similar ideas occur in an earlier paper by Klee [14].

Lemma 6 (The Carath´eodory Oracle). Given H∈ Rm×d such thatP(H) is a bounded
d-polytope andv0 ∈ P(H), in time O(md3) we can find V⊂ V(H) such thatv0 ∈
convV and|V | ≤ d + 1.

Proof (Sketch). LetP = P(H). Apply Lemma 1 to findv ∈ V(H). If v = v0, return
v. Otherwise, find the pointz at which the ray−→vv0 exits P. Intersect all constraints with
the minimal face containingz and recurse withz as the given point in the face. The
recursively computed set, along withv, will containv0 in its convex hull.

By duality of convex polytopes, we have the following:

Lemma 7 (The Dual Carath´eodory Oracle). Given a d-polytope P= convV and h0

such that V⊂ h+0 ,we can find in time O(|V |d3),some H⊂ H(V) such that h0 ∈ convH
and|H | ≤ d + 1.

Figure 5(a) illustrates the application of the Carath´eodory oracle to find a subset of
vertices of a polygon containing an interior pointv0 in their convex hull. In Fig. 5(b) the

Fig. 4. Successive affine subspacesAi computed by Algorithm 2.

342 D. Bremner, K. Fukuda, and A. Marzetta

Fig. 5. The primal and dual Carath´eodory oracles. (a) Using the Carath´eodory oracle to find a set of points
whose convex hull containsv0. (b) The dual problem of finding a set of facets that imply a given valid constraint
h0x ≤ 1.

equivalent dual interpretation of finding a set of facets that imply a valid inequality is
shown. In order to understand the application of Lemma 7, we note the following:

Proposition 2. Let P= {x | Ax ≤ 1} and Q= {x | A′x ≤ 1} be polyhedra such that
each row a′ of A′ is a convex combination of rows of A. P ⊆ Q.

Using Lemmas 5 and 7, we can now find a subset ofH(V) whose intersection is
bounded.

Lemma 8. Given V ∈ Rn×d, in time O(nd3) we can compute a subset H⊆ H(V)
such that

⋂
H is bounded and|H | ≤ 2d.

Proof. We start by computing setB of d facet defining halfspaces whose intersection
defines a vertex, using Algorithm 2. The proof is then similar to that of Lemmas 3 and 4.
Compute the mean vectorh̄of the normal vectors inB (see Fig. 6). Letγ = maxv∈V −h̄v.
Let h0 = −h̄/γ . Note thath+0 is valid for V , but any ray feasible for

⋂
B will be cut

off by this constraint; henceP(B)∩ h+0 is bounded. Now by applying Lemma 7 we can
find a set of halfspacesHe ⊂ H(V) such thath0 ∈ convHe. Sinceh0

0 contains at least
one vertex ofV , |He| ≤ d. By Proposition 2,P(B ∪ He) is bounded.

3. The Dual-Nondegenerate Case

In this section we describe how the results of the previous section lead to a polynomial
algorithm for facet enumeration of simple polytopes. We then give a refinement of this
algorithm that yields an algorithm whose time complexity is competitive with the known
algorithms for the primal-nondegenerate case.

From the discussion above, we know that to achieve a polynomial algorithm for facet
enumeration on a particular family of polytopes we need only have a polynomial algo-

Primal–Dual Methods for Vertex and Facet Enumeration 343

Fig. 6. Illustrating the proof of Lemma 8.

rithm for vertex enumeration for each subset of facet defining halfspaces of a polytope
in the family. Dual-nondegeneracy (i.e., simplicity) is not quite enough in itself to guar-
antee this, but it is not difficult to see that the halfspaces defining any simple polytope
can be perturbed so that they are in general position without affecting the combinatorial
structure of the polytope. In this case each dual subproblem is solvable by any number
of pivoting methods (see, e.g., [3], [7], and [9]). Equivalently (and more cleanly) we
can use lexicographic ratio testing (see Section 4.1) in the pivoting method. A basis is a
subset ofH(P) whose bounding hyperplanes define a vertex ofP. Although a pivoting
algorithm may visit many bases (or perturbed vertices) equivalent to the same vertex,
notice that any vertex of the input is simple hence will have exactly one basis. It follows
that we can again guarantee to find a witness or find all vertices ofP(Hcur) in at most
n + 1 bases (wheren = |V |, as before) output by the pivoting algorithm. In the case
where each vertex is not too degenerate, say at mostd+ δ facets meet at every vertex for
some small constantδ, we may have to wait for as many asn · (d+δ

δ

)+1 bases. Of course
this grows rather quickly as a function ofδ, but is polynomial forδ constant. In the rest
of this section we assume for ease of exposition that the polytope under consideration is
simple.

It is not completely satisfactory to perform a vertex enumeration from scratch for each
verification (FindWitness) step since each succeeding input to the vertex enumeration
algorithm consists of adding exactly one halfspace to the previous input. We now show
how to avoid this duplication of effort. We are given some subsetHcur ⊂ H(V) such that
P(Hcur) is bounded and a starting vertexv ∈ V(Hcur) (we can use the raindrop algorithm
to find a starting vertex inO(|Hcur|d2) time).

Algorithm 3 is a standard pivoting algorithm for vertex enumeration using depth-first
search. The procedure ComputeNeighbour(v, j, Hcur) finds the j th neighbour ofv in
P(Hcur). This requiresO(md) time to accomplish using a standard simplex pivot. To
check if a vertex is new (i.e., previously undiscovered by the depth-first search) we can
simply store the discovered vertices in some standard data structure such as a balanced
tree, and query this structure inO(d logn) time.

344 D. Bremner, K. Fukuda, and A. Marzetta

Algorithm 3. dfs(v, Hcur)

for j ∈ 1 · · ·d do
v′ ← ComputeNeighbour(v, j, Hcur)

if new(v′) then
dfs(v′, Hcur)

endif
endfor

We could use Algorithm 3 as a subroutine to find witnesses for Algorithm 1, but we
can also modify Algorithm 3 so that it finds new facets as a side effect. We are given
a subsetH0 ⊂ H(V) as before and a starting vertexv ∈ V(H0) with the additional
restriction thatv is a vertex of the input. In order to find a vertex ofP(H0) that is also a
vertex of the input, we find an arbitrary vertex ofP(H0) using Lemma 1. If this vertex
is not a vertex of the input, then we apply DeleteVertex to find a new halfspace which
cuts it off, and repeat. In what follows, we assume the halfspaces defining the current
intermediate polytope are stored in some global dictionary; we sometimes denote this set
of halfspaces asHcur. We modify Algorithm 3 by replacing the call to ComputeNeighbour
with a call to the procedure ComputeNeighbour2. In addition to the neighbouring vertex
v′, ComputeNeighbour2 computes the (at most one) halfspace definingv′ not already
known. Suppose we have foundv (i.e.,v is a vertex of the current intermediate polytope).
SinceP is simple we must have also found all of the halfspaces definingv. It follows
that we have a halfspace description of each edge leavingv. Since we have a halfspace
description of the edges, we can pivot fromv to some neighbouring vertexv′ of the
current intermediate polytope. Ifv′ ∈ V , then we knowv′ must be adjacent tov in
convV ; otherwise we can cutv′ off using our DeleteVertex routine. IfP is simple,
then no perturbation is necessary, since we will cut off degenerate vertices rather than
trying to pivot away from them. Thus ComputeNeighbour2 can be implemented as in
Algorithm 4.

Lemma 9. With O(mnd) preprocessing, ComputeNeighbour2takes time O(md +
k(md+ nd2)), where k is the number of new halfspaces discovered.

Algorithm 4. ComputeNeighbour2(v, j, Hcur)

repeat
ṽ← ComputeNeighbour(v, j, Hcur)

If ṽ /∈ V then
h← DeleteVertex(ṽ, Hcur,V)
AddToDictionary(h, Hcur)

end if
until ṽ ∈ V
returnṽ

Primal–Dual Methods for Vertex and Facet Enumeration 345

Proof. As mentioned above, ComputeNeighbour takesO(md) time. The procedure
AddToDictionary merges the newly discovered halfspace into the global dictionary.
SinceP is simple, we know the new halfspace will be strictly satisfied by the current
vertexv; it follows that we can merge it into the dictionary by making the slack variable
basic. This amounts to a basis transformation of the bounding hyperplane, which can be
done inO(d2) time.

Since the search problem is completely static (i.e., there are no insertions or deletions),
it is relatively easy to achieve a query time ofO(d+ logn), with a preprocessing cost of
O(n(d+ logn)) using, e.g.,kd-trees [15]. We claim that the inequalityn ≤ 2md follows
from the Upper Bound Theorem. For 0≤ d ≤ 3 this is easily verified. Ford ≥ 4,

n ≤ 2

(
m− bd/2c
bd/2c

)
(Upper Bound Theorem)

≤ 2mbd/2c

bd/2c!
≤ md/2 = 2(d logm)/2 (d ≥ 4).

It follows thatd+ logn ≤ 2md, hence the query time isO(md), and the preprocessing
time isO(nmd). Since each pivot in ComputeNeighbour2 that does not discover a vertex
of V discovers a facet of convV , we can charge the time for those pivots to the facets
discovered.

A depth-first-search-based primal–dual algorithm is given in Algorithm 5. Note
that we do not need an additional data structure or query step to determine
if a v′ is newly discovered. We simply mark each vertex as discovered when we
search in ComputeNeighbour2. Furthermore, forP simple,m ≤ n. Thus we have the
following:

Theorem 3. Given V∈ Rn×d, if convV is simple, we can compute H= H(V) in time
O(n|H |d2).

Algorithm 5. pddfs(v, H0)

Hcur← H0

For j ∈ 1 · · ·d do
v′ ← ComputeNeighbour2(v, j, Hcur) add new halfspaces to Hcur

if new(v′) then
Hcur← Hcur∪ pddfs(v′)

endif
endfor
returnHcur

346 D. Bremner, K. Fukuda, and A. Marzetta

4. The Dual-Degenerate Case

We would like an algorithm that is useful for moderately dual-degenerate polytopes. In
a standard pivoting algorithm for vertex enumeration based on depth- or breadth-first
search, previously discovered bases must be stored. Since the number of bases is not
necessarily polynomially bounded in the dual-degenerate case3 we turn toreverse search
[3] which allows us to enumerate the vertices of a nonsimple polytope without storing the
bases visited. The rest of this section is organized as follows. Section 4.1 explains how
to use reverse search for vertex enumeration of nonsimple polytopes via lexicographic
pivoting. Section 4.2 shows how to construct a primal–dual facet enumeration algorithm
analogous to Algorithm 5 but with the recursion or stack-based depth-first search replaced
by the “memoryless” reverse search.

4.1. Lexicographic Reverse Search

The essence of reverse search in the simple case is as follows. Choose an objective
function (direction of optimization) so that there is a unique optimum vertex. Fix some
arbitrary pivot rule. From any vertex of the polytope there is a unique sequence of pivots
taken by the simplex method to this vertex (see Fig. 7(a)). If we take the union of these
paths to the optimum vertex, it forms a tree, directed towards the root. It is easy to see
algebraicly that the simplex pivot is reversible; in fact one just exchanges the roles of the
leaving and entering variable. Thus we can perform depth-first search on the “simplex
tree” by reversing the pivots from the root (see Fig. 7(b)). No storage is needed to
backtrack, since we merely pivot towards the optimum vertex.

In this section we discuss a technique for dealing with degeneracy in reverse search. In
essence what is required is a method for dealing with degeneracy in the simplex method.

Fig. 7. Reverse search on a 3-cube. (a) The “simplex tree” induced by the objective−1. (b) The corresponding
reverse search tree.

3 Even if the number of bases is bounded by a small polynomial in the input size, any superlinear space
usage may be impractical for large problems.

Primal–Dual Methods for Vertex and Facet Enumeration 347

Here we use the method oflexicographic pivoting, which can be shown to be equivalent
to a standard symbolic perturbation of the constant vectorb in the systemAx ≤ b (see,
e.g., [7] for discussion). Since the words “lexicographic” and “lexicographically” are
somewhat ubiquitous in the remainder of this paper, we sometimes abbreviate them to
“lex.”

In order to present how reverse search works in the nonsimple case, we need to
discuss in more detail the notions of dictionaries and pivoting used in Section 2. We
start by representing a polytope as a system of linear equalities where all of the variables
are constrained to be nonnegative. LetP be ad-polytope defined by a system ofm
inequalities. As before, convert each inequality to an equality by adding a slack variable.
By solving for the original variables along with some set ofm−d slacks and eliminating
the original variables from them− d equations with slack variables on the left-hand
side, we arrive at theslack representationof P. Geometrically, this transformation can
be viewed as coordinatizing each point in the polyhedron by its scaled distance from
the bounding hyperplanes. By renaming slack variables, we may assume that the slack
representation has the form

Ax = b, where A = [I A′], A′ ∈ R(m−d)×d. (3)

For J ⊂ Z+ and vectorx, let xJ denote the vector of elements ofx indexed by
J. Similarly, for matrix A, let AJ denote the subset of columns ofA indexed byJ. If
rankAJ = |J| = rankA, we call J a basisfor A, and callAJ a basis matrix. Suppose
B ⊂ {1 · · ·m} defines a basis of (3) (i.e., a basis forA). Let C (the cobasis) denote
{1 · · ·m}\B. We can rewrite (3) as

b = ABxB + ACxC.

Rearranging, we have the familiar form of a dictionary

xB = A−1
B b− A−1

B ACxC. (4)

The solutionβ = A−1
B b obtained by setting the cobasic variables to zero is called a

basicsolution. Ifβ ≥ O, thenβ is a called abasic feasible solutionor feasible basis.
Each feasible basis of (3) corresponds to a basis of some vertex of the corresponding
polyhedron, in the sense of an affinely independent set ofd supporting hyperplanes;
by settingxi = 0, i ∈ C we specifyd inequalities to be satisfied with equality. If the
corresponding vertex is simple, then the resulting values forxB will be strictly positive,
i.e., no other inequality will be satisfied with equality. In the rest of this paper we use
basis in the (standard linear programming) sense of a set of linearly independent columns
of A and reservecobasisfor the corresponding set of supporting hyperplanes incident
on the vertex (or, equivalently, the set of indices of the corresponding slack variables).
A pivotoperation moves between feasible bases by replacing exactly one variable in the
cobasis with one from the basis. To pivot to a new basis, start by choosing some cobasic
variablexk in C to increase. Letβ = A−1

B b and letA′ = A−1
B AC. The standard simplex

ratio test looks for the first basic variable forced to zero by increasingxk, i.e., it looks for

min
a′ik>0

βi

a′ik
.

348 D. Bremner, K. Fukuda, and A. Marzetta

In the general (nonsimple) case, there will be ties for this minimum ratio. Define

L(B) ≡ [β A−1
B],

L ′(B)i j ≡
{∞ if a′ik = 0,

L(B)i, j /a′ik otherwise.

To choose a variable to leave the basis, we find the lexmin row ofL ′(B), i.e., we
first apply the standard ratio test toβ and then break ties by applying the same test to
successive columns ofL(B). Intuitively, this simulates performing the standard ratio test
in a perturbed systemAx ≤ b+EεwhereEεi = ε i for some 0< ε ¿ 1. This perturbation is
equivalent to perturbing the hyperplanes sequentially in index order, with each successive
hyperplane pushed outward by a smaller amount. That there is a unique choice for the
leaving variable (i.e., that the corresponding vertex of the perturbed polytope is simple)
follows from the fact thatA−1

B is nonsingular.
A vector x is called lexicographically positiveif x 6= O and the lowest indexed

nonzero entry is positive. A basisB is called lexicographically positive if every row of
L(B) is lexicographically positive. LetB be a basis set and letC be the corresponding
cobasis set. Given an objective vectorω, theobjective rowof a dictionary is defined by

z= ωx = ωBxB + ωCxC

substituting forxB from (4),

= ωB A−1
B b+ (ωC − ωB A−1

B AC)xC.

The simplex method chooses a cobasic variable to increase with a positive coefficient
in thecost rowωC − ωB A−1

B AC (i.e., a variablexj such that increasingxj will increase
the objective valuez). Geometrically, we know that increasing a slack variablexk will
increase (resp. decrease) the objective functionωx iff the inner product of the objective
vector with the outer normal of the corresponding halfspaceh+k is negative (resp. posi-
tive). Every cobasisC for vertexv defines a polyhedral conePC with apexv containing
P. A cobasis is optimal for objective vectorω∗ ∈ Rd if (v + ω∗) ∈ (v − PC) (note
thatω∗ is the original objective vector before transforming to the slack representation).
Reinterpreting in terms of the slack representation, we have the following standard result
of linear programming (see, e.g., [7]).

Proposition 3. If the cost row has no positive entry, then the current basic feasible
solution is optimal.

If the entering variable is chosen with a positive cost row coefficient, and the leaving vari-
able is chosen by the lexicographic ratio test, we call the resulting pivot alexicographic
pivot. A vectorv is lexicographically greaterthan a vectorv′ if v−v′ is lexicographically
positive. The following facts are known about lexicographic pivoting:

Primal–Dual Methods for Vertex and Facet Enumeration 349

Proposition 4 [13]. Let S be lexicographically positive basis, let T be a basis arrived
at from S by a lexicographic pivot, and letω be a nonzero objective vector.

(a) T is lexicographically positive, and
(b) ωT L(T) is lexicographically greater thanωSL(S).

A basis is calledlex optimalif it is lexicographically positive, and there are no positive
entries in the corresponding cost row. In order to perform reverse search, we would like
a unique lex optimal basis. We claim that ifC = {m − d + 1 · · ·m}, we can fixC
as the unique lex optimal basis by choosing as the objective function−∑i∈C xi . This
is equivalent to choosing the mean of the outward normals of the hyperplanes inC as
objective direction. If we consider an equivalent perturbed polytope, the intuition is that
all of the perturbed vertices corresponding to a single original vertex are contained in
the cone defined by the lex maximal cobasis (see Figure 8).

Lemma 10. Let S= {1 · · ·m− d} denote the initial basis defined by the slack repre-
sentation. For objective vectorω = [Om−d,−1d], a lex positive basis B has a positive
entry in the cost row if and only if B6= S.

Proof. The cost row forS is −1d. Let B be a lex positive basis distinct fromS, and
let β denote the basic part of the corresponding basic feasible solution. Letk denote the
number of nonidentity columns inAB. If ωBβ < 0, then there must be some positive
entry in the cost row sinceβ is not optimal. Suppose thatωBβ = 0. It follows that
β = [β ′,Ok] sinceωB = [Om−d−k,−1k] andβ ≥ O. Let j be the first column ofAB

that is not columnj of an(m−d)× (m−d) identity matrix. Leta = [O, â] denote row
j of AB. Since the firstm− d − k columns ofAB are identity columns,̂a is ak-vector.
Letα = [α′, α̂] be columnj of A−1

B , whereα̂ is also ak-vector. Sincêaα̂ = 1, we know
α̂ 6= O. By the lex positivity ofL(B), along with the fact thatβ = [β ′,Ok] and the fact
that the firstj −1 columns ofA−1

B are identity columns, it follows that̂α has no negative
entries. It follows that elementj of ωB A−1

B is negative. Since identity columnj is not in
AB, it must be present inAC, in position j ′ < k. It follows that elementj ′ of ωB A−1

B AC

is negative, hence elementj ′ of the cost row is positive.

From the preceding two lemmas, we can see that the lexicographically positive bases
can be enumerated by reverse search from a unique lex optimal basis. The following
tells us that this suffices to enumerate all of the vertices of a polytope.

Lemma 11. Every vertex of a polytope has a lexicographically positive basis.

Proof. Let P be a polytope. Letv be an arbitrary vertex ofP. Choose some objective
function so thatv is the unique optimum. Choose an initial lex positive basis. Run the
simplex method with lexicographic pivoting. Since there are only a finite number of
bases, and by Proposition 4 lexicographic pivoting does not repeat a basis, we must
eventually reach some basis ofv. Since lexicographic pivoting maintains a lex positive
basis at every step, this basis must be lex positive.

350 D. Bremner, K. Fukuda, and A. Marzetta

Fig. 8. Lexicographic perturbation and incremental construction. (a) Sequentially perturbing the halfspaces
defining a vertex. (b) Intersecting the perturbed halfspaces in reverse order.

Algorithm 6 gives a schematic version of the lexicographic reverse search algorithm.
We rename variables so thatCopt= {m− d + 1 · · ·m} is a cobasis of the initial vertex
v0. The routine PivotToOpt does a lexicographic pivot towards this cobasis with the
objective functionω = [Om−d,−1d]. If there is more than one cobasic variable with
a positive cost coefficient, then we choose the one with the lowest index. PivotToOpt
returns not only the new cobasis, but the index of the column of the basis that entered.
The test IsPivot(C′,C) determines whether(C, k) = PivotToOpt(C′) for somek.

As before, we could use Algorithm 6 to implement a verification (FindWitness) step
by performing a vertex enumeration from scratch. In the next section we discuss how
to construct an algorithm analogous to Algorithm 5 that performs only a single vertex
enumeration, but which uses reverse search instead of a standard depth-first search.

Primal–Dual Methods for Vertex and Facet Enumeration 351

Algorithm 6. ReverseSearch(H, v0)

C← Copt, j ← 1, AddToDictionary(H0, Hcur)

repeat
while j ≤ d

C′ ← ComputeNeighbour(C, j, Hcur)

if IsPivot(C′,C) then
C← C′, j ← 1 down edge

else
j ← j + 1 next sibling

endif
endwhile
(C, j)← PivotToOpt(C) up edge
j ← j + 1.

until j > d andC = Copt

4.2. Primal–Dual Reverse Search

In this section we give a modification of Algorithm 6 that computes the facet defining
halfspaces as a side effect. Define pdReverseSearch(H0, v0) as Algorithm 6 with the call
to ComputeNeighbour replaced with a call to ComputeNeighbour2. As in Section 3, we
suppose that preprocessing steps have given us an initial set of facet defining halfspaces
H0 such thatP(H0) is bounded and there is somev0 that is a vertex of the input and
of P(H0). It turns out that the numbering of halfspaces is crucial. We number thej th
halfspace discovered (including preprocessing) asm− j (of course, we do not know what
m is until the algorithm completes, but this does not prevent us from ordering indices).
This reverse ordering corresponds to pushing later discovered hyperplanes out farther,
thus leaving the skeleton of earlier discovered vertices and edges undisturbed; compare
Fig. 8(b), where halfspaces are numbered as in pdReverseSearch, with Fig. 9, where a
different insertion order causes intermediate vertices to be cut off.

The modified algorithm pdReverseSearch can be considered as a simulation of a
“restricted” reverse search algorithm for vertex enumeration where we are given access
only to a subset of the halfspaces, and where the “input halfspaces” are labeled in a

Fig. 9. A perturbed vertex cut off by later halfspaces.

352 D. Bremner, K. Fukuda, and A. Marzetta

special way. Since the lexicographic reverse search described in the previous section
works for each labeling of the halfspaces, to show that the restricted reverse search
correctly enumerates the vertices ofP, we need only show that it visits the same set
of cobases as the unrestricted algorithm would, if given the same labeling and initial
cobasis.

Let Ax = b, A ∈ R(m−d)×m, be the slack representation of ad-polytope. We can write
the slack representation in homogeneous formS= [I A′ − b] where A′ ∈ R(m−d)×d.
Suppose at some step of the restricted reverse search the lowest indexed halfspace visited
(including initialization) isk + 1. The restricted reverse search therefore has access to
all of Sexcept for the firstk− 1 rows and the firstk− 1 columns.

Let K denote{k · · ·m} for somek ≤ m− d. For any cobasisC ⊂ K , let B̂ denote
K\C. We define thek-restricted basis matrixfor C as the lastm− d − k + 1 rows of
AB̂. Let R denote thek-restricted basis matrix forC, and letρ denoteR−1bK . By the
k-restricted lexicographic ratio testwe mean the lexicographic ratio test applied to the
matrix [ρ R−1]. By way of contrast we use theunrestrictedlexicographic ratio test or
basis matrix to mean the previously defined lexicographic ratio test or basis matrix.

We observe that the restricted basis matrix is a submatrix of the unrestricted basis
matrix for a given cobasis, and that this property is preserved by matrix inversion. Let
R denote thek-restricted basis forC. Let U denote the (unrestricted) basis matrix for
C. Sincek ≤ m− d, and the firstm− d columns of the slack representation form an
identity matrix, we know columns ofU beforek must be identity columns. It follows
that

U =
[

I M
O R

]
for some matrixM . The reader can verify the following matrix identity:

U−1 =
[

I M
O R

]−1

=
[

I −M R−1

O R−1

]
. (5)

The edges of the reverse search tree are pivots. Referring to our interpretation of lex
pivoting as a perturbation, in order that both versions of the reverse search generate the
same perturbed vertex/edge tree, they must generate the same set of pivots. We argue first
that choosing the same hyperplane to leave the cobasis (i.e., edge to leave the perturbed
vertex), yields the same hyperplane to enter the cobasis in both cases (i.e., the same
perturbed vertex).

Lemma 12. Let P be a d-polytope and let Ax= b be the slack representation of P. Let
C ⊂ {k · · ·m} be a cobasis for Ax= b. For k ≤ m−d and for any entering variable xs,
if there is a candidate leaving variable xt with t ≥ k, then the leaving variable chosen by
the lexicographic ratio test is identical to that chosen by the k-restricted lexicographic
ratio test.

Proof. Let β denoteU−1b. As above, letρ denoteR−1bK . One consequence of (5) is
thatρ = βK . If there is exactly one candidate leaving variable, then by the assumptions of
the lemma it must have index at leastk, and both ratio tests will find the same minimum.
If on the other hand there is a tie in the minimum ratio test applied toβ, then a variable

Primal–Dual Methods for Vertex and Facet Enumeration 353

with index at leastk will always be preferred by the unrestricted lexicographic ratio test,
since in the columns ofU−1 with index less thank, these variables will have ratio 0.

The up (backtracking) edges in the reverse search tree consist of lex pivots where the
lowest indexed cobasic variable with a positive cost coefficient is chosen as the entering
variable (i.e., the lowest indexed tight constraint that can profitably be loosened). The
previous lemma tells us that for a fixed entering variable and cobasis, the restricted and
unrestricted reverse search will choose the same leaving variable. It remains to show
that in a backtracking pivot towards the optimum cobasis they will choose the same
entering variable. Given a fixed set of halfspaces{h+1 , h+2 , . . . , h+d } (a cobasis) and a
fixed vectorω∗ (direction of optimization), the signs of the cost vector depend only on
the signs ofω∗hi , 1≤ i ≤ d. We can in fact show something slightly stronger, since our
objective vectorω (with respect the slack representation) does not involve hyperplanes
with index less thank. As above, letK = {k · · ·m} and B̂ = K\C. Analogous to the
definition of ak-restricted basis matrix, we define thek-restricted cost rowfor cobasisC
asωC−ωB̂ R−1 ÂC whereR is thek-restricted basis matrix and̂AC is the lastm−d−k+1
rows of AC.

Lemma 13. For objective vectorω = [Om−d, ω′], for k ≤ m−d, the cost row and the
k-restricted cost row are identical.

Proof. As before, letR andU be the restricted and unrestricted basis matrices, respec-
tively. From the form of the objective vector, we knowωB = [Ok−1, ωB̂]. By (5),

ωBU−1AC = [Ok−1 ωB̂]

[
I −M R−1

O R−1

] [
A′

ÂC.

]
= ωB̂ R−1 ÂC.

In the case of down edges in the reverse search tree, each possible entering variable
(hyperplane to leave the cobasis) is tested in turn, in order of increasing index. Thus if
the previous backtracking pivot to a cobasis was identical in the two algorithms, the next
down edge will be also. Reverse search is just depth-first search on a particular spanning
tree; hence it visits the nodes of the tree in a sequence (with repetition) defined by the
ordering of edges. The ordering of edges at any node in the reverse search tree is in turn
determined by the numbering of hyperplanes.

Lemma 14. Let P be a polytope.Let H0 be a subset ofH(P)with bounded intersection.
Let v0 ∈ V(H0) ∩ V(P). The set of cobases visited bypdReverseSearch(H0, v0) is the
same as that visited byReverseSearch(H(P), v0) if ReverseSearchis given the same
halfspace numbering.

Proof. We can think of the sequences of cobases as chains connected by pivots. Let
Cr = 〈C1,C2, . . .〉 be the chain of cobases visited by pdReverseSearch(H0, v0). Let
Cu be the chain of cobases visited by ReverseSearch(H(P), v0). Both sequences start
at the same cobasis since the starting cobasis is the one with the lex maximum set of

354 D. Bremner, K. Fukuda, and A. Marzetta

indices. Now suppose the two sequences are identical up to elementj ; further suppose
that

⋃
i≤ j Ci = k+ 1 · · ·m. There are two cases. If the edge inCr from Cj to Cj+1 is

a reverse (down) edge, then we start pivoting fromCj to Cj+1 by fixing some entering
variable and choosing the leaving variable lexicographically.Cj+1 contains at most one
variable not present inCi , i ≤ j ; this variable is numberedk, if present. Lets denote
the position of the entering variable inCj (i.e., the column to leave the cobasis matrix).
Since the cobasis in positionCj will have occurreds− 1 times in both sequences, we
know that ReverseSearch and pdReverseSearch will choose the same entering variable.
By Lemma 12, they will choose the same leaving variable. The test IsPivot(Cj+1,Cj)

depends only on the cost row, so by Lemma 13 the next cobasis inCu will also beCj+1.
Suppose on the other hand the pivot fromCj to Cj+1 is a forward pivot. We know from
Lemma 13 that both invocations will choose the same entering variable, and we again
apply Lemma 12 to see that they will choose the same leaving variable.

Theorem 4. Given V ∈ Rn×d, let m denote|H(V)|, and letϕ denote the number of
lexicographically positive bases ofH(V).

(a) We can computeH(V) in time O(ϕmd2) and space O((m+ n)d).
(b) We can decide ifconvV is simple in time O(n2d + nd3).

Proof. (a) Total cost for finding an initial set of halfspaces isO(nkd2), wherek is
the size of the initial set. Since every DeleteVertex call finds a new halfspace, the total
cost for these calls isO(nmd2). In every call to ComputeNeighbour2, each pivot except
the last one discovers a new halfspace. Those which discover new halfspaces have total
costO(m2d) which is O(ϕmd); the other pivots costO(ϕmd2) as there areϕd calls to
ComputeNeighbour2. Theϕ forward pivots (PivotToOpt) costO(ϕmd).

(b) At any step of the reverse search, we can read the number of halfspaces satisfied
with equality by the current vertex off the dictionary inO(m) time. From the Lower
Bound Theorem [4] for simple polytopes, ifP is simple, thenm ≤ 2(n/d + d) for
d ≥ 2. If we reach a degenerate vertex, or discover more than 2(n/d + d) facets,
we stop. If the reverse search terminates, then inO(nmd) time we can compute the
number of facets meeting at each vertex. The total cost is thusO(n(n/d + d)d2) =
O(n2d + nd3).

Theorem 4(b) is of independent interest since the problem of givenH , deciding
whetherP(H) is simple is known to be NP-complete in the strong sense [11].

5. Experimental Results

In order to test whether primal–dual reverse search is of practical value, we have imple-
mented it and compared its performance with Avis’s implementation of reverse search [1].
Both programs are written in C and use rational arithmetic, which allows for a fair com-
parison. We present experiments with two families of polytopes: (1) certain simple poly-
topes which show the best and the worst behaviour of both programs and (2) products
of cyclic polytopes which are degenerate for both programs.

Primal–Dual Methods for Vertex and Facet Enumeration 355

Fig. 10. Running time for products of simplicesTd × Td.

The memory requirements of our implementation are twice the input size plus twice
the output size, as the program stores four dictionaries: a constant vertex dictionaryV
and a growing halfspace dictionaryHcur in unpivoted form, and a working copy of both.
The program uses an earlier version of the preprocessing step, with an upper bound
of O(nd4) compared with the current bound ofO(nd3). The source code is available
at http://wwwjn.inf.ethz.ch/ambros/pd.html . In what follows,pd is our
implementation of primal–dual reverse search andlrs is Avis’s implementation of reverse
search. All of the experiments have been performed on a Digital AlphaServer 4/233 with
256M of real memory and 512M of virtual memory.

Figure 10 compares the running time of the two programs on products of two sim-
plices. These 2d-dimensional polytopes have 2d+2 facets and(d+1)2 vertices. They are
simple (which is ideal for vertex enumeration bylrs and facet enumeration bypd), but
have extremely high triangulation complexity [2], which is bad for vertex enumeration
by pd and facet enumeration bylrs, because the perturbation of the vertices made by
the algorithms induces a triangulation of the polytope’s boundary. On the plot, we show
the times for enumerating both the facets and the vertices. As expected,pd is clearly
superior tolrs for facet enumeration of these polytopes. Their very few facets are all
found by the preprocessing of our current implementation; in fact, this accounts for most
of the time taken bypd on these examples.

A less asymmetric example is the product of cyclic polytopesCk(n)×Ck(n)× · · ·×
Ck(n). These polytopes are neither simple nor simplicial. Moreover, it is known [2] that
both their primal and their dual triangulations are superpolynomial; nonetheless exper-
imentally it seems that the dual triangulations are smaller than the primal ones. This
is advantageous forpd, meaning that the perturbation made bypd for facet enumera-
tion produces less bases than the one made bylrs. This difference is reflected in the
relative performance of the two programs. The relation between the primal and dual

356 D. Bremner, K. Fukuda, and A. Marzetta

Fig. 11. Triangulation size (number of bases computed) ofC4(n)× C4(n).

triangulation sizes (number of bases computed by either algorithm) ofC4(n) × C4(n)
(eight-dimensional polytopes withn2 vertices andO(n2) facets) shown in Fig. 11 is
similar to the relation of the running times shown in Fig. 12.

6. Conclusions

An alternative approach to achieving an algorithm polynomial for the dual-nondegenerate
case is to modify the method of Gritzmann and Klee [12]. An idea due to Clarkson [8]
can be used to reduce the row size of each of these linear programs toO(m′) wherem′

is the maximum number of facets meeting at a vertex. If we assume thatm′ ≤ d+ δ for
some constantδ, then we can solve each linear program by brute force in time polynomial
in d. It seems that such an approach will be inherently quadratic in the input size since
the entire set of input halfspaces is considered to enumerate the vertices of each facet.

It would be interesting to remove the requirement in Theorem 1 that the family be
facet-hereditary, but it seems difficult to prove things in general about the polytopes
formed by subsets of the halfspace description of a known polytope.

Fig. 12. CPU time for facet enumeration ofC4(n)× C4(n).

Primal–Dual Methods for Vertex and Facet Enumeration 357

Acknowledgments

The authors would like to thank David Avis for useful discussions on this topic, and for
writing lrs. We would also like to thank an anonymous referee for a careful reading of
this paper and several helpful suggestions.

References

1. D. Avis. A C implementation of the reverse search vertex enumeration algorithm. Technical Report RIMS
Kokyuroku 872, Kyoto University, May 1994. (Revised version of Technical Report SOCS-92.12, School
of Computer Science, McGill University).

2. D. Avis, D. Bremner, and R. Seidel. How good are convex hull algorithms?Comput. Geom. Theory Appl.,
7(5–6):265–301, 1997.

3. D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enumeration of arrangements
and polyhedra.Discrete Comput. Geom., 8:295–313, 1992.

4. D. W. Barnette. The minimum number of vertices of a simple polytope.Israel J. Math., 10:121–125, 1971.
5. A. Brøndsted.Introduction to Convex Polytopes. Springer-Verlag, Berlin, 1981.
6. D. Chand and S. Kapur. An algorithm for convex polytopes.J. Assoc. Comput. Mach., 17:78–86, 1970.
7. V. Chvátal.Linear Programming. Freeman, New York, 1983.
8. K. L. Clarkson. More output-sensitive geometric algorithms. InProc. 35th IEEE Symp. Found. Comput.

Sci., pages 695–702, 1994.
9. M. Dyer. The complexity of vertex enumeration methods.Math. Oper. Res., 8(3):381–402, 1983.

10. J. Edmonds. Decomposition using Minkowski. Abstracts of the 14th International Symposium on Mathe-
matical Programming, Amsterdam, 1991.

11. K. Fukuda, T. M. Liebling, and F. Margot. Analysis of backtrack algorithms for listing all vertices and all
faces of a convex polyhedron.Comput. Geom. Theory Appl., 8:1–12, 1997.

12. P. Gritzmann and V. Klee. On the complexity of some basic problems in computational convexity: II.
Volume and mixed volumes. In T. Bisztriczky, P. McMullen, R. Schneider, and A. I. Weiss, editors,
Polytopes: Abstract, Convex, and Computational, number 440 in NATO Adv. Sci. Inst. Ser. C Math. Phys.
Sci., pages 373–466. Kluwer, Dordrecht, 1994.

13. J. P. Ignizio and T. M. Cavalier.Linear Programming, pages 118–122. Prentice-Hall International Series
in Industrial and Systems Engineering. Prentice-Hall, Englewood Cliffs, NJ, 1994.

14. V. Klee. Extreme points of convex sets without completeness of the scalar field.Mathematika, 11:59–63,
1964.

15. K. Mehlhorn.Data Structures and Algorithms3: Multi-dimensional Searching and Computational Geom-
etry, volume 3 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Heidelberg,
1984.

16. K. Murty. The gravitational method for linear programming.Opsearch, 23:206–214, 1986.
17. R. Seidel. Output-size sensitive algorithms for constructive problems in computational geometry. Ph.D.

thesis, Technical Report TR 86-784, Dept. Computer Science, Cornell University, Ithaca, NY, 1986.
18. G. Swart. Finding the convex hull facet by facet.J. Algorithms, 6:17–48, 1985.

Received July31, 1997,and in revised form March8, 1998.

