Discrete Comput Geom 20:333-357 (1998)

Geometry

© 1998 Springer-Verlag New York Inc.

Primal-Dual Methods for Vertex and Facet Enumerationt

D. Bremner K. FukudaZ3 and A. Marzetta

1Department of Mathematics, University of Washington,
Seattle, WA 98195, USA
bremner@math.washington.edu

2Department of Mathematics,
Swiss Federal Institute of Technology,
Lausanne, Switzerland

S|nstitute for Operations Research,
Swiss Federal Institute of Technology,
Zurich, Switzerland
fukuda@ifor.math.ethz.ch

“Institute for Theoretical Computer Science,
Swiss Federal Institute of Technology,
Zurich, Switzerland

marzetta@inf.ethz.ch

Abstract. Every convex polytope can be represented as the intersection of a finite set of
halfspaces and as the convex hull of its vertices. Transforming from the halfspace (resp.
vertex) to the vertex (resp. halfspace) representation is calgelx enumeratiofresp facet
enumeratiol An open question is whether there is an algorithm for these two problems
(equivalent by geometric duality) that is polynomial in the input size and the output size.
In this paper we extend the known polynomially solvable classes of polytopes by looking
at the dual problems. Thadual problem of a vertex (resp. facet) enumeration problem is
the facet (resp. vertex) enumeration problem for the same polytope where the input and
output are simply interchanged. For a particular class of polytopes and a fixed algorithm,
one transformation may be much easier than its dual. In this paper we propose a new class
of algorithms that take advantage of this phenomenon. Loosely spegkingl—dual
algorithms use a solution to the easy direction as an oracle to help solve the seemingly hard
direction.

* The first author’s research was supported by NSERC Canada, FCABeQuand the J.W. McConnell
Foundation.

334 D. Bremner, K. Fukuda, and A. Marzetta
1. Introduction

A polytopeis the bounded intersection of a finite set of halfspac&$ifT heverticesof a
polytope are those feasible points that do not lie in the interior of a line segment between
two other feasible points. Every polytofecan be represented as the intersection of a
nonredundant set of halfspackgP) and as the convex hull of its verticéX P). The
problem of transforming frorf (P) to V(P) is calledvertex enumeratigriransforming

from V(P) to H(P) is calledfacet enumerationr convex hull

An algorithm is said to b@olynomialif the time to solve any instance is bounded
above by a polynomial in the size of input and output. We consider the input (resp.
output) size to be the number of real (or rational) numbers needed to represent the
input (resp. output); in particular we do not consider the dimension to be a constant. We
assume each single arithmetic operation takes a constant amount bftisuecessively
polynomial algorithms one whosdkth output is generated in time polynomialkrand
the input sizes, for eachk less than or equal to the cardinality of output. Clearly, every
successively polynomial algorithm is a polynomial algorithm. We assume that a polytope
is full-dimensional and contains the origin in its interior; under these condftiarsex
enumeration and facet enumeration are polynomially equivalent, that is, the existence of
a polynomial algorithm for one problem implies the same for the other problem. Several
polynomial algorithms (see, e.qg., [3], [6], [7], [9], [17], and [18]) are known under strong
assumptions of nondegeneracy, which restrict input polytopes to be simple in the case of
vertex enumeration and simplicial in the case of facet enumeration. However, it is open
whether there exists a polynomial algorithm in general.

In this paper we extend the known polynomially solvable classes by looking at the
dual problems. Theual problem of a vertex (resp. facet) enumeration problem is the
facet (resp. vertex) enumeration problem for the same polytope where the input and
output are simply interchanged. For a particular class of polytopes and a fixed algorithm,
one transformation may be much easier than its dual. One might be tempted to explain
this possible asymmetry by observing that the standard nondegeneracy assumption is
not self-dual. Are the dual problems of nondegenerate vertex (facet) enumeration prob-
lems harder? More generally, are the complexities of the primal and the dual problem
distinct?

Here we show in a certain sense that the primal and dual problems are of the same
complexity. More precisely, we show the following theorem: if there is a successively
polynomial algorithm for the vertex (resp. facet) enumeration problem for a hereditary
class of problems, then there is a successively polynomial algorithm for the facet (resp.
vertex) enumeration problem for the same class, where a hereditary class contains all
subproblems of any instance in the class. We propose a new class of algorithms that take
advantage of this phenomenon. Loosely spealdrimal-dualalgorithms use a solution
to the easy direction as an oracle to help solve the seemingly hard direction.

1 This assumption is merely to simplify our discussion. One can easily analyze the complexity of an algo-
rithm in our primal-dual framework for the binary representation model and in general its binary complexity
depends only on that of the associated “base” algorithm.

2 We discuss these assumptions further in Section 2.2.

Primal-Dual Methods for Vertex and Facet Enumeration 335

From this general result relating the complexity of the primal and dual problems, and
known polynomial algorithms for the primal-nondegenerate case, we arrive at a polyno-
mial algorithm for vertex enumeration for simplicial polytopes and facet enumeration for
simple polytopes. We then show how to refine this algorithm to yield an algorithm with
time complexity competitive with the algorithms known for the primal-nondegenerate
case.

The only published investigation of the dual-nondegenerate case the authors are aware
of is in a paper by Gritzmann and Klee [12]. Their approach, most easily understood
in terms of vertex enumeration, consists of intersecting the constraints with each defin-
ing hyperplane and, after removing the redundant constraints, finding the vertices lying
on that facet by some brute-force method. David Avis (private communication) has in-
dependently observed that this method can be extended to any polytope whose facets
are simple (or nearly simple) polytopes. The method of Gritzmann and Klee requires
solving O(m?) linear programs (wheren is the number of input halfspaces) to re-
move redundant constraints. Our approach does not rely on the polynomial solvability
of linear programming if an interior point is known (as is always the case for facet
enumeration).

Notation

We start by defining some notation. Recall th&tP) (resp.V(P)) is the nonredundant
halfspace (resp. vertex) description®fWe usem for |H(P)|, n for [V(P)|, andd for

the dimension dinf?. The facets oP are the intersection of the bounding hyperplanes of
H(P) with P. We useD (0X) and1 (1) to denote the vector of all zeros (of lenddfand

all ones (of lengtkk), respectively. We treat sets of points and matrices interchangeably
where convenient; the rows of a matrix are the elements of the corresponding set. Given
(row or column) vectora andb, we useabto denote the inner product afandb. Since

we assume the origin is in the interior of each polytope, each facet defining inequality
can be written a®ix < 1 for some vectoh. For a vectoth, we useh*, h—, andh®

to denote the set of pointssuch thathx < 1, hx > 1, andhx = 1, respectively. We
sometimes identify the halfspab# with the associated inequalityx < 1 where there is

no danger of confusion. We ug& H) to denote the polyhedrdix | Hx < 1}. Similarly

we useH(P) to mean the matriH whereP = {x | Hx < 1}. For a set of point¥/

we useH (V) to meanH(convV); similarly for a set of halfspacel, we useV(H)

to meanV(P(H)). We say thaht is valid for a set of pointsX (or hx < 1 is avalid
inequality) if X C h*. We make extensive use of duality of convex polytopes in what
follows. Theproper face®f a convex polytope are the intersection of some set of facets.
By adding the twamproper facesthe polytope itself and the empty set, the faces form a
lattice ordered by inclusion. Two polytopes are said teatabinatorially equivalenif

their face lattices are isomorphic addalif their face lattices are anti-isomorphic (i.e.,
isomorphic with the direction of inclusion reversed). The following is well known (see,

e.g., [5]).

Proposition 1. If P = convX is a polytope such thd@ € int P, then Q= {y | Xy <
1} is a polytope dual to P such thél € int Q.

336 D. Bremner, K. Fukuda, and A. Marzetta

2. Primal-Dual Algorithms

In this section we consider the relationship between the complexity of the primal prob-
lem and the complexity of the dual problem for vertiacet enumeration. We fix the
primal problem as facet enumeration in the rest of this paper, but the results can also be
interpreted in terms of vertex enumeration. For convenience we assume in this paper that
the input polytope is full-dimensional and contains the origin as an interior point. While

it is easy to see this is no loss of generality in the case of facet enumeration, in the case
of vertex enumeration one might need to solve a linear program to find an interior point.
We call a familyT" of polytopedfacet-hereditaryf for any P € I', foranyH’ c H(P),

if () H’ is bounded, thefi) H' is also inI". The main idea of this paper is summarized

by the following theorem.

Theorem 1. If there is a successively polynomial vertex enumeration algorithm for
a facet-hereditary family of polytopethen there is a successively polynomial facet
enumeration algorithm for the same family

Simple polytopes are not necessarily facet-hereditary, but each simple polytope can be
perturbed symbolically or lexicographically onto a combinatorially equivalent polytope
whose facet defining halfspaces are in “general position,” i.e., the arrangement of facet
inducing hyperplanes defined by the polytope is simple. The family of polytopes whose
facet inducing halfspaces are in general position is obviously facet-hereditary.

Corollary 1. There is a successively polynomial algorithm for facet enumeration of
simple polytopes and for vertex enumeration of simplicial polytopes

Proof of Theorem 1 is constructive, via the correctness of Algorithm 1. Algorithm 1
takes as input a sa&t of points inRY, and a subsety C H(V) such that) Hp is
bounded. We show below how to compute such a set of halfspaces.

At every step of the algorithm we maintain the invariant that cén P (Hcur).

When the algorithm terminates, we know thatH.) < V. It follows thatP(Hgy) C
convV. There are two main steps in this algorithm that we have labeled FindWitness and
DeleteVertex. The vertex e V(Hgy)\V is awitnessn the sense that for any such vertex,
there must be a facet {(V) not yet discovered whose defining halfspace cutd off
From the precondition of the theorem there exists a successively polynomial algorithm

Algorithm 1. PrimalDualFacetd/, Ho)

Heur < Ho

while 30 € V(Heyp)\V do FindWitness
Findh e H(V)s.t.v e h™ DeleteVertex
Heur <= Heur U {h}

endwhile

returnHeyr.

Primal-Dual Methods for Vertex and Facet Enumeration 337

to enumerate the vertices b, It follows that in time polynomial iV | we can find

V| + 1 vertices ofP(Hcyr), or discoverV(Hey) = V. If we discover|V| + 1 vertices,

one of these vertices must be a witness. In order to find the facet cutting off a witness
(the “DeleteVertex” step), we need to solve a separating hyperplane problem for a point
and convex set. The separating hyperplane problem can be solved via the following
linear program: maximiz@y subject toVy < 1. If y* is a basic optimal solution (i.e.,

a solution corresponding to a vertex of the polar polyt®je= {y | Vy < 1}) of the

linear program, they*x < 1 is the desired separating halfspace. While there are linear
programming algorithms polynomial in the bit size of the input, there are not yet any
known that are polynomial in = |V| andd, which is what we need for our theorem.

It turns out that because we have a halfspace description of the convex hull of the union
of our two sets, we can solve the separating hyperplane problem via a much simpler
algorithm. The rest of this section is organized as follows. In Section 2.1 we discuss how
to implement the DeleteVertex step without solving a linear program. In Section 2.2 we
discuss how to preprocess to eliminate the various boundedness and full-dimensionality
assumptions made above. Taken together, the results of these two sections will establish
the following stronger version of Theorem 1:

Theorem 2. Forany facet-hereditary family of polytopEsf we can generate k vertices
of an m-facet d-polytope 'Pe T (or certify that P has less than k vertick time
O(f (k, m, d)), then we can enumerate the m facets of an n-vertex d-polytope P intime

m
O(nd3+mnd2+m2d+ Z f(n+1,i —l,d)).

i=d+2

In certain cases (such as the dual-nondegenerate case considered in Section 3), we may
have a theoretical bound fdr(k, m, d) polynomial ink, m, andd. In other cases, such

a theoretical bound may be difficult to obtain, but we may have experimental evidence
that a certain method (e.g., some heuristic insertion order for an incremental algorithm)

is efficient for vertex enumeration far. In either case the techniques described in this
section can be used to obtain an efficient method for facet enumeration as well. It is
worth noting that there is no restriction of the input points to be in “convex position.”
Redundant (interior) input points will have no effect other than to slow down pivot
operations and tests for membership in the input ¢newjll be the total number of input

points, including redundant points).

2.1. Deleting Vertices without Linear Programming

Our main tool here is the pivot operation of the simplex method of linear programming.
Any inequality system

Hx <1 @

can be represented in the standard “dictionary” form (see, e.g., [7]) as follows. We
transform each inequality into an equality by adding a slack variable, to arrive at the

338 D. Bremner, K. Fukuda, and A. Marzetta

following system of linear equations dictionary:.
s=1— Hx. 2

More precisely, a dictionary for (1) is a system obtained by solving (2) for some subset of
m slack and original variables (whemeis the row size oH). A solution to (2) is feasible
for (1) if and only ifs > @. In particular, sincHO < 1, s = 1is a feasible solution to
both. The variables are naturally partitioned into two sets. The variables appearing on
the left-hand side of a dictionary are calleasic those on the right-hand side are called
cobasic A pivot operation moves between dictionaries by making one cobasic variable
(theentering variablg basic and one basic variable (fleaving variablé cobasic.

If we have a feasible point for a polytope and a halfspace descriptiosh,pivot
operations we can find a vertex of the polytope. If we ensure that each pivot does not
decrease a given objective function, then we have the following.

Lemma 1 (Raindrop Algorithm). Given He R™, » € RY, andvy € P(H), in time
O(md?) we can findv € V(H) such thaiwv > wuy.

Proof. We start by translating our system by so that our initial point is the origin.

As afinal row to our dictionary we add the the equatica wx (theobjective rovy. Note

that, by constructions = Q is a feasible solution. We start a pivot operation by choosing
some cobasic variabbg to become basic. Depending on the sign of the coefficient of
X; in the objective row, we can always increase or decrgasathout decreasing the
value ofz. As we change the value &f, some of the basic slack variables will decrease
as we get closer to the corresponding hyperplane. By considering ratios of coefficients,
we can find one of the first hyperplanes reached. By moving that slack variable to the
right-hand side (making it cobasic), and movirgto the left-hand side, we obtain a
new dictionary inO(md) time (see, e.g., [7] for details of the simplex method). We can
continue this process as long as there is a cobasariable. After exactlyd pivots, all
x-variables are basic. It follows that the corresponding basic feasible solution is a vertex
(see Fig. 1). O

The raindrop algorithm seems to be part of the folklore of Linear Programming; a
generalized version is discussed in [16].
By duality of convex polytopes we have the following.

Fig. 1. The raindrop algorithm.

Primal-Dual Methods for Vertex and Facet Enumeration 339

Fig. 2. Pivoting from a valid inequality to a facet.

Lemma 2 (Dual Raindrop Algorithm). Given V € R™9 » e RY, and hy such that
V C h{,in O(nd?) time we can find ke H(V) such that v > hoo.

Essentially this is the same as the initialization step of a gift-wrapping algorithm (see,
e.g., [6] and [18]), except that we are careful that the peiig on the same side of our
final hyperplane as the one we started with. Figure 2 illustrates the rotation dual to the
pivot operation in Lemma 1.

We can now show how to implement the DeleteVertex step of Algorithm 1 without
linear programming. Aasis Bfor a vertexv € V(H) is a set ofd rows of H such
thatBv = 1 and rankB = d. We can obviously find a basis in polynomial time; in the
pivoting-based algorithms in the following sections we will always be given a baasis for

Lemma 3 (DeleteVertex). Given Ve R™9 Hy C H(V), ¥ € V(Hp)\V, and a basis
B for o, we can find he H(V) such thatt € h~ in time O(nd?).

Proof Leth = (1/d))}, b. The inequalityhx < 1 is satisfied with equality by
and with strict inequality by every € V (sincev is the unique vertex dP(Ho) lying
on hY see Fig. 3). Lety = max,.y hv. SinceO e intconvV, y > 0. Lethy = h/y.
The constrainhgx < 1 is valid for conw, buthgt > 1. The lemma then follows from
Lemma 2. |

Fig. 3. lllustrating the proof of Lemma 3.

340 D. Bremner, K. Fukuda, and A. Marzetta

If we are not given a basis for the vertéxve wish to cut off, we can use the mean of
the outward normals of all facets meetingyah place of the vectoh. This mean vector
can be computed i®(|Ho|d) time.

Corollary 2. GivenVe R™9 Hy c H(V),and? € V(Hp)\V,wecanfind he H(V)
such thath € h~ in time O(nd? + |Ho|d).

It will prove useful below to be able to find a facet of covithat cuts off a particular
extreme ray or direction of unboundedness for our current intermediate polyhedron.

Lemma 4 (DeleteRay). Given V € R™% and r ¢ R%\{0}, in O(nd?) time we can
find h e H(V) such that hr> 0.

Proof. The proof is similar to that of Lemma 3. Let = max,.y rv. SinceQ ¢
intconvV, y > 0. Lethg = r/y. The constrainhgx < 1 is valid for conw, but
hor = (r -r)/y > 0. By Lemma 2, inO(nd?) time we can computh € (V) such
thathr > hgr > 0. O

2.2. Preprocessing

We have assumed throughout that the input polytopes are full-dimensional and contain
the origin as an interior point. This is polynomially equivalent to assuming that along
with a halfspace or vertex description Bf we are given a relative interior point, i.e.,

an interior point ofP in aff P. Given a relative interior point, then (either representation
of) P can be shifted to contain the origin as an interior point and embedded in a space
of dimension dinP in O(Nd?) time by elementary matrix operations, whe\ds the
number of input halfspaces or points.

Finding a relative interior point in a set of points requires only the computation of the
centroid. On the other hand, finding a relative interior point of the intersection of a set
of halfspacedH requires solving at least one (and no more thdi) linear programs.
Since we are interested here in algorithms polynomial, im, andd, and there not yet
any such linear programming algorithms, we thus assume that the relative interior point
is given.

In order to initialize Algorithm 1, we need to find some subldgtc H (V) whose
intersection is bounded. We start by showing how to find a subset whose intersection is
pointed, i.e., has at least one vertex.

Lemma5. GivenVe R™ in O(nd®) time Algorithm2computes subset ki H (V)
such that) H defines a vertex

Proof. We can compute a parametric representation of the affine suhdpmhafaed by

the intersection of all hyperplanes found so fad®) time by Gaussian elimination.
With each DeleteRay call in Algorithm 2, we find a hyperplane that cuts off some ray in
the previous affine subspace (see Fig. 4). It follows that the dimensighdefcreases
with every iteration. |

Primal-Dual Methods for Vertex and Facet Enumeration 341

Algorithm 2. FindPointedCone

H < 0.F <« x € RI\{0}. A < RY.
while |H| < d do
h < DeleteRayr, V)
H < H U {h}
A<« ANh°
Leta andb distinct points inA.
F<—a—h
endwhile
returnH

We now show how to augment the set of halfspaces computed by Algorithm 2 so
that the intersection of our new set is bounded. To do so, we use a constructive proof
of Caratl€odory’s theorem. The version we use here is based on that presented by
Edmonds [10]. Similar ideas occur in an earlier paper by Klee [14].

Lemma 6 (The Caratkodory Oracle). Given H e R™ such thatP(H) is a bounded
d-polytope andyy € P(H), in time O(md®) we can find Vc V(H) such thatvy €
convV and|V| <d+1.

Proof (Sketch). LetP = P(H). Apply Lemma 1 to findv € V(H). If v = v, return
v. Otherwise, find the poirz at which the rayovp exits P. Intersect all constraints with
the minimal face containing and recurse wittz as the given point in the face. The
recursively computed set, along withwill contain vg in its convex hull.

By duality of convex polytopes, we have the following:

Lemma 7 (The Dual Carate6dory Oracle). Given a d-polytope P= convV and h
suchthat Vc hi,we canfindintime QV|d®),some Hc H(V) suchthatly € convH
and|H| <d+1.

Figure 5(a) illustrates the application of the Cagaitiéry oracle to find a subset of
vertices of a polygon containing an interior poigtin their convex hull. In Fig. 5(b) the

r 4
/
o @
y
7/
/ ®

o

VAR
A’ZZU / .Al
-+ Y — — — —— — — P
T

Fig. 4. Successive affine subspacéscomputed by Algorithm 2.

342 D. Bremner, K. Fukuda, and A. Marzetta

(a)

Fig. 5. The primal and dual Caratlodory oracles. (a) Using the Caretitlory oracle to find a set of points
whose convex hull containg. (b) The dual problem of finding a set of facets that imply a given valid constraint
hox < 1.

equivalent dual interpretation of finding a set of facets that imply a valid inequality is
shown. In order to understand the application of Lemma 7, we note the following:

Proposition 2. Let P={x | Ax < 1} and Q= {x | A'’x < 1} be polyhedra such that
each row aof A’ is a convex combination of rows of R C Q.

Using Lemmas 5 and 7, we can now find a subset{¢¥) whose intersection is
bounded.

Lemma8. Given V e R™Y in time O(nd®) we can compute a subset € H(V)
such thaf) H is bounded andH | < 2d.

Proof. We start by computing sé@& of d facet defining halfspaces whose intersection
defines a vertex, using Algorithm 2. The proof is then similar to that of Lemmas 3 and 4.
Compute the mean vectoofthe normal vectorsiB (see Fig. 6). Ley = max,cy —hv.
Letho = —h/y. Note thath{ is valid for v, but any ray feasible fof) B will be cut

off by this constraint; henc®(B) N h{ is bounded. Now by applying Lemma 7 we can
find a set of halfspaced. C H(V) such thahy € convHe. Sincehf)J contains at least
one vertex oV, |Hg| < d. By Proposition 2P(B U He) is bounded. O

3. The Dual-Nondegenerate Case

In this section we describe how the results of the previous section lead to a polynomial
algorithm for facet enumeration of simple polytopes. We then give a refinement of this
algorithm that yields an algorithm whose time complexity is competitive with the known
algorithms for the primal-nondegenerate case.

From the discussion above, we know that to achieve a polynomial algorithm for facet
enumeration on a particular family of polytopes we need only have a polynomial algo-

Primal-Dual Methods for Vertex and Facet Enumeration 343

Fig. 6. lllustrating the proof of Lemma 8.

rithm for vertex enumeration for each subset of facet defining halfspaces of a polytope
in the family. Dual-nondegeneracy (i.e., simplicity) is not quite enough in itself to guar-
antee this, but it is not difficult to see that the halfspaces defining any simple polytope
can be perturbed so that they are in general position without affecting the combinatorial
structure of the polytope. In this case each dual subproblem is solvable by any number
of pivoting methods (see, e.g., [3], [7], and [9]). Equivalently (and more cleanly) we
can use lexicographic ratio testing (see Section 4.1) in the pivoting method. A basis is a
subset ofH(P) whose bounding hyperplanes define a verteR oAlthough a pivoting
algorithm may visit many bases (or perturbed vertices) equivalent to the same vertex,
notice that any vertex of the input is simple hence will have exactly one basis. It follows
that we can again guarantee to find a witness or find all vertic@y Bif,;) in at most

n + 1 bases (whera = |V|, as before) output by the pivoting algorithm. In the case
where each vertex is not too degenerate, say at dhgstfacets meet at every vertex for
some small constaidt we may have to wait for as many as(dg‘s) + 1 bases. Of course

this grows rather quickly as a function &fbut is polynomial fors constant. In the rest

of this section we assume for ease of exposition that the polytope under consideration is
simple.

Itis not completely satisfactory to perform a vertex enumeration from scratch for each
verification (FindWitness) step since each succeeding input to the vertex enumeration
algorithm consists of adding exactly one halfspace to the previous input. We now show
how to avoid this duplication of effort. We are given some subkgt C H (V) such that
P(Heur) is bounded and a starting vertexs V(Hc,r) (we can use the raindrop algorithm
to find a starting vertex i© (| Hey|d?) time).

Algorithm 3 is a standard pivoting algorithm for vertex enumeration using depth-first
search. The procedure ComputeNeighliouj, Hey) finds the jth neighbour ofv in
P(Hcur)- This requiresO(md) time to accomplish using a standard simplex pivot. To
check if a vertex is new (i.e., previously undiscovered by the depth-first search) we can
simply store the discovered vertices in some standard data structure such as a balanced
tree, and query this structure @(d log n) time.

344 D. Bremner, K. Fukuda, and A. Marzetta

Algorithm 3. dfs(v, Heur)

forjel...ddo
v’ < ComputeNeighboup, j, Heur)
if new(v’) then
dfs(v’, Heur)
endif
endfor

We could use Algorithm 3 as a subroutine to find witnesses for Algorithm 1, but we
can also modify Algorithm 3 so that it finds new facets as a side effect. We are given
a subsetHy c H(V) as before and a starting vertexe V(Hp) with the additional
restriction that is a vertex of the input. In order to find a vertex®@tHp) that is also a
vertex of the input, we find an arbitrary vertex®fHp) using Lemma 1. If this vertex
is not a vertex of the input, then we apply DeleteVertex to find a new halfspace which
cuts it off, and repeat. In what follows, we assume the halfspaces defining the current
intermediate polytope are stored in some global dictionary; we sometimes denote this set
of halfspaces ald,. We modify Algorithm 3 by replacing the call to ComputeNeighbour
with a call to the procedure ComputeNeighbour2. In addition to the neighbouring vertex
v/, ComputeNeighbour2 computes the (at most one) halfspace definira already
known. Suppose we have foundi.e.,v is a vertex of the current intermediate polytope).
SinceP is simple we must have also found all of the halfspaces definirigfollows
that we have a halfspace description of each edge leaviBgnce we have a halfspace
description of the edges, we can pivot franto some neighbouring vertex of the
current intermediate polytope. If € V, then we knowv’ must be adjacent to in
convV; otherwise we can cut’ off using our DeleteVertex routine. IIP is simple,
then no perturbation is necessary, since we will cut off degenerate vertices rather than
trying to pivot away from them. Thus ComputeNeighbour2 can be implemented as in
Algorithm 4.

Lemma9. With O(mnd) preprocessingComputeNeighbour2akes time @md +
k(md+ nd?)), where k is the number of new halfspaces discovered

Algorithm 4. ComputeNeighbour@, j, Heur)

repeat
v < ComputeNeighboup, j, Heur)
If o ¢ V then
h < DeleteVertexv, Heur, V)
AddToDictionaryh, Hgy)
end if
until o e V
returnv

Primal-Dual Methods for Vertex and Facet Enumeration 345

Proof. As mentioned above, ComputeNeighbour takisnd) time. The procedure
AddToDictionary merges the newly discovered halfspace into the global dictionary.
SinceP is simple, we know the new halfspace will be strictly satisfied by the current
vertexv; it follows that we can merge it into the dictionary by making the slack variable
basic. This amounts to a basis transformation of the bounding hyperplane, which can be
done inO(d?) time.

Since the search problem is completely static (i.e., there are no insertions or deletions),
itis relatively easy to achieve a query time®@td + logn), with a preprocessing cost of
O(n(d +logn)) using, e.g.kd-trees [15]. We claim that the inequality< 2™ follows
from the Upper Bound Theorem. For<0d < 3 this is easily verified. Fal > 4,

m— d/2]
n < 2(1d/2) > (Upper Bound Theorem)

Zde/ZJ
<
= |d/2]!
md/2 — 2(d logm)/2 (d > 4)_

IA

It follows thatd + logn < 2md, hence the query time ©(md), and the preprocessing
time isO(nmd). Since each pivot in ComputeNeighbour2 that does not discover a vertex
of V discovers a facet of corw, we can charge the time for those pivots to the facets
discovered. O

A depth-first-search-based primal-dual algorithm is given in Algorithm 5. Note
that we do not need an additional data structure or query step to determine
if a v' is newly discovered. We simply mark each vertex as discovered when we
search in ComputeNeighbour2. Furthermore, Rosimple,m < n. Thus we have the
following:

Theorem 3. Given Ve R™, if convV is simplewe can compute H= H(V) intime
O(n|H|d?).

Algorithm 5. pddfgv, Ho)

Heur < Ho
Forjel---ddo
v’ < ComputeNeighboui@, j, Heur) add new halfspaces to Heur
if new(v’) then
Heur <= Heur U pddfg(v’)
endif
endfor
returnHeyr

346 D. Bremner, K. Fukuda, and A. Marzetta
4. The Dual-Degenerate Case

We would like an algorithm that is useful for moderately dual-degenerate polytopes. In

a standard pivoting algorithm for vertex enumeration based on depth- or breadth-first
search, previously discovered bases must be stored. Since the number of bases is not
necessarily polynomially bounded in the dual-degeneraté gastirn toreverse search
[3]which allows us to enumerate the vertices of a nonsimple polytope without storing the
bases visited. The rest of this section is organized as follows. Section 4.1 explains how
to use reverse search for vertex enumeration of nonsimple polytopes via lexicographic
pivoting. Section 4.2 shows how to construct a primal—-dual facet enumeration algorithm
analogous to Algorithm 5 but with the recursion or stack-based depth-first search replaced
by the “memoryless” reverse search.

4.1. Lexicographic Reverse Search

The essence of reverse search in the simple case is as follows. Choose an objective
function (direction of optimization) so that there is a unique optimum vertex. Fix some
arbitrary pivot rule. From any vertex of the polytope there is a unique sequence of pivots
taken by the simplex method to this vertex (see Fig. 7(a)). If we take the union of these
paths to the optimum vertex, it forms a tree, directed towards the root. It is easy to see
algebraicly that the simplex pivot is reversible; in fact one just exchanges the roles of the
leaving and entering variable. Thus we can perform depth-first search on the “simplex
tree” by reversing the pivots from the root (see Fig. 7(b)). No storage is needed to
backtrack, since we merely pivot towards the optimum vertex.

In this section we discuss a technique for dealing with degeneracy in reverse search. In
essence what is required is a method for dealing with degeneracy in the simplex method.

4

Vj‘ sp—————
' Joot /o1l
S ‘ y —-
101§ 111 path of
§ simplex 000
i method 0718 o)
i
v i #

@ Esm— @ = = 110 101 011
/000 010 i
o i 111

L7100 110

’
¥

(a) (b)

Fig. 7. Reverse search ona3-cube. (a) The “simplex tree” induced by the objedti(e) The corresponding
reverse search tree.

3 Even if the number of bases is bounded by a small polynomial in the input size, any superlinear space
usage may be impractical for large problems.

Primal-Dual Methods for Vertex and Facet Enumeration 347

Here we use the method keixicographic pivotingwhich can be shown to be equivalent

to a standard symbolic perturbation of the constant vdrinithe systemAx < b (see,

e.g., [7] for discussion). Since the words “lexicographic” and “lexicographically” are
somewhat ubiquitous in the remainder of this paper, we sometimes abbreviate them to
“lex.”

In order to present how reverse search works in the nonsimple case, we need to
discuss in more detail the notions of dictionaries and pivoting used in Section 2. We
start by representing a polytope as a system of linear equalities where all of the variables
are constrained to be nonnegative. IRetbe ad-polytope defined by a system of
inequalities. As before, convert each inequality to an equality by adding a slack variable.
By solving for the original variables along with some setrof d slacks and eliminating
the original variables from then — d equations with slack variables on the left-hand
side, we arrive at thelack representationf P. Geometrically, this transformation can
be viewed as coordinatizing each point in the polyhedron by its scaled distance from
the bounding hyperplanes. By renaming slack variables, we may assume that the slack
representation has the form

Ax=b, where A=[l A], A eRMdxd (3)

For J ¢ Z* and vectorx, let x; denote the vector of elements wfindexed by
J. Similarly, for matrix A, let A; denote the subset of columns Afindexed byJ. If
rankA; = |J| = rankA, we call J abasisfor A, and callA; a basis matrix Suppose
B c {1---m} defines a basis of (3) (i.e., a basis f&). Let C (the cobasi$ denote
{1...m}\B. We can rewrite (3) as

b= Agxg + AcXc.
Rearranging, we have the familiar form of a dictionary
xg = Ag'b — Azt Acxc. 4

The solutiong = Aglb obtained by setting the cobasic variables to zero is called a
basicsolution. If 8 > O, theng is a called aasic feasible solutionr feasible basis
Each feasible basis of (3) corresponds to a basis of some vertex of the corresponding
polyhedron, in the sense of an affinely independent set sdipporting hyperplanes;
by settingx, = 0,1 € C we specifyd inequalities to be satisfied with equality. If the
corresponding vertex is simple, then the resulting valueggawill be strictly positive,
i.e., no other inequality will be satisfied with equality. In the rest of this paper we use
basis in the (standard linear programming) sense of a set of linearly independent columns
of A and reserveobasisfor the corresponding set of supporting hyperplanes incident
on the vertex (or, equivalently, the set of indices of the corresponding slack variables).
A pivotoperation moves between feasible bases by replacing exactly one variable in the
cobasis with one from the basis. To pivot to a new basis, start by choosing some cobasic
variablexy in C to increase. Leg = Aglb and letA = AglAC. The standard simplex
ratio test looks for the first basic variable forced to zero by increasince., it looks for

min /i,'

>0 &y

348 D. Bremner, K. Fukuda, and A. Marzetta

In the general (nonsimple) case, there will be ties for this minimum ratio. Define

L(B) = [8 AG'].
, o o0 |f ai’ :07
L'(B)j = {L(B)i,j/a{k other\l;vise

To choose a variable to leave the basis, we find the lexmin row’@B), i.e., we
first apply the standard ratio test foand then break ties by applying the same test to
successive columns &f(B). Intuitively, this simulates performing the standard ratio test
ina perturbed systerix < b+& wheres; = €' forsome O< ¢ « 1. This perturbation is
equivalentto perturbing the hyperplanes sequentially in index order, with each successive
hyperplane pushed outward by a smaller amount. That there is a unique choice for the
leaving variable (i.e., that the corresponding vertex of the perturbed polytope is simple)
follows from the fact that\g* is nonsingular.

A vector x is calledlexicographically positivef x # O and the lowest indexed
nonzero entry is positive. A basi is called lexicographically positive if every row of
L (B) is lexicographically positive. LeB be a basis set and I€t be the corresponding
cobasis set. Given an objective vecigrtheobjective rowof a dictionary is defined by

Z = wX = wpXp + wcXc
substituting forxg from (4),
= wp Aglb + (wec — a)BAglAc)Xc.

The simplex method chooses a cobasic variable to increase with a positive coefficient
in the cost rowwc — wg Ag*Ac (i.e., a variable; such that increasing will increase

the objective valug). Geometrically, we know that increasing a slack variatlevill
increase (resp. decrease) the objective funetipiiff the inner product of the objective
vector with the outer normal of the corresponding halfsggceés negative (resp. posi-
tive). Every cobasi€ for vertexv defines a polyhedral corfé: with apexv containing

P. A cobasis is optimal for objective vectar* € RY if (v + w*) € (v — Pc) (note
thatw* is the original objective vector before transforming to the slack representation).
Reinterpreting in terms of the slack representation, we have the following standard result
of linear programming (see, e.g., [7]).

Proposition 3. If the cost row has no positive entthen the current basic feasible
solution is optimal

If the entering variable is chosen with a positive cost row coefficient, and the leaving vari-
able is chosen by the lexicographic ratio test, we call the resulting piexi@graphic
pivot A vectoru islexicographically greatethan a vectov’ if v—v’ is lexicographically
positive. The following facts are known about lexicographic pivoting:

Primal-Dual Methods for Vertex and Facet Enumeration 349

Proposition 4[13]. Let S be lexicographically positive badist T be a basis arrived
at from S by a lexicographic pivaand letw be a nonzero objective vector

(a) T is lexicographically positiveand
(b) wrL(T) is lexicographically greater thamsL (S).

A basis is calledex optimalif it is lexicographically positive, and there are no positive
entries in the corresponding cost row. In order to perform reverse search, we would like
a unigue lex optimal basis. We claim thatGf = {m — d + 1---m}, we can fixC
as the unique lex optimal basis by choosing as the objective funetipf_. x;. This
is equivalent to choosing the mean of the outward normals of the hyperpla@easn
objective direction. If we consider an equivalent perturbed polytope, the intuition is that
all of the perturbed vertices corresponding to a single original vertex are contained in
the cone defined by the lex maximal cobasis (see Figure 8).

Lemma 10. Let S= {1.--m — d} denote the initial basis defined by the slack repre-
sentation For objective vectors = [0™9, —19], a lex positive basis B has a positive
entry in the cost row if and only if B¢ S.

Proof. The cost row forSis —1¢. Let B be a lex positive basis distinct fro® and
let 8 denote the basic part of the corresponding basic feasible solutiok degtote the
number of nonidentity columns iAg. If wgB < 0, then there must be some positive
entry in the cost row sincg is not optimal. Suppose thatg8 = 0. It follows that
B = [B, 0] sincewg = [O™ 9% —1¥andB > O. Let j be the first column of\g
that is not columnj of an(m — d) x (m— d) identity matrix. Leta = [O, &] denote row
j of Ag. Since the firsmm — d — k columns ofAg are identity columnsi is ak-vector.
Leta = [o’, @] be columnj of Agl, whereg is also &-vector. Sincéa = 1, we know
& # Q. By the lex positivity ofL (B), along with the fact thas = [g’, 0] and the fact
that the firstj — 1 columns ong1 are identity columns, it follows that has no negative
entries. It follows that elemenjtof wg Agl is negative. Since identity columjnis not in
Ag, it must be present if\¢c, in positionj’ < k. It follows that elemenj’ ofa)BAglAc
is negative, hence elemejitof the cost row is positive. O

From the preceding two lemmas, we can see that the lexicographically positive bases
can be enumerated by reverse search from a unique lex optimal basis. The following
tells us that this suffices to enumerate all of the vertices of a polytope.

Lemma 11. Every vertex of a polytope has a lexicographically positive basis

Proof. Let P be a polytope. Let be an arbitrary vertex oP. Choose some objective
function so that is the unique optimum. Choose an initial lex positive basis. Run the
simplex method with lexicographic pivoting. Since there are only a finite number of
bases, and by Proposition 4 lexicographic pivoting does not repeat a basis, we must
eventually reach some basiswfSince lexicographic pivoting maintains a lex positive
basis at every step, this basis must be lex positive. |

350 D. Bremner, K. Fukuda, and A. Marzetta

I
&=

(@)

Fs Fy F F
Fy By

(b)

s

Fig. 8. Lexicographic perturbation and incremental construction. (a) Sequentially perturbing the halfspaces
defining a vertex. (b) Intersecting the perturbed halfspaces in reverse order.

Algorithm 6 gives a schematic version of the lexicographic reverse search algorithm.
We rename variables so tH@gpt = {m —d + 1. - m} is a cobasis of the initial vertex
vo. The routine PivotToOpt does a lexicographic pivot towards this cobasis with the
objective functionw = [0™9, —19]. If there is more than one cobasic variable with
a positive cost coefficient, then we choose the one with the lowest index. PivotToOpt
returns not only the new cobasis, but the index of the column of the basis that entered.
The test IsPivaiC’, C) determines whethdC, k) = PivotToOptC’) for somek.

As before, we could use Algorithm 6 to implement a verification (FindWitness) step
by performing a vertex enumeration from scratch. In the next section we discuss how
to construct an algorithm analogous to Algorithm 5 that performs only a single vertex
enumeration, but which uses reverse search instead of a standard depth-first search.

Primal-Dual Methods for Vertex and Facet Enumeration 351

Algorithm 6. ReverseSearchl, vo)

C < Copt, j < 1, AddToDictionaryHo, Heur)
repeat
while j < d
C’ <« ComputeNeighbou€, j, Hcur)
if IsPivot(C’, C) then

C«C,j<«1 down edge
else
j<j+1 next sibling
endif
endwhile
(C, j) <« PivotToOptC) up edge
] < j+1.

until j > d andC = Copt

4.2. Primal-Dual Reverse Search

In this section we give a modification of Algorithm 6 that computes the facet defining
halfspaces as a side effect. Define pdReverseS@dgchy) as Algorithm 6 with the call
to ComputeNeighbour replaced with a call to ComputeNeighbour2. As in Section 3, we
suppose that preprocessing steps have given us an initial set of facet defining halfspaces
Ho such thatP(Hp) is bounded and there is somgthat is a vertex of the input and
of P(Hp). It turns out that the numbering of halfspaces is crucial. We numbejtthe
halfspace discovered (including preprocessinghas (of course, we do not know what
m is until the algorithm completes, but this does not prevent us from ordering indices).
This reverse ordering corresponds to pushing later discovered hyperplanes out farther,
thus leaving the skeleton of earlier discovered vertices and edges undisturbed; compare
Fig. 8(b), where halfspaces are numbered as in pdReverseSearch, with Fig. 9, where a
different insertion order causes intermediate vertices to be cut off.

The modified algorithm pdReverseSearch can be considered as a simulation of a
“restricted” reverse search algorithm for vertex enumeration where we are given access
only to a subset of the halfspaces, and where the “input halfspaces” are labeled in a

Fig. 9. A perturbed vertex cut off by later halfspaces.

352 D. Bremner, K. Fukuda, and A. Marzetta

special way. Since the lexicographic reverse search described in the previous section
works for each labeling of the halfspaces, to show that the restricted reverse search
correctly enumerates the vertices IBf we need only show that it visits the same set

of cobases as the unrestricted algorithm would, if given the same labeling and initial
cobasis.

Let Ax = b, A e R™M9*™M he the slack representation al-olytope. We can write
the slack representation in homogeneous f&m [I A’ — b] where A' ¢ RM-9xd,
Suppose at some step of the restricted reverse search the lowest indexed halfspace visited
(including initialization) isk 4+ 1. The restricted reverse search therefore has access to
all of Sexcept for the firsk — 1 rows and the firgt — 1 columns.

Let K denote{k - - - m} for somek < m — d. For any cobasi€ c K, let B denote
K\C. We define the&-restricted basis matrifor C as the lasmm — d — k + 1 rows of
Agz. Let R denote thek-restricted basis matrix fo€, and letp denoteR*bk . By the
k-restricted lexicographic ratio teste mean the lexicographic ratio test applied to the
matrix [0 R™!]. By way of contrast we use thenrestrictedlexicographic ratio test or
basis matrix to mean the previously defined lexicographic ratio test or basis matrix.

We observe that the restricted basis matrix is a submatrix of the unrestricted basis
matrix for a given cobasis, and that this property is preserved by matrix inversion. Let
R denote thek-restricted basis fo€. Let U denote the (unrestricted) basis matrix for
C. Sincek < m — d, and the firsi — d columns of the slack representation form an
identity matrix, we know columns dfi beforek must be identity columns. It follows

that
I M
o=[o 7]
for some matrixM. The reader can verify the following matrix identity:
-1
1 (M [-mMR?
s[5][e

The edges of the reverse search tree are pivots. Referring to our interpretation of lex
pivoting as a perturbation, in order that both versions of the reverse search generate the
same perturbed vertgadge tree, they must generate the same set of pivots. We argue first
that choosing the same hyperplane to leave the cobasis (i.e., edge to leave the perturbed
vertex), yields the same hyperplane to enter the cobasis in both cases (i.e., the same
perturbed vertex).

Lemma 12. Let P be ad-polytope and let Ax b be the slack representation of Bet

C c {k---m} be acobasis for Ax= b. For k < m—d and for any entering variable;x

if there is a candidate leaving variable with t > k, then the leaving variable chosen by
the lexicographic ratio test is identical to that chosen by the k-restricted lexicographic
ratio test

Proof. Let 8 denoteU ~*h. As above, lep denoteR~'by. One consequence of (5) is
thatp = Bk . Ifthere is exactly one candidate leaving variable, then by the assumptions of
the lemma it must have index at le&stind both ratio tests will find the same minimum.

If on the other hand there is a tie in the minimum ratio test applie#l then a variable

Primal-Dual Methods for Vertex and Facet Enumeration 353

with index at leask will always be preferred by the unrestricted lexicographic ratio test,
since in the columns dfl ~* with index less thaik, these variables will have ratio @

The up (backtracking) edges in the reverse search tree consist of lex pivots where the
lowest indexed cobasic variable with a positive cost coefficient is chosen as the entering
variable (i.e., the lowest indexed tight constraint that can profitably be loosened). The
previous lemma tells us that for a fixed entering variable and cobasis, the restricted and
unrestricted reverse search will choose the same leaving variable. It remains to show
that in a backtracking pivot towards the optimum cobasis they will choose the same
entering variable. Given a fixed set of halfspa¢es, hJ, ..., h{} (a cobasis) and a
fixed vectorw* (direction of optimization), the signs of the cost vector depend only on
the signs ofv*h;, 1 < i < d. We can in fact show something slightly stronger, since our
objective vectorw (with respect the slack representation) does not involve hyperplanes
with index less thark. As above, leK = {k---m} andB = K\C. Analogous to the
definition of ak-restricted basis matrix, we define theestricted cost rovfor cobasiC
aswc —wg R-1Ac whereR s thek-restricted basis matrix an&k is the lasm—d —k+1
rows of Ac.

Lemma 13. For objective vectow = [0™ 9, '], fork < m—d, the cost row and the
k-restricted cost row are identical

Proof. As before, lefR andU be the restricted and unrestricted basis matrices, respec-
tively. From the form of the objective vector, we knawg = [O*1, wg]. By (5),

_MR-UT A
im0ty T2

wg R_lAc. O

In the case of down edges in the reverse search tree, each possible entering variable
(hyperplane to leave the cobasis) is tested in turn, in order of increasing index. Thus if
the previous backtracking pivot to a cobasis was identical in the two algorithms, the next
down edge will be also. Reverse search is just depth-first search on a particular spanning
tree; hence it visits the nodes of the tree in a sequence (with repetition) defined by the
ordering of edges. The ordering of edges at any node in the reverse search tree is in turn
determined by the numbering of hyperplanes.

Lemma 14. Let P be apolytopé et Hy be a subset ¢t (P) with bounded intersection
Letvy € V(Ho) N V(P). The set of cobases visited pgReverseSear¢Hy, vg) is the
same as that visited bigeverseSearchi(P), vo) if ReverseSearcis given the same
halfspace numbering

Proof. We can think of the sequences of cobases as chains connected by pivots. Let
Cr = (Cy,Cy,...) be the chain of cobases visited by pdReverseSéHgchyg). Let

Cy, be the chain of cobases visited by ReverseS&afcR), vp). Both sequences start

at the same cobasis since the starting cobasis is the one with the lex maximum set of

354 D. Bremner, K. Fukuda, and A. Marzetta

indices. Now suppose the two sequences are identical up to elgfenther suppose
thatUiSj Ci = k+1---m. There are two cases. If the edgefinfrom C; to Cj,1 is

a reverse (down) edge, then we start pivoting fiGjrto C;,.1 by fixing some entering
variable and choosing the leaving variable lexicographic@lly; contains at most one
variable not present i€;, i < j; this variable is numberekl, if present. Lets denote

the position of the entering variable @) (i.e., the column to leave the cobasis matrix).
Since the cobasis in positid®y will have occurreds — 1 times in both sequences, we
know that ReverseSearch and pdReverseSearch will choose the same entering variable.
By Lemma 12, they will choose the same leaving variable. The test I$Bivat C;)
depends only on the cost row, so by Lemma 13 the next cobaSjsvitll also beC; ;.
Suppose on the other hand the pivot fr@mto C;; is a forward pivot. We know from
Lemma 13 that both invocations will choose the same entering variable, and we again
apply Lemma 12 to see that they will choose the same leaving variable. O

Theorem 4. Given V € R™Y, let m denotgH(V)|, and lety denote the number of
lexicographically positive bases &f(V).

(@) We can computg{(V) in time O(¢pmd?) and space @m + n)d).
(b) We can decide ifonvV is simple in time @n?d + nd®).

Proof. (a) Total cost for finding an initial set of halfspacesQgnkd?®), wherek is

the size of the initial set. Since every DeleteVertex call finds a new halfspace, the total
cost for these calls i® (nmd). In every call to ComputeNeighbour2, each pivot except

the last one discovers a new halfspace. Those which discover new halfspaces have total
costO(m?d) which is O(¢md); the other pivots cosD (¢pmd?) as there ared calls to
ComputeNeighbour2. The forward pivots (PivotToOpt) cogD(¢md).

(b) At any step of the reverse search, we can read the number of halfspaces satisfied
with equality by the current vertex off the dictionary @(m) time. From the Lower
Bound Theorem [4] for simple polytopes, # is simple, therm < 2(n/d + d) for
d > 2. If we reach a degenerate vertex, or discover more thapd2+ d) facets,
we stop. If the reverse search terminates, the@{nmd) time we can compute the
number of facets meeting at each vertex. The total cost is @ugn/d + d)d?) =
O(n?d + nd®). O

Theorem 4(b) is of independent interest since the problem of giveneciding
whetherP(H) is simple is known to be NP-complete in the strong sense [11].

5. Experimental Results

In order to test whether primal—dual reverse search is of practical value, we have imple-
mented itand compared its performance with Avis’s implementation of reverse search [1].
Both programs are written in C and use rational arithmetic, which allows for a fair com-
parison. We present experiments with two families of polytopes: (1) certain simple poly-
topes which show the best and the worst behaviour of both programs and (2) products
of cyclic polytopes which are degenerate for both programs.

Primal-Dual Methods for Vertex and Facet Enumeration 355

105 T

e facet enum. by Irs
o facet enum. by pd
10* + & vertex enum. by Irs
A vertex enum. by pd

103 4

102

101 4

Time (CPU scconds)

100 4

10—1 4

102

Fig. 10. Running time for products of simplicdg x Ty.

The memory requirements of our implementation are twice the input size plus twice
the output size, as the program stores four dictionaries: a constant vertex dictibnary
and a growing halfspace dictionaF,, in unpivoted form, and a working copy of both.
The program uses an earlier version of the preprocessing step, with an upper bound
of O(nd* compared with the current bound 6f(nd®). The source code is available
at http://wwwijn.inf.ethz.ch/ambros/pd.html . In what follows, pd is our
implementation of primal—-dual reverse searchlans Avis’s implementation of reverse
search. All of the experiments have been performed on a Digital AlphaSe/i2@8 fvith
256M of real memory and 512M of virtual memory.

Figure 10 compares the running time of the two programs on products of two sim-
plices. These@-dimensional polytopes have 2-2 facets andd +1)? vertices. They are
simple (which is ideal for vertex enumeration by and facet enumeration tpd), but
have extremely high triangulation complexity [2], which is bad for vertex enumeration
by pd and facet enumeration bys, because the perturbation of the vertices made by
the algorithms induces a triangulation of the polytope’s boundary. On the plot, we show
the times for enumerating both the facets and the vertices. As expectesi clearly
superior tolrs for facet enumeration of these polytopes. Their very few facets are all
found by the preprocessing of our current implementation; in fact, this accounts for most
of the time taken byd on these examples.

A less asymmetric example is the product of cyclic polytopg@®) x Cyx(n) x - - - x
Ck(n). These polytopes are neither simple nor simplicial. Moreover, it is known [2] that
both their primal and their dual triangulations are superpolynomial; nonetheless exper-
imentally it seems that the dual triangulations are smaller than the primal ones. This
is advantageous fgrd, meaning that the perturbation made fy for facet enumera-
tion produces less bases than the one madkeshyThis difference is reflected in the
relative performance of the two programs. The relation between the primal and dual

356

Triangulation size

10" 1
103 4

102 .

10!

D. Bremner, K. Fukuda, and A. Marzetta

o primal (facet enumeration by Irs)
o dual (facet enumeration by pd)

Fig. 11. Triangulation size (number of bases computedfgfn) x Ca(n).

triangulation sizes (number of bases computed by either algorithi@) @ x Cs(n)
(eight-dimensional polytopes with? vertices andO(n?) facets) shown in Fig. 11 is

similar to the relation of the running times shown in Fig. 12.

6. Conclusions

An alternative approach to achieving an algorithm polynomial for the dual-nondegenerate

case is to modify the method of Gritzmann and Klee [12]. An idea due to Clarkson [8]

can be used to reduce the row size of each of these linear progradisitp wherem’

is the maximum number of facets meeting at a vertex. If we assumathatd + § for

some constardt, then we can solve each linear program by brute force in time polynomial

in d. It seems that such an approach will be inherently quadratic in the input size since

the entire set of input halfspaces is considered to enumerate the vertices of each facet.
It would be interesting to remove the requirement in Theorem 1 that the family be

facet-hereditary, but it seems difficult to prove things in general about the polytopes

formed by subsets of the halfspace description of a known polytope.

Time (CPU seconds)

101

103

10?

10!

10°

Fig.

olrs
o pd

! ! I 1 ! 4 {
1 T T T T T T 1

10 11 12 13 14

(28
(=21
-~
oo
<o

n

12. CPU time for facet enumeration Gf4(n) x C4(n).

Primal-Dual Methods for Vertex and Facet Enumeration 357

Al

cknowledgments

The authors would like to thank David Avis for useful discussions on this topic, and for
writing Irs. We would also like to thank an anonymous referee for a careful reading of
this paper and several helpful suggestions.

R

1

o ~NOoO A

10.

11.

12.

13.

14.

15.

16.
17.

18

eferences

. D. Avis. A C implementation of the reverse search vertex enumeration algorithm. Technical Report RIMS
Kokyuroku 872, Kyoto University, May 1994. (Revised version of Technical Report SOCS-92.12, School
of Computer Science, McGill University).

. D. Avis, D. Bremner, and R. Seidel. How good are convex hull algoritiBasfiput Geom Theory Appl,
7(5-6):265-301, 1997.

. D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enumeration of arrangements

and polyhedraDiscrete ComputGeom, 8:295-313, 1992.

D. W. Barnette. The minimum number of vertices of a simple polyttspael J Math., 10:121-125, 1971.

. A. Brgndstedlintroduction to Convex PolytopeSpringer-Verlag, Berlin, 1981.

D. Chand and S. Kapur. An algorithm for convex polytodefssoc Comput Mach, 17:78-86, 1970.

. V. Chatal.Linear ProgrammingFreeman, New York, 1983.

. K. L. Clarkson. More output-sensitive geometric algorithmsPiac. 35h IEEE SympFound Comput
Sci, pages 695-702, 1994.

. M. Dyer. The complexity of vertex enumeration methddath. Oper Res, 8(3):381-402, 1983.

J. Edmonds. Decomposition using Minkowski. Abstracts of the 14th International Symposium on Mathe-

matical Programming, Amsterdam, 1991.

K. Fukuda, T. M. Liebling, and F. Margot. Analysis of backtrack algorithms for listing all vertices and all

faces of a convex polyhedro@omput Geom Theory Appl, 8:1-12, 1997.

P. Gritzmann and V. Klee. On the complexity of some basic problems in computational convexity: II.

Volume and mixed volumes. In T. Bisztriczky, P. McMullen, R. Schneider, and A. I. Weiss, editors,

PolytopesAbstract Convexand Computationainumber 440 in NATO Adv. Sci. Inst. Ser. C Math. Phys.

Sci., pages 373-466. Kluwer, Dordrecht, 1994.

J. P. Ignizio and T. M. Cavalidrinear Programmingpages 118-122. Prentice-Hall International Series

in Industrial and Systems Engineering. Prentice-Hall, Englewood Cliffs, NJ, 1994.

V. Klee. Extreme points of convex sets without completeness of the scalaMetltematika11:59-63,

1964.

K. MehlhornData Structures and Algorithn& Multi-dimensional Searching and Computational Geom-

etry, volume 3 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Heidelberg,

1984.

K. Murty. The gravitational method for linear programmi@psearch23:206-214, 1986.

R. Seidel. Output-size sensitive algorithms for constructive problems in computational geometry. Ph.D.

thesis, Technical Report TR 86-784, Dept. Computer Science, Cornell University, Ithaca, NY, 1986.

. G. Swart. Finding the convex hull facet by facktlgorithms 6:17-48, 1985.

Received Jul$1, 1997 and in revised form MarcB, 1998.

