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Abstract

Combining the classical theory of optimal transport with modern operator splitting

techniques, we develop a new numerical method for nonlinear, nonlocal partial differ-

ential equations, arising in models of porous media, materials science, and biological

swarming. Our method proceeds as follows: first, we discretize in time, either via

the classical JKO scheme or via a novel Crank–Nicolson-type method we introduce.

Next, we use the Benamou–Brenier dynamical characterization of the Wasserstein

distance to reduce computing the solution of the discrete time equations to solving

fully discrete minimization problems, with strictly convex objective functions and

linear constraints. Third, we compute the minimizers by applying a recently intro-

duced, provably convergent primal dual splitting scheme for three operators (Yan in

J Sci Comput 1–20, 2018). By leveraging the PDEs’ underlying variational structure,

our method overcomes stability issues present in previous numerical work built on

explicit time discretizations, which suffer due to the equations’ strong nonlinearities

and degeneracies. Our method is also naturally positivity and mass preserving and,

in the case of the JKO scheme, energy decreasing. We prove that minimizers of the

fully discrete problem converge to minimizers of the spatially continuous, discrete

time problem as the spatial discretization is refined. We conclude with simulations

of nonlinear PDEs and Wasserstein geodesics in one and two dimensions that illus-

trate the key properties of our approach, including higher-order convergence our novel

Crank–Nicolson-type method, when compared to the classical JKO method.
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1 Introduction

Gradient flow methods are classical techniques for the analysis and numerical sim-
ulation of partial differential equations. Historically, such methods were exclusively
based on gradient flows arising from a Hilbert space structure, particularly L2(Rd),
but since the work of Jordan, Kinderlehrer, and Otto in the late 90’s [75,93,94], interest
has emerged in a range of nonlinear, nonlocal partial differential equations that are
gradient flows in the Wasserstein metric,

{

∂tρ = ∇ · (ρ∇V ) + ∇ · (ρ∇W ∗ ρ) + αΔρm, x ∈ Ω ⊆ R
d , V , W : Ω → R,

ρ(x, 0) = ρ0(x) , m ≥ 1, α ≥ 0.
(1)

When Ω �= R
d , we consider no-flux boundary conditions.

Equations of this form arise in a number of physical and biological applications,
including models in granular media [12,45,46,102], material science [71], and biolog-
ical swarming [6,39,77]. Furthermore, many well-known equations may be written in
this way: when V = W = 0 and α = 1, Eq. (1) reduces to the heat equation (m = 1),
porous medium equation (m > 1), and fast diffusion equation (m < 1) [103]. In
the presence of a drift potential V , it becomes a Fokker–Planck equation (m = 1)
or nonlinear Fokker–Planck equation (m > 1), as used in models of tumor growth
[96,100]. When the interaction potential W is given by a repulsive–attractive Morse
or power-law potential,

W (x) = −Cae−|x |/la + Cr e−|x |/lr , Cr/Ca < (lr /la)−d , 0 < lr < la, 0 < Ca < Cr ,

W (x) = |x |a
a

− |x |b
b

, −d < b < a, (2)

we recover a range of nonlocal interaction models, which are repulsive at short length

scales and attractive at long length scales [4,5,34,101]. When W = (Δ)−1, the Newto-

nian potential, we have the Keller–Segel equation and its nonlinear diffusion variants

[17,19,25,26,32,41,76]. Finally, as the diffusion exponent m → +∞, we recover con-

gested aggregation and drift equations arising in models of pedestrian crowd dynamics

and shape optimization problems [23,58,67,84,90,91].

In order to describe the gradient flow structure of equation (1), we begin by rewriting

it as a continuity equation in ρ(x, t) for a velocity field v(x, t),

{

∂tρ = −∇ · (ρv) := ∇ ·
[

ρ∇
(

αU ′
m(ρ) + V + W ∗ ρ

)]

,

ρ(x, 0) = ρ0(x) ,

Um(s) =
{

s ln(s) for m = 1,
sm

m−1
for m > 1.

(3)

In this form, two key properties of the equation become evident: it is positivity preserv-

ing and conserves mass. In what follows, we will always consider nonnegative initial

data, and we will typically renormalize so that the mass of the initial data equals one,
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i.e., ρ0 ∈ Pac(Ω), where Pac(Ω) is the set of probability measures on Ω that are abso-

lutely continuous with respect to Lebesgue measure. Furthermore, as our objective is

to develop a numerical method for these equations, we will exclusively consider the

case when Ω is a bounded domain. Throughout, we commit a mild abuse of notation

and identify all such probability measures with their densities, dρ(x) = ρ(x)dx .

As discovered by Otto [93], given an energy E : Pac(Ω) → R ∪ {+∞}, we

may formally define its gradient with respect to the Wasserstein metric dW using the

formula

∇dW
E(ρ) = −∇ ·

(

ρ∇ δE

δρ

)

.

(See Sect. 2.1 for the definition of the Wasserstein metric dW .) In this way, gradient

flows of E , ∂tρ = −∇dW
E(ρ), correspond to solutions of the continuity equation with

velocity v = −∇ δE
δρ

. In particular, Eq. (3) is the gradient flow of the energy

E(ρ) =
∫

Ω

[αU (ρ(x)) + V (x)ρ(x)] dx + 1

2

∫

Ω×Ω

W (x − y)ρ(x)ρ(y)dxdy . (4)

Differentiating the energy (4) along solutions of (3), one formally obtains that the

energy is decreasing along the gradient flow

d

dt
E(ρ)(t) = −

∫

Rd

|v(t, x)|2ρ(t, x)dx , (5)

which coincides with the theoretical interpretation of gradient flows as solutions that

evolve in the direction of steepest descent of an energy, where the notion of steepest

descent is induced by the Wasserstein metric structure.

A key feature of equations of the form (3) is the competition between repulsive and

attractive effects. For repulsive–attractive interaction kernels W , as in equation (2),

these effects can arise purely through nonlocal interactions, leading to rich structure

of the steady states [4,13,14,34,65]. For purely attractive interaction kernels W , as

in the Keller–Segel equation, the competition instead arises from the combination of

nonlocal interaction with diffusion. In this case, different choices of interaction kernel

W , diffusion exponent m, and initial data ρ0 can lead to widely different behavior—

from bounded solutions being globally well posed to smooth solutions blowing up in

finite time [17,19,25,26,32,41].

1.1 Summary of Numerical Approach

The goal of the present work is to develop new numerical approach for partial dif-

ferential equations of the form (1) that combine gradient flow methods with modern

operator splitting techniques. Our approach applies to equations of this form with any

combination of diffusion αU ′
m(ρ) (α ≥ 0), drift V , or interaction W ∗ ρ terms—in

particular, it is not necessary for diffusion to be present in order for our scheme to

converge.
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Fig. 1 Levels of discretization: τ is the outer JKO time step, Δt is the inner time step, and Δx is the spatial

discretization

The main idea of our approach is to discretize the PDE/Wasserstein gradient flow at

two levels. First, we consider a time discretization of the gradient flow with time step τ

(see Fig. 1b), either given by the classical JKO scheme (Eq. (6) below) or a new Crank–

Nicolson inspired variant (Eq. (7) below). This reduces computation of the gradient

flow to solving a sequence of infinite-dimensional minimization problems. Then, we

consider a dynamical reformulation of these minimization problems, stemming from

Benamou and Brenier’s dynamic characterization of the Wasserstein metric, by which

the problem becomes the minimization of a strictly convex integral functional subject

to a linear PDE constraint (see Fig. 1c). At this level, the problem remains continuous

in space and time. We conclude by considering a further discretization of the problem,

with inner time step (Δt) and spatial discretization (Δx), by taking piecewise constant

approximations of the functions and using a finite difference approximation of the

PDE constraint (see Fig. 1d). In this final, fully discrete form, we then compute the

minimizer using modern operator splitting techniques, applying Yan’s recent extension

of the classical primal dual algorithm for minimizing sums of three convex functions

[106].

Our paper is organized as follows. In Sect. 1.2, we discuss the relationship between

our numerical approach and previous work. In Sect. 1.3, we summarize our con-

tribution. In Sect. 2, we describe the details of our numerical method. Along with

numerically simulating Wasserstein gradient flows, our method also provides, as a
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special case, a new method for computing Wasserstein geodesics and the Wasser-

stein distance between probability densities; see Remark 1. In Sect. 3, we prove that,

provided a smooth, positive solution of the continuum JKO scheme exists and the

energy corresponding to the PDE is sufficiently regular, then minimizers of the fully

discrete problem exist (Theorem 1), the objective functions of the discrete problems Γ -

converge to the objective function of the continuum problem (Theorem 2), and thus,

solutions of the fully discrete scheme converge, up to a subsequence, to a solution

of the continuum scheme (Theorem 3). As a special case, we also recover conver-

gence of a numerical method for computing Wasserstein geodesics, similar to that

introduced by Papadakis, Péyre, and Oudet [95]. Finally, in Sect. 4, we provide sev-

eral numerical simulations illustrating our approach in both one and two dimensions,

computing Wasserstein geodesics, nonlinear Fokker–Planck equations, aggregation

diffusion equations, and other related equations.

1.2 Details of Approach and Comparison with PreviousWork

1.2.1 Classical Numerical PDE Methods

We now compare our approach to existing numerical methods. Perhaps the most

common numerical approach for equations of the form (1) is to consider the equation

as an advection–diffusion equation and apply classical finite difference, finite volume,

or Galerkin discretizations [3,29,54,66,85]. However, when such methods are based

on explicit time discretizations, they suffer from stability constraints due either to

the degeneracy of the diffusion (when m > 1) or the nonlocality from the interaction

potential W . (See for instance the mesa problem [83].) Implicit time discretizations, on

the other hand, are computationally intensive, due to the difficulty of matrix inversion,

even when the implicit steps are solved by smart iterative methods to avoid the high

computation cost of convolution [3].

Another common approach is to leverage structural similarities between (3) and

equations from fluid dynamics to develop particle methods [14,27,30,36,43,48,57,

60,88,92]. Until recently, the key limitation of such methods has been developing

approaches to incorporate diffusion. Following the analogy with the Navier–Stokes

equations, stochastic particle methods have been proposed in the case of linear diffu-

sion (m = 1) [72–74,86]. More recently the first two authors and Patacchini developed

a deterministic blob method for linear and nonlinear diffusion (m ≥ 1) [31]. On the

one hand, particle methods naturally conserve mass and positivity, and they can also

be designed to respect the underlying gradient flow structure of the equation, including

the energy dissipation property (5). On the other hand, a large number of particles are

often required to resolve finer properties of solutions.

In contrast with such classical methods, our method introduces an auxiliary momen-

tum variable m and an additional inner layer of time discretization, which enlarges

the dimension of the problem. However, as later pointed out in [80], the inner layer of

time can be discretized with just one step without violating the overall first-order accu-

racy, there completely eliminating the additional cost introduced by the inner layer.

Another major advantage of our approach is that, by reforming the PDE problem into
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an optimization problem, we obtain unconditional stability (for the JKO discretiza-

tion, see Eq. (6) below) while avoiding the inversion of a full matrix in the general

implicit setting, which is extremely expensive, especially in higher dimensions; see for

instance [3]. Finally, compared to other implicit methods, such as the backward Euler

method, the suboptimization problems can be solved independently at each gridpoint,

and therefore are massively parallelizable and suitable for high-dimensional problems.

1.2.2 Variational Methods

Compared to the classical numerical PDE approaches described in the previous section,

a more modern class of numerical methods leverages the gradient flow structure of (1)

to approximate solutions of the PDE by solving a sequence of minimization problems.

This is the approach we take in the present work. Originally introduced by Jordan,

Kinderlehrer, and Otto as a technique for computing solutions of the Fokker–Planck

equation (Eq. (1), W = 0, m = 1) [75], this scheme approximates the solution ρ(x, t)

at time t by solving the following sequence of n minimization problems with time

step τ = t/n,

ρn
τ ∈ arg min

ρ∈Pac(Ω)

{

d2
W

(ρ, ρn−1
τ ) + 2τE(ρ)

}

, ρ0
τ = ρ0(x). (6)

The JKO scheme is precisely the analogue of the implicit Euler method in the infinite-

dimensional Wasserstein space. The constraint ρ ∈ Pac(Ω) ensures that the method

is positivity and mass preserving, and the fact that d2
W

(ρ, ρn) ≥ 0 ensures the energy

decreasing along the scheme, E(ρn+1
τ ) ≤ E(ρn

τ ).

Under sufficient assumptions on the underlying domain Ω , drift potential V , inter-

action potential W , and initial data ρ0 (see Sect. 2.1), the solution of the JKO scheme

ρn
τ converges to the solution ρ(x, t) of the partial differential equation (1), with a

first-order rate in terms of the time step τ = t/n [2, Theorem 4.0.4],

dW (ρn(·), ρ(·, t)) ≤ Cτ.

In our numerical simulations, we observe that this discretization error dominates

other errors in our numerical method; see Sects. 4.2.1 and 4.2.2. Consequently, we

also introduce a new time discretization, in analogy with the Crank–Nicolson method

ρn+1 ∈ arg min
ρ∈Pac(Ω)

{

d2
W

(ρ, ρn) + τE(ρ) + τ

∫

Ω

δE

δρ
(ρn)ρ

}

. (7)

The connection between the above scheme and the classical Crank–Nicolson dis-

cretization can be seen by considering the optimality conditions for (7):

1

τ
(ρn+1 − ρn) = 1

2
∇ ·
(

ρn+1∇
(

δE(ρn+1)

δρ
+ δE(ρn)

δρ

))

.
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Like the JKO scheme, our Crank–Nicolson inspired method is also positivity and mass-

preserving, though it is not energy decreasing. In Figs. 7, 8, and 10 of our numerics

section, we conduct a preliminary analysis of the rate of convergence of this method,

which verifies that it is indeed higher order than the JKO scheme. As the goal of the

present work is primarily the development of fully discrete numerical schemes, we

leave a thorough analysis of the rate of convergence of our Crank–Nicolson inspired

method as τ → 0 to future work.

On the one hand, our Crank–Nicolson inspired method (7) is not the first

higher-order method proposed for metric space gradient flows: Matthes and Plazotta

developed a provably second-order scheme for general metric space gradient flows by

generalizing the backward differentiation formula [89]. The Matthes–Plazotta method,

however, requires two evaluations of the Wasserstein distance at each outer time step

and thus is less practical for our purpose of numerically computing gradient flows in

higher dimensions. Another method was introduced by Legendre and Turinici [79]

based on the midpoint method. This method can be reformulated as the classical JKO

step with half time step followed by an extrapolation. This extrapolation step could

be implemented by solving the corresponding continuity equation either explicitly

or implicitly; however, solving the equation explicitly could potentially violate con-

servation of positivity, while solving it implicitly would require an additional matrix

inversion. Another higher-order variational method was also proposed in [78], which

resembles explicit Runge–Kutta methods and, again, require two or more evaluations

of the Wasserstein distance at each outer time step.

1.2.3 Numerical Methods for the Wasserstein Distance

To use either the classical JKO scheme (6) or our new Crank–Nicolson inspired scheme

(7) as a basis for numerical simulations, one must first develop a fully discrete approx-

imation of the minimization problem at each step of the scheme. Here, the main

numerical difficulty arises in approximating the Wassserstein distance, and there are

several different approaches for dealing with this term. First, one can reformulate

the Wasserstein distance in terms of a Monge–Ampére equation with nonstandard

boundary conditions [11,68], though difficulties arise due to the lack of a comparison

principle [70]. Second, one can reframe the problem as a classical L2(Rd) gradient

flow at the level of diffeomorphisms [16,37,47,49,69], but to pursue this approach, one

has to overcome complications arising from the underlying geometry and the structure

of the PDE system for the diffeomorphisms. Third, one can discretize the Wasserstein

distance term as a finite-dimensional linear program, overcoming the lack of strict

convexity of the objective function by adding a small amount of entropic regulariza-

tion [8,55,61]. (For a detailed survey of computational optimal transport, we refer the

reader to the recent book by Péyre and Cuturi for [97].)

A fourth approach for computing the Wasserstein distance, and the one which we

develop in the present work, is to consider a dynamic formulation due to Benamou and

Brenier [7]. This reframes the problem as a strictly convex optimization problem with

linear PDE constraints, which can be discretized using Benamou and Brenier’s original

augmented Lagrangian method ALG2 or, more generally, a range of modern proximal

splitting methods, as shown by Papadakis, Peyre, and Oudet [95]. (See also [21,22]
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for related work on mean field games.) Adding an additional Fisher information term

in this dynamic formulation (in analogy with entropic regularization) has also been

explored in [82].

Only recently have these above approaches for computing the Wasserstein distance

been integrated with the JKO scheme (6) in order to simulate partial differential equa-

tions of the form (1). The Monge–Ampére approach extends naturally, though the

presence of a diffusion term αU ′
m(ρ) for α > 0 is required to enforce convexity con-

straints at the discrete level [10]. Similarly, entropic regularization (or the addition of

a Fisher information term) vastly accelerates the computation of gradient flows, but at

the level of the partial differential equation, this corresponds to introducing numerical

diffusion, which may disrupt the delicate balance between aggregation and diffusion

inherent in PDEs of this type [28,55,82]. Finally, Benamou and Brenier’s dynamic

reformulation of the Wasserstein distance has also been adopted in recent work to

approximate gradient flows [9]. A key benefit of this latter approach when compared

to entropic regularization is that it leads to an optimization problem in N d
x × Nt vari-

ables, where Nx and Nt are the number of spatial and temporal gridpoints, whereas

the latter leads to an optimization problem in N 2d
x variables.

In the present work, we further develop this last approach, using Benamou and

Brenier’s dynamic reformulation of the Wasserstein distance to simulate Wasserstein

gradient flows, via both the classical JKO scheme (6) and our new Crank–Nicolson

inspired scheme (7). This leads to a sequence of minimization problems (Fig. 1C),

which we discretize (Fig. 1D) and then solve using a modern primal dual three operator

splitting scheme due to Yan [106], instead of the classical ALG2 method. See Sect. 2

for a detailed description of our approach.

Due to the fact that we use operator splitting methods to compute the minimizer in

Benamou and Brenier’s dynamic formulation of the Wasserstein distance, our work

can be seen as an extension of previous work by Papadakis, Peyre, and Oudet [95],

which applied similar two operator splitting schemes to simulate the Wasserstein

distance. However, there are a few key differences between our approach and previous

work. First, we are able to implement the primal dual splitting scheme in a manner

that does not require matrix inversion of the finite difference operator, which reduces

the computational cost. Second, we succeed in obtaining the exact expression for the

proximal operator, which allows our method to be truly positivity preserving, while

other similar methods are only positivity preserving in the limit as Δx,Δt → 0;

see Remark 5. Third, instead of imposing the linear PDE constraint in Benamou and

Brenier’s dynamic reformulation exactly, via a finite difference approximation, we

allow the linear PDE constraint to hold up to an error of order δ > 0, which can be

tuned according to the spatial discretization (Δx), the inner temporal discretization

(Δt), and the outer time step τ to respect the order of accuracy of the finite difference

approximation; see Remark 3. Numerically, this allows our method to converge in

fewer iterations, without any reduction in accuracy, as demonstrated in Fig. 3. From

a theoretical perspective, the fact that we only require the PDE constraint to hold up

to an error of order δ > 0 makes it possible to prove convergence of minimizers of

the fully discrete problem to minimizers of the JKO scheme (6), since minimizers of

the fully discrete problem always exist for δ > 0, which is not the case when the PDE

constraint is enforced exactly (δ = 0); see Remark 8 and Theorem 1.
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1.3 Contribution

The main components of our numerical method for computing solutions to (1) are:

(a) an outer time discretization, of either JKO (6) or Crank–Nicolson type (7) (Fig. 1B)

(b) a dynamic interpretation of the Wasserstein distance (Fig. 1C), which when dis-

cretized via finite difference approximations leads to a sequence of constrained

optimization problems (Fig. 1D)

(c) an application of modern three operator splitting schemes for solving these opti-

mization problems.

Our main contributions are:

– Unlike classical explicit methods, our JKO-type method is unconditionally stable.

Unlike classical implicit methods, it achieves this stability without an expensive

matrix inversion.

– In practice, we observe that our Crank–Nicolson-type method performs even better

than our JKO-type method, in terms of rate of convergence with respect to the outer

time step (see Figs. 7, 8, and 10). We leave a thorough analysis of the rate of this

convergence of this method to future work.

– By formulating our optimization problem with a linear inequality constraint instead

of a linear equality constraint, our algorithm converges in fewer iterations when

compared to related algorithms for Wasserstein geodesics; see Remark 3 and Fig. 3.

– We prove convergence of our fully discrete method (Fig. 1D) to the JKO scheme

(Fig. 1B, C) as the spatial discretization and inner time discretization go to zero.

2 Numerical Method

2.1 Dynamic Formulation of JKO Scheme

As described in the previous section, our numerical method for computing the JKO

scheme is based on the following dynamic reformulation of the Wasserstein distance

due to Benamou and Brenier [7]:

dW (ρ0, ρ1) = inf
(ρ,v)∈C0

{∫ 1

0

∫

Ω

|v(x, t)|2dρ(x, t)dt

}1/2

, (8)

where (ρ, v) ∈ AC(0, 1;P(Ω)) × L1(0, 1; L2(ρ)) belongs to the constraint set C0

provided that

∂tρ + ∇ · (ρv) = 0 on Ω × [0, 1] (9)

(ρv) · ν = 0 on ∂Ω × [0, 1], (10)

ρ(·, 0) = ρ0, ρ(·, 1) = ρ1 on Ω, (11)

where ν is the outer unit normal on the boundary of the domain Ω . A curve ρ in

P(Ω) is absolutely continuous in time, denoted ρ ∈ AC(0, 1;P(Ω)), if there exists
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w ∈ L1(0, 1) so that dW (ρ(·, t0), ρ(·, t1)) ≤
∫ t1

t0
w(s)ds for all 0 < t0 ≤ t1 < 1.

The PDE constraint (9 and 10) holds in the duality with smooth test functions on

R
d × [0, 1], i.e., for all f ∈ C∞

c (Rd × [0, 1]),
∫ 1

0

∫

Ω

[∂t f (x, t)ρ(x, t) + ∇ f (x, t) · v(x, t)ρ(x, t)] dxdt

+
∫

Ω

f (x, 0)ρ0(x) − f (x, 1)ρ1(x)dx = 0 .

This dynamic reformulation reduces the problem of finding the Wasserstein distance

between any two measures to identifying the curve in P(Ω) that connects them with

minimal kinetic energy. However, the objective function (8) is not strictly convex,

and the PDE constraint (9) is nonlinear. For these reasons, in Benamou and Brenier’s

original work, they restrict their attention to the case ρ(·, t) ∈ Pac(Ω) and introduce

the momentum variables m = vρ, in order to rewrite (8) as

d2
W

(ρ0, ρ1) = min
(ρ,m)∈C1

∫ 1

0

∫

Ω

Φ(ρ(x, t), m(x, t))dxdt, (12)

where

Φ(ρ, m) =

⎧

⎪

⎨

⎪

⎩

‖m‖2

ρ
if ρ > 0 ,

0 if (ρ, m) = (0, 0) ,

+∞ otherwise,

(13)

and (ρ, m) ∈ AC(0, 1;Pac(Ω)) × L1(0, 1; L2(ρ−1)) belong to the constraint set C1

provided that

∂tρ + ∇ · m = 0 on Ω × [0, 1]
m · ν = 0 on ∂Ω × [0, 1].

ρ(·, 0) = ρ0, ρ(·, 1) = ρ1 on Ω.

After this reformulation, the integral functional

(ρ, m) �→
∫ 1

0

∫

Ω

Φ(ρ, m) (14)

is strictly convex along linear interpolations and lower semicontinuous with respect

to weak-* convergence [1, Example 2.36], and the PDE constraint is linear. As an

immediate consequence, one can conclude that minimizers are unique. Furthermore,

for any ρ0, ρ1 ∈ Pac(Ω), a direct computation shows that the minimizer (ρ̄, m̄) is

given by the Wasserstein geodesic from ρ0 to ρ1,

ρ̄(x, t) = Tt #ρ0, v̄(x, t) = T ◦ T −1
t (x) − T −1

t (x), m̄

= v̄ρ̄, for Tt (x) := (1 − t)x + tT (x), (15)
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where T is the optimal transport map from ρ0 to ρ1. (See [2,98,105] for further

background on optimal transport.) Consequently, given any minimizer (ρ̄, m̄) of (12),

we can recover the optimal transport plan T via the following formula:

T (x) = x + v̄(x, 0) = x + m̄(x, 0)/ρ̄(x, 0). (16)

Building upon Benamou and Brenier’s dynamic reformulation of the Wasserstein

distance, one can also consider a dynamic reformulation of the JKO scheme (6). In

particular, substituting (12) in (6) leads to the following dynamic JKO scheme:

Problem 1 (Dynamic JKO) Given τ > 0,E , andρ0, solve the constrained optimization

problem,

inf
(ρ,m)∈C

∫ 1

0

∫

Ω

Φ(ρ(x, t), m(x, t))dxdt + 2τE(ρ(·, 1)),

where (ρ, m) ∈ AC(0, 1;Pac(Ω)) × L1(0, 1; L2(ρ−1)) belong to the constraint set
C provided that

∂tρ + ∇ · m = 0 on Ω × [0, 1], m · ν = 0 on ∂Ω × [0, 1], and ρ(·, 0) = ρ0 on Ω. (17)

We emphasize that the requirement ρ(x, t) ∈ Pac(Ω) for all t ∈ [0, 1] ensures that

ρ(x, t) ≥ 0.

Remark 1 (Wasserstein geodesics) Note that for any ρ1 ∈ Pac(Ω), we may take

E(ρ(·, 1)) = Gρ1(ρ(·, 1)) :=
{

0 if ρ(·, 1) = ρ1,

+∞ otherwise,
(18)

in which case Problem 1 reduces to the Benamou–Brenier formulation of the Wasser-

stein distance (12). Consequently, the numerical method we develop for Problem 1

offers, as a particular case, a provably convergent numerical method for computing the

Wasserstein geodesic and Wasserstein distance between ρ0 and ρ1. On the one hand,

there are many alternative methods for computing Wasserstein geodesics in Euclidean

space. Indeed, the many algorithms described in the introduction for computing the

Wasserstein distance also provide an optimal transport plan, which can be linearly

interpolated to give the Wasserstein geodesic [8,11,55,61,68,97]. On the other hand,

our method is distinguished because it could be more naturally extended to variants

of the Wasserstein metric built on the Benamou–Brenier formulation [33,64,87], as

well as to Wasserstein geodesics on non-Euclidean manifolds, where the geodesic

equations on the underlying manifold may no longer be explicit, so that one cannot

pass directly from the optimal transport plan to the Wasserstein geodesic.

Remark 2 (existence and uniqueness of minimizers) If the underling domain Ω is

convex and the energy E is proper, lower semicontinuous, coercive, and λ-convex

along generalized geodesics, and also satisfies {μ : E(μ) < +∞} ⊆ Pac(Ω), then,
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for τ > 0 sufficiently small, there exists a unique solution to Problem 1 [2, Theorem

4.0.4, Theorem 8.3.1]. In particular, these assumptions are satisfied by the energy Gρ1

(18), as well as by the drift–diffusion interaction energy from the introduction (4), for

U as in Eq. (3), V , W ∈ C2(Ω). (See, for example, [2, Section 9.3] or [56] for more

general conditions on U , V , W .)

Thus, if we denote by (ρ̄, m̄) the minimizer of Problem 1, then for τ > 0 sufficiently

small, the proximal map,

Jτ (ρ0) := ρ(·, 1) ,

is well defined for all ρ0 ∈ D(E). Furthermore, the energy decreases under the proxi-

mal map,

E(Jτ (ρ0)) ≤ E(ρ0), (19)

which can be seen by comparing the value of the objective function at the mini-

mizer (ρ, m) to the value of the objective function at (ρ(x, 0), 0) ∈ C and using that

Φ(ρ, m) ≥ 0.

Given ρ0 ∈ D(E), if we recursively define the discrete time gradient flow sequence

ρn
τ = Jτ (ρ

n−1
τ ), for all n ∈ N, (20)

then, taking τ = t/n, ρn
τ converges to ρ(x, t), the gradient flow of the energy E with

initial data ρ0 at time t , and under mild regularity assumptions on ρ0, we have

dW (ρn(·), ρ(·, t)) ≤ Cτ. (21)

In this way, the classical JKO scheme provides a first-order approximation of the

gradient flow [2, Theorem 4.0.4]. In our numerical simulations, we observe that this

discretization error dominates other errors in our numerical method; see Sects. 4.2.1

and 4.2.2. For this reason, we introduce the following new scheme, inspired by the

Crank–Nicolson method.

Problem 2 (Crank–Nicolson Inspired Dynamic JKO) Given τ > 0, E , and ρ0, solve

the constrained optimization problem,

inf
(ρ,m)∈C

∫ 1

0

∫

Ω

Φ(ρ(x, t), m(x, t))dxdt + τE(ρ(x, 1)) + τ

∫

Ω

δE

δρ
(ρ(x, 0))ρ(x, 1)dx,

where (ρ, m) ∈ AC(0, 1;Pac(Ω)) × L1(0, 1; L2(ρ−1)) belong to the constraint set
C provided that

∂tρ + ∇ · m = 0 on Ω × [0, 1], m · ν = 0 on ∂Ω × [0, 1], and ρ(·, 0) = ρ0 on Ω.

In Sect. 4.2.2, we provide numerical examples comparing the above method to the

classical JKO scheme from Problem 1, illustrating that it achieves a higher-order rate
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of convergence in practice (see Figs. 7, 8, and 10), in spite of the fact that that it

lacks the energy decay property of Problem 1. Under what conditions a higher-order

analogue of inequality (21) holds for the new scheme is an interesting open question

that we leave to future work, as the main goal of the present work is the development

of fully discrete numerical methods for computing minimizers of Problem 1 and 2. By

iterating either of these minimization problems, as in Eq. (20), we obtain a numerical

method for simulating Wasserstein gradient flows.

2.2 Fully Discrete JKO

We now turn to the discretization of the dynamic JKO scheme, Problem 1, and the

Crank–Nicolson inspired scheme, Problem 2. We begin by noting that the Crank–

Nicolson inspired Problem 2 can be rewritten in the same form as Problem 1 by

considering the energy

Hρ0(ρ) := 1

2
E(ρ(x, 1)) + 1

2

∫

Ω

δE

δρ
(ρ(x, 0))ρ(x, 1)dx . (22)

Using this observation, we will now describe our discretization of both problems

simultaneously.

2.2.1 Discretization of Functions and Domain

Given an n-dimensional hyperrectangle S = Πn
I=1[aI , bI ] ⊆ R

n , we discretize it as
a union of cubes Qi , i ∈ N

n , where in the lth direction, we suppose there are Nl

intervals of spacing (z)l = (bl − al)/Nl :

S =
⋃

i :Qi ⊆S

Qi , Qi := {(z1, z2, . . . , zn) ∈ R
n : zl ∈ [(il − 1)(z)l , il (z)l ] ∀l = 1, . . . , n}.

Piecewise constant functions with respect to this discretization are given by

f h :=
∑

i :Qi ⊆S

fi 1Qi
, for fi ∈ R and 1Qi

(z) =
{

1 if z ∈ Qi

0 otherwise.

To discretize Problem 1, we take S = Ω×[0, 1] ⊆ R
d+1, where Ω = Πn

i=1[ai , bi ].
For any i ∈ N

d+1, write i = ( j, k), for the spatial index j ∈ N
d and the temporal

index k ∈ N. We let Nx ∈ N denote the number of intervals in each spatial direction

and Nt ∈ N denote the number of intervals in the temporal direction. Take z = (x,Δt)

for (x)l = (Δx) > 0 for all l = 1, . . . , d and Δt > 0.

We consider piecewise constant approximations (ρh, mh) of the functions (ρ, m),

with coefficients denoted by (ρ j,k, m j,k). For any (ρ, m) ∈ C(Ω × [0, 1]), one such

approximation is the pointwise piecewise approximation (ρ̂h, m̂h), obtained by defin-

ing the coefficients (ρ̂ j,k, m̂ j,k) to be the value of (ρ, m) on a regular grid of spacing

(Δx) × (Δt):
ρ̂ j,k := ρ(x j , tk), m̂ j,k := m(x j , tk),
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(x j , tk) = (x̂ + ( j − 1)(Δx), t̂ + (k − 1)(Δt))

x̂ ∈ Πd
l=1[0,Δx], t̂ ∈ [0,Δt]. (23)

where 1 = [1, 1, . . . , 1]t ∈ N
d . Note that, whenever (ρ, m) ∈ C(Ω ×[0, 1]), we have

that (ρ̂h, m̂h) converges to (ρ, m) uniformly.

2.2.2 Discretization of Energy Functionals

Next, we approximate the energy functionals by discrete energies Eh , beginning with

energies of the form (4). Given a piecewise constant function ρh with coefficients ρ j ,

F
h(ρ j ) :=

∑

j

(

U (ρ j ) + V jρ j

)

(Δx)d + 1

2

∑

j,l

W j,lρ jρl(Δx)2d , (24)

where V h(x) =
∑

j V j 1Q j
(x) is a piecewise constant approximation of V (x) and

W h(x, y) =
∑

j,l W j,l1Q j
(x)1Q j

(y) is a piecewise constant approximation of W (x−
y). Here, W j,l = W (|x j − xl |) symmetric, i.e., W j,l = Wl, j .

Likewise, for energies of the form (4), we consider the following discretization of

the energy Hρ0 from Eq. (22) for the Crank–Nicolson inspired scheme, Problem 2,

H
h
ρ0

(ρ j ) := 1

2
F

h(ρ j ) + 1

2

∑

j

(

U ′((ρ0) j ) + V j +
∑

l

W j,l(ρ0)l(Δx)d

)

ρ j (Δx)d .

(25)

Finally, to compute Wasserstein geodesics between two measures ρ0, ρ1 ∈ Pac(Ω),

we consider a discretization of the energyGρ1 from Eq. (18). Given a piecewise constant

approximation ρh
1 of ρ1 and δ ≥ 0, define

G
h
ρ1

(ρ j ) :=
{

0 if
∑

j |ρ j − (ρh
1 ) j |2(Δx)d ≤ δ2

+∞ , otherwise.
(26)

2.2.3 Discretization of Derivative Operators

Let Dh
t ρh and Dh

x mh denote the discrete time derivative and spatial divergence on

Ω ×[0, 1] and let νh denote the discrete outer unit normal of Ω . (See Hypothesis 3 for

the precise requirements we impose on each of these discretizations). For example,

in one dimension we may choose a centered difference in space and a forward Euler

method in time,

Dh
t ρ j,k = ρ j,k+1 − ρ j,k

Δt
, Dh

x m j,k = m j+1,k − m j−1,k

2Δx
. (27)
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or a Crank–Nicolson method,

Dh
t ρ j,k = ρ j,k+1 − ρ j,k

Δt
, Dh

x m j,k = m j+1,k − m j−1,k + m j+1,k+1 − m j−1,k+1

4Δx
.

(28)

We compute these discretizations of the derivatives at the boundary by extending m j,k

to be zero in the direction of the outer unit normal vector. As we can only expect these

approximations of the temporal and spatial derivatives to hold up to an error term,

we relax the equality constraints from (17) in the following discrete dynamic JKO

scheme.

2.2.4 Discrete Dynamic JKO

The discretizations described in the previous sections lead to a fully discrete dynamic

JKO problem:

Problem 1 j,k (Discrete Dynamic JKO) Fix τ, δ1, δ2, δ3, δ4 > 0, Eh , and ρh
0 . Solve

the constrained optimization problem,

inf
(ρ j,k ,m j,k )∈Ch

∑

j

∑

k

Φ(ρ j,k, m j,k)(Δx)dΔt + 2τE
h(ρ j,Nt ), (29)

where (ρ j,k, m j,k) belong to the constraint set Ch provided that for all j, k,

∑

j,k

|Dh
t ρ j,k + Dh

x m j,k |2(Δx)d(Δt) ≤ δ2
1,

∑

j∈∂Ω,k

|m j,k · ν j |2(Δx)d−1(Δt) ≤ δ2
2, (30)

∑

k

|
∑

j

ρ j,k(Δx)d −
∑

j

(ρh
0 ) j (Δx)d |2(Δt) ≤ δ2

3,

∑

j

|ρ j,0 − (ρh
0 ) j |2(Δx)d ≤ δ2

4 . (31)

The inequalities (30) enforce the PDE constraint and the boundary condition; the

inequalities (31) enforce the mass constraint and the initial conditions. Recall that,

by definition of Φ in Eq. (13), Φ(ρ j,k, m j,k) < +∞ only if ρ j,k is nonnegative.

Consequently, if a minimizer ρ j,k exists, it must be nonnegative.

Remark 3 (relaxation of PDE constraints) A key element of our numerical method is

that we relax the equality constraint (17) at the fully discrete level. This reflects the

fact that even an exact solution of the continuum PDE will only satisfy the discrete

constraints (30-31) up to an error term depending on the order of the finite difference

operators.

123



404 Foundations of Computational Mathematics (2022) 22:389–443

We allow the choice of δi to vary for each of the above constraints. However,

when the desired exact solution is sufficiently smooth, the optimal choice of δi for a

second-order discretization of the spatial and temporal derivatives is

δ1 ∼ (Δx)2 + (Δt)2τ and δ2, δ3, δ4 ∼ (Δx)2,

where τ > 0 is the size of the timestep in the outer time discretization; see equations

(6-7). As we will demonstrate in Fig. 3 of our numerics section, relaxing the PDE

constraint accelerates convergence to a minimizer of the fully discrete Problem 1 j,k

without any loss of accuracy with respect to the exact continuum solution.

Finally, note that while the discrete PDE constraint (30) automatically enforces the

mass constraint up to order δ2
1 +δ2

2 , we choose to impose the mass constraint separately

via the first Eq. in (31). This leads to better performance in examples where the exact

solution is not smooth enough to satisfy the discrete PDE constraint up to a high order

of accuracy but imposing a stricter mass constraint leads to a higher quality numerical

solution; see Fig. 4.

Under sufficient hypotheses on the discrete energy Eh and the initial data ρh
0 , mini-

mizers of Problem 1 j,k exist; see Theorem 1. Furthermore, this discrete dynamic JKO

scheme preserves the energy decreasing property of the original JKO scheme. To see

this, note that, given an energy Eh , time step τ > 0, and initial data (ρh
0 ) j we may

define the fully discrete proximal map by

J h
τ ((ρ0) j ) := ρ j,Nt

,

where (ρ j,k, m j,k) is any minimizer of Problem 1 j,k . Independently of which mini-

mizer is chosen, we have

E
h(J h

τ ((ρ0) j ) ≤ E
h((ρ0) j ),

which can be seen by comparing the value of the objective function at the minimizer

(ρ j,k, m j,k) to the value of the objective function at (ρ j,k, m j,k) = ((ρ0) j , 0) ∈ C

and using the fact that Φ ≥ 0. Furthermore, by iterating the fully discrete proximal

map, we may construct a fully discrete gradient flow sequence

(ρn
τ ) j = J h

τ ((ρn−1
τ ) j ) for all n ∈ N, ρ0

τ = ρh
0 .

In analogy with the continuum case, we will use this fully discrete JKO scheme to

simulate gradient flows. (See Algorithm 3.)

2.3 Primal Dual Algorithms for Fully Discrete JKO

In order to find minimizers of Problem 1 j,k , we apply a primal dual operator splitting

method. Since the constraints in Problem 1 j,k are linear inequality constraints, we may

rewrite them in the form ‖Ãi u − b̃i‖2 ≤ δi for i = 1, 2, 3, 4, where u = (æ, m), and æ

and m are vector representations of the matrices ρ j,k and m j,k . (See the Appendix A
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for explicit formulas for Ãi and b̃i , in one spatial dimension). Similarly, we may rewrite

the first term of the objective function (29) in terms of u, defining

Φ(u) =
∑

k

∑

j

Φ(ρ j,k, m j,k)(Δx)dΔt .

We consider two cases for the energy term in the objective function. When the

energy is of the form Gh
ρ1

, as in Eq. (26), we reframe the problem by removing the

energy from the objective function and adding
∑

j |ρ j,Nt − (ρh
1 ) j |2(Δx)d ≤ δ2

5 to

the constraints (30) and (31), denoting ‖Ai u − bi‖2 ≤ δi , for i = 1, 2, 3, 4, 5, as the

modified constraints. On the other hand, when the energy is of the form (24) or (25),

we rewrite it in terms of u as

F(u) =
∑

j

(

U (ρ j,Nt ) + V jρ j,Nt

)

(Δx)d + 1

2

∑

j,l

(

W j,lρ j,Nt ρl,Nt

)

(Δx)2d ,

H(u) = 1

2
F(u) + 1

2

∑

j

(

U ′(ρ j,0) + V j +
∑

l

W j,lρl,0(Δx)d

)

ρ j,Nt (Δx)d .

(32)

In particular, if we let S be the selection matrix

S : R
N → R

Nx : u �→ ρ j,Nt ,

then F(u) = Fh(Su) and H(u) = Hh
ρ0

(Su), where Fh and Hh
ρ0

are defined in (24)

and (25), respectively.

This leads to the following two optimization problems:

Problem 3(a) minu Φ(u) + i(Au), iδ(Au) =
{

0 ‖Ai u − bi‖2 ≤ δi , i = 1, . . . , 5

+∞, otherwise.

Problem 3(b) minu Φ(u)+2τ E(u)+ i
δ̃
(Ãu), i

δ̃
(Ãu) =

{

0 ‖Ãi u − b̃i ‖2 ≤ δ̃i , i = 1, . . . , 4

+∞, otherwise.

To compute the Wasserstein distance, we solve Problem 2.3, and to compute the

gradient flow of an energy, we iterate Problem 2.3 O( 1
τ
) times, for either E(u) = F(u)

(classical JKO) or E(u) = H(u) (Crank–Nicolson inspired scheme).

Primal-dual methods for solving optimization problems in which the objective

function is the sum of two convex functions, as in Problem 2.3, are widely available

[52]. However, analogous methods for optimizations problems in which the objective

function is the sum of three convex functions, as in Problem 2.3, have only recently

emerged [62,106]. In particular, in Algorithm 1, for Problem 2.3, we use Chambolle

and Pock’s well-known primal dual algorithm, and in Algorithm 2, for Problem 2.3,

we use Yan’s recent extension of this algorithm to objective functions with three

convex terms. Both algorithms offer an extended range of primal and dual step sizes

λ and σ and low per-iteration complexity, due to the sparseness of S, A, and Ã. Note

specifically that the success of Algorithm 1 depends on the ease of computing the
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proximal operators related to φ and iδ , and therefore if we simply group the additional

energy term in Problem 2.3 to either φ or iδ , it would violate such property. Instead,

we shall consider E(u) as a separate term and take advantage of its smoothness, as

shown in Algorithm 2. Finally, in Algorithm 3, we describe how Algorithm 2 can be

iterated to approximate the full JKO sequence and, consequently, solutions of a range

of nonlinear partial differential equations of Wasserstein gradient flow type.

Algorithm 1: Primal-Dual for Wasserstein distance

Input: u0, φ0, Itermax , λ, σ > 0

Output: u∗ =
(

ρ∗, m∗) and the Wasserstein distance Φ(u∗)1/2

1 Let ū0 = u0 and l = 0;

2 while l < Itermax do

3 repeat

4 φ(l+1) = Proxσ i
∗
δ
(φ(l) + σAū(l)),

5 u(l+1) = ProxλΦ (u(l) − λAT φ(l+1)),

6 ū(l+1) = 2u(l+1) − u(l) ,

7 until stopping criteria are achieved;

8 end

9 u∗ = u(l+1)

Algorithm 2: Primal-Dual for one step of dynamic JKO

Input: u0, φ0, Itermax, λ, σ, τ > 0

Output: u∗, φ∗

1 Let ū0 = u0 and l = 0;

2 while l < Itermax do

3 repeat

4 φ(l+1) = Proxσ i∗
δ
(φ(l) + σ Ãū(l)),

5 u(l+1) = ProxλΦ (u(l) − λ∇E(u(l)) − λÃ
t
φ(l+1)),

6 ū(l+1) = 2u(l+1) − u(l) + λ∇E(u(l)) − λ∇E(u(l+1)) ,

7 until stopping criteria is achieved;

8 u∗ = u(l+1)

9 φ∗ = φ(l+1)

10 end

To initialize both algorithms, we choose φ0 and m0 to be zero vectors, and for ρ0,

we let its components at the initial time (i.e., k = 0) be ρ0(x) evaluated on an equally

spaced grid of width Δx , and other times to be zero. The stopping criteria consist of

checking the PDE constraint (30)–(31) along with the convergence monitors:

|F(u(l)) − F(u(l−1))|
|F(u(l))| < ǫ1, (33)
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max

{

‖u(l) − u(l−1)‖
‖u(l)‖ ,

‖φ(l) − φ(l−1)‖
‖φ(l)‖

}

< ǫ2. (34)

The proximal operator, which appears in Algorithms 1 and 2, is defined by

Proxh(x) = argminu

{

1

2
‖u − x‖2 + h(u)

}

.

For both h = σ i∗
δ

and h = λΦ, there are explicit formulas for the proximal operators.

By Moreau’s identity, we may write Proxσ i∗
δ
(x) in terms of projections onto balls of

radius δi centered at bi for the i th portion of vector x :

Proxσ i∗(x) = x − σProjBδ
(x/σ)

ProjBδ
(x) =

{

xi ‖xi − bi‖2 ≤ δi ,

δ
xi −bi

‖xi −bi ‖2
+ bi otherwise,

i = 1, 2, 3, 4 . (35)

For the proximal operator of Φ, as shown by Peyré, Papadakis, and Oudet [95, Propo-
sition 1],

ProxλΦ (u) =
(

Proxλϕ(ρ j,k , m j,k)
)

j,k
for Proxλϕ(ρ, m) =

{

(ρ∗, m∗) if ρ∗ > 0,

(0, 0) otherwise,
(36)

where ρ∗ is the largest real root of the cubic polynomial equation P(x) := (x −ρ)(x +
λ)2 − λ

2
|m|2 = 0, and m∗ can be obtained by m∗ = ρ∗m/(ρ∗ +λ). By computing the

proximal operator exactly, our primal dual method is positivity preserving, respecting

a key property of the original Problems 1 and 1 j,k .

As the computations of both proximal operators (35), (36) are component-wise,

they can easily be parallelized. Likewise, the computation of the gradient ∇E is also

component-wise:

(∇u F(u)) j = (U ′(ρ j,Nt ) + V j +
∑

l

W j,lρl,Nt (Δx)d)(Δx)d ,

(∇u H(u)) j = 1

2
(∇u F(u)) j + 1

2
(U ′(ρ j,0) + V j +

∑

l

W j,lρl,0(Δx)d)(Δx)d .

Remark 4 (discrete convolution) As written, the above functionals involves a com-

putation of the convolutions
∑

l W j,lρl,Nt and
∑

l W j,lρl,0, which can be achieved

efficiently using the fast Fourier transform. Note that since the product of the discrete

Fourier transforms of two vectors is the Fourier transform of the circular convolution

and the interaction potential W j−k = W (x j − xk) is not a periodic function, we need

zero-padding for computing the convolution. For the 1D case, we can first use the

fast Fourier transform to compute the circular convolution of W = (W j )
Nx −2
j=−Nx +2

and (æ, (0)Nx −2), and then extract the last Nx − 1 elements, which are the desired

convolution
∑

k W j−kρk for 1 ≤ j ≤ Nx − 1.
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Embedding Algorithm 2 to the JKO iteration, we have the following algorithm for

Wasserstein gradient flows. Note that line 6 in Algorithm 3 is to construct a better

Algorithm 3: Primal-Dual for JKO sequence

Input: ρ(x, t0), Itermax, λ, σ, τ, n > 0

Output: ρ(x, tk ) for 0 ≤ k ≤ n and the corresponding energy E(ρ(x, tk ))

1 Given u0, φ0;

2 for k = 1, 2, . . . , n do

3 u∗, φ∗ = Algorithm 2(u0, φ0, Itermax, λ, σ, τ )

4 ρ(x, tk ) = Su∗

5 φ0 = φ∗

6 u0 = max
{

u∗ − [1Nt +1, 0Nt +1]t ⊗ ρ(x, tk−1) + [1Nt +1, 0Nt +1]t ⊗ ρ(x, tk ), 0
}

.

7 end

initial guess for ρ at each JKO iteration by applying an extrapolation.

Remark 5 (Comparison of our numerical method to previous work) Our definition of

the indicator function in Problems 3(a) and 3 (b) differs from previous work, and as

a result, our primal-dual algorithm does not require the inversion of the matrix AA
T

[7,95], which makes it quite efficient in high dimensions thanks to the sparsity of A.

A similar approach is taken in a recent preprint [81] to compute the earth mover’s

distance W1, though, in this context, the earth mover’s distance is dissimilar from the

Wasserstein distance, since it does not require an extra time dimension and is thus a

lower-dimensional problem.

A second difference between our method and the approach in previous works is

that, since P(x) has at most one strictly positive root, it can be obtained by the gen-

eral solution formula for cubic polynomials with real coefficients. Therefore, in our

numerical simulations, we may compute the proximal operator ProxλΦ(u) by using

this general solution formula, rather than via Newton iteration [95]. As a consequence,

our method is truly positivity preserving, as opposed to positivity preserving in the

limit as Δx,Δt → 0.

We close this section by recalling sufficient conditions on the primal and dual step

sizes σ and λ that ensure Algorithms 1 and 2 converge to minimizers of Problems 2.3

and 2.3.

Proposition 1 (Convergence of Algorithm 1, c.f. [52]) Suppose σλ < 1/λmax (AA
t )

and a minimizer of Problem 2.3 exists. Then, as Itermax → +∞, and ǫ1, ǫ2 → 0 in

the stopping criteria (33) (34), the output u∗ of Algorithm 1 converges to a minimizer

of Problem 2.3.

Proposition 2 (Convergence of Algorithm 2, c.f. [106]) Suppose that the discrete

energy E(u) defined in Eq. (32) is proper, lower semi-continuous, convex, and there

exists β > 0 such that 〈u1 − u2,∇u E(u1) − ∇u E(u2)〉 ≥ β‖∇E(u1) − ∇E(u2)‖2.

Suppose further that σλ < 1/λmax (ÃÃ
t
), λ < 2β, and a minimizer of Problem 2.3

exists. Then, as Itermax → +∞ and ǫ1, ǫ2 → 0, the output u∗ converges to a minimizer

of Problem 2.3.
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Note here that the co-coercivity requirement on ∇E in the above proposition is

equivalent to require the Lipschitz continuity of ∇E , i.e., ‖∇u E(u1) − ∇u E(u2)‖ ≤
1
β
‖u1 − u2‖. For the energy of the form (4), this requirement reduces to the bounded-

ness of U ′′(ρ) and W , which can be satisfied independent of the numerical resolution

if we consider bounded solution (no finite time blow up in ρ) and nonsingular inter-

action kernel. In the case when W is singular, for example when W is a Newtonian

interaction potential, we approximate W by a continuous function via convolution

with a mollifier; see Remark 7.

3 Convergence

We now prove the convergence of solutions of the fully discrete JKO scheme, Prob-

lem 1 j,k , to a solution of the continuum JKO scheme, Problem 1. We begin, in Sect. 3.1,

by describing the hypotheses we place on the underlying domain Ω , the energy E ,

the initial data ρ0, and the discretization operators. Then, in Sect. 3.2, we show that

minimizers of Problem 1 j,k exist, provided the discretization is sufficiently refined.

Finally, in Sect. 3.3, we prove that any sequence of minimizers of Problem 1 j,k has

a subsequence that converges to a minimizer of Problem 1. In order for our finite

difference approximation to converge, we assume throughout that a smooth, positive

minimizer of the continuum JKO scheme Problem 1 exists. See hypothesis (H6) and

Remark 9 for further discussion of this assumption.

3.1 Hypotheses

We impose the following hypotheses on the underlying domain, energy, and discretiza-

tion operators.

(H1) Ω = Πd
i=1(ai , bi ) ⊆ R

d , for ai < bi ∈ R. We assume that the spacing of the

spatial discretization (Δx) > 0 and the temporal discretization (Δt) > 0 are both

functions of h satisfying limh→0(Δx) = limh→0(Δt) = 0.

(H2) For any piecewise constant function ρh on Ω , the discrete energy functional Eh

has one of the following forms, as described in Sect. 2.2.2:

(a) Fh(ρh) =
∑

j

(

U (ρ j ) + V jρ j

)

(Δx)d +
∑

j,l W j,lρ jρl(Δx)2d

(b) Hh
ρ0

(ρh) = 1
2
Fh(ρh) + 1

2

∑

j

(

U ′((ρ0) j ) + V j +
∑

l W j,l(ρ0)l(Δx)d
)

ρ j (Δx)d

(c) Gh
ρ1

(ρ j ) :=
{

0 if
∑

j |ρ j − (ρh
1 ) j |2(Δx)d ≤ δ2

5

+∞ otherwise.

We place the following assumptions on U , V , and W and the target measure ρ1:
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(i) Either U ≡ 0 or U ∈ C([0,+∞)) is convex, U ∈ C1((0,+∞)),

limr→+∞
U (r)

r
= +∞, and U (0) = 0;

(ii) V h(x) :=
∑

j∈Zd V j 1Q j
(x) and W h(x, y) :=

∑

( j,l)∈Zd×Zd W j,l1Q j
(x)1Ql

(y) are piecewise constant approximations of V , W ∈ C(Ω) converging uni-

formly on Ω .

(iii) ρ1 ∈ C1(Ω) and ρh
1 is a pointwise piecewise constant approximation of ρ1.

(H3) Dh
t and Dh

x are finite difference approximations of the time derivative and spatial

divergence. We assume that Dh
t is a forward Euler method in time, whereas Dh

x

can be given by an explicit or implicit scheme of first or higher order. We denote

by D−h
t and D−h

x the dual operators with respect to the ℓ2 inner product, and we

assume the following integration by parts formulas hold for all piecewise constant

functions ρh, f h : [0, 1] → R,

∫ 1

0

Dh
t ρh f hdt =

(

ρh f h
∣

∣

∣

1

0

)

−
∫ 1

0

ρh D−h
t f hdt

and if mh : Ω → R
d , f h : Ω → R,

∫

Ω

Dh
x mh f hdx =

∫

∂Ω

f hmh · νhdx −
∫

Ω

mh D−h
x f hdx,

where νh : Ω → R
d is the discrete outer unit normal of Ω . Finally, we assume

there exists C > 0 depending on the domain Ω × [0, 1], so that, for any f ∈
C1(Ω×[0, 1]; R) and v ∈ C1(Ω×[0, 1]; R

d), if ( f h, vh) are pointwise piecewise

constant approximations,

‖Dh
t f h − ∂t f ‖∞ ≤ C‖∂2

t f ‖∞(Δt), ‖D−h
t f h − ∂t f ‖∞ ≤ C‖∂2

t f ‖∞(Δt)

‖Dh
x vh − ∇ · v‖∞ ≤ C‖D2v‖∞(Δx), ‖D−h

x f h − ∇ f ‖∞ ≤ C‖D2 f ‖∞(Δx)

‖vh · νh − v · ν‖∞ ≤ C‖v‖∞(Δx).

(See Sect. 2.2.3 for finite difference approximations satisfying these hypotheses.)

(H4) The constraint relaxation parameters δ1, δ2, δ3, δ4 ≥ 0 are functions of h with

limh→0 δi = 0, for all i . If the energy is of the form (H2c), we require that δ5 is a

function of h satisfying limh→0 δ5 = 0 and limh→0 (Δx + Δt) /δ5 = 0.

(H5) The initial data of the continuum problem satisfy ρ0 ∈ C1(Ω) and ρh
0 is a

pointwise piecewise constant approximation of ρ0.

(H6) Given the domain, energy, and initial data described in the previous hypothe-

ses, there exists a minimizer (ρ, m) of the continuum Problem 1 satisfying

ρ ∈ C2([0, 1]; C1(Ω)), ρ > 0, and m ∈ C1([0, 1]; C2(Ω)).

To ease notation in the following convergence proof, we observe that Problem 1 j,k

may be rewritten as follows in terms of (ρh, mh), the piecewise constant functions on

Ω × [0, 1] corresponding to the coefficients (ρ j,k, m j,k).
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Problem 1h (Discrete Dynamic JKO) Fix τ, δ1, δ2, δ3, δ4 > 0, Eh , and ρh
0 . Solve the

constrained optimization problem,

inf
(ρh ,mh)∈Ch

∫ 1

0

∫

Ω

Φ(ρh, mh)dxdt + 2τE
h(ρh(·, 1)),

where (ρh, mh) belong to the constraint set Ch provided that they are piecewise con-

stant functions on Ω × [0, 1] and the following inequalities hold

‖Dh
t ρh + Dh

x mh‖L2(Ω×[0,1]) ≤ δ1 , ‖mh · νh‖L2(∂Ω×[0,1]) ≤ δ2 , (37)
∥

∥

∥

∥

∫

Ω

ρh(x, ·)dx −
∫

Ω

ρh
0 (x)dx

∥

∥

∥

∥

L2([0,1])
≤ δ3 , ‖ρh(·, 0) − ρh

0 ‖L2(Ω) ≤ δ4. (38)

Similarly, we may rewrite the definition of the discrete energies in hypothesis (H2)

in terms of a piecewise constant functions ρh on Ω corresponding to ρ j ,

F
h(ρh) =

∫

Ω

U (ρh(x)) + V h(x)ρh(x)dx + 1

2

∫∫

Ω×Ω

W h(x, y)ρh(x)ρh(y)dxdy,

H
h
ρ0

(ρh) = 1

2
F

h(ρh) + 1

2

∫

Ω

(

U ′(ρh
0 (x)) + V h(x) +

∫

Ω

W h(x, y)ρh
0 (y)dy

)

ρ(x)dx,

G
h
ρ1

(ρh) =
{

0 if ‖ρh − ρh
1 ‖L2(Ω) ≤ δ5

+∞ otherwise.

Recall that, by definition of Φ in equation (13), Φ(ρh, mh) < +∞ only if ρh is

nonnegative. Consequently, if a minimizer ρ exists, it must be nonnegative.

We conclude this section with several remarks on the sharpness of the preceding

hypotheses.

Remark 6 (assumption on domain Ω) In hypothesis (H1), we assume that Ω is an n-

dimensional hyperrectangle. We impose this assumption for simplicity, as it provides

an natural interpretation of the discretized outer unit normal νh , which is essential in

imposing the boundary conditions for our PDE constraint at the discrete level. More

generally, our convergence result can be extended to any Lipschitz domain, as long as

sufficient care is taken to define the discrete outer unit normal and the corresponding

no flux boundary conditions.

Remark 7 (assumption on energy) As described in hypothesis (H2), our convergence

result applies to internal U , drift V , and interaction W potentials that are sufficiently

regular on Ω . Our assumptions on U are classical and ensure that the internal energy

is lower semicontinuous with respect to weak-* convergence [2, Remark 9.3.8]. Our

assumptions on V and W , on the other hand, are somewhat stronger, and in practice,

one often encounters partial differential equations for which the corresponding choices

of V and W are not continuous. However, there are robust methods for approximating

these potentials by continuous functions that ensure convergence of the gradient flows.
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For example, the second author and Topaloglu provide sufficient conditions on discon-

tinuous interaction potentials W for which gradient flows of the regularized interaction

potential, Wε := W ∗ ϕε for a smooth mollifier ϕε, converge to gradient flows of the

original interaction potential W , as well as conditions that ensure minimizers of Wε

converge to minimizers of W [59]. (The convergence of general stationary points of

Wǫ that are not global minimizers to stationary point of W remains open.)

Remark 8 (assumption on δ5) In hypothesis (H4), it is essential that δ5 not vanish too

quickly with respect to other parameters in the discretization. A simple illustration of

this fact arises in the case that δ1 ≡ δ2 ≡ δ3 ≡ δ4 ≡ 0. In this case, we cannot choose

δ5 ≡ 0, since our pointwise piecewise approximation of the initial data ρh
0 will not

generally have the same mass as our pointwise piecewise approximation of the target

measure ρh
1 , and if they do not have the same mass, minimizers of the discrete problem

do not exist. Consequently, it would be impossible to prove that minimizers of the fully

discrete problem converge to minimizers of the continuum problem. On the one hand,

this does not greatly impact the performance of our numerical method, as can be seen

by considering previous work by Papadakis, Péyre, and Oudet, which numerically

implements this approach [95]. On the other hand, our numerical simulation in Fig. 3

indicates that poor choice of the relaxation parameters can cause the method to iterate

longer than necessary, without any improvement in accuracy.

Our requirement that limh→0(Δx + Δt)/δ5 = 0 is sufficient to fix this problem

and ensure convergence of the method, and this requirement is nearly sharp. To see

this, note that, for an arbitrary pointwise piecewise approximation ρh
0 of a continuous

function ρ0, we cannot in general achieve accuracy of |
∫

Ω
ρh

0 −
∫

Ω
ρ0| better than

O(Δx). If either δ1 and δ3, the parameters for the PDE constraint and the mass con-

straint, are chosen arbitrarily small, then |
∫

Ω
ρh(·, 1) −

∫

Ω
ρh

0 | can likewise be made

arbitrarily small. Thus, since ρ0, ρ1 ∈ Pac(Ω),

O(Δx) ≈
∣

∣

∣

∣

∫

Ω

ρh
0 −

∫

Ω

ρ0

∣

∣

∣

∣

≈
∣

∣

∣

∣

∫

Ω

ρh
0 −

∫

Ω

ρ0

∣

∣

∣

∣

−
∣

∣

∣

∣

∫

Ω

ρ0 −
∫

Ω

ρ1

∣

∣

∣

∣

−
∣

∣

∣

∣

∫

Ω

ρh(·, 1) −
∫

Ω

ρh
0

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Ω

ρh(·, 1) −
∫

Ω

ρ1

∣

∣

∣

∣

≤ |Ω|1/2‖ρh(·, 1) − ρ1‖L2(Ω) ≤ |Ω|1/2δ5,

so we much have δ5 ≥ O(Δx). While a CFL-type condition is not necessary for the

stability of our discretization of the PDE constraint, since ρ and m indeed become

coupled in the continuum limit (see Eqs. (8) and (12)), one should expect (Δt) ≤
O(Δx) to give the best balance between computational accuracy and cost, and we

indeed observe this numerically. Combining these facts shows that enforcing that δ5

cannot decay faster than O(Δx + Δt) by assuming limh→0(Δx + Δt)/δ5 = 0 is

nearly optimal.
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Remark 9 (assumption on existence of smooth, positive minimizer) In hypothesis

(H6), we suppose that there exists a sufficiently regular minimizer (ρ, m), ρ̄ > 0,

of the continuum problem. Our proof of the existence of minimizers of the fully

discrete problem and our proof that minimizers of the discrete problems converge to

a minimizer of the continuum problem as h → 0 strongly rely on this assumption.

In particular, the smoothness assumption allows us to use convergence of the finite

difference operators, described in hypothesis (H3), to construct an element of Ch

in Proposition 3. The positivity assumption allows us to conclude that ∇ρ,mΦ is

uniformly bounded on the range of ρ̄, which we use to prove the lim sup inequality

for the recovery sequence in Theorem 2(b).

From the perspective of approximating gradient flows, which are solutions of diffu-

sive partial differential equations (3), such regularity and positivity can be guaranteed

as long as the initial data are smooth and positive and either the diffusion is sufficiently

strong or the drift and interaction terms do not cause loss of regularity. On the other

hand, developing conditions on the energy and initial data that ensure such regularity

and positivity holds at the level of the JKO scheme, for minimizers of Problem 1,

remains largely open: results on the propagation of L p(Rd) or BV bounds along the

scheme have only recently emerged [17,50,63].

From the perspective of approximating Wasserstein geodesics, the now classical

regularity theory developed by Caffarelli and Urbas ensures that if the source and target

measures ρ0 and ρ1 are smooth and strictly positive, then the minimizer of Problem 1

(ρ̄, m̄) is also smooth and strictly positive. (See, for example, [105, Section 4.3] and

[2, Section 8.3].)

Along with this analytical justification for our smoothness and positivity assump-

tions, our numerical results also indicate that such assumptions are in general

necessary. For example in Fig. 4, we observe that if the source and target measure

of a Wasserstein geodesic are not sufficiently smooth, the numerical solution intro-

duces artificial regularity. Likewise, even in Fig. 6, we observe that the numerical

simulation is strictly positive (though very close to zero in places), while the exact

solution is identically zero outside of its support. Still, in spite of the fact that our theo-

retical convergence result requires smoothness and positivity assumptions, in practice

our numerical method still performs well on nonsmooth or nonpositive problems, pro-

vided that the spatial and temporal discretization are taken to be sufficiently small; see

Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, and 18.

Finally, these types of smoothness and positivity assumptions are typically needed

in convergence proofs for numerical methods based on the JKO scheme. For example,

in a method based on the Monge Ampére approximation of the Wasserstein distance,

the exact solution is required to be uniformly bounded above and below [10]. Like-

wise, while rigorous convergence results for fully discrete numerical methods based

on entropic or Fisher information regularization remain open, since these methods cor-

respond to introducing numerical diffusion at the level of the PDE, they automatically

enforce smoothness and positivity [28,55,82].
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3.2 Existence of Minimizers

We now show that, under the hypotheses described in the previous section, minimizers

of the fully discrete JKO scheme, Problem 1h , exist for all h > 0 sufficiently small.

We begin with the following proposition, which constructs a specific element in the

constraint set Ch , which we will use both in our proof of existence of minimizers and

in our Γ -convergence results in the next section.

Proposition 3 (construction of element in Ch) Suppose that hypotheses (H1)–(H6)

hold, and choose (ρ, m) ∈ C satisfying ρ ∈ C2([0, 1]; C1(Ω)), ρ > 0, and m ∈
C1([0, 1]; C2(Ω)). Then for h > 0 sufficiently small, there exists (ρ̃h, m̃h) ∈ Ch

satisfying (ρ̃h, m̃h)
h→0−−−→ (ρ, m) uniformly on Ω × [0, 1] and

inf
h>0,(x,t)∈Ω×[0,1]

ρ̃h(x, t) > 0. (39)

If, in addition, the energy satisfies hypothesis (H2c) and E(ρ(·, 1)) < +∞, then

we have

‖ρ̃h(·, 1) − ρh
1 ‖L2(Ω) ≤ δ5, (40)

for all h > 0 sufficiently small.

Proof We construct (ρh, mh) ∈ Ch as follows. Let m̂h be a pointwise piecewise

constant approximation of m; see Eq. (23). Recall that νh is the discrete outer unit

normal vector. We define m̃h : Ω × [0, 1] → R
d component-wise to respect the no

flux boundary conditions, letting (m̃h)l denote the lth component of the vector for

l = 1, . . . , d. If x ∈ ∂Ω , then we define

(m̃h(x, t))l =
{

(m̂h(x, t))l for el · νh(x) = 0,

0 for el · νh(x) �= 0.

Otherwise, we take m̃h(x, t) = m̂h(x, t). Define ρ̃h : Ω × [0, 1] → R so that

ρ̃h(x, 0) = ρh
0 and Dh

t ρ̃h(x, t) + Dh
x m̃h(x, t) ≡ 0.

We begin by showing that (ρ̃h, m̃h) ∈ Ch . By construction, for all h > 0,

‖Dh
t ρ̃h + Dh

x m̃h‖L2(Ω×[0,1]) = 0

‖m̃h · νh‖L2(∂Ω×[0,1]) = 0

‖ρ̃h(·, 0) − ρh
0 ‖L2(Ω) = 0.

Taking f h ≡ 1 in Hypothesis (H3) and applying the PDE constraint ensures that, for

all s ∈ [0, 1] and k ∈ N so that k(Δt) ≤ s < (k + 1)Δt ,

∫

Ω

ρ̃h(x, s)dx −
∫

Ω

ρ̃h(x, 0)dx =
∫ k(Δt)

0

∫

Ω

Dh
t ρ̃h(x, t) f h(x, t)dxdt
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= −
∫ k(Δt)

0

∫

Ω

Dh
x m̃h(x, t) f h(x, t)dxdt

= −
∫ k(Δt)

0

∫

∂Ω

m̃h(x, t) · νh(x, t)dxdt = 0.

Thus, we also obtain

∥

∥

∥

∥

∫

Ω

ρ̃h(x, ·)dx −
∫

Ω

ρh
0 (x)dx

∥

∥

∥

∥

L2([0,1])
= 0, for all h > 0.

This concludes the proof that (ρ̃h, m̃h) ∈ Ch .

We now show that (ρ̃h, m̃h) → (ρ, m) uniformly on Ω × [0, 1] as h → 0. We

begin by proving convergence of m̃h to m. Due to hypothesis (H1) on our domain

Ω , whenever ei · νh(x) �= 0, there exists y ∈ ∂Ω so that |y − x | ≤ 2
√

d(Δx)

and ν(y) = ei . Thus, whenever ei · νh(x) �= 0, the continuum boundary condition

m(y, t) · ν(y) = 0 ensures that for all t ∈ [0, 1],

|(m̃h(x, t) − m(x, t))i | = |m(x, t) · ei | ≤ |(m(x, t) − m(y, t)) · ei |
+ |m(y, t) · ei | ≤ 2

√
d(Δx)‖Dm‖∞.

We also have that, for all (x, t) ∈ Ω × [0, 1],

|m̂h(x, t) − m(x, t)| ≤ (Δx)‖Dm‖∞ + (Δt)‖∂t m‖∞.

Therefore, for all (x, t) ∈ Ω ×[0, 1], there exists Cm = Cm(d, ‖Dm‖∞, ‖∂t m‖∞) >

0 so that

|m̃h(x, t) − m(x, t)| ≤ Cm(Δt + Δx)
h→0−−−→ 0.

We now prove the convergence of ρ̃h to ρ. Since (ρ, m) is a classical solution

of the PDE constraint and ρ̃h : Ω × [0, 1] → R is defined by the conditions that

ρ̃h(x, 0) = ρ̂h
0 and Dh

t ρ̃h(x, t) + Dh
x m̃h(x, t) ≡ 0, for (x, t) ∈ Ω × [0, 1] and k ∈ N

so that k(Δt) ≤ t < (k + 1)(Δt), we have

|ρ̃h(x, t) − ρ(x, t)|

=
∣

∣

∣

∣

∣

ρ̃h(x, 0) +
∫ k(Δt)

0

Dh
t ρ̃h(x, s)ds − ρ(x, 0) −

∫ t

0

∂sρ(x, s)ds

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

ρh
0 (x) −

∫ k(Δt)

0

Dh
x m̃h(x, s)ds − ρ(x, 0) +

∫ t

0

∇ · m(x, s)ds

∣

∣

∣

∣

∣

=
∣

∣

∣
ρh

0 (x) − ρ(x, 0)

∣

∣

∣
+
∣

∣

∣

∣

∣

∫ k(Δt)

0

Dh
x m̃h(x, s)ds −

∫ k(Δt)

0

∇ · m(x, s)ds

∣

∣

∣

∣

∣
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+
∣

∣

∣

∣

∫ t

k(Δt)

∇ · m(x, s)ds

∣

∣

∣

∣

≤ ‖∇ρ‖∞(Δx) + C‖D2m‖∞(Δx)

+ ‖∇ · m‖∞(Δt)
h→0−−−→ 0. (41)

Since ρ̃h → ρ uniformly and ρ > 0, we immediately obtain (39).

Finally, suppose the energy satisfies (H2c). Since E(ρ(·, 1)) = Gρ1(ρ(·, 1)) < +∞,

we have ρ(·, 1) = ρ1. By inequality (41) and the fact that ρh
1 is a pointwise piecewise

approximation of ρ(·, 1),

‖ρ̃h(·, 1) − ρh
1 ‖L2(Ω) ≤ |Ω|1/2

(

‖ρ̃h(·, 1) − ρ(·, 1)‖∞

+‖ρ(·, 1) − ρh
1 ‖∞

)

≤ Cρ,m(Δx + Δt)

where Cρ,m = Cρ,m(Ω, ‖∇ρ‖∞, ‖∇ · m‖∞, ‖D2m‖∞) > 0. By hypothesis (H4),

limh→0
(Δx+Δt)

δ5
→ 0. Thus, for h sufficiently small,

‖ρ̃h(·, 1) − ρh
1 ‖L2(Ω) ≤ δ5,

which completes the proof.

⊓⊔

Theorem 1 (minimizers of discrete dynamic JKO exist) Suppose that hypotheses

(H1)–(H6) hold. Then for all h > 0 sufficiently small, a minimizer of Problem 1h

exists.

Proof First, we note that Proposition 3 ensures that, for h > 0 sufficiently small, the

constraint set Ch is nonempty and contains some (ρh, mh) satisfying ρh > 0. If the

energy satisfies (H2a) or (H2b), then we immediately obtain Eh(ρh(·, 1)) < +∞.

Similarly, if the energy satisfies (H2c), then inequality (40) in Proposition 3 again

ensures that Eh(ρh(·, 1)) < +∞.

Since Φ(ρh, mh) < +∞ whenever ρh ≥ 0, this ensures that value of the objec-

tive function in the discrete minimization problem 1h is not identically +∞ on the

constraint set. Therefore,

inf
(ρh ,mh)∈Ch

∫ 1

0

∫

Ω

Φ(ρh(x, t), mh(x, t))dxdt + 2τE
h(ρh(·, 1)) < +∞, (42)

and we may choose a minimizing sequence (ρh
n , mh

n) ∈ Ch that converges to the

infimum. We may assume, without loss of generality, that

sup
n

∫ 1

0

∫

Ω

Φ(ρh
n (x, t), mh

n(x, t))dxdt + 2τE
h(ρh

n (·, 1)) < +∞, (43)
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To conclude the proof of the theorem, we will now show that there exists (ρh
∗ , mh

∗)
so that a subsequence of (ρh

n , mh
n) converges to (ρh

∗ , mh
∗) uniformly on Ω × [0, 1].

Then, since the objective functional Eh is lower semi-continuous along uniformly

convergent sequences [1, Example 2.36] and the constraint set Ch is closed under

uniform convergence for fixed h > 0, (ρh
∗ , mh

∗) must be a minimizer of the fully

discrete problem.

In order to obtain compactness of (ρh
n , mh

n), first note that (42) ensures Φ(ρh, mh) <

+∞ on Ω×[0, 1], so ρh ≥ 0 on Ω . Furthermore, the mass constraint (38) ensures that

there exists R = R(h) > 0, depending on Ω , (Δx), (Δt), and δ3 so that |ρh
n (x, t)| ≤ R

for all (x, t) ∈ Ω × [0, 1]. Therefore, the vector of coefficients (ρh
n ) j,k for this piece-

wise constant function satisfies (ρh
n ) j,k ∈ BR(0) ⊆ R

N d
x Nt . Consequently, by the

Heine–Borel theorem, there exists a vector (ρh
∗ ) j,k ∈ R

N d
x Nt so that, up to a sub-

sequence, (ρh
n ) j,k → (ρh

∗ ) j,k . Therefore, if ρh
∗ denotes the corresponding piecewise

constant function, we have that, up to taking a subsequence which we again denote by

ρh
n (x, t), limn→+∞ ρh

n (x, t) = ρh
∗ (x, t) uniformly on Ω × [0, 1].

Next, we show that

inf
n

E
h(ρh

n (·, 1)) > −∞. (44)

If the energy satisfies (H2c), then Eh(ρh
n (·, 1)) ≥ 0 for all n, and the above inequality

is immediate. If the energy satisfies (H2a) or (H2b), then this follows from the fact that

U is bounded below on [0,+∞], V and W are bounded below on Ω and ρh
n (x, t) →

ρh
∗ (x, t) uniformly.

Combining (43) and (44), we obtain

sup
n

∫ 1

0

∫

Ω

Φ(ρh
n (x, t), mh

n(x, t))dxdt < +∞. (45)

Furthermore, since 0 ≤ ρh
n (x, t) ≤ R for all (x, t) ∈ Ω × [0, 1], n ∈ N, we have

Φ(ρh
n (x, t), mh

n(x, t)) ≥ |mh
n(x, t)|2/R. (46)

Therefore, combining (45) and (46), we obtain that there exists R′ = R′(h) > 0,

depending on Ω , (Δx), (Δt), and δ3, so that |mh
n(x, t)| ≤ R′ for all (x, t) ∈ Ω ×

[0, 1]. Arguing as before, the Heine–Borel theorem ensures that, up to a subsequence,

limn→+∞ mh
n(x, t) = mh

∗(x, t) uniformly on Ω ×[0, 1], for some piecewise constant

function mh
∗(x, t). This gives the result.

⊓⊔

3.3 Convergence of Minimizers

We now prove that minimizers of the discrete dynamic JKO scheme, Problem 1h

converge to minimizers of Problem 1 as h → 0. We begin with the following lemma,

showing that any (ρh, mh) ∈ Ch satisfies a weak form of the PDE constraint, in the

limit as h → 0.
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Lemma 1 (properties of Ch) Suppose that hypotheses (H1)–(H6) hold, and fix

(ρh, mh) ∈ Ch so that
∫ 1

0

∫

Ω
Φ(ρh, mh) < +∞ for each h > 0. Then ρh(·, 0) → ρ0

in L2(Ω), and there exist ρ ∈ P(Ω × [0, 1]) and μ ∈ P(Ω) so that, up to a subse-

quence, ρh ∗
⇀ ρ and ρh(·, 1)

∗
⇀ μ. Furthermore, for any piecewise constant function

f h with suph>0 ‖ f h‖L2(Ω×[0,1]) + ‖ f h‖L2(∂Ω×[0,1]) < +∞, we have

∫ 1

0

∫

Ω

(

D−h
t f hρh + D−h

x f h · mh
)

dxdt

+
∫

Ω

(

f h(·, 0)ρh(·, 0) − f h(·, 1)ρh(·, 1)

)

dxdt
h→0−−−→ 0 . (47)

Proof By hypothesis (H6), ρh
0 → ρ0 uniformly on Ω . Likewise, the constraint on

the initial data (38) and (H4) ensure limh→0 ‖ρh(·, 0) − ρh
0 ‖L2(Ω) ≤ limh→0 δ4 = 0.

Thus, ρh(·, 0) → ρ0 in L2(Ω).

We now turn to Eq. (47). By the PDE constraint and boundary conditions (37) and

summation by parts, via hypotheses (H3),

∣

∣

∣

∣

∫ 1

0

∫

Ω

(

D−h
t f hρh + D−h

x f h · mh
)

dxdt

+
∫

Ω

(

f h(·, 0)ρh(·, 0) − f h(·, 1)ρh(·, 1)

)

dx

∣

∣

∣

∣

=
∣

∣

∣

∣

∫ 1

0

∫

Ω

(

f h Dh
t ρh + f h Dh

x mh
)

dxdt −
∫ 1

0

∫

∂Ω

f hmh · νhdx

∣

∣

∣

∣

≤ ‖ f h‖L2(Ω×[0,1])‖Dh
t ρh + Dh

x mh‖L2(Ω×[0,1])

+ ‖ f h‖L2(∂Ω×[0,1])‖mh · νh‖L2(∂Ω×[0,1])

≤ δ4‖ f h‖L2(Ω×[0,1]) + δ2‖ f h‖L2(∂Ω×[0,1])
h→0−−−→ 0,

where, in the last line, we use that (H4) ensures δ2, δ4 → 0 and the fact that f h is

bounded uniformly in h in L2(Ω × [0, 1] and L2(∂Ω × [0, 1]).
Next, we show that there exist ρ ∈ P(Ω × [0, 1]) and μ ∈ P(Ω) so that, up

to a subsequence, ρh ∗
⇀ ρ and ρh(·, 1)

∗
⇀ μ. By Hölder’s inequality and the mass

constraint (38),

∥

∥

∥

∥

∫

Ω

ρh(x, ·)dx −
∫

Ω

ρh
0 (x)dx

∥

∥

∥

∥

L1([0,1])

≤
∥

∥

∥

∥

∫

Ω

ρh(x, ·)dx −
∫

Ω

ρh
0 (x)dx

∥

∥

∥

∥

L2([0,1])
≤ δ3

h→0−−−→ 0,
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where, in the last line, we use that (H4) ensures δ3 → 0. Since hypothesis (H6) ensures

ρh
0 → ρ0 uniformly and

∫

Ω
ρ0 = 1, we obtain,

∫ 1

0

∫

Ω

ρh(x, s)dxds → 1.

Furthermore, since
∫ 1

0

∫

Ω
Φ(ρh, mh) < +∞ for each h > 0, we must have ρh ≥ 0

on Ω × [0, 1], and the above equation ensures suph>0 ‖ρh‖L1(Ω×[0,1]) < +∞. Thus,

classical functional analysis results ensure there exists a subsequence that converges

to some ρ ∈ P(Ω × [0, 1]) in the weak-* topology (see, e.g., [20, Section 3]).

Finally, taking f h ≡ 1 in Eq. (47) gives,

lim
h→0

∫

Ω

ρh(·, 0) − ρh(·, 1)dx = 0 �⇒ lim
h→0

∫

Ω

ρh(·, 1)dx = 1

�⇒ sup
h>0

‖ρh(·, 1)‖L1(Ω) < +∞.

Arguing as above, we obtain that, up to a further subsequence, ρh(·, 1)
∗
⇀ μ(·) for

μ ∈ P(Ω). ⊓⊔

We now prove that the discrete energies Eh are lower semicontinuous along weak-*

convergent sequences.

Proposition 4 (Lower semicontinuity of energies along weak-* convergent sequences)

Suppose that hypotheses (H1)–(H6) hold. Then, for any sequence of piecewise constant

functions ρh : Ω → R such that ρh ∗
⇀ ρ, we have lim infh→0 Eh(ρh) ≥ E(ρ).

Proof First, suppose the energy satisfies (H2a). Since the piecewise constant approx-

imations V̂ h and Ŵ h converge to V and W uniformly, for any sequence ρh ∗
⇀ ρ,

lim
h→0

∫

Ω

V hρhdx =
∫

(V h − V )ρhdx +
∫

V ρhdx =
∫

V ρ dx, (48)

lim
h→0

∫

Ω×Ω

W h(x, y)ρh(x)ρh(y)dxdy =
∫

Ω×Ω

W (x − y)dρ(x)dρ(y). (49)

Furthermore, our assumptions on U guarantee that the internal energy term is

lower semicontinuous with respect to weak-* convergence [2, Remark 9.3.8], so

lim infh→0

∫

Ω
U (ρh(x))dx ≥

∫

Ω
U (ρ(x))dx . Combining this with equations (48-

49) gives the result.

Next, suppose the energy satisfies (H2b). Since ρ0 > 0 on the compact set Ω and U ′

is uniformly continuous on ρ0(Ω) ⊂ (0,+∞), the fact that hypothesis (H6) ensures

ρ̂h
0 → ρ0 uniformly ensures U ′(ρ̂h

0 ) → U ′(ρ0) uniformly. Therefore,

lim
h→0

∫

Ω

U ′(ρ̂h
0 )ρhdx =

∫

Ω

U ′(ρ0)ρdx .
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Likewise, since V̂ h and Ŵ h converge to V and W uniformly, we also have

lim
h→0

∫

Ω

(

V̂ h(x) +
∫

Ω

Ŵ h(x, y)ρh
0 (y)dy

)

ρh(x)dx

=
∫

Ω

(

V (x) +
∫

Ω

W (x, y)ρ0(y)dy

)

ρ(x)dx . (50)

Combining these limits with the lim inf inequality for energies of the form (H2a) gives

the result.

Finally, suppose the energy satisfies (H2c). Without loss of generality, we may

assume that lim infh→0 Gh
ρ1

(ρh) < +∞, so that up to a subsequence, Gh
ρ1

(ρh) ≡ 0

and limh→0 ‖ρh − ρh
1 ‖L2(Ω) = 0. By uniqueness of limits, ρ = ρ1. Thus, since

Gh
ρ1

≥ 0, we have lim infh→0 Gh
ρ1

(ρh) ≥ 0 = Gρ1(ρ).

⊓⊔

We now apply Proposition 4 to prove the Γ -convergence of Problem 1h to Problem

1.

Theorem 2 (Γ -convergence of discrete to continuum JKO) Suppose hypotheses (H1)–

(H6) hold.

(a) If (ρh, mh) ∈ Ch with (ρh, mh)
∗
⇀ (ρ, m), then (ρ, m) ∈ C and

lim inf
h→0

∫ 1

0

∫

Ω

Φ(ρh, mh)dxdt + 2τE
h(ρh(·, 1))

≥
∫ 1

0

∫

Ω

Φ(ρ, m)dxdt + 2τE(ρ(·, 1)).

(b) For any (ρ, m) ∈ C satisfying ρ ∈ C2([0, 1]; C1(Ω)), ρ > 0, and m ∈
C([0, 1]; C2(Ω), there exists a sequence (ρ̃h, m̃h) ∈ Ch so that (ρ̃h, m̃h) →
(ρ, m) uniformly and

lim sup
h→0

∫ 1

0

∫

Ω

Φ(ρ̃h, m̃h)dxdt + 2τE
h(ρ̃h(·, 1))

≤
∫ 1

0

∫

Ω

Φ(ρ, m)dxdt + 2τE(ρ(·, 1)).

Proof We first prove part (a). Suppose (ρh, mh) ∈ Ch , with ρh ∗
⇀ ρ and mh ∗

⇀ m.

We begin by showing that the limit (ρ, m) belongs to C. Fix f ∈ C∞(Ω × [0, 1])
and let f h be a pointwise piecewise constant approximation of f . (See Eq. (23).) By

Lemma 1 and hypothesis (H3),

∫ 1

0

∫

Ω

( ftρ + ∇ f · m) dxdt +
∫

Ω

f (·, 0)ρ(·, 0) − f (·, 1)μdx = 0.
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We conclude that (ρ, m) satisfies the PDE constraint in the sense of distributions

(17), which gives ρ ∈ AC([0, 1],P(Ω)) [2, Lemma 8.1.2]. In particular, since ρ is

continuous in time, we have that the μ defined in Lemma 1 satisfies μ = ρ(·, 1).

We now consider the inequality in part (a). Since the integral functional (ρ, m) �→
∫ 1

0

∫

Ω
Φ(ρ, m) is lower semicontinuous with respect to weak-* convergence of mea-

sures [1, Example 2.36], we immediately obtain

lim inf
h→0

∫ 1

0

∫

Ω

Φ(ρh, mh)dxdt ≥
∫ 1

0

∫

Ω

Φ(ρ, m)dxdt .

This ensures m ∈ L1([0, 1], L2(ρ−1)) and completes the proof that (ρ, m) ∈ C.

Finally, since Lemma 1 ensures ρh(·, 1)
∗
⇀ μ = ρ(·, 1), applying Proposition 4

gives

lim inf
h→0

E
h(ρh(·, 1)) ≥ E(ρ(·, 1)),

which completes the proof of part (a).

We now turn to part (b). Let (ρ̃h, m̃h) ∈ Ch be the sequence constructed in Propo-

sition 3, so (ρ̃h, m̃h) → (ρ, m) uniformly. By inequality (39), there exists c > 0 so

that ρh(x, t) ≥ c for h sufficiently small. Therefore,

∣

∣

∣

∣

∫ 1

0

∫

Ω

Φ(ρ̃h, m̃h) −
∫ 1

0

∫

Ω

Φ(ρ, m)

∣

∣

∣

∣

≤ |Ω|‖∇ρ,mΦ‖L∞({ρ≥c})
(

‖m̃h − m‖∞ + ‖ρ̃h − ρ‖∞
)

h→0−−−→ 0.

It remains to show that

lim sup
h→0

E
h(ρ̃h(·, 1)) ≤ E(ρ(·, 1)).

First, suppose the energy satisfies either (H2a) or (H2b). By Eqs. (48)–(50), which

hold for any weak-* convergent sequence, and the fact that U ′(ρ̃h(·, 0)) → U ′(ρ(·, 0))

uniformly, it suffices to show

lim sup
h→0

∫

Ω

U (ρ̃h(·, 1))dx ≤
∫

Ω

U (ρ(·, 1))dx .

Since U ∈ C([0,+∞]), ρ(·, 1) ∈ L∞(Rd), and ρ̃h(·, 1) → ρ(·, 1) uniformly,

U (ρ̃h(·, 1)) →
∫

U (ρ(·, 1)) uniformly, which gives the result.

Finally, suppose the energy satisfies (H2c). Without loss of generality, suppose

E(ρ(·, 1)) = Gρ1(ρ(·, 1)) < +∞. Inequality (40) ensures that, for h sufficiently

small,

‖ρ̃h(·, 1) − ρh
1 ‖L2(Ω) ≤ δ5.
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By definition of Gh
ρ1

, this implies Gh
ρ1

(ρ̃h(·, 1)) ≡ 0. Therefore,

lim sup
h→0

G
h
ρ1

(ρ̃h(·, 1)) = 0 ≤ Gρ1(ρ1),

which gives the result. ⊓⊔

We conclude this section by applying the Γ -convergence proof from Theorem 2 to

prove that any sequence of minimizers of the discrete Problem 1h converges, up to a

subsequence, to a minimizer of the continuum Problem 1.

Theorem 3 (Convergence of minimizers) Suppose that hypotheses (H1)–(H6) hold.

Then, for any sequence of minimizers (ρh, mh) of Problem 1h , we have, up to a

subsequence, ρh ∗
⇀ ρ and mh ∗

⇀ m, where (ρ, m) is a minimizer of Problem 1.

Note that, if the minimizer of the continuum Problem 1 is unique, then this theorem

ensures that any sequence of minimizers of the discrete Problem 1 j,k has a further

subsequence that converges to this minimizer. Therefore, the sequence itself must

converge to the unique minimizer of the continuum problem. (See Remark 2 for

sufficient conditions that ensure the minimizer of the continuum problem is unique.)

Proof of Theorem 3 First, note that Lemma 1 ensures that there exist ρ ∈ P(Ω×[0, 1])
and μ ∈ P(Ω) so that, up to a subsequence, ρh ∗

⇀ ρ and ρh(·, 1)
∗
⇀ μ. In order

to prove an analogous weak-* compactness result for mh we first prove that, up to a

subsequence,

sup
h>0

∫ 1

0

∫

Ω

Φ(ρh, mh) < +∞. (51)

By (H6), there exists a minimizer (ρ̄, m̄) of the continuum Problem 1 satisfying ρ̄ ∈
C2([0, 1]; C1(Ω)), ρ̄ > 0, and m̄ ∈ C1([0, 1]; C2(Ω)). Comparing the recovery

sequence (ρ̃h, m̃h) ∈ Ch from Theorem 2(b) for (ρ̄, m̄) with the discrete minimizer

(ρh, mh) ∈ Ch , we obtain

lim sup
h→0

∫ 1

0

∫

Ω

Φ(ρh, mh) + 2τE
h(ρh(·, 1))

≤ lim sup
h→0

∫ 1

0

∫

Ω

Φ(ρ̃h, m̃h) + 2τE
h(ρ̃h(·, 1))

≤
∫ 1

0

∫

Ω

Φ(ρ̄, m̄) + 2τE(ρ̄(·, 1)). (52)

Furthermore, Proposition 4 ensures that

lim inf
h→0

2τE
h(ρh(·, 1)) ≥ 2τE(μ),
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which is bounded below by some constant, since hypothesis (H2c) ensures E ≥ 0 and

hypotheses (H2a) or (H2b) ensures E(μ) > −∞, since U , V , and W are bounded

below and U ′ is bounded below on the range of the strictly positive density ρ0. There-

fore, up to a subsequence, we obtain (51).

We now deduce weak-* convergence of mh . By Hölder’s inequality, the fact that

ρh ∗
⇀ ρ, and the definition of Φ, we have

sup
h>0

‖mh‖L1(Ω×[0,1]) ≤ sup
h>0

(∫ 1

0

∫

Ω

Φ(ρh, mh)

)(∫ 1

0

∫

Ω

12ρh

)1/2

< +∞.

Thus, up to another subsequence, mh ∗
⇀ m on Ω × [0, 1].

It remains to show that the limit (ρ, m) of (ρh, mh) is a minimizer of Problem 1.

By Theorem 2, part (a), we have (ρ, m) ∈ C and

∫ 1

0

∫

Ω

Φ(ρ, m) + 2τE(ρ(·, 1)) ≤ lim inf
h→0

∫ 1

0

∫

Ω

Φ(ρh, mh) + 2τE
h(ρh(·, 1)).

Combining this with inequality (52) above, we conclude that (ρ, m) ∈ C is also a

minimizer of Problem 1, which completes the proof. ⊓⊔

4 Numerical Results

In this section, we provide several examples demonstrating the efficiency and accuracy

of our algorithms. We begin by using Algorithm 1 to compute Wasserstein geodesics

between given source and target measures, and we then turn to Algorithm 3 to com-

pute solutions of nonlinear gradient flows. In the following simulations, we take our

computational domain Ω to be a square, imposing the no flux boundary conditions

on m dimension by dimension. In practice, unless otherwise specified, we always

impose the discrete PDE constraint via the Crank–Nicolson finite difference opera-

tors (28), and we choose ǫ1 = ǫ2 = ǫ in the stopping criteria to be 10−5 unless

otherwise specified. For the relaxation of the constraints in (30) and (31), we choose

δ1 = δ2 = δ4 = δ5 = δ, and δ3 differently, as specified in each example.

4.1 Wasserstein Geodesics

As described in Remark 1, a particular case of our numerical scheme provides a

method for computing the Wasserstein geodesic between two probability densities.

We begin by computing the Wasserstein geodesic between rescaled Gaussians in one

dimension:

gμ,θ (x) = 1

(2πθ2)d/2
e
− (x−μ)2

θ2 . (53)
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Fig. 2 We compute the Wasserstein geodesic between two Gaussians on the domain Ω = [−4, 4], with

Nt = 20 temporal grid points (Δt = 1
20 ) and Nx = 200 spatial points (Δx = 8

200 ). We choose σ = 0.1

and σλ = 1.5/λmax (AAt ) and compute 105 iterations. Left: evolution of geodesic from time t = 0 to

t = 1. Right: rate of convergence of numerical solution to exact solution, as a function of the number of

iterations in Algorithm 1

The target measure is simply a translation and dilation of the initial measure, ρ0(x) =
(0.5)gμ0,θ0(x) and ρ1(x) = (0.5)gμ1,θ1(x). The optimal transport map T (x) from

ρ0(x) to ρ1(x) is given explicitly by1

T (x) = θ1

θ0
(x − μ0) + μ1.

Rewriting Eq. (15) for the geodesic ρ(x, t) and velocity v(x, t) induced by this trans-

port map, via the definition of the push forward, we obtain

ρ(x, t) = ρ0(T
−1
t (x))det(∇x T −1

t ) and m(x, t)

= ρ(x, t)v(x, t) = ρ(x, t)(T ◦ T −1
t (x) − T −1

t (x))),

T −1
t (x) =

x + ( θ1
θ0

μ0 − μ1)t

1 − t + t θ1
θ0

, det(∇x T −1
t ) = 1

1 − t + t θ1
θ0

.

In Fig. 2, we apply Algorithm 1 to compute the Wasserstein geodesic ρ(x, t)

between the initial and target densities (53), with means and variances μ0 =
−1.5, θ0 = 0.3, μ1 = 1.5, and θ1 = 0.6. On the left, we plot the evolution of the

geodesic at various times. On the right, we plot the ℓ1 error of the densities, momenta,

and Wasserstein distance as a function of the number of iterations, l, observing a rate

of convergence of order O(1/l) (dashed black line). Here, the error is defined as

‖ρ(l) − ρ∗‖ = 1

Nx (Ns + 1)

Ns
∑

k=0

Nx −1
∑

j=1

|ρ(l)
j,k − ρ∗

j,k | . (54)

1 One way to see that this is the unique optimal transport map from ρ0 to ρ1 is to note that T #ρ0 = ρ1 and

T (x) is the gradient of a convex function; see, for example, [2, Section 6.2.3].
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Fig. 3 Analysis of how the scaling relationship between the relaxation parameter δ and the spatial discretiza-

tion (Δx) affects the accuracy of the numerical method and the number of iterations required to converge.

We contrast the choices δ = (Δx)2, δ = (Δx)3 and δ = 10−8 for the example of the Wasserstein distance

between geodesics, illustrated in Fig. 2. We take Nt = 30, Nx = 300, σ = 1, σλ = 0.99/λmax (AAt ) and

δ3 = δ

In Fig. 3, we illustrate how choosing the optimal scaling relationship between the

relaxation parameter δ and the spatial and temporal discretizations (Δx), (Δt) allows

the method to converge in fewer iterations. We contrast the choices δ = (Δx)2,

δ = (Δx)3, and δ = 10−8, for the example of the Wasserstein distance between

geodesics, illustrated in Fig. 2, where the outer time step τ = 1, (Δx) ∼ (Δt), and

δ3 = δ. Based on the order of accuracy of our Crank–Nicolson approximation of the

PDE constraint, we expect that δ = (Δx)2 should give the optimal balance between

accuracy and computational efficiency. (See Remark 3.)

In the plot on the left, we observe that for all choices of δ, the error between the

numerical solution ρ(l) and the exact solution ρ∗ is identical, with the error saturating

after 105 iterations. Thus, all three choices of δ provide the same level of accuracy,

and the best way to distinguish between them is to identify which choice of δ causes

the stopping criteria (33 and 34) to be satisfied in the least number of excess iterations

after 105. The behavior of two key stopping criteria is shown in the plot on the right—

the PDE constraint ‖Au(l) − b‖ and the convergence monitor for the relative error of

the dual variables ‖φ(l) − φ(l−1)‖/‖φ(l)‖. Of the four stopping criteria we consider

(PDE constraint and three convergence monitors), these two are the last to be satisfied

in all of the numerical simulations contained in this manuscript, hence these determine

when our method terminates its iterations.

For the case of δ = (Δx)2 (red lines), we indeed observe that the PDE constraint

(solid line) satisfies its stopping criteria (dashed line) by 104 iterations and the dual

variables (starred line) satisfy their stopping criteria of 10−5 by 105 iterations. On the

other hand, for the cases of δ = (Δx)3 (blue lines) and δ = 10−8 (green lines), we

see that while the dual variables (starred lines) have satisfied their stopping criteria of

10−5 by 104 iterations, the PDE constraints (solid lines) do not satisfy their stopping

criteria (dashed lines) until later—it takes more than 105 iterations for δ = (Δx)3 and

more than 107 iterations for δ = 10−8. This example shows that choosing δ without

respecting the order of accuracy of the finite difference approximation in the PDE
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Fig. 4 Computation of the Wasserstein geodesic between two translations of British parliament on the

domain, with Nt = 40 temporal grid points (Δt = 1
40 ) and Nx = 2000 spatial grids (Δx = 40

2000 ). Here,

σ = 0.1, σλ = 0.99/λmax (AAt ) and then λ = 0.9727, δ = 10−5, and δ3 = 10−8

constraint, one wastes computational effort without improving the accuracy of the

numerical solution.

Next, we compute Wasserstein geodesics between initial and target measures when

neither are smooth nor strictly positive. In Fig. 4, we compute the geodesic between a

profile of the British Parliament and its translation. We do not observe convergence to

the exact geodesic, which would be a constant speed translation, and instead observe

degradation of the parliamentary building at intermediate times, due to numerical

smoothing. Similarly, in Fig. 5, we compute the geodesic between Pac-Man and a

ghost, visualized as characteristic functions on sets in two dimensions. Again, we

observe numerical smoothing around the edges of discontinuity. Both of these exam-

ples offer a numerical justification for the smoothness assumption we impose in our

main convergence Theorem 3. In the absence of such smoothness, it appears that the

method does not converge. Similar smoothness assumptions are required in the other

numerical methods for Wasserstein geodesics for which rigorous convergence has

been analyzed, including Monge Ampére-type methods [11,68].

4.2 Wasserstein Gradient Flows: One Dimension

In this and the next section, we consider several examples of Wasserstein gradient

flows, including some which have appeared in previous numerical studies [3,29,49,99],

to demonstrate the performance of our method for simulating solutions of nonlinear

partial differential equations.
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Fig. 5 Computation of the Wasserstein geodesic between Pac-Man and a ghost, with Nt = 40 temporal

points (Δt = 1
40 ) and Nx = Ny = 120 spatial grids (Δx = Δy = 0.0458). From left to right, up to down,

the plots correspond to t = 0, t = 0.15, t = 0.275, t = 0.4, t = 0.525, t = 0.65, t = 0.775, t = 0.9, and

t = 1. Here, λ = 40, σλ = 1.2/λmax (AAt ) then σ = 0.0036, δ = 10−5, and δ3 = 10−5

4.2.1 Porous Medium Equation

The porous medium equation

∂tρ = Δρm , m > 1, (55)

is the Wasserstein gradient flow of the energy (4), with U (ρ) = 1
m−1

ρm and V =
W = 0 . A well-known family of exact solutions is given by Barenblatt profiles (c.f.

[104]), which are densities of the form

ρ(x, t)=(t + t0)
− 1

m+1

(

C−α
m − 1

2m(m + 1)
x2(t + t0)

− 2
m+1

)
1

m−1

+
, for C, t0 >0. (56)

We now apply Algorithm 3 to simulate solutions of the m = 2 porous medium

equation with Barenblatt initial data, t0 = 10−3 and C = (3/16)1/3. Here, the Euler

discretization (27) is used. In Fig. 6, we plot the evolution of the numerical solution
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Fig. 6 Evolution of the solution

ρ(x, t) to the one-dimensional

porous medium equation, with

m = 2 on the domain

Ω = [−1, 1]. We choose

τ = 0.5 × 10−3, Δx = 0.02,

Δt = 0.1, λ = 0.2,

σλ = 1.1/λmax (AAt ) then

σ = 0.1954, δ = 10−5, and

δ3 = 10−5

over time, and we observe good agreement with the exact solution of the form (56),

which is displayed in dashed curve.

In Fig. 7, we analyze how the rate of convergence depends on the inner time step Δt ,

the spatial discretization Δx , and outer time step of the JKO scheme τ . We compute

the error between the exact solution and the numerical solution in the ℓ1 norm, i.e.,

‖ρ − ρ∗‖ℓ1 = 1

Nx (n + 1)

Nt
∑

k=0

Nx −1
∑

j=1

|ρ j (kτ) − ρ∗
j (kτ)|.

In the plot on the left of Fig. 7, we consider two fixed values of τ and examine how

the error depends on Nt and Nx = 10Nt . In both cases, the error quickly saturates,

indicating that the outer time step τ dominates the error. In the plot on the right, we fix

Nt = 20 and Nx = 200 and consider how the error depends on τ . We observe slightly

less than first-order convergence in τ for the classical JKO scheme (Eh = Fh) and

higher-order convergence for the Crank–Nicolson inspired scheme (Eh = Hh). We

believe these slower rates of convergence are due to the lower regularity of solutions to

the porous medium equation with compactly supported initial data, which are merely

Hölder continuous.

In Fig. 8, we consider the case of smooth, strictly positive initial data, given by a

Gaussian with mean μ = 0 and variance θ = 0.2 (53), in which case solutions of the

PDE remain smooth over time. On the left, we show the evolution of the solutions

over time, and on the right, we illustrate that the classical JKO scheme indeed attains

first-order accuracy, though the Crank–Nicolson inspired scheme is still less than

second-order accurate.

4.2.2 Nonlinear Fokker–Planck Equation

We now consider a nonlinear variant of the Fokker–Planck equation,

∂tρ = ∇ · (ρ∇V ) + Δρm , V : R
d → R, m > 1,
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Fig. 7 Analysis of rate of convergence for a solution of porous medium equation, as in Fig. 6. Left:

Convergence to exact solution for Nx /Nt = 10 for choices of τ . Right: Convergence to exact solution for

Nt = 20 and Nx = 200 and various choices of τ , contrasting the traditional first-order JKO scheme with

the new Crank–Nicolson inspired scheme

Fig. 8 Evolution and the rate of convergence for a solution of porous medium equation with smooth positive

initial density. We choose Nt = 10, Nx = 100, σ = 10, λ = 0.0148. Left: Evolution of the solution ρ(x, t)

to the one-dimensional porous medium equation, with m = 2 on the domain Ω = [−2, 2] for τ = 0.005.

Right: The rate of convergence for various choices of τ , contrasting the traditional first-order JKO scheme

with the new Crank–Nicolson inspired scheme. For each choice of τ in our computation of the higher-order

method, we choose our stopping criteria ǫ = 10−4 ∗ 2−0.01/τ

inspired by the porous medium equation described in the previous section (55). When

V is a confining drift potential, all solutions approach the unique steady state

ρ∞(x) =
(

C − m − 1

m
V (x)

)
1

m−1

+
,

where C > 0 depends on the mass of the initial data, so that
∫

ρ∞dx =
∫

ρ0dx , see

[44,51].

In Fig. 9, we simulate the evolution of solutions to the nonlinear Fokker–Planck

equation with V (x) = x2, m = 2, and initial data given by a Gaussian with mean

μ = 0 and variance θ = 0.2 (53). On the left, we plot the evolution of the density
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Fig. 9 Evolution of the solution ρ(x, t) to the one-dimensional nonlinear Fokker–Planck equation, with

m = 2 and V (x) = x2. We choose τ = 0.05, Δx = 0.04, Δt = 0.1, λ = 0.1641, σ = 1, δ = 10−5,

and δ3 = 10−5. Left: evolution of density ρ(x, t) toward equilibrium ρ∞(x). Right: Rate of decay of

corresponding energy with respect to time

Fig. 10 Analysis of rate of convergence for a solution of the nonlinear Fokker–Planck equation, as in Fig. 9.

We choose Δt = 0.1, Δx = 0.04 and consider the error (57) for various choices of τ , contrasting the

traditional first-order JKO scheme with the new Crank–Nicolson inspired scheme

ρ(x, t) toward the steady state ρ∞(x). On the right, we compute the rate of decay of

the corresponding energy (4) as a function of time, observing exponential decay as

the solution approaches equilibrium. In this way, our method recovers analytic results

on convergence to equilibrium of Carrillo, DiFrancesco, and Toscani [35,51].

In Fig. 10, we analyze how the rate of convergence depends on the outer time step τ

of the scheme, for sufficiently small inner time step Δt = 0.1 and spatial discretization

Δx = 0.04. We compute the error

eτ = ‖ρτ (x, t) − ρτ/2(x, t)‖ℓ1 (57)
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Fig. 11 Evolution of the solution ρ(x, t) to the one-dimensional aggregation equation, with W (x) = x2/2−
ln(|x |), x ∈ [−4, 4]. We choose τ = 0.05, Δx = 0.04, Δt = 0.05, λ = 0.01, σλ = 0.99/λmax (AAt ) then

σ = 18.8, δ = 10−6, and δ3 = 10−6. Left: evolution of density ρ(x, t) toward equilibrium ρ∞(x). Right:

Rate of decay of corresponding energy with respect to time

We observe slightly faster than first-order convergence for the traditional JKO scheme

(Eh = Fh) and higher-order convergence for the new Crank–Nicolson inspired scheme

(Eh = Hh). We believe this improvement in the rate of convergence as compared to

our previous example for the porous medium equation, Fig. 7, is due to the rapid

convergence to the steady state ρ∞.

4.2.3 Aggregation Equation

In this section, we consider a nonlocal partial differential equation of Wasserstein

gradient flow type, known as the aggregation equation

∂tρ = ∇ · (ρ∇W ∗ ρ) , W : R
d → R . (58)

In recent years, there has been significant interest in interaction kernels W that are

repulsive at short length scales and attractive at longer distances, such as the kernel

with logarithmic repulsion and quadratic attraction

W (x) = |x |2
2

− ln(|x |) . (59)

For this particular choice of W , there exists a unique equilibrium profile [38], given

by

ρ∞(x) = 1

π

√

(2 − x2)+.

In Fig. 11, we simulate the solution to the aggregation equation with Gaussian initial

data (53) with mean μ = 0 and variance θ = 1, analyzing convergence to equilibrium.

On the left, we plot the evolution of the density ρ(x, t) at varying times, observing
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Fig. 12 We compute the steady state of a solution to the two-dimensional aggregation equation with inter-

action potential W (x) = |x |4/4 − |x |2/2, which is a Dirac ring of radius 0.5, centered at the origin. The

computational domain is [-1,1]×[-1,1]. We choose τ = 0.05, Δx = Δy = 0.04, Δt = 0.1, λ = 20,

σ = 0.0052, and ǫ1 = ǫ2 = 10−6. The steady state shown is the solution at time t = 10. Left: side view of

equilibrium. Center: bird’s eye view of equilibrium. Right: rate of decay of energy as solution approaches

equilibrium

convergence to the equilibrium profile ρ∞(x). On the right, we compute the rate of

the decay of the energy as a function of time, observing exponential decay as obtained

by Carrillo, Ferreira, and Precioso [38] with a slightly slower numerical rate.

As the interaction potential W defined in Eq. (59) is not continuous, we make the

following modifications to our discretization of the JKO scheme. To avoid evaluation

of W (x) at x = 0, we set W (0) to equal the average value of W on the cell of width

2h centered at 0, i.e., W (0) = 1
2h

∫ h

−h
W (x)dx , where we apply Gauss-Legendre

quadrature rule with four grid points to evaluate the integral. In addition to modifying

the interaction kernel in this way, we also introduce an artificial diffusion term of the

form ǫ∂x (ρ∂xρ) with ǫ = 1.6 × (Δx)2 to the right-hand side of (58), to avoid the

possible overshoot at the boundary. (See also [29] for a similar treatment.)

4.3 Wasserstein Gradient Flows: Two Dimensions

In the following, we consider a few gradient flows in two dimensions. Here, the

constraint relaxation parameters are always chosen as δ = δ3 = 10−6.

4.3.1 Aggregation Equation

We now continue our study of the aggregation equation (58) with repulsive–attractive

interaction potentials in two dimensions, with interaction kernels of the form

W (x) = |x |a
a

− |x |b
b

, a > b ≥ 0 , (60)

using the convention that
|x |0

0
= ln(|x |). It is well known that the repulsion near the

origin of the potential determines the dimension of the support of the steady state

measure, see [4,34]. In the following simulations, we take the initial data to be a

gaussian (53) with mean μ = 0 and variance θ = 0.25.
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Fig. 13 We compute steady state of a solution to the two-dimensional aggregation equation with interaction

potential W (x) = |x |2/2 − ln(|x |), which is the characteristic function on a disk of radius 1, centered at

the origin. The computational domain is [-1.5,1.5]×[-1.5,1.5]. We choose τ = 0.05, Δx = Δy = 0.06,

Δt = 0.05, λ = 50, and σ = 0.0037. The steady state is plotted at time t=3. Left: side view of equilibrium.

Center: bird’s eye view of equilibrium. Right: rate of decay of energy as solution approaches equilibrium

In Fig. 12, we simulate the evolution of solutions to the aggregation equation, with

a = 4 and b = 2 in the interaction potential W , defined in Eq. (60). We observe

that the solution concentrates on a Dirac ring with radius 0.5 centered at the origin,

recovering analytical results on the existence of a stable Dirac ring equilibrium for

these values of a and b [5,13].

In Fig. 13, we simulate the evolution of solutions to the aggregation equation,

with a = 2 and b = 0. We observe that the solution converges to a characteristic

function on the disk of radius 1, centered at the origin, recovering analytic results on

solutions of the aggregation equation with Newtonian repulsion [14,34,65]. We follow

the same strategy described in Sect. 4.2.3 with ǫ = 1.6 × (Δx2 + Δy2) to overcome

the singularity of the interaction potential at x = 0 and potential overshooting.

4.3.2 Aggregation Drift Equation

Next, we compute solutions of aggregation-drift equations

∂tρ = ∇ · (ρ∇W ∗ ρ) + ∇ · (ρ∇V ),

where W (x) = |x |2/2−ln(|x |) and V (x) = −α
β

ln(|x |). As shown in several analytical

and numerical results [29,42,53], the steady state is a characteristic function on a torus

or “milling profile”, with inner and outer radius given by

Ri =
√

α

β
, Ro =

√

α

β
+ 1 .

In Fig. 14, we simulate the long time behavior of a solution of the aggregation-drift

equation with α = 1 and β = 4 and Gaussian initial data (53), μ = 0, θ = 0.25, as

well as the rate of the decay of the entropy as the solution converges to equilibrium. In

Fig. (15), we plot the evolution of the density from a nonradially symmetric initial data,

given by five Gaussians to the same equilibrium profile. We follow the same strategy

described in Sect. 4.2.3 to overcome the singularity of the interaction potential at x = 0
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Fig. 14 We compute steady state of a solution to the two-dimensional aggregation-drift equation with

interaction potential W (x) = |x |2/2 − ln(|x |) and drift potential V (x) = −(1/4) ln(|x |), which is the

characteristic function on a torus, centered at the origin. The computational domain is [-1.5,1.5]×[-1.5,1.5].

We choose τ = 0.1, Δx = Δy = 0.06, Δt = 0.05, λ = 40, and σ = 0.0046. The steady state is the

solution at time t=4. Left: side view of equilibrium. Center: bird’s eye view of equilibrium. Right: rate of

decay of energy as solution approaches equilibrium

Fig. 15 Evolution of the solution ρ(x, y, t) to the two-dimensional aggregation-drift equation, with W (x) =
x2/2 − ln(|x |) and V (x) = −(1/4) ln(|x |). The computational domain is [-1.5,1.5]×[-1.5,1.5]. We choose

τ = 0.2, Δx = Δy = 0.06, Δt = 0.1, λ = 10, and σ = 0.0244. We observe convergence to the

characteristic function on a torus centered at the origin

and potential overshooting (ǫ = 2×(Δx2+Δy2) in Fig. 14 and ǫ = 2.6×(Δx2+Δy2)

in Fig. 15.)

4.3.3 Aggregation–Diffusion Equation

We close by simulating several examples of aggregation–diffusion equations

∂tρ = ∇ · (ρ∇W ∗ ρ) + νΔρm, W : R
d → R, m ≥ 1. (61)
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Fig. 16 Evolution of solution ρ(x, y, t) to the two-dimensional aggregation–diffusion equation, with

W (x) = −e−|x |2/π , ν = 0.1, and m = 3 on the domain Ω = [−4, 4] × [−4, 4]. We choose τ = 0.5,

Δx = Δy = 0.1, Δt = 0.1, σ = 0.1144, and λ = 0.5. The total iteration number for 40 JKO time steps is

197852. We observe convergence to the a single bump centered at the origin

In recent years, there has been significant activity studying equations of this form,

both analytically and numerically. When the interaction kernel W is attractive, the

competition between the nonlocal aggregation ∇ · (ρ∇W ∗ρ) and nonlinear diffusion

νΔρm causes solutions to blow up in certain regimes and exist globally in time in

others, see for example [18,19,25,26,41] and the survey [32]. With fixed m, and in

the presence of nonlocal interaction, the equation has a unique steady state which is

radially decreasing up to a translation [15,40].

In Fig. 16, we simulate a solution of the aggregation–diffusion equation with

W (x) = −e−|x |2/π , ν = 0.1, and m = 3, and initial data given by a rescaled

characteristic function on the square,

ρ0(x, y) = 1

4
χ[−3,3]×[−3,3](x, y) ,

Diffusion dominates both the short and long ranges, and the medium range aggrega-

tion leads to the formation of four bumps, which ultimately approach a single bump

equilibrium. (See also [29].)

In Fig. 17, we simulate solutions of the Keller–Segel equation, which is an

aggregation–diffusion equation (61) with a Newtonian interaction kernel, i.e., W (x) =
1

2π
ln(|x |) in two dimensions for ν = 1 and both m = 1 and m = 2, illustrating the

role of the diffusion exponent in blowup or global existence of solutions. We choose

the initial data to be given by a rescaled gaussian, obtained by multiplying equation

(53) by a mass M = 9π , with mean μ = 0 and variance θ = 0.5. On the left, we
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Fig. 17 Plot of solution ρ(x, y, t) to the two-dimensional Keller–Segel equation at t = 2. Left: When

m = 2, the solution approaches a bounded, continuous equilibrium profile. Here, the computational domain

is [-5,5]×[-5,5]. Right: When m = 1, the solution blows up, becoming sharply peaked. The computational

domain here is [-2,2]×[-2,2]. For both we choose τ = 0.05, Δx = Δy = 0.067, Δt = 0.1, λ = 0.5,

σ = 0.042

Fig. 18 The evolution of ρ(x, y, t) for the Keller–Segel equation with U (x) = x2. Here, Δt = 0.1,

hx = hy = 0.167, τ = 0.05

take m = 2 and simulate the steady state of the Keller–Segel equation, which is a

single bump. On the right, we simulate the long-time behavior of solutions for m = 1,

in which case we are in the blow up regime. Indeed, at time t = 2, we observe the

formation of a blowup profile, with the solution becoming sharply peaked at the origin.

In Fig. 18, we again simulate solutions of the Keller–Segel equation with m = 2,

but in this case we take the initial data to be given by three localized bumps (Gaussian

rings, i.e., the radial cut of the ring is a Gaussian with a center on the circle.) We observe

a two-stage evolution in which the each of the bumps converges to a localized quasi-

stationary state, and then interact and merge into one single bump in the long time

limit. This is a manifestation of the typical metastability phenomena, which is likely

present in the majority of the diffusion dominated Keller–Segel models [24,29,32].
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A Further Details of Numerical Implementation

In this section, we provide explicit formulas for the matrix Ã and the vectors u and b̃

introduced in Problem 3(b) in Sect. 2.3, which play a key role in the implementation

of Algorithms 1, 2, and 3. For simplicity, we consider the case of one space dimension,

and the discretization takes the form (28). The constructions of A and b in Problem

3(a) are very similar except a slightly different treatment of ρ at final time. From now

on, for simplicity of notation, we will drop the tildes for the matrix Ã and vector b̃.

Define N = (Nx +1)(Nt +1). Let ⊗ denote the Kronecker tensor product, INx +1 the

identity matrix of size Nx +1, and (x)M the column vector in R
M with all components

equal to x . Then we define

u =
[

(æ.,k)
Nt

k=0; (m.,k)
Nt

k=0

]

∈ R
N , æ.,k = (ρ j,k)

Nx

j=0, m.,k = (m j,k)
Nx

j=0

and the matrix A ∈ R
M×2N takes the form

A =
[

Aρ Am

Amass 0

]

.

Here, Aρ ∈ R
N×N reads

Aρ = D
(1)
t ⊗ I

(1)
x + D

(2)
t ⊗ I

(1)
x := A(1)

ρ + A(2)
ρ ,

where D
(1)
t , D

(2)
t ∈ R

(Nt +1)×(Nt +1), and I
(1)
x ∈ R

(Nx +1)×(Nx +1) are

I
(1)
x =

⎡

⎣

0

INx −1

0

⎤

⎦ , D
(1)
t =

⎡

⎢

⎢

⎢

⎣

0

−1 1

. . .
. . .

− 1 1

⎤

⎥

⎥

⎥

⎦

, D
(2)
t =

[

1

0

]

.
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Here, D
(1)
t and D

(2)
t correspond to the temporal discretization and initial condition for

ρ. Likewise,

Am ∈ R
N×N = B

(1)
t ⊗ D

(1)
x + INt +1 ⊗ D

(2)
x := A

(1)
m + A

(2)
m ,

where D
(1)
x , D(2)

x ∈ R
(Nx +1), and B

(1)
t ∈ R

(Nt +1)×(Nt +1):

D
(1)
x = Δt

4Δx

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0

−1 0 1

. . .
. . .

. . .

−1 0 1

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, D
(2)
x =

⎡

⎣

1

0

1

⎤

⎦ , B
(1)
t =

⎡

⎢

⎢

⎢

⎣

0

1 1

. . .
. . .

1 1

⎤

⎥

⎥

⎥

⎦

.

For mass conservation, let Sρ = (x)t
Nx +1, then Amass = INt +1 ⊗ Sρ . In sum, different

Ai can be written as

A1 =
[

A
(1)
ρ A

(1)
m

0 0

]

, A2 =
[

0 A
(2)
m

0 0

]

, A3 =
[

0 0

Amass 0

]

, A4(+A5) =
[

A
(2)
ρ 0

0 0

]

.

Accordingly, b ∈ R
N+Nt +1 collects all the initial conditions for ρ and boundary

conditions for m. More specifically, it writes

b = [(0; (ρ j,0)
Nx −1
j=1 ; 0); 0(Nt −1)(Nx +1); 0Nx +1; 0Nt +1]

+ [(m0,0; 0; m Nx ,0); · · · ; (m0,Nt ; 0; m Nx ,Nt ); 0Nt +1]
+ [0N ; 1Nt +1]

:= b4 + (b5) + b2 + b3

and b1 = 0.
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