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Primal Hybrid Finite Element Methods
for 2nd Order Elliptic Equations

By P. A. Raviart and J. M. Thomas

Abstract.   The paper is devoted to the construction of finite element methods for

2nd order elliptic equations based on a primal hybrid variational principle.   Optimal

error bounds are proved.   As a corollary, we obtain a general analysis of nonconform-

ing finite element methods.

1. Introduction. Let Ü. be a bounded open subset of R", with a Lipschitz continu-
ous boundary T.   We consider the 2nd order elliptic model problem

-Au=f    in £2,
(1.1) u = 0   on r,

where /is a given function of the space L2(Çl).  The usual variational form of problem
(1.1) consists in finding u 6 HX0(Q.) which minimizes the energy functional

(1 -2) J(v) = | /„ Igrad v\2 dx - fnfv dx

over the space //¿(Í2).
Standard finite element methods for numerically solving problem (1.1) are based

on this variational principle: they consist in first constructing a finite-dimensional sub-
space Vh of the space //¿(Í2) made up with elementwise smooth functions which are
continuous along the interelement boundaries and then in minimizing the energy func-
tional J(v) over the subspace Vn.  Such conforming methods have been extensively
studied and convergence results are now classical (see for instance Ciarlet [4], Strang
and Fix [15]).

On the other hand, it has been noticed that one could weaken the requirement
of interelement continuity for the functions of the space Vn and still obtain a con-
vergent finite element method.  One gets the so-called nonconforming methods in
which the space Vh is no longer contained in /7¿(Í2).  For an analysis of some non-
conforming methods for solving 2nd order elliptic problems, we refer to Crouzeix and
Raviart [6], Irons and Razzaque [8], Lesaint [9], Strang [14].

In this paper, we shall use a more general approach in order to construct finite
element approximations of problem (1.1).  It is based on an extended variational
principle, known as the primal hybrid principle, in which the constraint of interelement
continuity has been removed at the expense of introducing a Lagrange multiplier.
This type of method has been first introduced by the engineers (cf. Ran [10], [11],
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392 P. A. RAVIART AND J. M. THOMAS

Pian and Tong [12]) and can be viewed as a generalization of nonconforming methods.
Similarly, dual hybrid methods can be derived by using the complementary

energy principle (cf. again [10], [11], [12]).  For the numerical analysis of these
methods, we refer to Thomas [16], [17], [18].   Hybrid methods for solving 4th
order elliptic problems have been also analyzed: see Brezzi [1], [2] and Brezzi and
Marini [3].   Finally, we refer to Fraeijs de Veubeke [7]  for a general discussion of
finite element methods including hybrid methods.

An outline of the paper is as follows.  In Section 2, we describe the primal
hybrid variational principle associated with problem (1.1); in Section 3, we define the
method of approximation.   Examples of triangular and quadrilateral hybrid elements
are derived in Sections 4 and 5, respectively. The error analysis is given in Section 6
and, in Section 7, we discuss briefly the use of numerical integration in order to de-
rive nonconforming methods.

Some results of this, paper have been announced in [13].  For the sake of
conciseness, we have omitted some proofs and developments; they will be found in

[18].
Throughout this paper, we shall make a constant use of the Sobolev spaces

Hm(Ü.) = {dG L2(Sl); dav G ¿2(f2), |a| < m}

provided with the norm and seminorms

WU.O - ( £   Sn\o%\2dxY12,       |„Un = (  Z   fnlo«v\2dx)112.

Given a vector-valued function q = (qx, . . . , qn) G (//"" (Í2))", we shall set:

WL.n = (J>,e,n)1/2>      IqUn = (£*t&.ti)1'2 •

We shall denote by HX^2(T) the space of the traces V\r over T of the functions v G
Hx(£l) and we shall define as usual

#¿(í2) = {u€ #*(«); u,r = 0}-

2. The Primal Hybrid Variational Formulation. Let Í2 = U^_, £^ be a decompo-
sition of the domain £2 into subdomains í^ such that :

(i)   Í2,. is an open subset of il with a Lipschitz continuous boundary dQ,r, 1 < r
<R;

(Ü)  ty. n S2S = 0 for r ï s.
Clearly a function v G L2(Sl) belongs to the space -//¿(Í2) iff
(a) the restriction vr of v to the set £2r belongs to the space Hx (£lr),
(b) the traces of the functions vr and vs coincide on diïr n d£2s;
(c) the trace of the function ur vanishes on dQr C\ r, 1 < r < R.

We want to relax the conditions (b) and (c).  Hence, we introduce the space

(2.1) X = {vGL2(Sl);vreHx(nr), 1 <r<fl}~ l\Hx(ïlr)
r=l

provided with the norm
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PRIMAL HYBRID FINITE ELEMENT METHODS 393

/  * \1/2(2-2) IMI* = (ZIM,,J     •

In order to characterize H0(£l) as a subspace of the space X, we first introduce
the space

(2.3) H(div; fi) = {q G (L2(Í2))" ; div q G ¿2(Í2)}

normed by

(2.4) NIH(div;n) = dlqllo.n + IIdiv qll2;í2)1/2.

Given a vector-valued function q G H(div; £2), we may define its normal component
q • v G H~XI2(Y) where /r1/2(T) is the dual space of HXI2(Y) and v is the unit out-
ward normal along T.  Moreover, we have Green's formula

(2.5) Vu G Hx(£l),     j   {grad v • q + v div q} dx =  f vq • v dy*

where the integral /r represents the duality between H~X¡2(T) and HX¡2(Y).
Next, we define the space

M = \p G W H~xl2(dQ,r); there exists a function q G H (div; Í2)

(2.6) *       '=' j
such that q • i/r = /¿ on 3i2r, 1 < r < /w>

where pr is the unit outward normal along bQ.r. We may provide the space M with
the norm

(2.7) ILu||M = taf Hqll//(div;ii)-
qfEH(div;iî); qvr=ß on dSlr, l<r<R

Then we have
Lemma 1.   A continuous linear functional L on the space X vanishes on //¿(Í2)

iff there exists a unique element ju G M such that

R   r(2.8) Vu G X,    L(v) = £ tu; tfT.

Proof.   By the Hahn-Banach theorem, any continuous linear functional on Hx(Qr)
is of the form

Hence, given a continuous linear functional L on X, there exist « + 1 functions q¡ G
¿2(Í2), 0 < i < «, such that

VuGX,    K»)-f/n   jZi^+flo»
r= 1       r ( ¡= l       o*;

<ix = 0.
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394 P. A. RAVIART AND J. M. THOMAS

Assuming that L vanishes on /7¿(Í2), we get

Vu G tf»(í2),    L(v) = fn  j |>,. ^  + q0v idx = 0

so that q0 = 2"=1 oqjbx^ in the sense of distributions in Í2.  Setting q = (qv . . . ,
qn), we obtain div q = q0 G ¿2(Í2) so that q G H(div; Í2) and

R   r(2.9) Vu G X,   L(v) = Y j     {grad u • q + u div q} dx.

Conversely, any linear functional of the form (2.9) is continuous on X and vanishes on

HliSl).
Now, using the Green's formula (2.5) in each Í2r, we get from (2.9)

R
(2.10) v« e X,   L(v) = £ fdn vq ■ vr dy.

Qearly, in (2.10), the function q is not uniquely determined but the corresponding
element p G M is unique.  In fact, assume that

R   r
VvEX,     Y\      pvdy = 0.

Then, we get, for all r = 1, . . . , R,

VveHx(ïlr),    fdn pvdy = 0,

which implies p = 0 on dQ,r by the surjectivity of the trace operator u —► v^n   from
Hx(Slr) onto Hxl2(dD,r). The proof of the lemma is now complete. □

Consider the continuous bilinear form onixJU

IS.

(2.11) b(v,p) = - £  f     pvdy.
„_, Jdilr

Then, as a consequence of Lemma 1, we get the following characterization of the
space H0(ÇL)

(2.12) /Y¿(Í2) = {u G X; Vu G M, 2>(u, u) = 0}.

We are now able to introduce the primal hybrid formulation of problem (1.1).
Define the continuous bilinear form on X x X

R   r(2.13) a(u, v)= £   I    grad u ■ grad u dx.
r=\ Jnr

We want to find a pair (u, \) G X x M such that

(2.14) VuGX,  a(u, v) + b(v, X) =  ( fv dx,

(2.15) Vju G M,    b(u, p) = 0.
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PRIMAL HYBRID FINITE ELEMENT METHODS 395

Theorem 1. Problem (2.14), (2.15) has a unique solution (u, X) G X x M.
Moreover u G //¿(Í2) is the solution of problem (1.1) and we have

(2.16) \ = ou/bvr    onbür,Kr<R.

Proof.   Let (u, X) 61 x M be a solution of (2.14), (2.15).  Then, by (2.12)
we have u G //¿(Í2).   Choosing u G H0(Cl) in (2.14) gives

Vu G #¿(£2),     i"   grad u • grad u etc = j fv dx

so that u is the solution of problem (1.1). Conversely, let u G //¿(Í2) be the solution
of (1.1) and consider the continuous linear functional on X

v~* Jn fi> dx -a(u, u);

it vanishes on HX0(ÇÏ) so that, by Lemma 1, there exists a unique X G M such that

Vu G X,    b(v, \)= Jnfvdx- a(u, u).

Hence, the pair (u, X) is the solution of (2.14), (2.15).
Now, since / = -Au, we obtain by using the Green's formula (2.5) in each £lr

with q = grad u
R -.

Vu G X,    b(v, \) = - L  Auvdx- a(u, v) = - Y   Ç       ^-vdy
J" r=l Jä«r  dvr

so that (2.16) holds. □
Remark 1.  Define the continuous quadratic functional on X x M

L(v, p) = J(v) + b(v, p).

Then, one can easily check that the solution (u, X) G X x M of problem (2.14), (2.15)
may be characterized as the unique saddle-point of the functional L(v, p) over X x M,
i.e.,

L(u, X) = Min Max   L(v, p) = Max Min   L(v, ju).
vSX /iOlí /i6Ai «ex

Hence, X is the Lagrange multiplier associated with the constraint u G //¿(Í2). □

3.  A Hybrid Finite Element Method.   Let us now introduce a method of approx-
imation of problem (1.1) based on the primal hybrid variational formulation (2.14),
(2.15).  Given two finite-dimensional spaces Xn and Mh which satisfy the inclusions

(3.1) Xhcx>   MhCM<

we define problem (Qh)- Find a pair (uh, \h) G Xh x Mh such that

(3.2) W"h E Xh'    aiuh> vh) + %,, X„) = J*n fvh dx,

(33) VMft6A/ft,    b(uh,ph)=0.

Before solving problem (Qn), we introduce the space
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396 P.A. RAVIART AND J. M. THOMAS

(3-4) Vn = {vh G Xn; V«i„ G Mh, b(v„, ph) = 0}.

Comparing with (2.12), the space Vn appears to be an approximation of the space
//¿(Í2). Notice however that Vh is not in general a subspace of H0(£l). Then, we
define problem (?n):   Find uh G V~n such that

(3.5) V^ G vh<    aK> vh) = /n fi>„ dx-

Since in general Vh <f. //¿(Í2), problem (?n) is a nonconforming method for numeric-
ally solving problem (1.1).

Note that if (uh, \n) G Xn x Mn is a solution of problem (Q,,), «ft G Fft is a
solution of problem (P,,).   Moreover, we have the following result.

Theorem 2. Assume that

(3.6) vh —> HuJI,, = fl(u^, u„)1/2    /'s a «ora over Vh.

Then:
(i)   problem (P^) «as a unique solution uh G Vh;
(ii) problem (Qh) has a unique solution (uh, \h) G Xn x Mh iff the following

compatibility condition holds

(3.7) ÍP-h G »„I V^ G ^- %,, Mft) = 0} = {0}.

Proof.   The existence and uniqueness of the solution uh G Vh of problem (P^)
follows from the assumption (3.6) and the Lax-Milgram lemma.  On the other hand,
since problem (Qh) is equivalent to a N x N linear system with N = dim Xh + dim Mn,
the existence of the solution of problem (Qh) follows from the uniqueness.  Thus,
assume / = 0.   Necessarily uh = 0 so that \ is characterized by the condition

*vHexh,   b(vh,\n) = o.

Therefore Xn = 0 iff condition (3.7) holds. □
In the sequel, we shall assume that Í2 is a bounded and polyhedral subset of R".

Let Tn be a triangulation of the set £2 with polyhedra K whose diameters are < h.
For any K G Th,we denote by èK the boundary of K and vK the unit outward
normal along dK.   We now use the decomposition

ñ= U   k
KGTn

of the domain £2 for defining a hybrid finite element method.  The first step consists
in constructng  a finite-dimensional subspace Xn of the space

X = X(\) = {ve ¿2(£2); VAT G Th,v[K G HX(K)}.

Let K be a reference polyhedron (for instance the unit right «-simplex or the unit
hypercube).  We assume for simplicity that each polyhedron K G Jh is the image of
K through an affine invertible mapping FK.  We now introduce a finite-dimensional
subspace P of the space HX(K) which satisfies the inclusion

(3.8) PjCP   for some integer k > 1,
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PRIMAL HYBRID FINITE ELEMENT METHODS 397

where Pk denotes the space of all polynomials of degree < k in the « variables xv

...,xn.
Moreover, let us denote by Sk the space of all functions defined over bK whose

restrictions to any (« - l)-dimensional face K' of bK are polynomials of degree < k.
Let us denote by Tk the space of all functions of Sk which are continuous over bK.
We assume, in addition, that the space P^K of the restrictions to the set bK of all
functions of P satisfies the inclusion

(3-9) fkCP^K.

Then, we define

(3.10) PK={vGHx(K);v = dQF-x,deP}

and

(3.11) Xh={ve L2(Ü); V£ G T„, u|Jf G PK).

Note that the functions of Xn do not satisfy any continuity constraint at the interele-
ment boundaries.

The second step consists in constructing a finite-dimensional subspace Mh of the
space

M = M(Th) = \p G   u H~x/2(bK); there exists a function q G H(div; K)

such that q • vK = p on bK, K G Th\
K<ETn

We introduce a finite-dimensional subspace S of the space L2(bK) which satisfies the
following properties:

(3 12) Sm C S    for some integer m > 0,

(3.13) V¿GS0,    ¿5 = {Stp; p G S} C S.

Now, for any íeT^we set

(3.14) sdK = {p G L2(bK); p = pQF~x ,pGS}.

Then, we define

Mn = ImG   u SdK;pldK +pldK   =0onK1 n K2 for
( KGTh X 2(3.15) l "

every pair of adjacent elements Kv K2&Th

One easily checks that Mh is indeed a subspace of M.
Next, we want to give some simple sufficient conditions for hypotheses (3.6)

and (3.7) to hold.  We begin with
Lemma 2. Assume that the inclusion (3.12) holds. Then, condition (3.6) is

satisfied.
Proof.   Let vn be a function of Vh such that

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



398 P. A. RAVIART AND J. M. THOMAS

\\vh\\l = a(vh, u„) =    If Igrad vh\2 dx = 0.
Ven T    J **-
KGTh

Clearly, the function vn is constant in each element K G Th.  Now, let K' be a (n - 1)-
dimensional common face of two adjacent elements Kx, K2 G Th.  Define pn G
IW^OAOby

1    on K',
!-1    on K',

0   on bK2\K',
P-h\dKl   ~   \ Ph\dK2  ~

\0    on bKx\K',

PhldK=0   for K*KVK2.

Since S0 C S, the function ph belongs to the space Mn. Hence, denoting by c¡ the
constant value of vn in K¡, i = 1,2, and using the definition (3.4) of the space Vh,
we get

0 = b(vh, ph) = (c, - c2)jK, dy

so that Cy = c2. Therefore, the function vn is constant in Í2.
Finally, let K' be a (« - 1 )-dimensional face contained in T.  Define the function

Phe Mh by

^hlK' = 1'   Ph = 0    elsewhere.

We obtain

0 = bivn, ph) = jK, vhdy

so that vn = 0 in Í2.  This proves that vn —► llu^H^ is a norm over the space Vn. □
Since condition (3.6) is always satisfied, problem (Pft) has a unique solution

uh G Vh.  On the contrary, condition (3.7) which ensures the existence and unique-
ness of the Lagrange multiplier X^ G Mh is satisfied only for compatible choices of
the spaces P and S.   In this respect, we have

Lemma 3.   Assume that

(3.16) jfieS; VuGF, Ja£ pvdy = 0j = {0}.

77¡e«, condition (3.7) holds.
Proof.   Using (3.16) and the definitions (3.10) and (3.14) of the spaces PK and

SdK respectively, we get for all K G Jh

{pESdK;VvePK, fdKpvdy = o} {0}.

This in turn implies (3.7). n
Remark 2.  In fact, one can prove that, at least for some particular triangulation

Th of the domain 12, condition (3.16) is as well necessary for hypothesis (3.7) to
hold, o
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PRIMAL HYBRID FINITE ELEMENT METHODS 399

The next two sections of this paper will now be devoted to the explicit con-
struction of triangular and quadrilateral finite elements in R2 which satisfy the com-
patability condition (3.16).

4.  Examples of Hybrid Triangular Elements.  Assume now « = 2.  We first
consider the case of triangular elements:   here K is a triangle with vertices a¡, 1 < i
< 3; we denote by X,- = \¡(x), 1 < / < 3, the barycentric coordinates of a point x G
R2 with respect to the vertices a(- of K.

Lemma 4.   Assume that K is a triangle.  Let k > 1 and m > 0 be two integers.
Then conditions

pES,
(4.1)

m •

imply p = 0 iff

(4.2) k >

VuGffc, fd~pvdy = 0,

l m + 1    when m is even,

m + 2    when m is odd.

Proof.   Since A" is a triangle, we have Tk = Pk^K and dim(Sm) = 3(«z + 1),
dim(ffc) = 3*.

For k < m, we get dim(5m) > dim^) so that conditions (4.1) cannot imply

p = 0.
Thus, let us assume k ~> m + 1 and let p satisfy conditions (4.1).  Then, for all

u G Tk,we get pv G S2k_l so that the integral í¿Kpv dy can be computed exactly
in terms of the values of the function pv at the (k + 1) Gauss-Lobatto quadrature points
of each side of bK.   Denote by {a,, a4, . . . , ak + 2, a2) (resp. {a2, ak + 3, . . . ,
a2k+1, a3}, {a3, a2k + 2, . . . , a3k, at} the set of (k + 1) Gauss-Lobatto points of
the side [ap a2] (resp. [a2, a3], [a3, aj).  Clearly, for each i — 1,... ,3k, there
exists a unique function v¡ G Tk such that

u,.(ay) = 5,7,      l</<3*.

Since conditions (4.1) are invariant by an affine invertible mapping, we may assume
that the triangle K is equilateral.   Then, replacing u by uf, 1 < / < 3k, in (4.1) gives

(4-3) p(a¡),      4 < / < 3k,

and

Í'ii2(ai)+M13(fli) = 0,
A*2 3(fl2) +^2i(a2) = °>

P3iia3) + P32ia2) = 0>

where p¡ • = p ,- is the restriction of u to the side [a{, a;].
For k > m + 2, conditions (4.3) imply ju = 0.  Hence, it remains only to con-

sider the case k = m + 1.  Let
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400 P. A. RAVIART AND J. M. THOMAS

0 = |0<|1<-<|it.1<Ck = l

be the (k + 1) Gauss-Lobatto abscissae for [0, 1] ; we introduce the homogeneous
polynomial of degree k - 1 in the variables £ and r?

k-\

(4.5) Pk-ii%,vt)= nfoíS-É/T?).í=i
where t)¡ = 1 - I,, 1 < / < fc - I.   Since tj,- = £k_(., 1 < / < A; - 1, we get

Thus, for k = m + 1, conditions (4.3) exactly mean

(4.6) Pa = ^..(X,, \j)    on [a,, ay],      C// = (- l)*"1^,.

Using (4.6), conditions (4.4) become

^12+(-Dfc-1C31=0,

(4-7) eas+i-n^ia-O,
c31 +C-l)*-ic23 =0.

When «z = A; - 1 is even, the linear system (4.7) has the unique solution c,2 = c23 =
-31 0, so that p = 0.  When m = A; - 1 is odd, (4.7) has nontrivial solutions so
that conditions (4.1) do not imply p = 0. n

Remark 3. When «z = k - 1 is odd, we have proved that the space of functions
p which satisfy conditions (4.1) is one-dimensional. When K is equilateral, these func-
tions p are the functions of the form

(4.8)

P\2  =cPk-l(\>\)>

^2 3  =CPfc-l(^2' A3), CGR. Ü

Hi   =CPfc-l(^3'^l).

We are now able to introduce
Example 1.   Let k > 1 be an odd integer.  Given a reference triangle K, we

choose :

P = P, S = S, (m = k- 1).

Then, by Lemmas 2, 3 and 4, the corresponding problem (Qh) has a unique solution
iuh,\„).

Let us characterize the associated space Vh defined by (3.4).  Clearly a function
vn G Xh belongs to the space Vh iff:

(i)  for any pair 'Kl3 K2) of adjacent triangles of Tn, we have

v"ep*-i-   J>(<Vi-<v2)¿7 = o,

where K' = Kx n K2 and u,, ¡ is the restriction of vh to £(> / = 1,2;
(ii)  for any side K' of Th contained in f, we have
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PRIMAL HYBRID FINITE ELEMENT METHODS 401

VfeVi.     fic.rivhdy = 0.

Now, in each above integral, pvh\K> belongs to the space P2k_, ¡K, so that fK'Pvn dy
can be computed exactly in terms of the values of pvn at the k Gauss-Legendre quad-
rature points of the side K'.  Hence a function vh G Xn belongs to Vh iff:

(4.9) vh is continuous at these Gauss-Legendre points contained in Í2;

(4.10) „^ vanishes at these Gauss-Legendre points located on T.

Denote by {b,}k=i (resp.{b¡}fkk+,, {b,}fk2k+ ,) the set of the A: Gauss-Legendre
points of the side [a,, a2] (resp. [a2, a3], [a3, a,]).

Lemma 5. Assume that k is an odd integer. Then {b¡}fk, is a 7\-unisolvento
set. Moreover, for k > 3 and for any Pk_3-unisolvent set {b¡}^Jkl+l of points ofK
(AW = ik + l)ik + 2)/2), the set

Î = [btfjk) is Pk-unisolvent.*

Proof   Let us first show that {&,-},■= i is a rfc-unisolvent set.   Since dimiTk) =
3k, we have only to show that a function u G Tk which vanishes at the points b¡,
1 < / < 3A:, must vanish identically.   In fact, since k is odd, we get for such a func-
tion u

v(a1) = -via2) = v(a3) = -v(al)

so that v(a/) = 0, 1 < / < 3.  Hence, the restriction of u to any side K' of K is a
polynomial of degree < k which vanishes at Ac + 2 distinct points so that u = 0.

Next, assume k > 3; we get

Nik) = àim(Pk) = 3k + áim(Pk_3).
0

Let {b¡}^J3l+l be a set of dim(Pk_3) distinct points of K.  Then, given a function
u G Pk which vanishes on 2 = {ô,-}^f \ we get by the first part of the proof U|3£ =
0 so that

u = X[X2X3w,       w & Pk_3.

Therefore u = 0 iff w = 0 or, equivalently, the set 2 is /'¿.-unisolvent iff the set
{b$M+\ is Va-unisolvent. °

Using the terminology of [4], we deduce from conditions (4.9), (4.10) and
Lemma 5 that the space Vh is associated with a reference finite element (K, 2, Pk)
where 2 is given (in a nonunique way for k > 3) by Lemma 5.  Setting

2JC=Fir(2),       KETh,      2^=    IJ   £/c.
cera,

we see that the degrees of freedom of a function vn G Vh are its values at the points
of 2ft n Í2.  Since (Â, 2, Pk) is not a C°-element, the space V~n is not contained in
//¿(Í2) and problem (Ph) is indeed a nonconforming method for solving problem (1.1).

•Let us recall that a set Ï = {ajjj=l is i"-unisolvent if for any set of scalars a¡, 1 < I < N,
there exists a unique function p£P such that p(a¡) = a¡, 1 < / < TV.
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On the other hand, we may choose the degrees of freedom of a function ph G

Mh to be its values at the Ac Gauss-Legendre points of each side K' of Th.
The first hybrid elements are described in Figure 1 where we have used the

following conventions for the degrees of freedom:

•v—y-Vh

Figure 1
These hybrid elements can be considered as nonconforming elements using Loof con-
nections (cf. Crouzeix and Raviart [6], Irons and Razzaque [8]).

Example 2. Let Ac > 2 be an even integer. By Lemma 4, the choice P = Pk,
S = Sm is suitable only for Ac > m + 2. However, the next result will enable us to
construct a hybrid method where

f,CKPl+1,      S = Sk_,.

Lemma 6.   Assume that k is an even integer.  Define P to be the space of poly-
nomials spanned by Pk and the function

»o = (*i - *2)(*2 - *3)(*3 - \){iW)(k~2)'2

(4.11)
+ (A2X3)<*-2>/2+(X3X1)<fc-2>/2}.

Then, the pair of spaces (P, Sk_,) satisfies condition (3.15).
Proof.   Let p be a function of Sk_, such that

VuGP,    C ~pvdy = 0.
Jd K

Assume again for convenience that the triangle K is equilateral.  Then, by Remark 3,
p is necessarily of the form (4.8).  Hence, it is sufficient to prove that

3

£ L a     i p*-i(x,' h+ i>y*y * 0      (a4 = a,, X4 = X,).
i=\Jlai-ai+l I

Since these three integrals are equal, we have only to check that

L   -  , Pk-ii\ ^2)vody^0.

By an obvious change of variable, the previous integral becomes

pi
Jo
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where

<7*-itt) = Ptc-iit i - 0,     KS) = (i - 2É)«(l - 0)(k-2)l2-

Since the roots of qk_l are the Gauss-Lobatto abscissae %,,. .., {■*._,, the polynomial
qk_, is orthogonal to all polynomials of degree < Ac - 2 with respect to the weight
function £(1 - £).  Now, r is a polynomial of degree Ac - 1 so that

Otherwise, u7fc_j would be orthogonal to all polynomials of degree < Ac - 1 which is
clearly impossible. □

Now, we use the pair of spaces (P, Sk_l) defined in Lemma 6 in order to
construct the spaces Xn and Mh associated with the triangulation Th.  Again, by
Lemmas 2, 3 and 6, problem (Qn) has a unique solution (un, Xh).

Since, for u„ EXh,pheMn,v/e have Pnv„\K-eP2k\K', the integrals fK'P„vn dy
cannot be anymore computed exactly in terms of the values of phvh at the Ac Gauss-
Legendre points of the side K'. As a consequence, the space Vh is not associated here
with a (nonconforming) reference finite element (K, 2, P) so that the degrees of freedom
of a function vn G Vh cannot be determined in a simple way. However, we shall see in
Section 7 how the use of numerical quadrature for evaluating the various integrals
¡K'Phvn dy will enable us to solve this difficulty.

5.   Examples of Hybrid Quadrilateral Elements.  We now consider the case of
quadrilateral elements:   Here K is the unit square [0, 1] 2 in the (£, T?)-plane with
vertices a, = (0, 0), a2 = (1, 0), a3 =(1,1), a4 = (0,1).   For any integer Ac > 1,
we define Qk to be the space of all polynomials of the form

p(ç,t?)=   z c,7?y.
0<i,i<k

Lemma 7.   Assume that K is the unit square.   Let k> 1 be an integer.   Then
the space of functions p G Sk_, such that

(5.1) *uGffc, Jt^rfr-P

is one-dimensional.
The proof goes along the same lines of that of Lemma 4.   More precisely,

using the notations of Section 4, one can show that the functions p G Sk_x which
satisfy condition (5.1) are given by

"n =ci2aw?, i -a

^2 3  =C23Pk-liV,  1  -T?),

^34  =C34^-lO  "U),

"4i =c4iPfc-iO -r?, Tí),

(5.2)

with
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(5.3)
-23        u34       Ml

-c41 =c    when Ac is odd,

when Ac is even.

(5.5)«>o(S, *)

Here again, p¡- denotes the restriction of p to the side [a(-, a] of K.
Now, in order to construct a suitable hybrid element, we introduce a space Q

of functions defined over K such that

(5.4) PkCQ,       fkCQldk.

Since 7fc = ßfciajt , we can choose Q = Qk-  More generally, we can choose "serendip-
ity" space Q with Pk C ß C Qk: for the derivation of the "serendipity" spaces, we
refer to [4] and [20, Chapter 7].

Lemma 8.   Let k > 1 be an integer.   Define P to be the space of polynomials
spanned by Q and the function

[*(1 -Ç)- nfl - n)Mii - ?))(fc-1)/2 + ivü - r0)(fc-1)/2]

when k is odd,

[|(1-?)-t?(1-t?)](2?-1)(2t?-1)

• [(5(1 - Ö)(*"2)/a + (t?(1 - r)))(fc_2)/2]    when k is even.

Assume that condition (5.4) holds.   Then the pair of spaces (P, Sk+l) satisfies the
compatibility condition (3.16).

The proof is based upon Lemma 7 and is very similar to that of Lemma 6.
Example 3.  Let Ac > 1 be any integer.  Assume that Th is a triangulation of £2

made up with parallelograms K.   On the reference unit square K, we choose a pair
of spaces (P, Sk_x) defined in Lemma 8 in order to construct the spaces Xn and Mn.
By Lemmas 2, 3 and 8, problem (Qn) has a unique solution.

Note that, as in Example 2, the space Vn is not associated with a (nunconform-
ing) reference finite element (K, 2, P) but see again Section 7 for the use of numeri-
cal quadrature.

6.  Error Estimates.   Let us go back to the general situation of Section 3.  We
want to derive bounds for the errors u - un and \-\h. We begin by defining more
convenient norms over the spaces X and M.   We first provide X with the norm

(6.1) \\\v\\\x = ( z iimhîkY'2

where for any K G Tn

(6.2) IIMIIi,k=(I<k +*iaIMl5jc)l/a.

(6-3^ hK = diameter of K.
Next, we introduce the following norm over the space M
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. b(v, p)
(6-4) "^ ' 5& W

Remark 4.   One can easily check that the natural norm (2.7) over M can be
equivalently defined by

b(v, P)
vex(6.5) «. - -; innrr-

Therefore, the two norms (2.7) and (6.4) are equivalent, the latter being more appro-
priate for deriving practical error bounds. □

Let us now state the following result which can be viewed as a variant of a
general theorem of Brezzi concerning the approximation of variational problems (cf.
[1, Theorem 2.1]).

Theorem 3. Assume that the hypotheses (3.1) and (3.6) hold.   Then, the
solution un G Vh of problem (Ph) satisfies

2/1/2(6.6) ii« - «a - \(inf ii" - waV + ( w «p b{Vh;lv\"h)
l\vhevh J        \ßneMh ßheMh     H»*»*

Assume, in addition, that there exists a constant a > 0 such that

(6.7) V/i„GM„,      sup   ^¡^ > a\\\ph\\\M.

Then, problem (Qh) has a unique solution (uh, \n) and we have

(6.8) HIX-XÄ„|Af<i||t.-«Ä||Ä + (l+i)   inf   \\W-pn\\\M.

Proof.   Assume that hypotheses (3.1) and (3.6) hold so that, by Theorem 2,
problem (P^,) has a unique solution uh G Vn.  Define irnu G Vh by

Vuft G Vh,    a(u - Tthu, vn) = 0.

Thus, we may write

\\U-Uh\\l  =II«-7T^||2   +||7TftU-«||2.

On the other hand, since nnu is the orthogonal projection of u upon Vn with respect
to the inner product a(-, •), we get

II« -nhu\\h =     inf    ||m -vh\\h.
vh^vh

On the other hand, we have

a(irnu-uh,vh) a(u-uh,vh)
K"-"A=   sup -¡hTli-= sup —¡ütü-
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Using (2.14), (3.4) and (3.5), we obtain for all vh G Vn and all ph G Mh

a(u - un, vh) = b(vh,\- pn)

so that
b(vh,\-ph)

IKM~"A =   inf    sup   —m—Ñ—•
^Mnvnevn \K\\n

This proves (6.6).
Next, we notice that condition (3.7) exactly means that there exists a constant

a > 0 (which may depend on Xn and Mn) such that (6.7) holds.   Hence, by Theorem
2 again, the hypothesis (6.7) implies the existence and uniqueness of the solution
("/i' A/i) 0I" problem (Q/?)-  Now, using (2.14) and (3.2), we get for all vh G Xh and
all/i.GM,

b(vh, \ - pn) = a(u - uh, vh) + b(vh, X - pn).

Given pn G Mh, we can choose by hypothesis (6.7) a function vh G Xh such that

b(vh,-Kn-ßn)>a\Wvh\\\x\\\\-ßh\\\M-

Since ||uA < \\\vh\\\x, we obtain

«HI** - "Jl'iif < II" - "/.H* + Hlx - Mm-
Thus, we get, for all ph EMh,

llix-MW<¿H«-«A+ (x+Í)^-^w\m
and the desired inequality (6.8) holds.

To apply the above results, we consider a regular family (Tn) of triangulations
of the domain Í2 in the sense of [5], in that there exists a constant o > 0 indepen-
dent of h such that

hK
(6.9) max — < o,

KGTh Pk

where

(6.10) pK = diameter of the inscribed sphere in K.

Given a function y G H2(SI), we define \p G M by

(6.11) ^ = r5£    on bK, KG Th.bvK "

'We first evaluate the expression

b(v, \p - ph)
inf     sup  -—-.

nheMh vex        Hull/,

Lemma 9.   Let there be given spaces Mn defined as in (3.15) which are associ-
ated with a regular family of triangulations (J n). Assume that the inclusion (3.12)
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holds and that y G HI+1(Q.) with 1 </</» + 1.  Then there exists a constant T > 0
independent of « such that

b(v, \p - ph)
(6.12) inf     sup -—-2- < T«;M/+1>n.

nheMh  vex \\v\\h ,+ 1,5i

Proof.   Let us recall the following result [6, Lemma 3] : there exists a constant
c > 0 such that, for any K ETh and for any (« - l)-dimensional face K', we have

«/+1

Vx e //*(/:), 1 < / < m + 1, Vu 6 /¿(tf),   f   (x - 7r£.X> ¿7 < c -f-|xl, fM, *

where tt^- denotes the orthogonal projector in L2(K') upon Pm\Kr
Now, given yE Hl+X (Í2), we define ju^ G Mft in the following way: for any K E

Th and any (« - 1 )-dimensional face K' of K, we set

"* - * |f- = *£'*    o" *'•
A

By the previous inequality, we obtain for all u G HX(K)
L/+1

Hence, using (6.9), we get, for all u£J,

¿>(u, V -M/,) = -   Z     f   (^-M/I)^7<T«'M/+in||u||h

and the conclusion follows immediately. □
We now give an estimate of the error ||u - uh\\h.
Theorem 4.  Let there be given spaces Xn and Mn defined as in (3.11) and

(3.15), which are associated with a regular family of triangulations.  Assume that the
inclusions (3.8), (3.9), (3.12) hold and that u E Hl+X(ü) n /7¿(S2) with I + 1 - n/2
> 0 and 1 < / < min(Ac, m + 1).  Then there exists a constant T > 0 independent of
h such that

(6.13) II« ~«A< Th1 Nl+1>n.

Proof   Define the subspace Wh of the space //¿(Í2) by

Wh = {wh E C°(ñ); WK E T„, wh{K E PK, whlT = 0}.

Since Mn C M, we have Wn C Vn.  Now, in view of the inclusions (3.8), (3.9) and
since iTh) is a regular family, it is well known (see [5, Theorem 5], [4], for example)
that, for u E Hl+X(Q,)„ D H1^) with / + 1 - n/2 > 0 and 1 < / < Ac, we have

j?£ l"-w*li,n<ci*H+i.n.

where the constant ct is independent of«.   Hence
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(6.14) „ % II« ""A <    inf   \u-vn\un <clhl\u\l+ia.
vhGVh whGWh

Using next Lemma 9 with \p — u, i// = X and since u G Hl+ '(£2) with 1 < / < m + 1,
we obtain for some constant c2 independent of «

b(vn,\-ph)
(6.15) inf      sup    -7—r- <c2AI«l/+i,n-

nheMh vhevn        WkWh

Then inequality (6.13) follows from inequalities (6.6), (6.14) and (6.15). □
Remark 5.  Assume in addition that the polyhedral domain £2 is convex.   Then,

as in [6, Theorem 4], an extension of the classical duality technique of Aubin-Nitsche
yields the following £2-estimate

(6.16) ll«-"ftll0,n<T'«/+1|"l;+l!n

for another constant T' independent of«.  In the case of a general polyhedral domain,
the weaker estimate

(6.17) ll"-"A,n<T'«'|w|/+in

follows from (6.13) and the analogue of the Poincaré-Friedrichs inequality

(6.18) V»„evh>   llwJo,n<c»uA'

where the constant c = c(£2) depends only on Í2.
In order to estimate the error X - \h, we need first to check that hypothesis

(6.7) holds with a constant a > 0 independent of «.
Lemma 10. Let there be given spaces Xn and Mn defined as in (3.11) and

(3.15), which are associated with a regular family of triangulations.  Assume that con-
ditions (3.13) and (3.16) hold.   Then hypothesis (6.7) holds with a constant a > 0
independent of h.

Proof.   For all K G Th and all p E H~l ,2(bK), we define

iaKpwdy
<6"19) M-%Ä)   Ml,,,

Then condition (3.16) means that there exists a constant â > 0 such that

Ja ¡r£w dy
(6.20) V¿GS,     sur/,* >à\m,K.

wep   lllw|||lv£

Let ph EMh.  The first part of the proof consists in showing that, for each
K E Th, there exists a function v E PK such that

r Pk Pk
(6.21) fdKPnvdy>àj^j- HMWIIMHi,*-

Consider the affine mapping FK : x —> FK(x) = BKx + bK, where BK is an invertible
element of L(R") and bK is a vector in R", such that K = FK(K)\ we may write
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(6.22) L^Wa**0^'

where û = vQFK g P an^» ̂ v (3-13), X G 5.   Thus, we choose v E P such that

(6.23) /3¿XDuf7>a|||X|||^|||D|||1)£.

Now, by using [5, Eq. (4.16) and Lemma 2], we obtain

BMHijc - M\,K +hK2M2o,K < ldet(5Jt)|(||5-,ll2lûlî,Je +^2Hílloi)

<|det(5Jt)|(«2?p^2|u¡2i +«^2I|G||2^)

so that

(6.24) \\\v\\\UK<hKp-Kx\te\.(BK)\xl2m\x¿-

On the other hand, it follows from (6.19) and (6.22) that

fiK\w dy
"Ma*"     SUP   Ihdii-•    w = ">ofk-

weHl(K)   ">W«h,K

Since by [4, Eq. (4.15) and Lemma 2]

Mullí, ;K < hKp~k'idet^)r1 /2|||w|i|1 K<

we get

(6.25) »Mia* < hKP~k ldet(ß^)l"'/2IHX|||aJe•

Hence inequality (6.21) follows from (6.22)-(6.25).
We shall now show that condition (6.7) follows from (6.21) with

â Pka = ~ ÏÏT-ahk
Let w E H'iK); by normalizing u in (6.21), there exists a function u G PK such that

-faKWdy>-af;jKPhwdy,      IIMII.,* = IIM||liJC.

Therefore, given a function w E X, there exists a function vh G Xh such that

UK III
Hence, we have

bivh>Ph) .      *(w, u„)

*J»H>Ph)     ~> b(-W' Ph) ...      ...        n
SUP. Ill,, III >a    ™Z      Illu,ltl.        =ûlll«*IIW-au^A-,,    lll^lllx weV    IIMH*
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We are now able to prove
Theorem 5. Assume the hypotheses of Theorem 4. Assume, in addition, that

conditions (3.13) and (3.16) hold.   Then there exists a constant T > 0 independent
of h such that

(6.26) "l*-MW<T/rV|/+1)n.

Proof.   Using Lemma 9 with *p = u and i// = X we obtain

biv, X - ph)
inf     sup -ibl- <TAH+i,n-

ßheMn vex        Hull/, ,TI,4i

Since ||u||ft < IIMH^ and by the definition (6.4), we get

(6.27) '£  IIiâ-^iiIm<T"/I"I/+1,îî.

Then inequality (6.26) follows from Lemma 10 and the inequalities (6.8), (6.13)
and (6.27). □

Remark 6. In fact, one can derive a more "suggestive" result (cf. [18]). Define
the following norm over the space flK<=T L2(bK).

(6.28) iwu-    Z hK\\p\\2dKY12.
Kejh

Then one can prove (cf. [18]) that there exists a constant c = c(i2) > 0 such that

(6-29) VM/,eM„,    \\ph\\h<C\\\ph\\\M,

so that we get as a consequence of the inequalities (6.26) and (6.29)

(6.30) ll*-*A<T«'H+i,n.°
Let us go back to the Examples 1,2,3.   Assume that u G Hl+x(Sl) for some

integer / with 1 < / < Ac and that (Tn) is a regular family of triangulations.  It follows
from Theorems 4 and 5 that in each example, we have

ll«-«A+ ll^-AftlllA#<TA/|K|/+liiî.

7.  Remarks on Some Nonconforming Methods.  Let us go back to the general
formulation of primal hybrid methods.   It can be of interest to use numerical quadra-
ture for evaluating the various surface integrals fK'pv dy which appear in the bilinear
form b(v, p).  Then we obtain a new bilinear form bh(v, p) and we replace problem
(Q/,) by the following one, called problem (Q£): Find a pair (u%, X£) G Xn x Mn
such that

(7.1) Vu, G Xn,    a(u*, vh) + bh(vh, X*) = f fvh dx,

(7-2) Vju/.e^,   6AK,«A) = o.
With the bilinear form bh(v, p), we associate the subspace Vfi of the space Xn
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(7.3) V* = {vhEXh;  V/i,, G Mn, bn(vh, ph) = 0}

and we define problem (PJ): Find u% E Vfi such that

(7.4) Vu, G V*, a(u*, vh) = fn fvh dx.

Here again, if iu%, Xfi) EXh x Mh is a solution of problem (Q^), wj* G F^ is a solu-
tion of problem (Pfi).  Now, the degrees of freedom of a function vh E Vfi can be
easier to determine than those of a function vh E V~h so that problem (P* ) can be
simpler to solve than problem (P,).

This is indeed the case in some important examples that we shall discuss briefly.
Again, we refer to [18] for general results concerning the existence, uniqueness and
approximation properties of the solutions of problems (Qjjj) and (P£).

Example 4.  Consider again the situation of Example 2 where K is a triangle, Ac
is an even integer and the pair (P, Sk_i) is chosen as in Lemma 6.  But here, for each
side K' of Tn, we use the Ac-points Gauss-Legendre quadrature formula to compute the
integral fK<Phvh dy, vh E Xh,ph EMh.  In fact, one can prove that the corresponding
problem (Q£) has a unique solution (u%, X£) and that, for u E Hk(Çl), we have the
error estimate

(7.5) H" ""A + IIIX-X*|||M<T«'c-1Mk>ri.

Note that the order of accuracy of the hybrid method has been decreased by one.
On the other hand, the space Vfi can now be characterized as in Example 1: a
function vh E Xh belongs to V% iff it satisfies conditions (4.9) and (4.10).  Moreover,
the space Vfi is associated with a nonconforming reference finite element (K, 2, P).
Assume for simplicity that Ac = 2.  Then:

(i)  2 = {b,}]=l where the points b¡, 1 < / < 6, are the Gauss-Legendre quad-
rature points and where b7 may be chosen as the centroid of K;

(ii) P is the space of polynomials spanned by P2 and the function u0 =
(X, -X2)(X2-X3)(X3-X,).

Figure 2

We recognize here a nonconforming element introduced by Irons and Razzaque

[8, p. 579].
Example 5.  We next consider the situation of Example 3: K is the unit square,

Ac is any integer > 1 and the pair (P, Sk_1) is chosen as in Lemma 8.   Again we
compute each integral ¡K'lJLhvh dy by using the Ac-points Gauss-Legendre quadrature
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formula. Then the problem (Q;*) has a unique solution and, for u G Hk(Sl), we have
the estimate (7.5). Note that the convergence of this hybrid method is ensured only
for k > 2.

For instance, when Ac = 2 and Q is the space of polynomials spanned by 1,|, 77,
?2, %V, t?2, £2r?, ?i?2, the space Vfi is associated with a nonconforming reference ele-
ment (K, 2, P) such that

(i)   2 = {b¡}f=i where the points b¡, 1 < / < 8, are the Gauss-Legendre quad-
rature points and where b9 is the centroid of K;

(ii) P is the space of polynomials spanned by Q and the function u0(£, 17) =

m -0-u(ï -t?)](2Ç- 0(277-1).
Here again, we obtain a nonconforming element introduced by Irons and

Razzaque [8, p. 579].
Example 6   (Wilson's rectangular element [19]).   Here K is the unit square; we

set P = P2 and 5 = 5,.   Unfortunately, by Lemma 7, the compatibility condition
(3.16) is not satisfied so that the problem (Q,) is not well posed.  However, by Lem-
ma 2, problem (?h) has a unique solution un G Vh and, by using Theorem 4 with Ac
= 1 and m = 0, we get the estimate

(7.6) II« ~«A< TAl"l2,il-

Now, instead of computing exactly each integral ¡KiPhvh dy, we use the trape-
zoidal rule, the quadrature nodes being the endpoints of K'.  Then, one can prove
that problem (P£) has a unique solution u% E V¡* and that, for u E /72(Í2), we have

(7-7) ll«-«Jall*<TÄ|K|2,n-

Furthermore, the space Vfi may be characterized as the space of all functions vh
such that

(i)   for each rectangle K &Th,vh\K EP2;
(ii)  vn is continuous at the vertices of Tn contained in Í2;

(iii)  vn vanishes at the vertices located on T.
Hence the space Vfi is associated with Wilson's rectangular element as it is described
in [14].   For direct proofs of convergence of this nonconforming method, we refer
to [14], [9].
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