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Abstract

In plants, RNA silencing-based antiviral defense is mediated by Dicer-like (DCL) proteins producing short interfering
(si)RNAs. In Arabidopsis infected with the bipartite circular DNA geminivirus Cabbage leaf curl virus (CaLCuV), four distinct
DCLs produce 21, 22 and 24 nt viral siRNAs. Using deep sequencing and blot hybridization, we found that viral siRNAs of
each size-class densely cover the entire viral genome sequences in both polarities, but highly abundant siRNAs correspond
primarily to the leftward and rightward transcription units. Double-stranded RNA precursors of viral siRNAs can potentially
be generated by host RDR-dependent RNA polymerase (RDR). However, genetic evidence revealed that CaLCuV siRNA
biogenesis does not require RDR1, RDR2, or RDR6. By contrast, CaLCuV derivatives engineered to target 30 nt sequences of
a GFP transgene by primary viral siRNAs trigger RDR6-dependent production of secondary siRNAs. Viral siRNAs targeting
upstream of the GFP stop codon induce secondary siRNAs almost exclusively from sequences downstream of the target site.
Conversely, viral siRNAs targeting the GFP 39-untranslated region (UTR) induce secondary siRNAs mostly upstream of the
target site. RDR6-dependent siRNA production is not necessary for robust GFP silencing, except when viral siRNAs targeted
GFP 59-UTR. Furthermore, viral siRNAs targeting the transgene enhancer region cause GFP silencing without secondary
siRNA production. We conclude that the majority of viral siRNAs accumulating during geminiviral infection are RDR1/2/6-
independent primary siRNAs. Double-stranded RNA precursors of these siRNAs are likely generated by bidirectional
readthrough transcription of circular viral DNA by RNA polymerase II. Unlike transgenic mRNA, geminiviral mRNAs appear to
be poor templates for RDR-dependent production of secondary siRNAs.
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Introduction

RNA silencing directed by miRNAs, short interfering (si)RNAs

and PIWI-interacting RNAs is involved in regulation of gene

expression and chromatin states and in defense against invasive

nucleic acids such as transposons, transgenes and viruses [1–3].

Virus-infected plants accumulate high levels of viral siRNAs

(vsRNAs) of three major size-classes: 21-nt, 22-nt and 24-nt [4,5].

In Arabidopsis thaliana infected with DNA viruses, all four Dicer-like

(DCL) enzymes are involved in processing of vsRNA duplexes

from longer double-stranded RNA (dsRNA) precursors: DCL4

and DCL1 generate 21-nt class, DCL2 generates 22-nt class and

DCL3 generates 24-nt class; 21-nt and 24-nt vsRNAs accumulate

at higher levels than 22-nt vsRNAs [6–8]. By contrast, in RNA

virus-infected Arabidopsis, DCL4-dependent 21-nt vsRNAs and/or

DCL2-dependent 22-nt vsRNAs are the most abundant species,

whereas DCL3-dependent 24-nt vsRNAs accumulate at much

lower levels [7,9,10]. This reflects the difference in viral life cycles:

DNA viruses transcribe their genomes in the nucleus, whereas

RNA viruses are generally restricted to the cytoplasm. Likewise,

plant endogenous genes and transgenes that undergo transcrip-

tional silencing spawn predominantly DCL3-dependent 24-nt

siRNAs, whereas those that undergo post-transcriptional silencing

spawn predominantly DCL4-dependent 21-nt siRNAs and, in

certain cases, DCL2-dependent siRNAs [1,11,12].

In endogenous and transgene-induced silencing pathways,

dsRNA precursors of siRNAs can be generated by RNA-

dependent RNA-polymerase (RDR). The Arabidopsis thaliana

genome encodes six RDRs, three of which have been implicated

in siRNA biogenesis [13]. RDR2 is required for biogenesis of 24-

nt heterochromatic siRNAs (hcsiRNAs) mainly originating from

repetitive DNA loci including transposons. RDR6 is required for

biogenesis of trans-acting siRNAs (tasiRNAs), natural antisense

transcript siRNAs and siRNAs derived from posttranscriptionally-

silenced transgenes [1]. RDR6 is also involved in production of

secondary siRNAs from some protein-coding genes targeted by
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miRNAs [14,15]. RDR1 has so far been implicated in viral siRNA

biogenesis (see below) and its function in endogenous or transgene-

induced silencing is not known. Presumptive single-stranded RNA

templates for RDR2 are produced by plant-specific RNA

polymerases Pol IV and/or Pol V, but little is known about Pol

IV and Pol V transcripts and RDR2-dependent dsRNAs [16].

dsRNA precursors of tasiRNAs originate from Pol II transcripts of

TAS genes, which are cleaved by a miRNA::Argonaute (AGO)

protein complex [17–20]. Either the 39 cleavage product or the 59

cleavage product is converted by RDR6 to dsRNA: RDR6

recruitment to only one of the two cleavage products is determined

by 22-nt size of the initiator miRNA produced from a bulged

hairpin precursor [21–23] or a second binding site of the

miRNA::AGO complex [17,19], respectively.

The possible role of RDRs in vsRNA biogenesis has been

extensively studied using A. thaliana single, double and triple null

mutants for RDR1, RDR2 and RDR6 [8,24–28]. These studies

produced rather conflicting results, but in many cases, wild type

viruses were shown to predominantly spawn RDR-independent

vsRNAs [29]. However, mutant RNA viruses with deletion or

point mutation in the viral silencing suppressor gene spawn

RDR6- and/or RDR1-dependent vsRNAs [26–28]. As a conse-

quence the suppressor-deficient RNA viruses could establish

systemic infection only on A. thaliana mutant plants lacking

RDR6 and/or RDR1 activity. Nevertheless, suppressor-deficient

RNA viruses spawn substantial amounts of RDR-independent

vsRNAs. Thus, one of the major precursors of RNA virus-derived

vsRNAs is likely a double-stranded replicative intermediate,

transiently produced by viral RNA-dependent RNA-polymerase

(vRdRP). Primary vsRNAs generated from such precursors may

trigger RDR-dependent production of secondary siRNAs.

Plant DNA viruses do not encode a vRdRP. However, the

biogenesis of DNA virus-derived vsRNAs does not appear to

involve host RDRs. Thus, Cauliflower mosaic virus (CaMV)-derived

vsRNAs of all major classes accumulate at comparable high levels

in A. thaliana wild-type and rdr1 rdr2 rdr6 triple mutant plants and

their long dsRNA precursors are likely generated by Pol II [8].

The lack of RDR-dependent vsRNAs can be explained by the

ability of a CaMV silencing suppressor protein to interfere with

DCL4-mediated processing of dsRNAs produced by RDR6

[30,31]. Silencing suppressor proteins of DNA geminiviruses have

not been reported to interfere with RDR activity or DCL-

mediated processing of RDR-dependent dsRNAs. In A. thaliana

null mutants for Pol IV, RDR2, or RDR6 activity, the biogenesis

of vsRNAs from Cabbage leaf curl virus (CaLCuV; a member of

genus Begomovirus of the family Geminiviridae) was not affected,

suggesting that RDR2 and RDR6 are not involved in production

of dsRNA precursors of vsRNAs [7]. However, involvement of

RDR1 in this process or possible redundancy in activities of

distinct RDRs were not investigated so far.

Geminiviruses encapsidate circular single-stranded (ss)DNA of

ca. 2.5-to-2.7 kb in geminate virions and accumulate in the

nucleus as multiple circular dsDNA minichromosomes. The

minichromosomes are both the intermediates of rolling circle

replication and the templates for Pol II-mediated bidirectional

transcription [32]. Like many members of the genus Begomovirus,

CaLCuV has a bipartite genome comprising 2.6 kb DNA-A and

2.5 kb DNA-B [33]. The DNA-A encodes proteins involved in

replication (AC1 and AC3), transcription (AC2) and encapsidation

(AV1), while the DNA-B encodes BC1 and BV1 proteins with

movement functions. A large intergenic region on DNA-A and

DNA-B contains a 192 bp common region of nearly identical

sequence with the origin of replication and bidirectional promoter

elements. By analogy with other begomoviruses [34], the

bidirectional promoter is expected to drive Pol II transcription

of the leftward (AC1/AC4/AC2/AC3 and BC1) and rightward (AV1

and BV1) genes. In addition, a monodirectional promoter is

expected to drive Pol II transcription of a short AC2/AC3

transcript, which is co-terminal with the long AC1/AC4/AC2/

AC3 transcript. On both DNAs, the leftward and rightward

transcription is terminated by poly(A) signals located in a close

vicinity on the virion (sense) and complementary (antisense)

strands, respectively. In CaLCuV DNA-A, this juxtaposition of the

poly(A) signals creates a ca. 25-nt overlap of the sense and

antisense transcripts. Such overlap was proposed to form a dsRNA

precursor of primary vsRNAs [35], which may initiate RDR-

dependent production of vsRNAs from other regions of the viral

transcripts.

Such phenomenon of transitivity has been described for

posttranscriptional and transcriptional silencing of a transgene

targeted by vsRNAs (virus-induced gene silencing; VIGS) or by

primary siRNAs derived from an inverted-repeat transgene. In

these cases, RDR6- or RDR2-dependent production of secondary

siRNAs outside of the target region was detected, respectively

[36,37]. Notably, posttranscriptional silencing of endogenous plant

genes by virus- or transgene-derived primary siRNAs was not

associated with secondary siRNA production [36,38,39], suggest-

ing that endogenous mRNAs are not good templates for RDRs.

In this study, we used Illumina deep sequencing of short RNAs,

combined with blot hybridization and genetic analysis, to

investigate the biogenesis of primary and secondary siRNAs. To

this end, Arabidopsis wild-type, RDR-mutant and transgenic plants

were infected with CaLCuV or its derivatives carrying fragments

of an endogenous gene or a transgene. We found that, like most

endogenous plant mRNAs, viral mRNAs are not prone to

transitivity: the majority of vsRNAs are RDR1-, RDR2- and

RDR6-independent primary siRNAs. By contrast, a transgene

mRNA targeted by primary vsRNAs is subject to RDR6-

dependent production of secondary siRNAs. We also found that

silencing of the transgene driven by a CaMV 35S promoter can be

triggered by primary vsRNAs targeting an enhancer (but not core

Author Summary

RNA silencing directed by small RNAs (sRNAs) regulates
gene expression and mediates defense against invasive
nucleic acids such as transposons, transgenes and viruses.
In plants and some animals, RNA-dependent RNA poly-
merase (RDR) generates precursors of secondary sRNAs
that reinforce silencing. Most plant mRNAs silenced by
miRNAs or primary siRNAs do not spawn secondary
siRNAs, suggesting that they may have evolved to be
poor templates for RDR. By contrast, silenced transgenes
often produce RDR-dependent secondary siRNAs. Here we
demonstrate that massive production of 21, 22 and 24 nt
viral siRNAs in DNA geminivirus-infected Arabidopsis does
not require the functional RDRs RDR1, RDR2, or RDR6.
Deep sequencing analysis indicates that dsRNA precursors
of these primary viral siRNAs are likely generated by RNA
polymerase II-mediated bidirectional readthrough tran-
scription on the circular viral DNA. Primary viral siRNAs
engineered to target a GFP transgene trigger robust,
RDR6-dependent production of secondary siRNAs, indicat-
ing that geminivirus infection does not suppress RDR6
activity. We conclude that geminiviral mRNAs, which can
potentially be cleaved by primary viral siRNAs, are resistant
to RDR-dependent amplification of secondary siRNAs. We
speculate that, like most plant mRNAs, geminiviral mRNAs
may have evolved to evade RDR activity.

Transitivity in Virus-induced Silencing
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promoter) region and this, presumably transcriptional, silencing

was not associated with accumulation of secondary siRNAs.

Results/Discussion

21, 22 and 24 nt vsRNAs accumulate at high levels in
CaLCuV-infected Arabidopsis
To analyze begomovirus interactions with the host small RNA

(sRNA)-generating silencing pathways, we deep-sequenced sRNA

populations from mock-inoculated and CaLCuV-infected A.

thaliana wild-type (Col-0) plants and CaLCuV-infected rdr1 rdr2
rdr6 triple null mutant plants (rdr1/2/6 in Col-0 background; [8]).

The protocol was designed to sequence short RNAs with

59-phosphate and 39-hydroxyl groups, which include DCL

products. Samples of total RNA extracted from pools of three

plants were processed in parallel and the resulting cDNA libraries

sequenced in one channel of an Illumina Genome Analyzer, thus

allowing quantitative comparison of changes in the profile of host

sRNAs upon virus infection and the profile of vsRNAs in wild-type

versus mutant plants.

A total number of reads in the high-coverage libraries was

ranging from 9.3 to 10.4 million, of which 7.3 million (‘Col-0

mock’), 5.3 million (‘Col-0 CaLCuV’) and 5.0 million (‘rdr1/2/6

CaLCuV’) of 20–25 nt reads mapped to the Arabidopsis thaliana
Col-0 or CaLCuV genomes with zero mismatches (Table S1A).

Two additional low-coverage libraries with 0.45 million (‘Col-0

mock*’) and 0.43 million (‘Col-0 CaLCuV*’) of 20–25 nt reads

with zero mismatches (Table S1A) were obtained in an indepen-

dent experiment.

In mock-inoculated plants, most of the 20–25 nt sRNAs

mapped to the A. thaliana genome (Figure 1A; Table S1A). The

24-nt and 21-nt classes were predominant (35% and 28%,

respectively), whereas other size-classes were less abundant (23-

nt – 19%; 22-nt – 8%; 20-nt – 7%; 25-nt – 3%) (Figure 1B). This is

consistent with the previous studies showing that 24-nt hcsiRNAs

and 21-nt miRNAs are the most abundant sRNA classes in A.

thaliana [40,41]. Upon CaLCuV infection, the host sRNA profile

was slightly altered in that the 21-nt class became the largest (32%)

and the 24-nt class the second largest (28%) (Figure 1B; Table

S1A). A similar shift in the host sRNA profile was also detected in

the low coverage experiment (Table S1A). By contrast, A. thaliana
infection with the pararetrovirus CaMV results in overaccumula-

tion of 24-nt host sRNAs [8]. The biological significance of the

opposite effects of geminivirus and pararetrovirus infections on

host sRNAs remains to be investigated.

In CaLCuV-infected Col-0 plants, a large fraction of 20–25 nt

reads mapped to the virus genome with zero mismatches (ca. 32%

and 62% in the high- and low-coverage libraries, respectively;

Figure 1A and Table S1A). Notably, the viral DNA-B was the

major source of vsRNAs (70% and 85% of 20–25 nt viral reads,

respectively; Table S1A). On both DNA-A and DNA-B, vsRNA

reads were almost equally distributed between the virion and

complementary strands (Table S1A; Figures 2 and S1). Similar to

the host sRNAs in infected plants, 21-nt and 24-nt vsRNAs

represent the first (42%) and the second (31%) largest fractions of

20–25 nt viral reads, respectively. But unlike the host sRNAs, 22-

nt viral reads represent the third largest fraction (18%), while 20-

nt, 23-nt and 25-nt classes are significantly underrepresented

(Figure 1C). This size-class profile of CaLCuV vsRNAs agrees

with our blot hybridization analysis using short probes and

confirms the involvement of distinct DCLs in vsRNA biogenesis

(Figure S2; [7]).

Interestingly, the host sRNAs of 21-nt and 24-nt classes exhibit

a strong bias to 59-terminal uridine (59U; 69%) and 59-terminal

adenosine (59A; 52%), respectively (Table S1A), owing to the

preferential association of miRNAs with AGO1 and hcsiRNAs

with AGO4 [17,42–44]. By contrast, vsRNAs of 21-nt and 24-nt

classes are less strongly enriched in 59U (46%) and 59A (32%),

respectively, and the second most dominant nucleotide is 59A for

21-nt class (25%) and 59U for 24-nt class (32%) (Table S1A). Both

the diversity in nucleotide composition and size of CaLCuV

vsRNAs and the lack of any strong 59-nucleotide bias imply the

involvement of multiple AGOs in sorting vsRNAs.

vsRNA species densely tile along the entire circular viral
DNAs and accumulate at high levels in several large
hotspot regions
Inspection of single-nucleotide resolution maps of 20–25 nt

vsRNAs revealed that unique vsRNA species of each major class

(21-nt, 22-nt and 24-nt) cover the entire genome of CaLCuV in

Figure 1. Illumina deep-sequencing of sRNAs from mock-
inoculated and CaLCuV-infected Arabidopsis wild-type (Col-0)
and rdr1/2/6 triple mutant plants. The graphs show the percentages
of Arabidopsis and vsRNAs in the pool of 20–25 nt reads mapped to the
Arabidopsis and CaLCuV DNA-A and DNA-B genomes with zero
mismatches (A), of each size-class of 20–25 nt host sRNA reads mapped
to the Arabidopsis genome with zero mismatches (B), and of each size-
class of 20–25 nt vsRNA reads mapped to the CaLCuV DNA-A and DNA-
B with zero mismatches (C).
doi:10.1371/journal.ppat.1002941.g001
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both sense and antisense polarity as dense tiling arrays without

gaps on the circular sequences of 2583 bp DNA-A and 2513 bp

DNA-B (Tables S2 and S3). Hence, dsRNA precursors of vsRNAs

of each class should cover the entire circular viral DNAs.

However, the relative abundance of vsRNAs varies drastically:

several large regions of DNA-A and DNA-B are densely covered

in both polarities with vsRNA hotspots (defined here arbitrarily as

short sequence segments spawning several vsRNA species with

more than 300 reads each) (Figure 2 and Figure S1). This implies

the existence of several overlapping dsRNA precursors that

accumulate at high and low levels. Interestingly, vsRNA hotspots

on both virion and complementary strands are interrupted with

short sequences that spawn vsRNAs of lower abundance (Figure 2

and Figure S1; Table S2 and Table S3). This implies differential

stability of vsRNA duplexes processed consequently from ends of

long dsRNA precursors or, alternatively, preferential internal

excisions of vsRNA duplexes from certain regions of a long

dsRNA. We also found that most vsRNA hotspots contain all the

three major size-classes of vsRNAs (Figure S1; Table S2 and Table

S3), indicating that same dsRNA precursors are processed by

different DCLs. This conclusion is consistent with our genetic

analysis coupled with blot-hybridization of DNA virus-derived

sRNAs [6,7] (Figure S2) and sRNA deep-sequencing studies of

other viruses [8,45–48].

In DNA-A, the most abundant vsRNAs of both sense and

antisense polarities, which include those with more than 1000

reads, originate from the AV1 ORF (Figure 2A and Figure S1A).

The left border of this vsRNA hotspot region is at position 331

(Table S2), where the transcription start site can be predicted, i.e.

at an optimal distance downstream of the TATA box (TATATAA

at positions 228–305) and 9 nts upstream of the AV1 start codon

(339–341). The right border of this vsRNA hotspot is at around

position 1060 (Table S2), i.e. just upstream of the AV1 stop codon

(1092–1094). After a short gap of 55 bp (1061–1116) lacking

highly abundant vsRNAs, a large region spanning all the leftward

ORFs is also covered with vsRNA hotspots, albeit at lower density

than in the AV1 region. In this region, the most abundant vsRNAs

originate from the large portion of the AC1 ORF including the

nested AC4 ORF and less abundant vsRNAs from the AC2 ORF

(Figure 2A; Table S2). Notably, the 25 nt region (1089–1113), in

which the rightward (AV1) and the leftward (AC1/AC4/AC2/AC3

and AC2/AC3) viral mRNAs are expected to overlap and

potentially form a dsRNA substrate for DCL, is not a vsRNA

hotspot. Likewise, the 240 bp intergenic region between the

predicted leftward and rightward transcription start sites (at

positions 93 and 331, respectively), which contains the bidirec-

tional promoter elements and overlaps the common region (22–

213), is also devoid of vsRNA hotspots: it has only two islands

covered with vsRNAs of 100–250 reads. Furthermore, the

promoter region in front of the predicted transcription start site

of AC2/AC3 mRNA (position 1651, downstream of TATATAA at

1683–1677) does not contain any prominent vsRNA hotspots

(Figure 2A and Figure S1A; Table S2). Taken together, the

promoter and terminator regions of CaLCuV DNA-A are devoid

of highly abundant vsRNAs. Thus, the virus may have evolved a

mechanism to evade transcriptional silencing which could

potentially be directed by vsRNAs.

In DNA-B, two large regions are covered with extreme hotspots

containing multiple vsRNA species with more than 1000 reads on

Figure 2. Maps of vsRNAs from CaLCuV-infected wild type (Col-
0) and rdr1/2/6 triple mutant plants at single-nucleotide
resolution. The graphs plot the number of 20–25 nt vsRNA reads at
each nucleotide position of the 2583 bp DNA-A (A) and the 2513 bp
DNA-B (B); Bars above the axis represent sense reads starting at each
respective position; those below represent antisense reads ending at
the respective position (Tables S2 and S3). The genome organizations of
DNA-A and DNA-B are shown schematically above the graphs, with
leftward (AC1, AC4, AC2, AC3 and BC1) and rightward (AV1 and BV1)

ORFs and common region (CR) indicated. The predicted rightward and
rightward mRNAs are shown as respectively blue and red solid lines
with arrowheads. Potential readthrough transcripts are shown as dotted
thin lines.
doi:10.1371/journal.ppat.1002941.g002
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both sense and antisense strands. The first is located downstream

of the common region and it spans a large portion of the BV1
ORF. The second is located upstream of the common region and

it spans a large portion of the BC1 ORF (Figure 2B and Figure

S1B; Table S3). Like in DNA-A, the terminator region of

rightward (BV1) and leftward (BC1) genes is devoid of vsRNA

hotspots. Note that the DNA-B poly(A) signals AATAAA are

located at positions 1305–1310 and 1356–1361 of the virion and

complementary stands, respectively, and therefore the BV1 and

BC1 mRNAs are not expected to overlap. A predicted BC1

promoter region with the TATA-box at positions 2471–2463

(TATATAA) is devoid of vsRNA hotspots and the border of the

vsRNA hotspot region corresponds to the predicted transcription

start site at 2439. Thus, BC1 mRNA can form one of the strands of

a vsRNA precursor. In contrast, a predicted BV1 promoter region

with the TATA-box at position 442–447 (TATATAA) is covered

with vsRNA hotspots on both strands. This suggests that the

region upstream of the BV1 ORF might be actively transcribed.

Interestingly, it contains an ORF at positions 319 to 471

(Figure 2B). Such active transcription could in turn lead to

production of abundant vsRNAs that can potentially direct

transcriptional silencing of the BV1 promoter. This may represent

either a host antiviral defense or a viral strategy of gene regulation.

Based on close inspection of cold versus hot spots of viral

siRNAs, AU-rich sequences can generally be considered as a poor

source of siRNAs, possibly owing to relatively low stability of AU-

rich siRNA duplexes processed by DCLs from long dsRNA

precursors. Other features of RNA primary or secondary structure

which might potentially influence siRNA biogenesis or stability

remain to be further investigated.

vsRNA biogenesis is not affected drastically in plants
lacking RDR1, RDR2 and RDR6
The Arabidopsis sRNA profile is drastically altered in rdr1/2/6

triple mutant compared to wild-type plants: 24-nt and 23-nt classes

are selectively and strongly reduced, mainly owing to the loss of

RDR2-dependent hcsiRNAs [40]. Thus, 21-nt class becomes the

most predominant, followed by 20-nt and 22-nt classes (Table

S1A): these three classes are mainly populated with RDR-

independent miRNAs, whereas RDR6-dependent tasiRNAs and

secondary siRNAs are much less abundant [41]. By contrast, the

CaLCuV vsRNA profile was only slightly altered in rdr1/2/6

compared to wild-type (Figure 1C).

The overall accumulation level of 20–25 nt vsRNAs was higher

in rdr1/2/6 than wild-type plants. If normalized by the levels of

21-nt host sRNAs (1.22 million in ‘Col-0 CaLCuV’ versus 1.21

million in ‘rdr1/2/6 CaLCuV’), this ca. 1.5-fold increase is mainly

owing to higher accumulation of DNA-B vsRNAs of all the major

classes (Table S1A; Figure 1A).

The single-nucleotide resolution maps of vsRNAs from Col-0

and rdr1/2/6 are remarkably similar. The vsRNA hotspots occur

in the same regions and the relative abundance of vsRNA species

is very similar within most hotspots (Figure 2 and Figure S1; Table

S2 and Table S3). For DNA-A, the levels of 20–25 nt vsRNAs

derived from the AC2 hotspot region are relatively lower in rdr1/
2/6 than in Col-0, whereas those derived from the AV1 region are

generally similar in rdr1/2/6 and Col-0 (Figure 2A), with an

exception of 24-nt vsRNAs that accumulate at relatively higher

levels in rdr1/2/6 (Figure S1A; Table S1A). For DNA-B, the levels

of 20–25 nt vsRNAs in most hotspots are 1.5- to 2.5-fold higher in

rdr1/2/6 than in Col-0, with an exception of the middle part and

the 39 part of BV1 ORF, in which vsRNA levels are generally

similar in rdr1/2/6 and Col-0 or, at some locations in the 39 part,

lower in rdr1/2/6 (Figure 2B). No drastic difference in the relative

abundance of vsRNA size-classes along the DNA-B sequence was

observed (Figure S2B; Table S3).

Analysis of 59-terminal nucleotides of vsRNAs revealed no

substantial difference between Col-0 and rdr1/2/6 (Table S1A),

further supporting that vsRNA biogenesis is not drastically affected

by null mutations in RDR1, RDR2 and RDR6.

The above-described deep sequencing findings for vsRNA size-

classes, relative abundance and distribution along the viral genome

and RDR1/2/6-independence of vsRNA biogenesis were con-

firmed by blot hybridization analysis of sRNAs from CaLCuV-

infected wild-type and rdr1/2/6 mutant plants using several short

probes specific to DNA-A or DNA-B (Figure S2 and Figure 3B). In

addition, analysis of CaLCuV-infected dcl1 dcl2 dcl3 dcl4 quadruple
mutant plants (dcl1/2/3/4) confirmed our previous findings that

the majority of vsRNAs are generated by four DCLs [7]. We

further established that a mutant DCL1 protein produced from

the dcl1-9/caf1 allele in dcl1/2/3/4 plants [8] appears to be

capable of generating 21-nt vsRNA from dsRNA precursors

derived from vsRNA hotspot regions of DNA-B (Figure S2).

Likewise, a major fraction of 21-nt vsRNAs derived from the

leader region of CaMV, which is an extreme hotspot of 21-24 nt

vsRNA production, requires DCL1 for their biogenesis and

residual accumulation of 21-nt vsRNAs was observed in dcl1/2/3/

4 [8].

Taken together, our findings indicate that CaLCuV vsRNA

biogenesis does not require RDR1, RDR2, or RDR6. However,

there appears to be a quantitative difference in relative abundance

of dsRNA precursors derived from the vsRNA hotspot regions of

DNA-A and DNA-B in wild-type versus rdr1/2/6 plants.

Accumulation of viral long nucleic acids in wild type
versus rdr1/2/6 plants
To test if the observed differences in relative abundance of

vsRNAs correlate with relative levels of viral transcripts and/or

viral DNA, we measured the accumulation of viral long nucleic

acids in wild-type and rdr1/2/6 plants by RNA and DNA blot

hybridization as well as real time PCR (Figure 3). The results of

total RNA (Figure 3A) and polyadenylated mRNA (Figure 3D)

analyses revealed that the relative accumulation of viral transcripts

positively correlates the relative abundance of vsRNAs in the

major hot spot regions. Indeed, AV1 mRNA, the most readily

detectable viral transcript, accumulated at slightly higher levels in

rdr1/2/6 than wild type plants, whereas accumulation of the less

abundant AC2/AC3 mRNA was slightly reduced in rdr1/2/6.
This resembles the profile of DNA-A derived vsRNAs and its

alteration in rdr1/2/6. Furthermore, accumulation of BC1 and

BV1 polyadenylated mRNAs was increased ca. 1.2- and 1.4-fold,

respectively, in rdr1/2/6 compared to wild type plants, which

correlates with slightly increased accumulation of DNA-B derived

vsRNAs in rdr1/2/6. Notably, in addition to viral mRNAs, shorter

viral transcripts also accumulate at high levels and appear as a

smear on the total RNA blot (Figure 3A). These aberrant RNAs

may represent degradation products of viral mRNAs or prema-

turely terminated viral transcripts. In the case of DNA-B, the

aberrant RNAs appear to be much more abundant than BV1 and

BC1 mRNAs, since the latter are barely detectable (Figure 3A).

This correlates with much higher accumulation of vsRNAs from

DNA-B than DNA-A (Figure 1A). The higher abundance of

aberrant RNAs transcribed from DNA-B can be explained by

higher accumulation of total DNA-B compared to total DNA-A as

estimated by Southern (Figure 3C).

Real time PCR analysis (Figure 3D) revealed that total viral

DNA accumulates at higher levels in rdr1/2/6 compared to wild

type plants (ca. 1.4- and 2-fold increase for DNA-A and DNA-B,
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respectively). However, Southern blot hybridization analysis

(Figure 3C) showed that this increase is mainly owing to increased

accumulation of viral single-stranded DNA (ssDNA). By contrast,

the levels of viral dsDNA, which serves as a template for both

transcription and replication, are similar in wild type and rdr1/2/6

plants. Thus, rolling circle and/or recombination-dependent

replication mechanisms [32] produce increased levels of viral

ssDNA (but not dsDNA) in the absence of RDR1, RDR2 and

RDR6. This finding implicates an RDR activity in the regulation

of geminiviral DNA replication. Interestingly, homologous recom-

bination-dependent, double-stranded DNA brake (DSB) repair in

Arabidopsis involves DSB-induced small RNAs (diRNAs) [49].

RDR2 and RDR6 play redundant roles in the biogenesis of

diRNAs, implicating RDR activity in DSB repair.

Silencing of a host gene directed by CaLCuV-derived
primary siRNAs is not associated with production of
secondary siRNAs
Our above-described results suggested that CaLCuV vsRNAs

are primary siRNAs (i.e. RDR-independent) and that secondary

siRNAs (i.e. RDR-dependent) may comprise only a small fraction

of vsRNAs (if any). To investigate if primary vsRNAs are capable

of triggering production of secondary siRNAs in CaLCuV-infected

plants, we used a virus-induced gene silencing (VIGS) vector based

on the CaLCuV DNA-A derivative lacking most of the AV1 ORF

sequence (positions 350–1032) [50].

When a 354 bp fragment of the A. thaliana Chlorata I (ChlI/

CH42; At4g18480) gene ORF is inserted in place of the AV1

ORF, the resulting recombinant virus CaLCuV::Chl knocks down

ChlImRNA levels in all tissues of CaLCuV::Chl-infected A. thaliana
plants [7] and causes whitening of newly growing tissues due to the

loss of chlorophyll (‘‘chlorata’’ phenotype; [50]). The recombinant

virus spawns abundant 21, 22, and 24 nt siRNAs from the ChlI

insert, whose biogenesis does not require RDR6 or RDR2.

However, an extensive chlorata phenotype is nearly abolished in

rdr6 and dcl4 null mutant plants [7], suggesting that RDR6-/

DCL4-dependent secondary siRNAs might be involved in total

silencing the ChlI gene. To test this hypothesis we deep-sequenced

sRNAs from CaLCuV::Chl-infected Col-0 plants exhibiting an

extensive chlorata phenotype.

Of 2.28 million total 20–25 nt reads, 1.58 million mapped to

the A. thaliana genome and 0.61 million to CaLCuV::Chl genome

(A+B) with zero mismatches. Of the latter reads, 0.45 million

originate from the circular CaLCuV::Chl DNA and 0.16 million

from DNA-B (Table S1B). This is in contrast to our above

observation for wild-type CaLCuV which spawns more abundant

vsRNAs from DNA-B.

Figure 3. Accumulation of long viral nucleic acids and vsRNAs in wild type versus rdr1/2/6 triple mutant plants. Total RNA and total
DNA from CaLCuV-infected Arabidopsis wt (Col-0) and rdr1/2/6 plants was analyzed by RNA blot hybridization using 5% (A) and 15% (B) PAGE and by
Southern blot hybridization (C). The RNA blot membranes were successively hybridized with mixtures of DNA oligonucleotide probes complementary
to respective viral mRNAs (for sequences, see Protocol S1) and, in the case of sRNA analysis, single DNA oligonucleotide probes specific for vsRNA of
sense or antisense polarity and the endogenous ArabidopsismiRNA (22 nt miR173), tasiRNA (21 nt siR255) and hcsiRNA (24 nt siR1003). The Southern
blot membranes were hybridized with long dsDNA probes specific for DNA-A or DNA-B. Positions of co-migrating forms of viral DNA including open-
circular double-stranded (dsDNA), supercoiled (scDNA) and single-stranded (ssDNA) are indicated by arrows; the smear of shorter (than monomeric)
ssDNA is also indicated. EtBr staining of total RNA (A) or plant genomic DNA (C) is shown as loading control. The size markers are indicated on each
scan. Positions of viral mRNAs are indicated by asterisks. (D) Real time qPCR measurement of relative accumulation of viral polyadenylated mRNAs
(left) and total viral DNAs A and B (right) in wild type versus rdr/1/2/6mutant plants. For each mRNA and each DNA, the accumulation level in the wild
type sample is set to 1.
doi:10.1371/journal.ppat.1002941.g003
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Inspection of the single-nucleotide resolution map of 20–

25 nt sRNAs perfectly matching to a 3298 bp region of the A.

thaliana genome, which contains the ChlI gene, revealed that of

the 1099098 redundant reads, 1099002 originate from the

354 bp segment (positions 1192–1545) that corresponds exactly

to the ChlI segment inserted in CaLCuV::Chl. The remaining

sRNAs (91 reads) originate mostly from the ChlI sequence

downstream of this segment (Figure 4; Table S1B and Table

S4). We conclude that accumulation of secondary siRNAs

outside of the vsRNA target region is negligible compared to

primary siRNAs. This is consistent with the previous studies

that detected no transitivity when endogenous plant genes were

knocked down by RNA virus- or transgene-induced silencing

[36,38,39].

Within the ChlI target region the sRNA profile resembles the

global profile of CaLCuV vsRNAs in that the three size-classes are

predominant (21-nt – 30%; 22-nt – 25%; 24-nt – 38%). However,

the distribution of sRNAs is unequal between the strands: 80% of

20–25 nt reads map to the coding strand, and 21-nt and 22-nt

classes derived from the coding strand are equally abundant (28%

each). This strong bias is due to a bigger number of sRNA hotspots

and higher accumulation levels of sRNA species within the

hotspots on the coding strand (Figure 4; Table S4). The

significance of this bias for ChlI silencing remains to be

investigated.

In A. thaliana, the ChlI gene has a close homolog ChlI-2

(At5g45930), silencing of which is likely required for the chlorata

phenotype. To address if potential silencing of ChlI-2 is associated

Figure 4. Primary and secondary siRNAs in CaLCuV::Chl virus-infected wild type (Col-0) plants. (A) The 2300 bp region of the Arabidopsis
genome, which contains Chlorata I/CH42 gene (ChlI), is shown schematically with positions of ChlI promoter, pre-mRNA with two introns, and
terminator sequences indicated; numbering starts 500 nucleotides upstream of the transcription start site. The VIGS target sequence (inserted in
CaLCuV::Chl virus) is highlighted with grey. The graph plots the number of 20–25 nt siRNA reads at each nucleotide position of the ChlI gene; Bars
above the axis represent sense reads starting at each respective position; those below represent antisense reads ending at the respective position
(Table S4). (B) The left bar graph shows the total numbers of 20–25 nt primary (CaLCuV::Chl-derived) and secondary siRNAs derived from ChlI
sequences outside of the VIGS target region, while the right bar graph shows the number of primary siRNAs for each size class and polarity.
doi:10.1371/journal.ppat.1002941.g004
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with secondary siRNA production we created a map of ChlI-2 sRNAs
(Figure S3A). Of 39093 reads of 20–25 nt sRNAs matching the ChlI-2

genomic locus with zero mismatches in CaLCuV::Chl-infected

plants, 29987 reads map within the 354 bp VIGS-target sequence

and only 104 (ca. 3%) map downstream of the target. Moreover,

within the target sequence almost all the reads (29977) match two

sequence stretches of .20 nts in length which are identical in ChlI

and ChlI-2 (Figure S3A; Table S4). Thus, similar to ChlI, only small

amounts of secondary siRNAs are generated on ChlI-2 target gene.

Presently, we cannot exclude that these small amounts of secondary

siRNAs are required for total chlorata silencing. As we hypothesized

earlier [7], total Chl silencing is likely established in newly emerging

leaves by mobile RDR6- and DCL4-dependent Chl siRNAs. Recent

studies indicate that 21–24 nt siRNAs act as mobile silencing signals

and can direct mRNA cleavage and DNA methylation in recipient

cells, even though they accumulate in recipient tissues at much lower

levels than in source tissues [51,52].

Notably, vsRNAs targeting ChlI-2 mRNA at two potentially

cleavable sites separated by ca. 100 nts do not trigger any robust

secondary siRNA production from the intervening region. This

indicates that a two-hit model for the RDR6-dependent biogenesis

of tasiRNAs and other secondary siRNAs [14,19,53] does not

apply for ChlI-2 and ChlI.

Like in the wild-type DNA-A, vsRNAs cover the entire circular

CaLCuV::Chl DNA in both orientations without gaps (Table S4).

However, vsRNA hotspots are more evenly distributed along the

CaLCuV::Chl sequence compared to the wild-type DNA-A: in

fact, new hotspots appear in the intergenic region between the

transcription start sites as well as in the terminator region (Figure

S3; Table S4). This finding was confirmed by blot hybridization

(Figure S2, compare CaLCuV wt and CaLCuV::Chl). Further-

more, genetic analysis revealed that production of vsRNAs from

any region of CaLCuV::Chl including the ChlI insert does not

require RDR6 or RDR2, since vsRNAs of all classes accumulated

at similar levels in wild type and rdr2 rdr6 double mutant plants

(rdr2/6; Figure S2). The latter finding indicates that RDR6-

dependent secondary siRNA production does not occur within the

VIGS target region and that potential cleavage of endogenous

(ChlI or ChlI-2) and CaLCuV mRNAs at two sites is not sufficient

to attract RDR6 activity.

Taken together, our findings for both wild-type and CaL-

CuV::Chl viruses suggest that dsRNA precursors of vsRNAs

originate from the entire circular viral DNAs including ‘‘non-

transcribed’’ intergenic regions. Therefore, these precursors might

be produced by Pol II-mediated readthrough transcription far

beyond the poly(A) signals, thus encircling the viral DNA in sense

and antisense orientation. It can be further suggested that such

readthrough transcription is more efficient on CaLCuV::Chl

DNA-A than wild-type DNA-A, owing to the smaller size and the

chimeric configuration of the rightward transcription unit carrying

the ChlI segment. This would explain prominent hotspots in the

promoter and terminator regions and also much higher produc-

tion of vsRNAs from CaLCuV::Chl DNA-A than DNA-B, which

is not the case for wild-type CaLCuV. Notably, CaLCuV::Chl is

an attenuated virus which produces much less severe symptoms

than wild type CaLCuV [49]. Whether vsRNA-directed silencing

contributes to the attenuated symptom development of this

recombinant virus remains to be investigated.

Targeting a transgene transcribed region by CaLCuV-
derived primary siRNAs triggers robust production of
secondary siRNAs
The apparent paucity of secondary siRNAs derived from

CaLCuV mRNAs or ChlI and ChlI-2 mRNAs could be explained

by two scenarios. In the first scenario, the products of potential

vsRNA-directed cleavage of host and viral mRNAs are not

optimal templates for RDR activity. In the second one, CaLCuV

infection blocks RDR activity and thereby prevents RDR-

dependent amplification of siRNAs. To distinguish between these

scenarios, we used the CaLCuV VIGS vector for targeting a

transgene in the A. thaliana line L2 expressing green fluorescence

protein (GFP) under the control of the CaMV 35S promoter and

terminator (35S::GFP; [54]; Figure 5). Like other transgenes, 35S

promoter-driven GFP transgenes in A. thaliana and N. benthamiana

are prone to transitivity in which secondary siRNAs are generated

outside of the region targeted by primary sRNAs [36,38,55]. An

aberrant nature of transgenic transcripts appears to attract RDR

activity.

We inserted in the CaLCuV vector a full-length (FL), 771 bp

GFP coding sequence (designated ‘CodFL’) or 30-bp sequences of

the GFP transgene transcribed region. The latter is defined here as

the GFP mRNA region from the transcription start site to the

mRNA processing/poly(A) addition site. As depicted in Figure 5,

the short inserts included the sequences from within the 59-

untranslated region (59UTR) (designated ‘Lead’), the beginning,

middle and end of the coding sequence (‘CodB’, ‘CodM’ and

‘CodE’), and the 39UTR (‘Trail’ and ‘PolyA’) and the sequences

surrounding the ATG start codon (‘Start’) or the TAA stop codon

(‘Stop’). Inoculation of L2 plants with the resulting recombinant

viruses by biolistic delivery of viral DNA led to development of

local GFP silencing on inoculated leaves followed by systemic GFP

silencing on newly-emerging infected tissues (both leaves and

inflorescence; Figure S4B). GFP silencing in infected tissues, which

was manifested under UV light as red fluorescence areas on

otherwise green fluorescent tissues (Figure 5B and Figure S4B),

well correlated with knockdown of GFP mRNA levels as measured

by real time PCR (Figure S4D).

All the recombinant viruses carrying an insert from the GFP

transcribed region induced systemic GFP silencing, although to

various degrees (Figure 5B). Furthermore, in all these cases, GFP

silencing correlated with accumulation of GFP siRNAs derived

from both the short insert/target sequences and the GFP mRNA

sequences outside of the target sequence (Figure 5C and Figure

S4C). Notably, the 30 bp GFP insert/target sequences generally

gave rise to abundant siRNAs of 21-nt, 22-nt and 24-nt classes,

resembling those derived from the virus genome and therefore

likely originating from the replicating virus carrying the insert

rather than from the transgene. By contrast, secondary siRNAs

derived from non-target sequences of the GFP transgene were

generally represented by a dominant 21-nt class, although 22-nt

and 24-nt classes were also detected (Figure 5C; also see below).

Furthermore, targeting the GFP sequences upstream of the

translation stop codon (Lead, Start, CodB, CodM and CodE) induced

the production of abundant secondary siRNAs exclusively from

sequences downstream of the target site, whereas targeting the

39UTR sequences (Stop, Trail and PolyA) resulted in secondary

siRNAs from the sequences upstream and downstream of the

target site (Figure 5C). Such directionality in secondary siRNA

biogenesis resembles that in RDR6-/DCL4-dependent biogenesis

of tasiRNAs [17,18]. Our findings further suggest that, following

vsRNA-directed cleavage of GFP mRNA, the 59-cleavage product

might be protected by translating ribosomes from being

converted to dsRNA precursor of secondary siRNAs. However,

if it contains the translation stop codon, the ribosomes can

terminate translation and be released. Thus, following vsRNA-

directed cleavage downstream of the stop codon, both 59 and 39

cleavage products of GFP mRNA enter the secondary siRNA-

generating pathway.
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Figure 5. VIGS phenotypes and accumulation of primary and secondary siRNAs in L2 transgenic plants infected with CaLCuV::GFP
viruses targeting the GFP transcribed region. (A) The L2 T-DNA region containing the 35S-GFP transgene is shown schematically. Positions of
the duplicated CaMV 35S enhancer and core promoter elements, GFPmRNA elements including 59UTR, translation start (AUG) and stop (UAA) codons
and 39UTR with poly(A) signal (AAUAAA), and 35S terminator sequences indicated. Numbering is from the T-DNA left border (LB). The VIGS target
sequences, inserted in the CaLCuV::GFP viruses Lead, CodB, CodM, CodE, Trail and polyA, are indicated with dotted boxes; (B) Pictures under UV light
of L2 transgenic plants infected with the above viruses; (C) Blot hybridization analysis of total RNA isolated from plants shown in Panel B. The blot
was successively hybridized with short DNA probes specific for CaLCuV AC4 gene (AC4_s) and 35S::GFP transgene sequences inserted in the
CaLCuV::GFP viruses (Lead, CodB, CodM, CodE, Trail and polyA), the GFP mRNA 39UTR non-target sequence (39UTR) and Arabidopsis miR173 and Met-
tRNA (the latter two serve as loading control).
doi:10.1371/journal.ppat.1002941.g005
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The above findings based on blot hybridization analysis

(Figure 5C) were fully validated by Illumina sequencing of sRNAs

from L2 plants infected with Lead, CodM, Trail and polyA viruses

(Figure 6 and Figure S5; Table S5 and Table S6). In addition,

analysis of the deep sequencing data showed that vsRNAs

targeting the 39UTR induce production of much more abundant

secondary siRNAs from the region upstream of the target site than

from downstream sequences (Figure 6). Interestingly, secondary

siRNA hotspots are non-randomly distributed along the GFP

transcribed region: in all the four cases the siRNA hotspots occur

in the region comprising the 39 portion of the GFP ORF and the

beginning of the 39UTR. The size-class profile and relative

abundance of siRNA species in this siRNA hotspot region are very

similar. In the case of Lead and polyA viruses, additional siRNA

hotspots occur in the middle of GFP ORF and the 39UTR,

respectively (Figure 6 and Figure S5). Interestingly, vsRNAs

targeting the 59UTR does not induce abundant secondary siRNA

production from the region immediately downstream of the target

site, which contains the 59 portion of GFP ORF. This region also

appears to be a poor source/target of primary vsRNAs (see CodB
in Figure 5). Furthermore, robust production of secondary siRNAs

does not appear to depend on the accumulation levels of any

major size-class of primary vsRNAs of antisense polarity that have

the potential to cleave GFP mRNA and initiate secondary siRNA

biogenesis (Figure S5; Table S1, Table S5 and Table S6). We

assume that, once initiated by primary vsRNAs, secondary siRNA

biogenesis might be reinforced by feedback loops in which certain

secondary siRNAs of antisense polarity target the GFP mRNA.

Such feedback loops regulate tasiRNA production from TAS1c

gene, in which certain tasiRNAs cleave its own precursor

transcript to initiate RDR6-dependent production of additional

dsRNAs [20], and potentially occur in transgene-induced silencing

systems [56,57].

Targeting a transgene enhancer region by CaLCuV-
derived primary siRNAs causes silencing without
secondary siRNA production
Contrary to what we observed for the transcribed region,

targeting of the GFP non-transcribed regions with short sequences

inserted into the CaLCuV VIGS vector did not lead to GFP

silencing or secondary siRNA production in systemically-infected

L2 plants (Figure 7 and Figure S4). The 30-bp sequences which

surround the 35S core promoter elements including the CAAT

and TATA boxes (‘CAAT’ and ‘TATA’) and the transcription start

site (‘Plus1’), or sequences that occur in a distal region of the 35S

enhancer (‘EnhSh’) and just downstream of the mRNA processing/

poly(A) addition site (‘Post’) gave rise to abundant siRNAs of the

three major classes but no secondary siRNAs were detected

outside of the target sequence. Furthermore, insertion of the 90-bp

35S core promoter region (‘Core’) did not result in GFP silencing or

secondary siRNA production, despite abundant primary siRNAs

targeting this region. However, insertions of the entire 35S

enhancer region of 272 bp (‘Enh’) or the full-length promoter of

382 bp (‘ProFL’) resulted in systemic GFP silencing. But also in

these two cases no secondary siRNAs were detected outside of the

target region (Figure 7). These findings were confirmed by

Illumina sequencing of sRNAs from L2 plants systemically infected

with Core, Enh and ProFL viruses (Figures 8 and Figure S6; Table

S5 and Table S6). In addition, the deep sequencing revealed that,

besides extremely low levels of secondary siRNA accumulation

outside of the target region, there appear to be almost no

secondary siRNA amplification within the target region. Thus, the

duplicated 273-bp Enhancer* region shares 94% nucleotide

identity with the target Enhancer region, since these sequences

originate from two different strains of CaMV, and we found only

negligible numbers of reads in the three stretches of the Enhancer*

sequence that have mismatches to corresponding stretches of the

Enhancer sequence (Figure 8; Table S5, see positions 760–781,

803–837 and 869–905).

Taken together, we conclude that production of abundant

secondary siRNAs can be triggered by primary virus-derived

siRNAs that target GFP mRNA. Hence, CaLCuV infection does

not block amplification of secondary siRNAs likely mediated by

RDR activities (see below). This is also supported by our blot

hybridization analysis showing that accumulation of RDR6-

dependent tasiRNAs is not significantly affected by CaLCuV

infection (Figure S2; siR255). Both primary (virus-derived) and

secondary siRNAs correlate with efficient GFP silencing. However,

targeting of the non-transcribed, 35S enhancer region by primary

siRNAs induces efficient GFP silencing without any substantial

production of secondary siRNAs. Hence, secondary siRNAs do

not appear to be necessary for silencing GFP transgene, at least at

the transcriptional level. Previously, transcriptional VIGS through

targeting the 35S promoter region of 35S::GFP transgene was

observed but its dependence on primary or secondary siRNAs was

not tested in that case [58].

GFP secondary siRNAs are RDR6-dependent
To investigate genetic requirements for the biogenesis of GFP

secondary siRNAs, the L2 transgenic line was crossed with the

Col-0 mutant lines carrying point mutations in RDR6 (rdr6-14;

[59]) and DCL4 (dcl4-2; [60]). The resulting homozygous mutant

lines L2 x rdr6 and L2 x dcl4 expressed high levels of GFP, similar

to those of the parental L2 plants (not shown).

Systemic infection of L2 x rdr6 and L2 x dcl4 plants with the

recombinant viruses Lead, CodM and Trail resulted in GFP silencing

in all cases, except L2 x rdr6 plants infected with the Lead virus.

Consistent with our findings for wild-type CaLCuV (Figure S2)

and CaLCuV::Chl ([7]; Figure S2), blot hybridization analysis

revealed that the biogenesis of 21, 22 and 24 nt vsRNAs derived

from the AC4 ORF region of the three recombinant viruses was

not affected in L2 x rdr6 plants lacking RDR6 (Figure 9). By

contrast, probes specific for the target transgene revealed a major

contribution of RDR6 in secondary siRNA production. In fact,

production of secondary siRNAs of all size-classes outside of the

target region was nearly abolished in L2 x rdr6 plants infected with

Lead, CodM and Trail viruses (Figure 9). For the latter two viruses,

accumulation of siRNAs from the insert/target sequence was also

reduced: interestingly, the reduced accumulation was observed for

siRNAs of sense but not antisense polarity in CodM virus, while

siRNAs of both polarities were strongly reduced in Trail virus. By

contrast, accumulation of siRNAs from the Lead insert/target

sequence was not altered in L2 x rdr6 plants infected with Lead

virus (Figure 9). We conclude that RDR6-independent primary

vsRNAs represent the majority of siRNAs derived from the Lead

sequence, whereas the CodM and Trail sequences also spawn

RDR6-dependent secondary siRNAs in addition to primary

vsRNAs. These secondary siRNAs could potentially be produced

from the transgene and/or the viral insert. We therefore used the

probes specific to the viral sequence located just downstream of the

insert (CbA1063_s and CbA1063_as), i.e. present in the chimeric

rightward viral transcript. The results revealed that, in the case of

Lead and CodM viruses, RDR6 is not involved in production of

vsRNAs from this region (Figure 9). Thus, the contribution of

RDR6 to siRNA production from the CodM insert/target

sequence of antisense polarity can be explained by RDR6-

dependent siRNA production from the target gene rather than the

chimeric virus. However, accumulation of vsRNAs derived from
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Figure 6. Maps of primary and secondary siRNAs accumulating in L2 transgenic plants infected with CaLCuV::GFP viruses that
target the GFP transcribed region. The graphs plot the number of 20–25 nt vsRNA reads at each nucleotide position of the L2 T-DNA-based
35S::GFP transgene; Bars above the axis represent sense reads starting at each respective position; those below represent antisense reads ending at
the respective position (Table S5). The 35S-GFP transgene is shown schematically above the graphs. Positions of the duplicated 35S enhancer and
core promoter, GFP mRNA elements and 35S terminator are indicated. Numbering is from the T-DNA left border (LB). The VIGS target sequences
inserted in the CaLCuV::GFP viruses Lead, CodM, Trail and polyA are indicated with dotted boxes.
doi:10.1371/journal.ppat.1002941.g006

Transitivity in Virus-induced Silencing

PLOS Pathogens | www.plospathogens.org 11 September 2012 | Volume 8 | Issue 9 | e1002941



Figure 7. VIGS phenotypes and primary siRNA accumulation in L2 transgenic plants infected with CaLCuV::GFP viruses that target
the GFP promoter and terminator elements. (A) The L2 T-DNA region containing the 35S-GFP transgene is shown schematically. Positions of the
duplicated CaMV 35S enhancer (Enh) and core promoter (Core) elements (CAAT and TATA boxes and transcription start Plus1), the GFP mRNA
elements (59UTR, AUG and UAA codons and 39UTR, and 35S terminator are indicated. Numbering is from the T-DNA left border (LB). The VIGS target
sequences, inserted in the CaLCuV::GFP viruses ProFL, Enh, CAAT, TATA, Plus1, CodFL, Trail and Post are indicated with dotted boxes; (B) and (C) Blot
hybridization analysis of total RNA isolated from L2 plants infected with the above viruses. The two blots were successively hybridized with short DNA
probes specific for CaLCuV AC4 gene (AC4_s) and the 35S::GFP transgene sequences inserted in CaLCuV::GFP viruses and Arabidopsis miR173 and
Met-tRNA (the latter two serve as loading control). (D) Pictures under UV light of L2 transgenic plans infected with the CaLCuV::GFP viruses (names
indicated).
doi:10.1371/journal.ppat.1002941.g007
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the chimeric transcript region of Trail virus was substantially

reduced (24-nt) or nearly abolished (21-nt and 22-nt) in L2 x rdr6

plants. This indicates that, in addition to the transgenic mRNA,

the chimeric viral transcript can also be used for RDR6-

dependent production of secondary siRNAs. But the insert

sequence itself appears to regulate relative contribution of RDR6.

Notably, the ChlI insert sequence does not make the chimeric

viral transcript prone to RDR6-dependent vsRNA production

(Figure S2). It remains to be further investigated why the Trail

(but not Lead, CodM or ChlI) sequence makes the viral chimeric

transcript prone to RDR6-dependent amplification of secondary

siRNAs. Interestingly, this sequence originates from the CaMV

terminator/leader region and contains two stretches of AG-

repeats (Protocol S1).

It is puzzling that, in the absence of RDR6-dependent

secondary siRNAs in L2 x rdr6 plants, the GFP silencing is

efficiently triggered by CodM and Trail viruses but not by Lead

virus. We speculate that GFP mRNA cleaved by primary siRNAs

within its 59UTR can still be translated, unless it enters the RDR6

pathway converting the coding and 39UTR sequences to

secondary siRNAs. By contrast, primary siRNA-directed cleavage

within the coding sequence or 39UTR would block productive

translation and could therefore be sufficient for GFP silencing.

In L2 x dcl4 plants, we detected reduced accumulation of 21-nt

primary siRNAs from the viral AC4 region and 21-nt primary and

secondary siRNAs from the GFP sequences. Unexpectedly,

accumulation of 22-nt and 24-nt primary and secondary siRNAs

was increased: this increase was more prominent for secondary

Figure 8. Maps of primary siRNAs accumulating in L2 transgenic plants infected with CaLCuV::GFP viruses that target the GFP
promoter elements. The graphs plot the number of 20–25 nt vsRNA reads at each nucleotide position of the L2 T-DNA-based 35S::GFP transgene;
Bars above the axis represent sense reads starting at each respective position; those below represent antisense reads ending at the respective
position (Table S5). The 35S-GFP transgene is shown schematically above the graphs. Positions of the duplicated 35S enhancer and core promoter,
GFP mRNA elements and 35S terminator are indicated. Numbering is from the T-DNA left border (LB). The VIGS target sequences inserted in the
CaLCuV::GFP viruses CodFL, Enh and Core are indicated with dotted boxes. Note that the duplicated 35S promoter sequences Enhancer* and
Enhancer (each 273 nt long) share 94% nucleotide identity, since they originate from two different strains of CaMV. Therefore, primary siRNA reads
are unequally distributed between the two VIGS target regions.
doi:10.1371/journal.ppat.1002941.g008
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GFP siRNAs (Figure 9). This resembles the shift in the profile of

RDR6-dependent 21-nt tasiRNAs in this particular mutant

background ([60]; Figure 9, see tasiRNA siR255). Thus, a mutated

DCL4 protein expressed from the dcl4-2 allele appears to promote

processing of RDR6-dependent dsRNAs by alternate DCLs that

generate longer siRNAs (i.e. DCL2 and DCL3).

Taken together, our findings confirm a major role of DCL4 in

processing 21-nt secondary siRNAs from RDR6-dependent dsRNA

precursors derived from the transgene and 21-nt primary vsRNAs

from RDR6-independent viral dsRNA precursors. In addition, our

results reveal that RDR6-dependent dsRNA can be efficiently

processed by alternate DCL activities if the DCL4 protein is mutated

by an amino acid substitution in the helicase domain. These

alternate DCLs produce primary and secondary siRNAs which are

equally potent in GFP silencing, since we did not observe any

substantial difference in systemic silencing phenotypes between wild-

type and dcl4-2 plants infected with any of the recombinant viruses.

This is in line with our previous findings for CaLCuV::Chl-derived

primary vsRNAs of distinct classes produced in single, double and

triple dcl mutant plants, which could efficiently knockdown ChlI

mRNA [7]. Previously, a major role of DCL2 was established for

production of secondary siRNAs in a transgene targeted by primary

siRNAs from another transgene [11]. Here, in addition to DCL2, we

find the apparent involvement of DCL3 which normally generates

24-nt nuclear siRNAs in secondary siRNA production. Thus, a

fraction of dsRNA precursors of the GFP transgene-derived

secondary siRNAs might be localized in the nucleus. Alternatively,

a fraction of DCL3 protein might also be cytoplasmic.

Concluding remarks
Secondary siRNAs are involved in various silencing pathways in

plants, fungi and some animals. In C. elegans, RDR-dependent

amplification of secondary siRNAs appears to reinforce silencing

triggered by primary siRNAs which are processed by dicer from

endogenous or exogenous dsRNA [61,62]. In plants, some of the

endogenous mRNAs targeted by miRNAs spawn RDR6-depen-

dent secondary RNAs, a contribution of which to miRNA-directed

gene silencing is not fully clarified [14,15]. In most cases, plant

miRNA-directed cleavage or translational repression is sufficient

for robust gene silencing without production of secondary siRNAs

[14]. Likewise, most plant mRNAs silenced by transgene- or virus-

derived primary siRNAs do not spawn secondary siRNAs. This

suggests that plant mRNAs could have evolved to be poor

templates for RDR activity. Our study supports this notion by

demonstrating that Arabidopsis ChlI and ChlI-2 mRNAs that

undergo robust VIGS spawn only small amounts of secondary

siRNAs. Furthermore, we demonstrate that geminiviral mRNAs,

which can potentially be targeted by highly abundant vsRNAs of

antisense polarity (Figure 2), are not templates for RDR1-, RDR2-

, or RDR6-dependent siRNA amplification. By contrast, the

transgenic GFP mRNA targeted by primary viral siRNAs spawns

massive amounts of secondary siRNAs whose production requires

RDR6. Our findings suggest that some aberrant feature(s) of the

Figure 9. Genetic requirements for primary and secondary
siRNA accumulation in L2 transgenic plants. Blot hybridization
analysis of total RNA isolated from L2, L2 x rdr6 and L2 x dcl4 plants
infected with CaLCuV::GFP viruses Lead, CodM and Trail. The blot was
successively hybridized with short DNA probes specific for CaLCuV
genes AC4 (AC4_s and AC4_as) and AV1 (A1063_s and A1063_as),
35S::GFP transgene sequences inserted in the CaLCuV::GFP viruses
(Lead, CodM, Trail), GFP mRNA 39UTR non-target sequence (39UTR_s)
and Arabidopsis miR173 and Met-tRNA (the latter two serve as loading
control).
doi:10.1371/journal.ppat.1002941.g009
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transgenic GFP mRNA possessing non-self UTR sequences may

attract RDR6 activity. Notably, the involvement of RDR6 and

RDR1 in production of viral siRNAs in RNA virus-infected plants

was revealed only by using the mutant RNA viruses carrying

deletions or point mutations in viral silencing suppressor genes:

unlike wild-type RNA, the mutated viral RNA spawned RDR-

dependent vsRNAs. What makes mutant/chimeric viral mRNAs

and transgenic mRNAs good templates for RDR activity remains

unclear. One possibility is that viral and plant mRNAs could have

evolved primary sequence or secondary structure elements that

block RDR activity. Such elements may accidentally be disrupted

by mutations in the suppressor-deficient RNA viruses. Likewise,

transgene transcripts might lack some of the naturally evolved

sequence or structure elements.

Our findings suggest that the precursors of geminiviral siRNAs

are most likely produced by Pol II-mediated bidirectional

readthrough transcription in both sense and antisense orienta-

tions on the circular viral DNA. Such transcripts (or their

degradation products) can potentially pair viral mRNAs and thus

form perfect dsRNAs to be processed by multiple DCLs into

vsRNAs. Readthrough transcription far beyond a poly(A) signal is

a known property of Pol II. In pararetroviruses, it represents an

obligatory mechanism by which a pregenomic RNA covering the

entire circular genome is generated. The poly(A) signal of plant

pararetroviruses is located at a relatively short distance (e.g.

180 bp in CaMV) downstream of the pregenomic RNA

promoter: this allows efficient readthrough transcription at the

first encounter by the Pol II complex and termination of

transcription at the second encounter [63,64]. Thus, substantial

readthrough transcription can also be expected in geminiviruses

which possess relatively short transcription units. Evidence for the

existence of readthrough transcripts was obtained earlier for a

related geminivirus [34] and is also provided here by deep

sequencing showing that vsRNAs of both sense and antisense

polarities densely tile along the entire CaLCuV genome including

‘‘non-transcribed’’ intergenic region of both DNA-A and DNA-B.

Pol II readthrough transcription downstream of a canonical

poly(A) signal of the endogenous A. thaliana gene FCA was recently

shown to be repressed by a DCL4-dependent mechanism [12]. In

a dcl4 mutant, the increased transcriptional readthrough far

beyond the FCA poly(A) signal triggered silencing of a transgene

containing the same 39 region. Notably, the transgene silencing

was caused by RDR6-dependent production of very abundant

22-nt siRNAs by DCL2 and less abundant 24-nt siRNAs by

DCL3. This siRNA pattern resembles the pattern of GFP

transgene-derived secondary siRNAs that we observed in L2 x

dcl4 plants (Figure 9). Also in line with our observations, robust

siRNA-directed silencing of the transgene and FCA did not

spread to a converging gene that overlaps with the FCA

readthrough transcript [12], further supporting the notion that

most endogenous genes are not prone to RDR6-dependent

transitivity.

Materials and Methods

Plant mutants and virus infection
Arabidopsis thaliana wild-type (Col-0) and rdr2/6, rdr1/2/6 and

dcl1/2/3/4 mutant lines used in this study, their growth conditions

and infection with wild-type CaLCuV (the DNA-A clone ‘CLCV-

A dimer’ [33] and the DNA-B clone pCPCbLCVB.002 [50]) and

CaLCuV::Chl (pMTCbLCVA::CH42 and pCPCbLCVB.002

[50]) using biolistic delivery of viral DNA have been described

earlier [7,8]. Using the same protocols, L2 transgenic plants (Line

2; [54]) were grown and inoculated with CaLCuV::GFP viruses.

L2 plants [54] were crossed with the dcl4-2 and rdr6-14 mutants

[59,60]. L2 homozygosity was determined by PCR in the F2

populations using 59-TTGCTGCAACTCTCTCAGGGCC-39

and 59-GATAAATGTGGAGGAGAAGACTGCC-39 for detect-

ing the presence of the T-DNA and 59-ACACTCTCTCTCCTT-

CATTTTCA-39 and 59-TCTGCAACACTCTGTCATTGG-39

for detecting the absence of intact genomic region. RDR6-14

homozygosity was determined by visual observation of the typical

epinastic leaf phenotype of the rdr6 mutants and was further

confirmed using a dCAPS marker consisting of NcoI digestion of the

PCR product obtained using 59-AAGATTTGATCCCTGAGc-

CAT-39 and 59-GTTCGCCTTGTTTCTTGCTT-39. DCL4-2

homozygosity was determined by the typical epinastic leaf

phenotype of the dcl4 mutants. Homozygosity for L2 and the

respective mutations were confirmed in F3 plants following the

same procedures.

Construction of recombinant viruses
The CaLCuV::GFP viruses EnhSh, CAAT, TATA, Plus1, Lead,

Start, CodB, CodM, CodE, Stop, Trail, PolyA and Post were generated
by cloning preannealed sense and antisense oligonucleotides

(listed in Protocol S1) into XbaI and XhoI sites of the CaLCuV

VIGS vector pCPCbLCVA.007 [50]. The CaLCuV::GFP viruses

Enh, Core and ProFL were generated by subcloning into XbaI and

XhoI sites of pCPCbLCVA.007 the corresponding regions of the

L2 T-DNA 35S promoter using PCR with primers listed in

Protocol S1 on total DNA isolated from L2 transgenic plants. In

all the above derivatives of the CaLCuV VIGS vector the insert

sequences are in antisense orientation with respect of the AV1

gene promoter.

sRNA analysis
For both blot hybridization and Illumina deep-sequencing,

aerial tissues of three virus-infected (or mock-inoculated) plants

were harvested one month post-inoculation and pooled for total

RNA preparation using a Trizol method [7]. sRNA blot

hybridization analysis was performed as in Blevins et al. [7] using

short DNA oligonucleotide probes listed in Protocol S1. cDNA

libraries of the 19–30 nt RNA fraction of total RNA samples were

prepared as we described previously [8]. The high-coverage

libraries of wild-type CaLCuV were sequenced on an Illumina

Genome Analyzer (GA) Hi-Seq 2000 using a TruSeq v5 kit, while

the low coverage libraries on a GA-II using Chrysalis v2. The

libraries of CaLCuV::Chl and CaLCuV::GFP viruses were

sequenced on a GA-IIx using Chrysalis v4 and TruSeq v5,

respectively. After trimming the adaptor sequences, the datasets

of reads were mapped to the reference genomes of Arabidopsis
thaliana Col-0 (TAIR9), CaLCuV (U65529.2 for DNA-A and

U65530.2 for DNA-B) and other references using a Burrows-

Wheeler Alignment Tool (BWA version 0.5.9) [65] with zero

mismatches to the reference sequence. The reference sequences of

CaLCuV DNA-A and its derivatives, CaLCuV DNA-B, L2 T-

DNA and ChlI/CH42 and ChlI-2 genomic loci are given in

Protocol S1. Reads mapping to several positions on the references

were attributed at random to one of them. To account for the

circular virus genome the first 50 bases of the viral sequence were

added to its 39-end. For each reference genome/sequence and

each sRNA size-class (20 to 25 nt), we counted total number of

reads, reads in forward and reverse orientation, and reads starting

with A, C, G and T (Table S1). In the single-base resolution maps

of 20, 21, 22, 23, 24 and 25 nt vsRNA (Tables S2, S3, S4, S5, S6

and S7), for each position on the sequence (starting from the 59

end of the reference sequence), the number of matches starting at

this position in forward (first base of the read) and reverse (last base
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of the read) orientation for each read length is given. Note that the

reads mapped to the last 50 bases of the extended viral sequence

were added to the reads mapped to the first 50 bases.

Analysis of long viral RNA and DNA by blot hybridization
The detailed protocol for high-resolution analysis of long RNA

using total RNA and 5% PAGE followed by blot hybridization

was described previously [30]. To detect the viral mRNAs AV1,

AC2/AC3, BV1 and BC1 (Figure 3A), the membrane was

successively hybridized with mixtures of DNA oligonucleotides

complementary to each given mRNA (for sequences, see Protocol

S1).

Southern blot analysis was performed as in [66]. In short, total

DNA from the plants were extracted by CTAB-based protocol.

Five mg of total DNA was electrophoresed in 1% agarose gel

prepared in 16 Tris-sodium acetate-EDTA buffer. Full-length

linear DNA of CaLCuV was loaded as a positive control for

Southern hybridization. After EtBr staining, the DNA in the gel

was alkali-denatured and transferred to the Hybond N+ nylon

membrane (GE healthcare lifesciences). PCR fragments of DNA-A

(900 bp obtained with the primers Cb_AV1_qPCR_s and

Cb_AC3_qPCR_as) and DNA-B (862 bp Cb_BV1_qPCR_s and

Cb_BC1_qPCR_as), which do not contain the common region of

the virus, were labeled with [a-32P]dCTP using Rediprime II

DNA labeling system (GE healthcare lifesciences) and used as

probes. Hybridization with the labeled probe was performed at

65uC for 16–20 hours using PerfectHyb Plus Hybridization Buffer

(Sigma-Aldrich) and the membrane was washed thrice at 65uC

with 26 SSC/0.5% SDS. The signal was detected after 5 days

exposure to a phosphor screen using a Molecular Imager

(Typhoon FLA 7000, GE healthcare lifesciences).

Real time PCR
Relative accumulation of polyadenylated viral mRNAs and total

viral DNA in wild type versus rdr1/2/6 (Figure 3D) was measured

using real time PCR as in [8]. For polyadenylated RNA, cDNA

was synthesized from 5 mg of total RNA using 100 pmoles of oligo

d(T)16 primer. The RNA-primer mixture was heated to 70uC for

10 min and chilled on ice for 5 min. 4 ml of 56 first-strand

synthesis buffer (250 mM Tris-HCl [pH 8.3], 375 mM KCl,

15 mM MgCl2, 0.1 M DTT), 2 ml 0.1 M DTT, 1 ml 10 mM

deoxynucleoside triphosphate mix and 1 ml (200 U) of Superscript

III reverse transcriptase (Invitrogen) were added and incubated at

50uC for 60 min. The reaction was stopped by heating the mixture

to 95uC for 5 min. 2 ml of the 10 times diluted reverse

transcription reaction mix or 2 ml of total DNA (2 ng) were taken

for PCR in LightCycler 480 Real-Time PCR System (Roche

applied sciences) using FastStart Universal SYBR Green Master

(Rox) mix (Roche) and primers designed using Beacon designer 2

software (PREMIER Biosoft International). PCR primers specific

for viral DNAs A and B and each viral mRNA as well as internal

controls (18S rDNA and ACT2 mRNA) are given in Protocol S1.

Cycling parameters were 95uC for 10 min, followed by 45 cycles:

95uC for 10 s, 56uC for 10 s, 72uC for 20 s. Amplification

efficiency of primers was determined by means of a calibration

curve (Ct value vs. log of input cDNA/DNA) prepared in

triplicate. The Ct values obtained for viral genes were normalized

with internal control values and the delta Ct values were obtained.

The normalized values for CaLuCV-infected wild type Col-0 were

set to 1. To quantify the L2 GFP mRNA levels, poly-dT cDNAs

were made as described above. Real-time PCR was performed in

96-well titer plates on an ABI PRISM 7000 SDS apparatus with

SYBR GREEN PCR Master Mix (ABI) following manufacturers’

recommendations (95uC for 5 min., followed by 40 cycles: 95uC

for 30 s, 60uC for 45 s). Primers are given in Protocol S1.

Uncertainties were propagated from standard errors for triplicate

measurements of cDNA pools (derived from column-purified RNA

of 3–4 plants).

Supporting Information

Figure S1 Maps of 21, 22 and 24 nt vsRNAs from

CaLCuV-infected wild type (Col-0) and rdr1/2/6 triple

mutant plants at single-nucleotide resolution. The graphs

plot the number of 21-nt, 22-nt, or 24-nt vsRNA reads at each

nucleotide position of the 2583 bp DNA-A (A) and the 2513 bp

DNA-B (B); Bars above the axis represent sense reads starting at

each respective position; those below represent antisense reads

ending at the respective position (Tables S2 and S3). The genome

organizations of DNA-A and DNA-B are shown schematically

above the graphs, with leftward (AC1, AC4, AC2, AC3 and BC1)

and rightward (AV1 and BV1) ORFs and common region (CR)

indicated.

(PDF)

Figure S2 Validation of vsRNA deep-sequencing data

and genetic requirements for vsRNA biogenesis. Total

RNA isolated from CaLCuV wild type (wt) virus- or CaL-

CuV::Chl-infected Arabidopsis wt (Col-0) plants and various

mutants (rdr2, rdr6, rdr2/6, rdr1/2/6 and dcl1/2/3/4-caf; described

in Blevins et al, 2006) was analyzed by RNA blot hybridization

using 15% PAGE. Membranes were successively hybridized with

CaLCuV DNA-A (A) and CaLCuV DNA-B (B) derived DNA

oligonucleotide probes (for sequences, see Protocol S1) or probes

specific the endogenous Arabidopsis small RNAs (C) 22 nt miR173,

21 nt siR255 and 24 nt siR1003. The probes Chl_s and Chl_as in

panel A are specific for the ChlI gene segment inserted in

CaLCuV::Chl DNA-A. EtBr staining of total RNA is shown as

loading control. The sizes are indicated on each scan.

(PDF)

Figure S3 Viral and target gene siRNAs in CaLCuV::Chl

virus-infected wild type (Col-0) plants. (A) The 1961 bp

ChlI-2 genomic locus is shown schematically; numbering starts

from the transcription start site. The VIGS target region is

highlighted in grey, with the two stretches of .20 nts in length

which are identical in ChlI and ChlI-2 shown in red. The graph

plots the number of 20–25 nt siRNA reads at each nucleotide

position of the ChlI-2 gene; Bars above the axis represent sense

reads starting at each respective position; those below represent

antisense reads ending at the respective position (Table S4). (B)

Alignment of the ChlI and ChlI-2 sequences containing the VIGS

target region is shown below the graph; (C) Virus-derived siRNAs.

The graphs plot the number of 20–25 nt, 21-nt, 22-nt, or 24-nt

vsRNA reads at each nucleotide position of the 2298 bp

CaLCuV::Chl DNA-A. Bars above the axis represent sense reads

starting at each respective position; those below represent

antisense reads ending at the respective position (Tables S4).

The genome organization of CaLCuV::Chl DNA is shown

schematically above the graphs, with leftward (AC1, AC4, AC2,

AC3 and BC1) ORFs and the rightward AV1::Chl chimeric gene

and the common region (CR) indicated. The 353 bp ChlI gene

segment inserted in the multiple cloning site (MCS) of the

CaLCuV VIGS vector is highlighted in grey.

(PDF)

Figure S4 VIGS phenotypes and accumulation of pri-

mary and secondary siRNAs in L2 GFP transgenic plants

infected with CaLCuV::GFP viruses. (A) The L2 T-DNA

region containing the 35S-GFP transgene is shown schematically.
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Positions of the duplicated CaMV 35S enhancer and core promoter

elements, GFP mRNA elements including 59UTR, translation start

(AUG) and stop (UAA) codons and 39UTR with poly(A) signal

(AAUAAA), and 35S terminator sequences are indicated. Num-

bering is from the T-DNA left border (LB). The VIGS target

sequences, inserted in the CaLCuV::GFP viruses EnhSh, CodM,
CodE and CodFL are indicated with dotted boxes. (B) Pictures under

UV light of the L2 transgenic plant infected with the CodFL virus at

7, 12, 19, 26 and 33 days post-inoculation (dpi) and of the same

plant at 40 dpi under UV and day light. Below are pictures under

UV light of L2 plants infected with the CaLCuV empty vector and

its derivatives EnhSh, CodM and CodE. Sampling of infected tissues of

lower leaves (LL) and upper leaves (UL) for RNA preparation was

performed as indicated on the left image. (C) Blot hybridization

analysis of total RNA isolated from plants shown in Panel B. The

blot was successively hybridized with short DNA probes specific for

35S::GFP transgene sequences inserted in the CaLCuV::GFP

viruses EnhSh, CodM and CodE and for the GFPmRNA 39UTR non-

target sequence (39UTR). EtBr staining serves as loading control.

(D) Real time quantitative RT-PCR (qPCR) analysis of GFPmRNA

accumulation in upper leaves of L2 plants infected with infected

with the CaLCuV empty vector and its derivatives EnhSh, CodM,

CodE (shown in Panel B). Total RNA from non-transgenic wild type

Arabidopsis (Col-0) was used as a negative control.

(PDF)

Figure S5 Maps of primary and secondary siRNAs

accumulating in L2 transgenic plants infected with

CaLCuV::GFP viruses that target the GFP transcribed

region. The graphs plot the number of 21-nt, 22-nt and 24-nt

vsRNA reads at each nucleotide position of the L2 T-DNA-based

35S::GFP transgene in L2 transgenic plants infected with the

CaLCuV::GFP viruses Lead (A), CodM (B), Trail (C), or PolyA (D).

Bars above the axis represent sense reads starting at each respective

position; those below represent antisense reads ending at the

respective position (Table S5). The 35S-GFP transgene is shown

schematically above the graphs. Positions of the duplicated 35S

enhancer and core promoter, GFP mRNA elements and 35S

terminator are indicated. Numbering is from the T-DNA left border

(LB). The VIGS target sequences inserted in the CaLCuV::GFP

viruses Lead, CodM, Trail or polyA are indicated with dotted boxes.

(PDF)

Figure S6 Maps of primary siRNAs accumulating in L2

transgenic plants infected with CaLCuV::GFP viruses

that target the GFP promoter elements. The graphs plot the

number of 21-nt, 22-nt and 24-nt vsRNA reads at each nucleotide

position of the L2 T-DNA-based 35S::GFP transgene in L2

transgenic plants infected with the CaLCuV::GFP viruses Enh (A),

ProFL (B) or Core (C). Bars above the axis represent sense reads

starting at each respective position; those below represent

antisense reads ending at the respective position (Table S5). The

35S-GFP transgene is shown schematically above the graphs.

Positions of the duplicated 35S enhancer and core promoter, GFP
mRNA elements and 35S terminator are indicated. Numbering is

from the T-DNA left border (LB). The VIGS target sequences

inserted in the CaLCuV::GFP viruses Enh, CodFL and Core are

indicated with dotted boxes. Note that the duplicated 35S

promoter sequences Enhancer* and Enhancer (each 273 nt long)

share 94% nucleotide identity, since they originate from two

different strains of CaMV. Therefore, primary siRNA reads are

unequally distributed between the two VIGS target regions.

(PDF)

Protocol S1 The file contains the list of DNA oligonu-

cleotides probes for RNA and DNA blot hybridization,

primers for subcloning of the 35S::GFP tarnsgene-

derived sequences into CaLCuV VIGS vector and for

real time PCR as well as Reference sequences used for

bioinformatic analysis.

(PDF)

Table S1 Counts of viral and endogenous small RNAs

in the Illumina small RNA deep-sequencing libraries

for mock-inoculated and wild type CaLCuV-infected

Col-0 and rdr1/2/6 plants (S1A), mock inoculated and

CaLCuV::Chl-infected Col-0 plants (S1B), mock inocu-

lated and CaLCuV::GFP-Pro-FL-infected Col-0 plants

(S1C), mock inoculated and CaLCuV::GFP-Enh-infected

Col-0 plants (S1D), mock inoculated and CaLCuV::GFP-

Core-infected Col-0 plants (S1E), mock inoculated and

CaLCuV::GFP-Lead-infected Col-0 plants (S1F), mock

inoculated and CaLCuV::GFP-CodM-infected Col-0

plants (S1G), mock inoculated and CaLCuV::GFP-

Trail-infected Col-0 plants (S1H), and mock inoculated

and CaLCuV::GFP-PolyA-infected Col-0 plants (S1I).

(XLSX)

Table S2 Single-base resolution maps of 20–25 nt DNA-

A derived viral siRNAs in CaLCuV-infected wild type

(Col-0) and rdr1/2/6 triple mutant Arabidopsis plants.

(XLS)

Table S3 Single-base resolution maps of 20–25 nt

DNA-B derived viral siRNAs in CaLCuV-infected wild

type (Col-0) and rdr1/2/6 triple mutant Arabidopsis

plants.

(XLS)

Table S4 Single-base resolution maps of 20–25 nt ChlI/

CH-42 and ChlI-2 derived siRNAs as well as CaL-

CuV::Chl virus-derived siRNAs in mock inoculated and

CaLCuV::Chl-infected Arabidopsis plants.

(XLS)

Table S5 Single-base resolution maps of 20–25 nt L2

GFP T-DNA derived siRNAs in mock inoculated and

CaLCuV::GFP virus (ProFL, Enh, Core, Lead, CodM,

Trail, or PolyA)-infected Arabidopsis plants.

(XLS)

Table S6 Single-base resolution maps of 20–25 nt viral

siRNAs in CaLCuV::GFP virus (ProFL, Enh, Core, Lead,

CodM, Trail, or PolyA)-infected Arabidopsis plants.

(XLSX)
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