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Transplant centers around the world have been using extended criteria donors to remedy
the ongoing demand for lung transplantation. With a rapidly aging population, older
donors are increasingly considered. Donor age, at the same time has been linked to higher
rates of lung ischemia reperfusion injury (IRI). This process of acute, sterile inflammation
occurring upon reperfusion is a key driver of primary graft dysfunction (PGD) leading to
inferior short- and long-term survival. Understanding and improving the condition of older
lungs is thus critical to optimize outcomes. Notably, ex vivo lung perfusion (EVLP) seems
to have the potential of reconditioning ischemic lungs through ex-vivo perfusing and
ventilation. Here, we aim to delineate mechanisms driving lung IRI and review both
experimental and clinical data on the effects of aging in augmenting the consequences of
IRI and PGD in lung transplantation.
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INTRODUCTION

The world population is aging rapidly: predications suggest that more than 1.5 billion people above
the age of 65 will inhabit our planet in 2050, accounting for 30 percent of the population (1). Similar
trends are also observed in organ transplantation with increasing proportions of both, elderly
donors and recipients (2, 3). Most donors are currently > than 50 years old and the proportion of
donors > than 65 years has increased from 1 to 8% during the last decade (4, 5). United Network for
Organ Sharing (UNOS) modeling suggests a potential of 22,000 available older donors/year (50-75
years) that are currently not considered (6). At least in theory, organs of those donors have the
potential to narrow the gap between the ever-growing demand while measurements improving
quality may therefore address prolonged waiting times and mortality on the waitlist. Not
considering those organs or discarding them has been based on concerns of inferior outcomes
(7, 8). Notably, it has been shown that older donor age decreases graft survival in hepatic, renal and
heart transplantation (9–11). It is therefore likely that similar effects may be relevant in lung
transplantation (12).
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While lung donor selection criteria have historically been strict,
thus limiting the donor pool, more recently, several transplant
centers have used extended criteria donors including those from
older donors with non-inferior outcomes (13–20). The clinical
utilization of organs from donors > 65 years has nevertheless
remained infrequent. A retrospective study examining outcomes
of > than 10,000 lung transplant recipients reported an increase in
1- and 3-year mortality when transplanting lungs from donors >65
year. Using lungs from donors aged 55-64, however, has not been
a risk factor for mortality and survival differences based on donor
age have not been observed 30 days after transplantation (21).
Primary graft dysfunction (PGD) represents one of the main risk
factors for inferior short- and long-term survival (22–24).
Interestingly, it remains unclear if donor age represents an
independent risk factor for PGD (25–28).
CLINICAL IMPACT OF PRIMARY
GRAFT DYSFUNCTION ON LUNG
TRANSPLANT OUTCOMES

Primary graft dysfunction is characterized by hypoxemia and
alveolar infiltrates in the allograft within the first 72 hours after
lung transplantation (29–31). Transplant-mediated immune
signals originating from endothelial, epithelial cells and
alveolar macrophages lead to excessive infiltration of
monocytes, neutrophils, and T-cells. The subsequent release of
pro-inflammatory cytokines, reactive oxygen intermediates, and
proteolytic enzymes lead to graft dysfunction (32). Based on the
International Society for Heart and Lung Transplantation
(ISHLT) standardized definition, the severity of the injury is
graded by a PGD score between 0-3 score with PGD-3 being the
most severe stage (Table 1). By using only two clinical
parameters (radiographic infiltrates, PaO2/FiO2 ratio) the
classification contains both a time- and severity component,
facilitating mechanistic and clinical trials (24, 29, 33). An analysis
of the UNOS database including 7,322 first-time lung transplant
recipients reported a 72hr post-transplant PGD-2 and 3 rates of
8.2% and 20.8%, respectively, findings that are in line with
previous reports by others (34, 35). The incidence of PGD
rates may differ depending on the assessment after
transplantation with PGD-3 incidences of 19.8% and 15.4%
reported 48 and 72hrs after transplantation (26). Although the
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risk of advanced PGD (stage 3) seems to be declining by day 3
after transplantation, the occurrence and its severity has a
significant negative impact on both, short- and long-term
survival (36). An analysis of > than 5,000 lung transplant
recipients of the UNOS database reported a 30 day post-lung
transplantation mortality of 9.7%, among which 43.6% had PGD
indicating its role in defining early post-transplant outcomes
after lung transplantation (37). In an additional single center
cohort study of 1,000 adult lung recipients, medium- and long-
term survival rates were significantly compromised in those that
experienced PGD (graft survival by 1-, 5-, and 10-years in
recipients with and without PGD: 72.8 vs. 87.1% vs., 43.9 vs.
59.8%, and 18.7% vs. 35.7%, p<0.001) (36). PGD was also
identified as a risk factor for the development of bronchiolitis
obliterans syndrome and other forms of chronic lung allograft
rejection (36, 38).

Based on the clinical significance, several studies have been
conducted aiming to define risk factors (39–43). A systemic
review and meta-analysis of 13 studies published between 2000
to 2013 identified female gender, African American race,
idiopathic pulmonary fibrosis, sarcoidosis, primary pulmonary
hypertension, elevated BMI, and the use of cardiopulmonary
bypass as significant risk factors for development of PGD.
However, donor age as a risk for PGD was not assessed in the
meta-analysis (25). Additional risk factors include a history of
cigarette smoking and single lung transplants; cut-off times for
ischemia have been discussed controversially (44–47). In 2016,
the ISHLT working group reviewed donor, recipient, and
surgical risk factors and found an association between donor
age and reduced long-term survival, but its impact on PGD
remain was unclear (48). While an earlier study reported a 7-fold
increase in risk of severe PGD with donors beyond the age of 45
years, more recent studies have failed to confirm this association
(28, 42, 49). At the same time, ischemia reperfusion injury (IRI)
has been recognized as a key driver of PGD supported by a very
recent integrated bioinformatics analysis that identified various
IRI-PGD common pathways (25, 32, 50). Thus, it is crucial to
understand the mechanisms which drive IRI to improve
outcomes after lung transplantation.
LUNG ISCHEMIA REPERFUSION INJURY

Ischemia reperfusion injury represents an exacerbation of
cellular dysfunction and cell death. Although restoration of
blood flow is essential for recovery, reperfusion itself causes
further damage, leading to a process of acute, sterile
inflammation (51). Not being exclusive to transplantation
medicine, damage after ischemia occurs in any tissue including
the heart muscle following myocardial infarction or the brain
after a stroke (52). In lung transplantation, this multi-factorial
process leads to a complex pathology involving complex and
broad molecular and cellular mechanisms (53). IRI thus
distinguishes two phases of organ damage initiated with the
discontinuation of blood supply (clamping of the organ during
procurement) and a second phase at the time when blood flow is
restored (reperfusion phase).
TABLE 1 | ISHLT Primary Graft Dysfunction grading schema.

PGD Grade Radiographic Infiltrates1 PaO2/FiO2

0 Absent Any
1 Present >300
2 Present 200-300
3 Present <200
Time points2 T0: Within 6 hours of reperfusion

T24, T48, T72: 24, 48, 72 hours after reperfusion
1Consistent with Pulmonary Edema, 2Use worse PaO2/FiO2 if multiple readings are
available. Abbreviations: PGD, Primary Graft Dysfunction; PaO2, partial arterial pressure
of oxygen; FiO2, fraction of inspired oxygen.
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Reactive Oxygen Species (ROS) including superoxide,
hydroxyl radicals and hydrogen peroxide play a key role in the
development of IRI (54–57). Although low levels of ROS are a
critical component of physiologic signaling pathways, the
overload through both ischemia itself and reperfusion disturbs
cellular function (58–60). This impairment is mainly driven by
protein- and deoxyribonucleic acid-damage, alteration of
signaling pathways and an augmentation of innate immune
responses (61, 62). ROS are largely produced by alveolar type-II
cells, vascular smooth muscle cells, endothelial cells and
macrophages deriving from different sources including xanthine
and NADPH oxidase, in addition to mitochondria (53, 63).
Especially during reperfusion, restored oxygen facilitates the
production of significant quantities of ROS (64, 65).

Of additional relevance, intracellular calcium overload has
been proposed to be an initial step in the pathogenesis of the
injury (66, 67). With a lack of oxygen, anaerobic glycolysis
prevails, resulting in a decrease of intracellular pH caused by
lactate and acid accumulation (65). Hydrogen ions accumulate
leading to intracellular hypernatremia as a consequence of an
accelerated Na+H+ exchange (68). Additionally, depletion of
adenosine triphosphate (ATP) limits the activity of the Na+K+

ATPase and ATP-dependent calcium re-uptake. Hypernatremia
leads to an additional calcium influx as accumulating Na+ is
exchanged with Ca2+ (69). These mechanisms gain importance
upon reperfusion, since the prompt normalization of the
extracellular pH by pericellular washout results in a massive
H+ gradient across the plasma membrane resulting in an
accelerated calcium influx (65).

Both the excessive calcium accumulation and the
overproduction of ROS represent key drivers for the formation
of the mitochondrial permeability transition pore (mPTP) located
at the inner mitochondrial membrane (70). Activation and
opening of the mPTP has been proposed as one of the main
driving forces of IRI (71–73). In addition to the structural damage
caused by mitochondrial swelling, open mPTP facilitate the influx
of hydrogen ions that uncouple the electron transport chain
(ETC), further compromising ATP production (73, 74). Even
under physiological conditions, ETC mediate a minor electron
leakage. However, during reperfusion, electron leakage increases
massively as a consequence of mitochondrial dysfunction with the
production of large amounts of ROS once oxygen is reintroduced
(75). Augmented ROS levels, damaged mitochondria with open
mPTP accelerate ROS release furthermore, a process referred to as
the ROS-induced ROS release (76, 77).

As part of the events during reperfusion, calcium overload
and the excessive ROS generation trigger both, apoptosis and
necrosis causing a further release of ROS, proinflammatory
cytokines and damage-associated molecular patterns (DAMPs)
consisting of peptides, proteins and nucleotide fragments (78).
DAMPs represent endogenous danger signals that are normally
carefully prevented from release to the extracellular space and
differ from microorganism derived pathogen associated
molecular patterns (PAMPs) (79, 80). Both PAMPs and
DAMPs are mainly recognized by their pattern recognition
receptors including Tolllike receptors that play an important
role in the induction of innate immune responses (81–83).
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Subsequently, the inflammatory cascade is initiated through,
ROS- and DAMP-triggered activated resident lung macrophages as
a key early source of multiple proinflammatory mediators that
orchestrate lung IRI (84). This inflammatory milieu leads to
pulmonary neutrophil infiltration, further exacerbating and
maintaining lung inflammation and injury (85, 86). Released ROS
and inflammatory cytokines upregulate and activate adhesion
molecules including ICAM-1, CD18 and P-selectin on leukocytes
and endothelial cells (79, 87). The activation of adhesion molecules
facilitates the migration of neutrophils from their intravascular
location to the lung interstitium where they release more ROS
and proteolytic enzymes resulting into the destruction of cellular
and extracellular matrix (88). This process is reinforced by an
augmented expression of vascular endothelial growth factor during
the hypoxic phase that increases vascular permeability during acute
lung injury (89, 90). Complement activation seems to play an
additional important role during IRI by mediating leukocyte
chemotaxis and initiating cellular damage (91, 92). Moreover,
widely injured endothelial cells decrease the production of nitric
oxide facilitating, under physiological conditions, vasorelaxation,
bronchodilation, immunomodulation, and maintenance of
microvascular function (88, 93, 94). Additionally, neutrophil
extracellular traps (NETs) have been found to accumulate in
both, IRI and PGD after lung transplantation (95–97). Those data
have also been confirmed clinically with higher concentrations of
NETs in the bronchoalveolar lavage fluid of lung transplant
recipients with PGD (96).

All these inflammatory pathways and mechanism contribute
to an increased pulmonary vascular resistance and microvascular
permeability (53, 98) leading to pulmonary edema and
compromised gas exchanges as the clinical hallmarks of
primary graft dysfunction of the lung (Figure 1) (29, 53).
FIGURE 1 | Primary graft dysfunction of lung transplants is driven by a
complex cascade of pathophysiological events. Clinical hallmarks include
pulmonary edema and compromised gas exchanges. Organ age accelerates
those events. Therapeutic interventions include ex-vivo lung perfusion. ROS,
reactive oxygen species; Ca2+, Calcium; DAMP, damage associated
molecular pattern.
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IMPACT OF AGING ON ISCHEMIA
REPERFUSION INJURY

Allogeneic lung transplantation represents the only curative
approach for selected patients with end-stage lung disease.
Advances in surgical techniques and immunosuppression
therapy have improved graft survival rates to a median of 6.7
years compared to 4.7 year two decades ago (99). Of relevance,
adult recipients who survived the first year after transplantation
had a median survival of 8.9 years, emphasizing on the clinical
relevance of PGD (100). Notably, with an increased experience
and an augmented demand, donor age has increased steadily
(101). Although early studies suggested that prolonged ischemia
and increased donor age act synergistically towards worse
survival rates, a recent report has failed to confirm this
association (102–104).

While conclusive data in lung transplantation are currently
lacking, data from other organ transplants support the concept
that organ age augments damages subsequent to IRI: in hearts,
this process has been driven, at least in part, through alterations
in gene expression, signal transduction cascades, and
mitochondrial dysfunction, resulting in an impaired intrinsic
tolerance against damaging stress (105, 106). Notably, a decline
of silent information regulator of transcription 3 (SIRT3) protein
with age appears to be associated with an augmented damage in
older hearts (107). There is also other strong experimental
evidence that aging enhances the susceptibility of IRI in liver
transplantation (108). A multivariate analysis of potential risk
factors in orthotopic liver transplantation revealed that both
donor age and prolonged cold ischemia times were
independently associated with a higher incidence of primary
dysfunction (109, 110). Experimentally, older livers have been
more susceptible to IRI, linked to a depletion of both sirtuin-1
and mitofusin-2, resulting in mPTP onset/mitochondrial
dysfunction, and cell death (111). Of additional interest,
pretreating old rats with pooled young plasma appeared to
reduce age-dependent liver IRI (112). It was further
demonstrated that old rats experience more severe
consequences of kidney IRI linked to an augmented immune
response and increased oxidative stress, mechanisms that may
also apply for IRI in lung transplantation (113, 114). A
synergistic relationship between donor age and prolonged
ischemia was also shown in an experimental renal allograft
model leading to both functional and morphological
deterioration after transplantation (115, 116).

Aging also impacts graft immunogenicity. In a broad clinical
analysis of renal transplant recipients listed in the UNOS data
base, we have been able to show that older grafts had higher rates
of acute rejection within the first post-transplant year.
Conversely, acute rejections were significantly lower in older
recipients although they were more likely to receive an older
organ (117). That grafts from older organs are more
immunogenic has also been confirmed experimentally with an
increase in T-cell alloreactivity, cytokine production observed
early after transplantation (118). Moreover, it has also been
shown that older donor age and prolonged warm ischemia
Frontiers in Immunology | www.frontiersin.org 4
time are both associated with an increased risk for rejection,
contributing synergistically towards an augmented innate
immune activation (119).

Clinically, elevated perioperative levels of cell-free circulating
plasma mitochondrial DNA (cf-mt-DNA) have been observed in
lung transplant recipients with moderate or severe PGD (120). We
have recently shown that organ age and IRI act synergistically,
leading to an increased DAMP release. Old mice that underwent
renal IRI showed a 15x increase in cf-mt-DNA levels that act as a
DAMP, inducing sterile inflammation. Remarkably, the
pretreatment with senolytics that selectively kill senescent cells
prior to IRI had the capacity to reduce both cf-mt-DNA and pro-
inflammatory T-cells. These senescent cells accumulate with age
and contribute through the secretion of a myriad of pro-
inflammatory factors termed the senescence-associated secretory
phenotype (SASP) to a proinflammatory environment (121–124).
Of additional clinical relevance, senolytics applied to organ donors
prior to procurement, prolonged the survival of old cardiac
allografts beyond that of young donors (125). Most recently,
experimental models have indicated that IRI itself can induce
senescence and that senolytics have the potential to ameliorate this
injury (126–128). Notably, senolytics have been tested before in
patients with idiopathic pulmonary fibrosis. This first in-human
study supported the feasibility of senolytics to interfere with lung
injury (129, 130). Thus, senolytics may represent, at least in theory,
a therapeutic opportunity to improve the equality of older lungs
for transplantation.
EX VIVO LUNG PERFUSION

Due to peri transplant complications such as PGD and its impact
on long-term survival, careful selection of donor lungs is crucial,
however, these can lead to lower donor utilization rates of 15% to
25% from multiorgan donors (131–133). Mortality remains high
for patients waiting for lung transplantation. In 2017, 326
patients died or became too sick to undergo lung
transplantation in the US accounting for > than 10% of the
removals (134). In the past decade, modern technologies
including Ex vivo lung perfusion (EVLP) have facilitated the
evaluation and reconditioning of marginal donor lungs including
those from older lungs, thus augmenting the pool of prospective
donor organs (135, 136). Notably, lungs from older donors are
more likely to undergo EVLP (137). This novel approach allows
explanted donor lungs to be preserved in perfused, ventilated and
normothermic condition, decreasing tissue ischemia and lung
damage (138). Three different systems and protocols are
currently used clinically: the Vivoline® LS1 system (Vivoline
Medical, Lund, Sweden), the Organ Care System™ Lung (OCS,
Transmedics, Andover, MA), and the XPS™ XVIVO Perfusion
AB system (XVIVO Perfusion, Goetheborg, Sweden) (139).

In many ways, lung preservation has ploughed the way for
novel preservation methods for other organs. In a prospective,
non-randomized clinical trial, the Toronto group transplanted
20 high risk lungs which were evaluated for 4 hours while being
perfused ex-vivo by the XVIVO Perfusion AB system. During
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this two-year period, 116 non-high-risk lungs were transplanted
without EVLP and used as controls. Lungs in the EVLP group
showed an improved PaO2/FiO2 ratio after EVLP resulting into a
reduced PGD incidence (140). Recently, a randomized, open-
label, phase 3 trial used the OCS system in 151 patients and
compared them to 169 standard protocol recipients (cold static
storage). This study also demonstrated reduced PGD rates (with
and without EVLP: vs 29.7% vs. 17.7%, p=0.015), however not
resulting into improved short-term survival (141).
CONCLUSION

Understanding the link between organ age, IRI and graft
immunogenicity will be critical in optimally utilizing available
lungs for transplantation. Although, the bulk of available data
both, clinically and experimentally is currently provided through
evidence outside of lung transplantation it can be assumed that
data from other organ systems do also apply for lungs. The
Frontiers in Immunology | www.frontiersin.org 5
elimination of senescent cells and the assessment of older organs
on machine perfusion devices may help safely increase the
number of available lungs for transplant.
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