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PRIMARY TEXTURES AND MINERAL ASSOCIATIONS IN THE ULTRAMAFIC ZONE OF THE
STILLWATER COMPLEX, MONTANA

By Evererr D. JACESON,

ABSTRACT

The Stillwater complex can be divided into several major
stratiform zones. The Ultramafic zone, with which this paper
is concerned, lies near the lower margin of the complex along
its entire exposure and has an average stratigraphic thickness
of about 3,500 feet. The Ultramafic zone can be further sub-
divided into two members: the Peridotite member, which forms
the stratigraphically lower two-thirds of the zone, and which
is composed of conformably interlayered harzburgite, chromi-
tite, bronzitite, and dunite; and the Bronzitite member, which
forms the upper one-third of the zone and which is composed
of a single thick layer of bronzitite.

The constituent grains of the layered rocks of the Ultra-
mafic zone can be divided into two groups on the basis of tex-
ture: those that are commonly euhedral and occur in the rocks
as uniform-sized individual crystals; and those that are molded
on these individual crystals. Minerals of the first group repre-
sent the primary precipitate, which crystallized in the magma
column, settled, and accumulated on the floor of the magma
chamber. Minerals of the second group represent the inter-
precipitate material, which crystallized in place in the pore
spaces surrounding the primary precipitate.

The three primary precipitate minerals of the Ultramafic
zone—olivine, bronzite, and chromite—make up about two-
thirds by volume of the rocks. These settled crystals are euhe-
dral and closely packed, and they would be self-supporting if
the interprecipitate material were removed. The grain size
ranges of any one settled mineral in any given layer are re-
markably small, and size distributions are virtually lognormal.
In layers containing two settled minerals, each mineral tends
to have lognormal size distributions, but the two minerals are
not necessarily in hydraulic equivalence. Planar structures are
formed in the rocks wherever settled minerals are elongate or
flattened ; however, lineation is weak or absent. Changes in
grain size, relative proportions, and presence or absence of the
three settled minerals define layering planes. Of these factors,
presence or absence of the settled phases is most important, and
the Peridotite member is made up of repetitive layers caused
by the cyclic appearance and disappearance of olivine, chro-
mite, and bronzite in regular sequence.

Euhedral shapes of the settled crystals and simple relations
between the primary precipitate and interprecipitate material
have been obscured in many rocks by reaction replacement and
secondary enlargement.
olivine-bronzite, olivine-augite, and bronzite-augite. Secondary
enlargement has occurred where settled crystals continue to
grow after deposition, and the extent to which this process
operated appears to be inversely related to the rate of crystal
accumulation. Making allowance for these processes, the ini-
tial porosity of the crystal mush appears to have ranged be-

Three reaction pairs are recognized: -

tween 20 and 50 percent and to have averaged about 35
percent.

The interprecipitate material makes up about one-third of
the volume of the rocks. It can be divided into three types:
(1) secondarily enlarged, optically continuous rims on settled
crystals; (2) material that has partially replaced settled
crystals by postdepositional reaction replacement; and (3)
material that simply fills interstitial cuspate cavities between
euhedral or secondarily enlarged settled crystals. New phases,
which occur as interstitial but not as settled constituents, in-
clude plagioclase, chromian augite, and (in some rocks) minor
amounts of biotite, quartz, and grossularite-pyrope. The pres-
ence or absence, proportions, and order of crystallization of
these minerals are largely dependent on the settled phases
present in the rocks and on the amount of secondary enlarge-
ment. Interstitial minerals have strong tendencies to be poiki-
litic, and the average size of oikocrysts appears to be related
to the grain size of settled minerals in the rocks. Oikocrysts
are randomly distributed and oriented; they bear no relation
to the layering plane. ’

The textures of the rocks of the Ultramafic zone show every
gradation between automorphic-poikilitic and xenomorphic,
and this textural variation is largely dependent on the amount
of secondary enlargement that has occurred. Rocks with little
enlargement have interposition fabrics with euhedral settled
crystals and contain relatively large amounts of predominantly
poikilitic interstitial material; rocks with much enlargement
have mosaic fabrics and contain little or no interstitial
material.

The three settled minerals have a strong tendency to occur
singly rather than in combination with one another. Settled
olivine and bronzite occur together in about 12 percent of the
rocks of the Ultramafic zone; they are mutually exclusive in
the remaining 88 percent. Although quantitatively less im-
portant, chromite commonly occurs as the only settled mineral
in chromitites. Settled chromite and bronzite are generally
antipathetic, but chromite and olivine occur together in all
proportions. In contrast to the wide proportional variation
of the settled minerals in the various layers, the bulk compo-
sition of the interstitial minerals is relatively constant. In
a general way, the composition of the interstitial material
approaches that of the chilled gabbro at the base of the
complex.

The layered rocks of the Ultramafic zone are believed to
have formed during crystallization of a single saturated basalt
magma by accumulation of early crystal precipitates that fell,
layer on layer, to the floor of the magma chamber and after
deposition were enlarged or cemented by the magma from
which they had crystallized. The textures and structures of
the rocks suggest that the magma near the floor of the intru-

1



2 STILLWATER COMPLEX, MONTANA

sion was essentially stagnant throughout the accumulation of
the Ultramafic zone. Other relations indicate that crystalliza-
tion of the primary precipitate took place near the bottom of
the magma chamber, and that the cyclical compositional layers
directly reflect changing crystallization products of the magma
with time. It is proposed that the textures, mineral associa-
tions, and cyclical rock distributions in the Ultramafic zone
can best be explained by a mechanism involving continuous
but variable-depth convection, which caused periodic refresh-

ment of the stagnant magma undergoing crystallization in the

lower part of the intrusion. Each set of cyclic compositional
layers is therefore believed to be the product of a period of
stability in the lower magma, preceded and succeeded by

overturn.
INTRODUCTION

FIELDWORK, ACKNOWLEDGMENTS, AND SCOPE OF
REPORT

This paper presents some results of work done be-
tween 1951 and 1955 as a part of a comprehensive
investigation of the stratigraphy, geochemistry, and
petrography of the Ultramafic zone of the Stillwater
complex by the U.S. Geological Survey. Detailed
mapping of the chromite deposits of the complex was
done between 1939 and 1943, under the supervision
of J. W. Peoples. Reports of this work, and geologic
maps of most of the complex, have been published:
Peoples and Howland (1940); Wimmler (1948);
Howland, Garrels, and Jones (1949); Peoples, How-
land, Jones, and Flint (1954); Jackson, Howland,
Peoples, and Jones (1954); Howland (1955) ; Jones,
Peoples, and Howland (1960). The present investiga-
tion has called for additional mapping and study of
many problems which had to be bypassed because of
the pressure of wartime urgency. I spent about 15
months in the field during the summers of 1951
through 1955; P. R. Vail assisted in the field work in
1952 and 1953 ; and R. L. Christiansen assisted in 1954.

Two members of the Geological Survey have been
especially helpful to the conduct of this investigation.
Arthur L. Howland introduced me to the Stillwater
complex and worked closely with me during the first
three summers of fieldwork. The critical advice and
ideas of Arthur H. Lachenbruch on the subject of heat
relations have contributed substantially to the conclu-
sions on the origin of the Stillwater complex outlined
in this report. :

GENERAL GEOLOGY OF THE COMPLEX

The Stillwater complex is a differentiated “gravity-
stratified” igneous sheet, which strikes northwest
across the northern margin of the Beartooth Moun-
tains, in Stillwater, Sweetgrass, and Park Counties,
Mont. (fig. 1). The exposed strike length of the com-
plex is about 30 miles, but it is terminated at both
ends by faults. The maximum exposed stratigraphic

thickness is 18,000 feet; Hess (1940, p. 377) estimates
that the original thickness was 25-45 percent greater.

In general, the rocks of the complex are unaltered
and well exposed. Locally, the more mafic rocks have
been serpentinized, but preservation of primary tex-
tures generally permits mapping of the original rock
types. Five deeply glaciated canyons cut the complex
nearly at right angles to its strike, thus exposing it
continuously through a vertical distance of 5,000 feet.

The general structural and age relations between
the complex and adjoining formations have been de-
scribed in a paper by Jones, Peoples, and Howland
(1960). In Precambrian time the parent magma of
the complex was intruded as a horizontal sill into
pelitic sedimentary rocks of unknown age, which were
metamorphosed to cordierite-hypersthere-biotite-quartz
hornfels (Howland, 1954, p. 1264-1265). After it
crystallized, the complex was locally intruded by gran-
ite, tilted about 25 degrees in the eastern part, beveled
by erosion, and buried by sediments ranging from
Middle Cambrian through Mesozoic in age. All these
rocks were later deformed during the Laramide orog-
eny, and the complex now stands nearly vertical.
Much faulting accompanied the rotation of the com-
plex to its present position.

Internally, the complex consists of a series of con-
formably layered subsilicic rocks that range in com-
position from dunite to norite and anorthosite. Peo-
ples (1936, p. 358) has divided these rocks into four
major stratiform units: the Basal chilled zone, Ultra-
basic zone, Banded zone, and Upper zone. According
to Jones, Peoples, and Howland (1960), Hess has
abandoned the terms Banded zone and Upper zone and
has proposed a five-unit stratigraphic section for the
rocks above the Ultramafic zone.

Peoples’ terminology is the basis for the informal
stratigraphic nomenclature used in this report. The
terms Basal zone, Ultramafic zone, and Banded zone
correspond to Peoples’ Basal chilled zone, Ultrabasic
zone and Banded zone, respectively. In addition, the
Ultramafic zone has been divided in this report into
two members: the stratigraphically lower Peridotite
member and the stratigraphically higher Bronzitite
member. :

In the usage of this paper, the Basal zone includes
those rocks that underlie the stratigraphically lowest
harzburgite layer and is composed of pyroxene gab-
bros, norites, and feldspathic bronzitites. This zone is
irregularly developed along the south margin of the
complex. Locally it is absent, but at its maximum
measured exposure it is 700 feet thick. Where well
developed, the lower part of the Basal zone is com-
posed of fine-grained ophitic gabbro containing many
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4 . STILLWATER COMPLEX, MONTANA

inclusions; of hornfels. Upward the rock is coarser
grained, has fewer inclusions, and contains less clino-
pyroxene }md plagioclase. The upper rocks of the zone
are, for the most part, fine- to medium-grained layered
bronzitites with automorphic-granular textures; but in
several areas a few lenticular layers of norite occur
within the bronzitite.

" The Ultramafic ‘zone, with which this paper is
largely concerned, contains dunites, chromitites, harz-
burgites, and bronzitites, and it overlies comformably

the Basalzone, where present, or lies directly on base-

ment. The Ultramafic zone averages about 3,500 feet
in thickness, including the rocks between the base of
the stratigraphically lowest harzburgite in the complex
- and the base of the stratigraphically lowest norite in
the Banded zone; hoth the upper and lower contacts
are sharp and can be traced the entire length of the
complex. The lower two-thirds of the Ultramafic
zone, here called the Peridotite member, is composed
of alternating, conformable layers of dunite, chromi-
tite, harzburgite, and bronzitite; the upper one-third
of the zone, here called the Bronzitite member, is com-
posed of a single thick unit of bronzitite. Most of
these rocks have medium- to coarse-grained automor-
phic- to Hypautomorphic-granular or poikilitic tex-
tures, but some have a xenomorphic-granular texture.
The layered rocks lying stratigraphically above the
Ultramafic zone have a maximum exposed thickness of
about 14,000 feet and are composed of alternating
layers of norite, gabbro, and anorthosite. Norite and
gabbro aré most abundant in the lower part of the sec-
“'tion; anorthosite and olivine gabbro are more common
in the upper part. ' The rocks are medium to coarse
grained, and most have hypautomorphic-granular or
poikilitic textures. '
The most striking feature of the complex is the reg-
ular and ‘persistent layered character of its rocks.
Hess (1940, p. 377) has shown that the compositions
of the mirieral phases in the complex change in a sys-
tematic fashion upward from the base. Superimposed
on this gradual mineral compositional change are the
remarkably continuous zones formed by abrupt
changes in mineralogic associations. Within the zones
are many alternating compositional layers defined by
the presence and absence of individual minerals. Su-
perimposed on the compositional layers are concordant
layers defined by change in proportions, grain size, or
- habit of minerals. The layering is remarkably similar
to sedimentary bedding and is recognized and mapped
by the same criteria, such as change in mineralogic
composition, proportion of minerals, texture, grain
size, and orientation of constituent grains. Although
certain similarities between these layered rocks and

detrital sediments exist, and although textural com-
parisons between the two are made in the text of this
report, the writer proposes that the origin of the Still-
water rocks more nearly resembles that of chemical
sediments. - :

The complex is believed to be a product of the frac-
tional crystallization of a basaltic magma, formed by
the settling of crystals, layer on layer, to the nearly
horizontal floor of the magma chamber. The constit-
uent grains of the layered rocks can be divided into
two categories: well-sorted individual crystals, which
make up about 65 percent of the layered rocks; and
anhedral, commonly poikilitic grains, which are molded
on the well-formed individual crystals, an