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Primate anterior insular cortex represents
economic decision variables proposed by
prospect theory
You-Ping Yang 1,2,4, Xinjian Li2,3,4 & Veit Stuphorn 1,2,3✉

In humans, risk attitude is highly context-dependent, varying with wealth levels or for dif-

ferent potential outcomes, such as gains or losses. These behavioral effects have been

modelled using prospect theory, with the key assumption that humans represent the value of

each available option asymmetrically as a gain or loss relative to a reference point. It remains

unknown how these computations are implemented at the neuronal level. Here we show that

macaques, like humans, change their risk attitude across wealth levels and gain/loss contexts

using a token gambling task. Neurons in the anterior insular cortex (AIC) encode the

‘reference point’ (i.e., the current wealth level of the monkey) and reflect ‘loss aversion’ (i.e.,

option value signals are more sensitive to change in the loss than in the gain context) as

postulated by prospect theory. In addition, changes in the activity of a subgroup of AIC

neurons correlate with the inter-trial fluctuations in choice and risk attitude. Taken together,

we show that the primate AIC in risky decision-making may be involved in monitoring

contextual information used to guide the animal’s willingness to accept risk.
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Uncertainty about the possible outcomes of chosen actions
is a basic feature of all human and animal decision
making. How our nervous system deals with this uncer-

tainty is therefore a fundamental question in cognitive neu-
roscience. Decisions under uncertainty depend on an individual’s
risk attitude, i.e., the willingness to accept uncertainty about the
outcome (risk) in exchange for possibly better outcomes than a
safer alternative. Risk attitude is strongly influenced by context.
Humans show different risk attitudes when facing risky gains
versus risky losses1. The abundance of economic resources in the
environment and the current wealth of subjects also modulate an
individual’s risk attitude2–5. Prospect theory6, the most
influential7 and wide-ranging8 descriptive model of decision-
making under risk, explains these context-dependent changes in
risk attitude using two critical concepts about the cognitive pro-
cesses underlying value estimation. First, prospect theory assumes
that humans evaluate possible future outcomes either as gains or
as losses relative to a reference point (i.e., the current wealth,
resources, or state of the subject). Second, human’s sensitivities to
changes in value are different for losses and gains. Specifically,
humans are more sensitive to changes in value for losses as
compared to gains (i.e., losses loom larger than gains). Thus,
humans’ choices can be manipulated by framing an identical
outcome as either a gain or loss using verbal instructions, and by
varying the current wealth of subjects that change the point of
reference. Despite the success of prospect theory as a descriptive
model of risky choices, it remains unclear if its underlying
assumptions match the framework for value estimation imple-
mented on the neuronal level.

Human imaging experiments and lesion studies have identified
a network of brain areas that are active during decision-making
under risk9–14. Of particular interest is the anterior insular cortex
(AIC), a large heterogeneous cortex in the depth of the Sylvian
fissure. Human fMRI studies have suggested a crucial role of AIC
in representing subjects’ current internal states15,16, and in risk-
aversive behavior12,13. Lesions in the AIC have also been docu-
mented to affect the risk-attitude of human patients17,18. More-
over, recording studies in monkeys have shown that AIC neurons
encode reward expectation19,20. Based on these findings, we
hypothesized that the AIC neurons may encode behaviorally
relevant value information in the framework suggested by pro-
spect theory. AIC would represent the current state of the subject
(the reference point) as well as reference-dependent value signals
that differ in loss or gain context (asymmetrical value functions in
loss and gain). Together, these representations in AIC would
influence a subject’s risk attitude in decision making.

To test this hypothesis, we developed a token-based gambling
task and recorded single neuron activities from the AIC of two
macaque monkeys engaged in this task. We first examined
whether and how monkeys changed their risk attitude in various
behavioral contexts. Next, we identified AIC neurons represent-
ing factors that influence risk attitude, such as starting token
number, gain or loss outcome, and uncertainty. Finally, we
determined whether the AIC neurons encoding these factors also
predict the monkey’s choice or risk attitude.

Here, we show that monkeys, like humans, have different risk
attitudes depending on the gain/loss context, and that AIC neu-
rons encode reference-dependent value signals, consistent with
the asymmetric value function as postulated by the Prospect
theory. In addition, both the monkeys’ choices and the activity of
AIC neurons are strongly influenced by the number of tokens
that the monkeys possessed at the start of the trial, indicating that
the momentary wealth level served as a reference point. Intertrial
fluctuations in the activity of AIC neurons encoding these vari-
ables were correlated with the monkeys’ choices and risk attitude.
Taken together, these results support our hypothesis that the

primate AIC encodes the reference point and reference-
dependent value signals, and that these value representations of
available options modulate the animal’s willingness to accept risk
in the current behavioral context.

Results
Two monkeys were trained in a token-based gambling task
(Fig. 1a). In this task, the monkey had to collect a sufficient
number of tokens (≥6) to receive a standard fluid reward (600 μl
water). Because the maximum number of tokens that could be
earned in a single trial was three, the monkeys had to accumulate
the necessary tokens over multiple trials (Supplementary Fig. 1).
On each choice trial, the monkey chose between a gamble option
(uncertain outcome) and a sure option (certain outcome), which
could result in gaining or losing tokens. The number of tokens to
be won or lost was indicated by the color of the target cues, while
the probability was indicated by the relative proportion of each
colored area (Fig. 1b). To investigate whether the monkeys’ risk
attitude was different for gains and losses, we presented either
only gain or only loss options on any given trial. Thus, in the gain
context, the monkey had to choose between a sure option that
resulted in a certain token increase, whose size varied across trials,
versus a gamble option that could result in a large increase or no
increase at all, with varying outcome probabilities across trials
(Fig. 1b, left). In the loss context, the monkey had to choose
between a certain loss and an uncertain option that could result in
no loss at all or a large loss (Fig. 1b, right). The monkeys selected
the chosen option by making a saccade to the corresponding
target cue. After a short delay (450–550 ms), the outcome was
revealed, and the number of currently owned tokens (token
assets) was updated. If a trial ended with a token number less
than 6 (e.g., 4), these tokens (e.g., 4) were kept as the start tokens
for the next trial. If a trial ended with a token number larger than
6 (e.g., 8), water was delivered and the remaining tokens (e.g.,
8−6= 2) were rolled over to the start of the next trial.

Both monkeys learned the task, as indicated by the observation
that their fixation behavior was strongly influenced by their token
assets. Monkeys fixated faster (Supplementary Fig. 2a–c) and
were less likely to break their fixation (resulting in abortion of the
trial) (Supplementary Fig. 2d–f) when they had larger token assets
at the start of the trial, and when they received more tokens from
the previous trial. These results suggest that monkeys understood
the use of tokens as secondary reinforcers, and thus were more
motivated when they owned more and received more tokens,
before they actually earned the primary reinforcer (the fluid
reward).

Monkeys’ risky choices are influenced by gain/loss context and
current token assets. We found that monkeys’ choices were
influenced by the gain/loss context. Both monkeys were more
likely to choose the gamble option than the sure option (Fig. 1c;
one-sided t-test; Monkey G, P(Gamble) = 59%, p < 10−4; Monkey
O, P(Gamble) = 67%, p < 10−4) and were even more likely to do
so in the gain context than in the loss context (Fig. 1c; one-sided
paired t-test, p < 10−4 for both Monkey G and Monkey O). We
have also found that monkeys’ choices were influenced by the
number of tokens they owned at the start of the trial (current
token assets), but differently for gains and losses. In the gain
context, the probability of the monkey choosing the gamble option
(P(Gamble)) decreased as the token assets increased (Fig. 1d;
green dashed line; regression analysis; Monkey G, β = −0.044, p <
10−4; Monkey O, β = −0.035, p < 10−4). In contrast, in the loss
context P(Gamble) increased with increasing token assets (Fig. 1d;
red dashed line; regression analysis; Monkey G, β = 0.028, p <
10−4; Monkey O, β = −0.001, p = 0.8). Thus, as the monkeys
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owned more token assets, they became more risk-averse for fur-
ther gains (i.e., less willing to gamble for a greater win), but were
more risk-seeking for avoiding a potential loss. These results are in
line with the observation of humans that human subjects tend to
be more risk-aversive when facing a potential gain, and more risk-
seeking when facing a potential loss as their own asset increases1.

Monkeys’ response time (RT, the interval between stimulus onset
and the saccade initiation) was also influenced by these contextual
factors. Both monkeys responded slower in the loss than in the gain
context (Supplementary Fig. 3a, b; one-sided permutation test;
monkey G: RTgain= 205ms, RTloss= 247ms, p < 10−3; monkey O:
RTgain= 175ms, RTloss= 206ms, p < 10−3), and when they owned
more tokens (Supplementary Fig. 3c, d; regression analysis; monkey
G: βStartTkn= 2.83, p = 0.19; monkey O: βStartTkn= 3.50, p < 10−2).
This suggests that monkeys chose more carefully when facing a
potential loss, and when they are getting closer to six tokens for the
water reward. In addition, RT was also influenced by expected value
of the chosen option, and the difference of expected value of gamble
and sure option (Supplementary Fig. 3e–h).

Prospect theory implies the use of a relative value framework,
where the value of an outcome depends on the change in assets
relative to a reference point. Alternatively, the monkeys could use
an absolute value framework, where the value of an outcome
depends on the final asset number. To test, which of these value

frameworks is used by the monkeys, we compared trials with the
same outcome in terms of final token number, but which resulted
from either gaining or losing tokens. For example, consider a trial
with a start token number of 0, in which a gamble option with an
equal probability of gaining 3 or 0 tokens is offered versus a sure
option of gaining two tokens. The expected end token outcomes
of this trial (owning 3 or 0 tokens, each with p = 0.5 versus
owning two tokens with p = 1) are identical to a trial with a start
token number of three, in which a gamble option with an equal
probability of losing 3 or 0 tokens is offered versus a sure option
of losing one token (Supplementary Fig. 4a). By systematically
matching pairs of this type, we found three sets of gamble and
sure options that reached the same final token number by either
gaining or losing tokens (Supplementary Fig. 4b, c). We
compared the subjective values (SVs) of these gambles across
gains and losses using the model-free certainty equivalent method
(Supplementary Fig. 4d)21. If monkeys used an absolute value
framework, the SV of the gamble options should not be different
for gain and loss trials. However, we found that the SV of gamble
options strongly depended on whether the outcome represented a
gain or a loss of tokens (Fig. 1e; one-sided permutation test;
monkey G & O: p < 10−4; see also Supplementary Fig. 4c). This
strongly indicated that the monkeys used a relative, rather than
an absolute, value framework to guide risky choices.

Fig. 1 Behavioral performance of monkeys in the token-based gambling task. a Task design. The monkey was informed about the currently owned token
number (indicated by the filled dots surrounding the fixation spot) and chooses a sure or gamble option by making a saccade to the desired reward option.
After the outcome was revealed, the token number was updated. The monkey was rewarded whenever it collected six tokens or more at the end of the trial.
Shadowed area indicates the choice period, during which the neuronal activity was analyzed. b Reward option set. Each option was defined by the number of
tokens gained or lost (indicated by color) and the probability of each outcome (indicated by the portion of colored area). The outcomes and probabilities are
indicated in brackets next to each sure and gamble option. The trials were divided into gain and loss conditions. Each gamble option was paired against all
sure options ranging from best (+3 for the gain and 0 for the loss context) to worst (0 for the gain and −3 for the loss context) possible gamble outcomes,
resulting in 24 combinations. See “Methods” section for details. c The probability of monkey choosing the gamble option in gain and loss contexts across all
sessions. One-sided paired t-test. d The probability of monkey choosing the gamble option as a function of gain/loss context and start token number. Pair-
wise comparison for each start token level: one-sided paired t-test; black statistical markers. Trend across start token level: regression; green and red
statistical markers. e Subjective value of gamble-pairs, measured by their certainty equivalent (CE), that resulted in the same distribution of expected end
tokens, but had different start token number and thus represented gain (green) or loss (red) of tokens. one-sided permutation test. c–e n = 37 sessions for
both monkey G and monkey O. Data in the gain and loss context are colored in green and red, respectively. Data are presented as mean values ± SEM. ns not
statistically significant (i.e., p > 0.05), **p < 10−2, ***p < 10−3, ****p < 10−4.
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Prospect theory model of risk-attitude adjustment. After con-
firming that monkeys’ choice behavior was influenced by core
contextual factors critical for prospect theory (PT), we used this
model to describe choice behavior. The key component of the PT
model is to weight gains, losses, and probabilities differently
before they are combined to form a subjective evaluation of the
option (Fig. 2a). The relative gains and losses are mapped onto
corresponding utility as follows: uðxÞ ¼ xα when x > 0 (reward
outcome in gain) and uðxÞ ¼ �λð�xÞα when x < 0 (reward
outcome in loss). The utility function component α captures risk-
attitude. Convex utility (with α > 1) indicates risk-seeking, while
subjects are more sensitive to differences in larger rewards.
Concave utility (with α < 1) indicates risk-avoidance, due to
diminishing marginal utility. The utility function component λ
captures loss-aversion, the idea that losses loom larger than
equivalent gains. λ > 1 indicates more sensitivity to losses than
gains and λ < 1 indicates more sensitivity to gains than losses.

To capture the influence of tokens on different components, we
modeled behavior for each start token number independently. In
the gain context, both monkeys were risk-seeking (α > 1) when
the start token number was low, but they became risk neutral or
risk-averse when the start token number increased (Fig. 2b; light
to dark green lines indicate increasing start token number).
Estimated α was negatively modulated by the start token number
(regression analysis; Monkey G, β = −0.16, p < 10−4; Monkey O,
β = −0.14, p < 10−4). In monkey G, the utility functions were
consistently steeper for losses than for gains (Fig. 2b; yellowish to
red lines indicate increasing start token number; one-tailed t-test:
λ > 1; Monkey G, p < 10−4 for all start token numbers). Thus,

monkey G showed loss-aversion. However, in monkey O the
utility functions were not consistently steeper for losses than for
gains and λ values varied around 1. This indicated that monkey O
was equally sensitive to gains and losses and thus showed no loss
aversion. There was no significant difference for the estimated λ
across different start token numbers for either monkey (regres-
sion analysis; Monkey G, β = 0.03, p = 0.69; Monkey O, β = 0.01,
p = 0.4).

Objective probabilities are mapped onto a subjective weighting
function as follows: wðpÞ ¼ pγ=ðpγ þ ð1� pÞγÞ1=γ 2,6,22. γ > 1
indicates an S-shape subjective probability mapping (over-
estimated for large probabilities and underestimated for small
probabilities), γ < 1 indicates an inverse S-shape subjective
probability mapping (underestimated for large probabilities and
overestimated for small probabilities), and γ = 1 indicate a linear
mapping of objective probabilities. Both monkeys showed an
inverse S-shaped mapping of probabilities (Fig. 2c; one-sided t-
test: γ < 1; both monkeys, p < 10−4 for all start token numbers),
confirming previous findings22–24. The mappings were slightly
influenced by increasing start token numbers in one monkey
(light blue to dark blue lines; regression analysis; Monkey G, β =
0.02, p < 10−4), but not at all in the other one (Monkey O, β =
0.0004, p = 0.89).

After calculating the expected utility (EU ¼ u xð Þ � wðpÞ) of
each option based on prospect theory, we estimated
the probability to choose the gamble option, P(Gamble), by
passing expected utility difference between options (ΔEU)
through a softmax function with parameters s and bias:
P Gambleð Þ ¼ 1

1þe�sðΔEU�biasÞ, where s controls choice stochasticity

Fig. 2 Behavioral modeling of the prospect theory model. a Behavior modeling. The model consists of two parts: first in the process of option evaluation, the
expected utility (EU) of each option was calculated as the product of a utility function and a probability weighting function. Both functions are nonlinear as per
the Prospect theory (PT) hypothesized. The expected utility difference between the two options (ΔEU) was then used to determine the probability of choosing
the gamble option via a logistic function -i.e., decision policy. b, c The best fit utility functions (b), probability weighting functions (c), and the decision policies
(d), based on the observed performance. Color gradients represent results from trials with different start token numbers (light to dark: 0 to 5).
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and bias represents the tendency to choose the gamble option
independent of the value calculation process. The monkeys
showed a consistent tendency to choose the gamble option
(Fig. 2d; leftward shift of the choice function in; one-sided t-test:
both monkeys, p < 10−4 for all start token numbers). This
tendency decreased when the start token number increased
(Fig. 2d; light gray to black lines; regression analysis; Monkey G,
β = 0.32, p < 10−4; Monkey O, β = 0.28, p < 10−4), indicating
monkeys became less risk-seeking as their wealth levels
increased. Moreover, the choice functions for both monkeys
became steeper, that is monkeys’ choices became less stochastic,
when the start token number increased (regression analysis;
Monkey G, β = 0.23, p < 10−4; Monkey O, β = 0.22, p < 10−4).
This result, combined with the token effect on response time,
indicates that choices became slower but less stochastic when
token assets increased, which suggests a speed-accuracy tradeoff.

In sum, the PT model describes the behavioral result well
(Fig. 1c, d) and predicts the monkeys’ choices better than the
expected value model that does not assume nonlinearity in utility
and probabilities (Supplementary Fig. 5). This was also true after
considering the different number of free parameters (see
quantitative model evaluation in Table 1). This suggests that
the monkeys behavior was not simply aimed to maximize reward
probability. Instead, key components of the prospect theory
model are important for explaining the monkeys’ behavior in
our task.

Anterior Insula neurons encode decision-related variables that
influence risk-attitude. To determine the neuronal basis under-
lying prospect theory, we recorded 240 neurons in the AIC of two
macaque monkeys (monkey G: 142 neurons; monkey O: 98
neurons) working in the token gambling task. The recording
locations are shown in Fig. 3a (more details in Supplementary
Fig. 6). We analyzed the neuronal activity in the choice period
(i.e., the time from target onset to saccade initiation) to determine
if AIC neurons carried signals that could influence decision
making. We based this analysis on activity during forced choice
trials (321 ± 77 trials per neuron), in which only one option was
presented. In general, the AIC neurons showed weak spatial
selectivity. Only 7% (17/240) of all AIC neurons showed a sig-
nificant effect of spatial location on neuronal activity (one-way
ANOVA, p < 0.05). We therefore ignored spatial target config-
uration for the remaining analysis.

The AIC neurons encoded three basic decision-related types of
variables, representing value-related, token asset-related, and risk-
related signals (Fig. 3 and Table 2). To quantitatively characterize
the variables that each AIC neuron encodes during the choice
period, we examined the activity of each neuron using a series of
linear regression models (for details see “Methods” section). For
each neuron, we identified the best fitting model using the Akaike
information criterion and classified it into different functional
categories according to the variables that were most likely
encoded by the neuronal activity.

The majority of recorded AIC neuron activity (62%; 149/240)
encoded at least one decision-related variable (task-related
neurons: p < 0.05 for the coefficient of a specific variable in the
best-fitting multiple linear regression model; Fig. 3b, more details
in Table 2). Examples of these neuronal signals are shown in
Fig. 3c–l (see Supplementary Fig. 7 for raster plots). The activity
of the AIC neurons that carried value-related signals was
correlated with the expected value of the options, using a relative
value framework (i.e., token gains/losses). We found five basic
types: neurons encoding (1) value across both gains and losses
(Fig. 3c), (2) gain/loss category (Fig. 3d), behavioral salience
(Fig. 3e), value only for losses (Fig. 3f), and value only for gains
(Fig. 3g). The activity of the AIC neurons that carried token asset-
related signals was correlated with the number of tokens owned at
the beginning of the trial. We found three basic types: neurons
encoding (1) token number in a parametric fashion (Fig. 3h), (2)
high/low token level (Fig. 3i), and (3) preferred token number
(Fig. 3j). The activity of the neurons carrying a risk-related signal
was correlated with outcome variance. We found two basic types:
neurons encoding risk (1) in a categorical and (2) in a parametric
fashion (Fig. 3k). Finally, a small number of AIC neurons
reflected the expected value of options in an absolute value
framework (i.e., end token number) (Fig. 3l). A substantial
number of AIC neurons (34%; 50/149) showed mixed selectivity
and encoded more than one decision-related variable (Fig. 3b).
The distributions of neural type classification were similar across
the two monkeys (Supplementary Table 1).

The largest proportion of AIC neurons (70%; 105/149)
reflected information about the currently owned token number.
These token-encoding neurons used three different frameworks
for encoding token assets. The first group (12%; 13/105) carried a
Parametric token signal (Fig. 3h). These AIC neurons mono-
tonically increased (n= 11) or decreased (n= 2) their activity

Table 1 Model comparison.

Model Start
token number

DF α λ γ Inverse
Temperature (s)

Directional bias to
gamble (bias)

─2*LLmax BIC

Prospect theory 0 5 1.63, 1.58 3.04, 1.12 0.52, 0.73 0.96, 1.01 ─1.93, ─1.86 5100, 6494 5146, 6540
(PT) model 1 5 1.43, 1.55 2.40, 0.93 0.56, 0.79 1.26, 1.09 ─1.30, ─1.62 1522, 1481 1561, 1516

2 5 1.30, 1.48 3.07, 0.87 0.55, 0.77 1.52, 1.09 ─1.13, ─1.49 1418, 1379 1458, 1416
3 5 1.15, 1.11 3.86, 0.91 0.55, 0.78 1.69, 1.63 ─0.89, ─0.93 2403, 2427 2445, 2468
4 5 0.95, 1.01 2.96, 1.03 0.63, 0.78 2.11, 1.93 ─0.44, ─0.68 1072, 894 1110, 929
5 5 0.79, 0.97 2.65, 1.12 0.62, 0.73 2.05, 1.96 ─0.25, ─0.58 1347, 1178 1385, 1215

Expected value 0 2 ─ ─ ─ 1.89, 1.70 ─0.67, ─1.00 7204, 7121 7231, 7149
(EV) model 1 2 ─ ─ ─ 2.01, 1.72 ─0.64, ─0.98 1856, 1600 1879, 1623

2 2 ─ ─ ─ 2.19, 1.58 ─0.61, ─0.99 1746, 1455 1770, 1478
3 2 ─ ─ ─ 2.12, 1.65 ─0.57, ─0.90 2813, 2427 2838, 2499
4 2 ─ ─ ─ 2.18, 1.86 ─0.31, ─0.67 1219, 908 1242, 930
5 2 ─ ─ ─ 1.63, 1.83 ─0.19, ─0.57 1587, 1178 1609, 1232

The table summarizes for each model the likelihood maximizing (best) parameters average across sessions (n = 37 for both monkeys) and its fitting performances for each monkey.
DF degrees of freedom of the model, α parameter for utility curvature, λ parameter for loss-modulated utility curvature, γ parameter for probability weighting function, LLmax maximal log likelihood, BIC
Bayesian Information Criterion.
Comparing the model fit of PT model and EV model: one-sided t-test; Monkey G, p < 10−4, p < 10−4, p < 0.05, p < 0.05, p = 0.09, and p < 0.05 for start token number 0–5, respectively; Monkey O, p <
10−2, p < 10−3 p = 0.55, p = 0.62, p = 0.95, and p = 0.80 for start token number 0–5, respectively.
Comparing the BIC of PT model and EV model: one-sided t-test; Monkey G, p < 10−4, p < 10−4, p < 10−2, p < 0.05, p < 0.05, and p < 0.01; Monkey O, p < 10−2, p < 10−4, p = 0.22, p = 0.17, p = 0.20, and
p = 0.34 for start token number 0–5, respectively.
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Fig. 3 AIC neurons encode diverse task-related variables in forced-choice trials. a MRI images showing the area of recording of each monkey. Left and
middle: sagittal (left) and coronal (middle) view of the insular cortex of monkey G. Right: coronal view of the insular cortex of monkey O. b Venn diagram of
the neurons encoding four types of task-related variables in the forced-choice trials. Green: expected value of option; Blue: start token number; Red: risk
(variability of potential outcomes); Yellow: expected end token number. c–g Example neurons showing a variety of patterns by which gain/loss context
and/or the expected option value (EV) were encoded. c General value signal: monotonic encoding of value across gain/loss contexts. d Gain/Loss value
signal: categorical encoding of gain/loss context. e Behavioral salience signal: monotonic encoding of value in gain and loss context but with inverse
directions. f Loss value signal: encoding of value only in the loss context. g Gain value signal: encoding of the value only in the gain context. h–j Example
neurons showing a variety of patterns by which the token information was encoded. h Parametric token signal: monotonic encoding of the start token
number. i Categorical token signal: categorical encoding of the start token number in low and high level. j Numerical token signal: neuronal response tunes
to a specific number of start token (here 4). k Example neuron encoding parametric risk (i.e., outcome variance). l Example neuron encoding of the
expected end token number. c–l Upper panels: spike density function (SDF), aligned on target onset (t= 0). Lower panels: mean firing rate of each example
neuron at different levels of specific task-related variable. Mean firing rate (presented as mean values ± SEM) was calculated using the window from target
onset to saccade initiation, which varied across trials. The saccade onset distribution is represented as a boxplot on top of each SDF. The box plot indicates
median (vertical middle line), 25th, 75th percentile (box) and 5th and 95th percentile (whiskers). For clarity, when plotting the SDF, data were grouped
together, as indicated by the color codes.
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with the number of token assets. The second group (11%; 11/105)
carried a Categorical token signal (Fig. 3i). These AIC neurons
categorized all possible token numbers into a high [3, 4, 5] and a
low [0, 1, 2] token level. Likely, this reflects a fundamental
distinction between a token level, for which it is impossible that
the monkey will earn reward at the end of the current trial
(because the monkey can only earn a maximum of three tokens in
one trial), and a high token level that makes it possible to earn a
reward in the current trial. The third, and largest, group (77%; 81/
105) carried a Numerical token signal. These AIC neurons are
number-selective and are tuned for a preferred number (here
four, example neuron in Fig. 3j). We used a Gaussian function to
fit this activity pattern. The AIC neurons carrying a Numerical
token signal covered the entire scale from 0 to 5 tokens with some
neurons having each of the possible token amounts as their
preferred number.

The second largest group of AIC neurons reflected information
about the value of the options (49%; 73/149). A subset of this
group of AIC neurons (19%; 14/73), carrying a General value
signal (Fig. 3c), encoded the option values in a monotonically
rising (18%; 13/73) or falling (1%; 1/73) fashion, for both gains
and losses. Such neurons could either encode expected value or
expected utility, but our data were not sufficient to distinguish
between these possibilities. This kind of value signal is not gain/
loss context sensitive. However, the neuronal activity of all other
subsets of value-encoding neurons varied largely as a function of
the way they represented value across the Gain and the Loss
context (Fig. 3d–g). One group of these value-encoding neurons
(18%; 13/73) carried a categorical Gain/Loss signal (Fig. 3d) that
categorized each option as gain or loss, regardless of the expected
value. In addition, we found AIC neurons (18%; 13/73) that
represented value in both the gain and loss context, but with
inverse correlations of neural activity and value (Fig. 3e). These
neurons likely carried a Behavioral salience signal. Most
interestingly, we found two other groups of AIC neurons carrying
Loss value (Fig. 3f) or Gain value signals (Fig. 3g), respectively.
These neurons represented a value signal, but only in either the
loss or the gain context. We encountered more Loss value
neurons (40%; 29/73) than Gain value neurons (6%; 4/73). The
larger number of neurons encoding Loss value fits with human
neuroimaging findings that suggest a role for the anterior insula
in encoding aversive stimuli and situations1,13.

Human neuroimaging data suggest that the anterior insular
cortex encodes the riskiness of options25,26. Indeed, we found
AIC neurons encoding risk-related signals, with risk defined as
outcome variance (13%; 19/149). Half of these AIC neurons (47%;
9/19) encoded a Parametric risk signal (Fig. 3k) that encoded the
risk of the various options continuously across both gains and
losses. The other half of these AIC neurons (53%; 10/19) encoded
a categorical risk signal that categorized options into safe or
uncertain.

In the analysis so far, we have used a relative framework for
value. Expected value was defined as token changes relative to a
reference point (the start token number). However, value could
also be defined in an absolute framework (i.e., the final token

number at the end of the trial). We tested for AIC neurons that
represented expected absolute value, which is the expected end
token number weighted by the probability of each outcome.
However, we found only a very small number (6%; 9/149)
carrying an End token signal (Fig. 3l).

The majority of AIC neurons showed activity pattern that
matched several predictions of prospect theory. First, we found
that many AIC neurons encode the wealth level of the monkey,
i.e., the token number at the start of the trial. Within the context
of our task, this variable represented the reference point relative
to which the gain or loss options are evaluated. Simultaneously,
this variable also indicates the current state of progress and
indicates how close the monkey is to achieving the next reward.
Second, many other AIC neurons reflect in their activity whether
the offer is a gain or a loss. Some of them encoded the context,
i.e., whether the options were presented in a gain or loss context.
Other neurons represented a gain/loss-specific value signal in a
parametric manner exclusively. Third, only very few neurons
encode expected absolute value. Taken together, these three
findings strongly imply that the primate AIC uses a relative value
encoding framework, anchored to a reference point that reflects
the current state of the monkey, as suggested by prospect theory.

Value-encoding neurons in AIC exhibited contextual mod-
ulation predicted by the Prospect theory. The majority of value-
encoding AIC neurons were context-modulated (Fig. 3d–g). A
strong assumption of Prospect theory is that changes in relative
value are not encoded symmetrically across gains and losses.
Indeed, the monkeys’ behavior indicated that they were more
sensitive to objective value differences in the loss than the gain
context (i.e., steeper utility functions in the loss than that in gain
context in Fig. 2b). We therefore investigated whether and how
value signals across the AIC population showed matching dif-
ferences in their sensitivity for gains and losses. We examined the
absolute value of the standardized regression coefficients (SRC) of
Loss-Value Neurons in the loss context and that of Gain-Value
Neuron in the gain context. At the population level, we found
indeed that Loss value signals and Gain Value signals had dif-
ferent sensitivities to changes in value. Specifically, the normal-
ized |SRC| of Loss-Value Neurons in the loss context were larger
than that of Gain-Value Neuron in the gain context (Fig. 4a, one-
sided permutation test; mean of |SRCloss| = 2.97, mean of |
SRCgain| = 2.05, p = 0.054; unsigned SRC for losses and gains
were indicated in red and green, respectively). This suggests that
the AIC neurons encoding value signals were more sensitive to
increasing loss than increasing gain (Fig. 4b).

Moreover, the sensitivity of value change in gain or loss context
were also influenced by the wealth level. Normalized |SRC| of Loss-
Value Neurons in the loss context became smaller as the wealth
level increased (Fig. 4c, left; one-sided permutation test; mean of |
SRCloss| in low wealth level = 3.49, mean of |SRCloss| with high
wealth Level= 2.47, p = 0.017; unsigned SRC in the loss context
for low or high wealth levels were indicated in orange and red,
respectively). Normalized |SRC| of Gain-Value Neurons in the gain

Table 2 Summary of the number and percentage of significant responding neurons in different subsets of neuron types for all
recorded AIC neurons.

Gain/Loss value Token Risk Expected
End Token

Gain/
Loss

Loss
Value

Gain
Value

Behavioral
Salience

General
Value

Parametric
Token

Categorical
Token

Numerical
Token

Parametric
Risk

Categorical
Risk

13 (5%) 29 (12%) 4 (2%) 13 (5%) 14 (6%) 13 (5%) 11 (5%) 81 (38%) 9 (4%) 10 (4%) 9 (4%)
73 (30%) 105 (44%) 19 (8%)
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context also became smaller as the wealth level increased. However,
this trend did not reach a significant level (Fig. 4c, right; one-sided
permutation test; mean of |SRCgain| in low wealth level = 2.38,
mean of |SRCgain| in high wealth level = 2.06, p = 0.29; unsigned
SRC in gain context in low or high wealth levels were indicated in
light and dark green, respectively). Again, this wealth level-
sensitive effect on AIC value coding (Fig. 4d) is consistent with the
fact that monkeys became less sensitive to objective value change
when the wealth level increased (i.e., utility functions became
flatter in both the loss and gain context when the wealth level
increased; Fig. 2b).

Choice-attitude and risk-attitude-related response modulations
of AIC neurons. So far, we have shown AIC neurons encoding
decision-related variables in the forced-choice trials. Since the
gain/loss-specific value and the token asset signals in AIC were
present before the choice was made, these signals could be in a

position to influence the monkey’s decisions. Therefore, we
characterize next the relationship between all AIC neurons and
behavioral choice, using the choice trials (369 ± 124 trials per
neuron). To quantify how well the neuronal activity of an AIC
neuron predicts the choice of the monkey, we computed an area
under curve (AUC) value as a measure of the cell’s discrimination
ability, using receiver operation characteristic (ROC) analysis27.
The AUC is a measure relating trial-to-trial fluctuation in neu-
ronal activity to fluctuations in internal state (here implicit risk-
attitude) or behavioral choice (here explicit choice of gamble or
sure). It gives the probability of an ideal observer to correctly
distinguish between two different states given an AIC neuron’s
firing rate distribution in each state. An AUC value significantly
different from 0.5 indicates that the AIC neuronal response at
least a partial discriminates between two conditions.

For each AIC neuron, we calculated two AUC values. First, for
the AUC of explicit choice, we compared the firing rate
distributions on choice trials when the monkey chose the gamble

Fig. 4 Gain-value and Loss-value neurons exhibit differential sensitivity to value change in the gain and loss context. a, b Neuronal sensitivity to gain
and loss estimated by linear regression of firing rates against expected option value of Loss-value neurons (n = 39) in loss-context trials; and for Gain-
value neurons (n = 12) in gain-context trials. See “Methods” section for details of the neuron selection. a Distribution of the standardized regression
coefficients (SRC). For cross-context comparison, the absolute value of SRCs (|SRCs|) were plotted. Each count represents one neuron. Inverted triangle:
mean of the distribution. b The change in firing rate of Loss and Gain value neurons as a function in ΔEV (line: mean SRC value of the distributions shown in
a; shaded region: ±SEM) in the loss-context and gain-context, respectively. Note that the slope of the red line is steeper than the slope of green line (p =
0.053, one-sided permutation test), indicating that Loss value neurons are more sensitive to EV change than Gain value neurons, mirroring the pattern
observed from behavior (Fig. 2b). c, d Changes in neuronal sensitivity to gain and loss as a function of start token level was estimated by performing linear
regression of firing rates against expected option value separately for low and high start token level. c Distribution of the |SRCs| of Loss Value neurons in
loss-context and |SRCs| of Gain Value neurons in gain-context, split by start token levels. Each count represents one neuron. Inverted triangle: mean of the
distribution. dMean slope of regression based on the SRCs from c. Note that for both gain-contexts and loss-contexts, the slope becomes shallower as the
token level increases, consistent to the pattern observed from behavior (Fig. 2b). b, d Loss value neurons and Gain Value neurons in loss-context and gain-
context, are colored in red and green, respectively. Color gradients represent results from trials with different start token levels (light: low [0–2]; dark: high
[3–5]). Data are presented as mean values ± SEM.
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versus the sure option. Second, for the AUC of implicit risk-
attitude, we compared the firing rate distributions on choice trials
when the monkey was risk-seeking versus risk-avoiding. Risk-
seeking trials were defined as trials where the monkey chose the
gamble, even when the expected value of the gamble option was
smaller than the expected value of the sure option. We did not
include trials, in which the monkey chose the gamble option
when it had a higher expected value, because in that case the
monkey’s choice did not give any indication about his implicit
risk-attitude at that moment. Conversely, risk-avoiding trials were
defined as trials where the monkey chose the sure option, even so
it had a lower expected value than the gamble option. Thus, trials
used to compute the AUC of implicit risk-attitude were the subset
of the trials, in which the monkeys did not make choices that
maximized the expected value of the chosen option.

We found that trial-by-trial fluctuations in the activity of a
subset of AIC neurons (35/240; 15%) significantly correlated with
fluctuations of choice or risk-attitude. As shown in Fig. 5, 15

neurons (6%) showed a significant AUC of explicit choice
(green), 16 neurons (7%) showed significant AUC of implicit
risk-attitude (purple), and 4 neurons (2%) showed both
significant AUC of explicit choice and significant AUC of
implicit risk-attitude (black). Across the AIC population (n =
240), the ability of neural activity to predict AUC of explicit
choice and implicit risk-attitude showed a strong positive
correlation (Pearson correlation; r = 0.41, p < 10−4). We further
examined whether neurons encoding specific-variables were
particularly predictive of explicit choice or implicit risk-attitude
(Supplementary Fig. 8). However, a chi-square test showed no
significant dependency between the encoding of a specific
decision-related variable and the likelihood that choice-
predictive and/or risk-attitude-predictive signals were carried by
a given AIC neuron (Table 3, χ2 = 7.61, p = 0.67, excluding
neurons with AUC that predict neither choice nor risk-attitude).

The AUC analysis showed that fluctuations in the activity of
some AIC neurons are predictive of choice and/or risk-attitude.
This suggests a causal role of AIC in risky decision-making. AIC
neurons might encode value information, on which the monkeys’
choice is based and contextual information that influences
momentary risk-attitude.

Discussion
Prospect theory provides profound insights into how humans
make risky decisions in a wide range of circumstances6,28. The
behavioral hallmarks described by the theory have also been
reported in old-world and new-world monkeys, as well as in
rats22,29–31. This suggests that the neural circuits responsible for
making risky decisions may have been evolutionarily conserved
across mammals. Using a token-based gambling task, we
demonstrated that activity of AIC neurons in macaques exhibits
critical characteristics consistent with those postulated by Pro-
spect Theory. Decoding the activity from a subgroup of AIC
neurons can predict the monkey’s choices and risk attitude on a
trial-by-trial basis. These results suggest that the AIC is a pivotal
part of a circuit monitoring state and context information that
controls risky choices by modifying activity in downstream
decision processes.

Overall, monkeys in the present study were more prone to
choose gamble options (Fig. 1c). This is in line with similar
findings of previous monkey experiments22,29,32,33, yet is incon-
sistent to most human studies6,28,34,35. It is unclear whether such
a discrepancy between humans and monkeys was due to species-
specific differences, individual variability, or task design. Maca-
ques have been shown to be risk-aversive, like humans, in a
foraging task36 and in a risky decision-making task using animals’
hydration state to index their non-monetary wealth level3. The
observed tendency to choose gamble options was therefore likely
due to task-specific factors, such as the small reward amount at
stake and the large number of trials.

Insular cortex is a large heterogeneous cortex that is typically
divided into posterior granular, intermediate dysgranular, and
anterior agranular sectors, based on cytoarchitectural differences.
Our recordings were concentrated in the most anterior part of the
insula and encompassed mostly agranular and some dysgranular

Fig. 5 Distribution of area under the curve (AUC) of receiver operating
characteristic (ROC) for explicit choice and implicit risk-attitude in
individual neurons. AUC values capturing the covariation of each neuron
with differences in explicit choice (choosing gamble or sure) and implicit
risk-attitude (risk-seeking or risk-avoidance). Each point represents one
neuron (n = 240), and colors indicate the significance of the two AUC
values. The gray vertical and horizontal dashed lines show the area of no
significant discrimination ability (AUC of choice = 0.5 and AUC of risk-
attitude = 0.5). The broken line represents the linear regression relating
the AUC of explicit choice and AUC of implicit risk-attitude (r and p values
refer to the regression slope). In the marginal distributions, significant
neurons are indicted in darker shades and the arrowheads indicate the
average values across the entire distribution (light green or light purple)
and the subset of neurons with significant AUC (dark green or dark purple),
respectively.

Table 3 The number of each signal during the choice period in the force choice trial, recounted based upon the AUC for explicit
choice or implicit risk-attitude.

Token + value + risk Token + value Token + risk Value + risk Token Value Risk End token None

Both 0 0 1 0 3 0 0 0 0
Choice 0 0 3 0 5 0 2 1 4
Risk-attitude 0 1 3 0 8 0 3 0 1
Neither 3 12 23 1 104 5 16 9 32
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areas (Supplementary Fig. 6). In addition, we also recorded some
neurons in the border regions of the adjacent gustatory cortex.
Importantly, we found no functional segregation or gradient with
respect to the functional signals that were represented across the
different cortical areas, we explored. This fits with a recent pri-
mate neuroimaging study that showed strong activation of this
entire region by visual cues indicating reward, as well as reward
delivery20. Insula has long been known to be strongly connected
with the neighboring gustatory cortex37,38. Recently, several lines
of studies have demonstrated that neurons in the gustatory cortex
not only engage the primary processing of gustatory inputs, but
also involve multisensory integration15,16, as well as higher cog-
nitive functions like decision-making13,38. This suggests that
primate insular cortex and the neighboring gustatory cortex are
strongly interconnected and form an interacting distributed
network during decision making.

Prospect theory assumes that people make decisions based on
the potential gain or losses relative to a reference point. In our
experiment, the natural reference point against which the monkey
compared possible outcomes was the current token assets. Con-
sistent with this idea, we found that the activity of a substantial
number of AIC neurons (109/240; 45%) encoded start token
number. The AIC has been suggested to represent the current
physiological state of the subject (i.e., interoception)15,16,39,40.
Our findings suggest that AIC also encodes more abstract state
variables, such as current wealth level, which are important for
economic decisions that will influence future homeostatic state.
Notably, we found some AIC neurons encode the start token
number in a numerical scale, with their activity increased (or
decreased) specifically when the monkey owned a particular
number of tokens. Such a pattern of numerical encoding has been
identified in primate prefrontal and parietal cortex41,42, medial
temporal lobe43, and recently in AIC44. It would be interesting for
future studies to investigate whether these number-tuned neurons
relate to the numerical abilities of primates.

Our results overwhelmingly support the notion that value-
related signals in the brain operate in a relative framework. Only
4% of neurons in the AIC carried a value signal in an absolute
framework. However, how the value of options is represented in a
relative framework is an issue under debate. The core of the
debate regards whether the value of gains and losses are repre-
sented in a single unitary system45 or separately by two inde-
pendent systems46–48. Some of the AIC neurons encoding a
parametric value signal did continuously across gains and losses
(14/47; 30%). However, most AIC neurons encoded gain or loss-
specific value signal (33/47; 70%). Thus, while there is some
evidence for both hypotheses, most AIC value-encoding neurons
form two independent representations that encode gains or losses,
respectively. This functional separation is further supported by
the presence of a large number of neurons carrying a categorical
gain/loss signal. Interestingly, the number of loss-encoding neu-
rons (29/33; 88%) is much larger than the number of gain-
encoding AIC neurons (4/33; 12%). This may explain why human
imaging studies often find a link between the AIC and the
anticipation of aversive outcomes1,13. Thus, the AIC recordings
show the presence of separate neuronal populations that encode
value as a relative gain or loss. This could be the neuronal
underpinning of the separate utility functions used in prospect
theory.

The behavior of the monkey did not only indicate that they use
a relative value framework (Fig. 1e), but also that risk-attitude was
modulated by the token assets (Fig. 1d). We described this effect
as a state-dependent modulation of the prospect theory model
(Fig. 2b–d). This asset effect might be due to deliberate strategic
adjustments of risk attitude to optimize reward rate49. Alter-
natively, the asset effect might represent a contextual bias related

to wealth level. Future work will be necessary to distinguish
between these different hypotheses.

Risk is often formalized and quantified as the outcome var-
iance, and the AIC has been implicated to play a role in mon-
itoring risk25,26. In line with this, we found 8% of the AIC
neurons (n = 19/240) whose activity correlates with the outcome
variance. Moreover, the trial-by-trial variability of the monkeys’
choice and risk attitude was correlated with activity changes in a
subgroup of AIC neurons (Fig. 5 and Supplementary Fig. 8). All
of this supports the hypothesis that AIC plays an important part
in the process of decision making under risk.

There are number of limitations to our results. First, in our
present study we introduce only a small number of reward
amount and probability levels, which made it very difficult to test
for non-linearities in the utility and probability weighting func-
tion. This is true both for the behavior and for the underlying
neuronal representations. Testing the hypothesis of non-linearity
will require exploring a much larger parametric space for the
potential outcomes and outcome probability. Second, we do not
know if the neuronal signals we observed are unique to the AIC
or if similar signals exist in other brain areas. Future work will
require recording in brain areas that are up-stream and down-
stream of AIC to determine the specific role of the AIC in the
neural circuit underlying risk-attitude. Third, we do not know
whether the AIC plays a causal role in risky decision-making.
This will require testing if and how different manipulations of the
activity of AIC neurons affect animals’ behavior.

In this study, we interpreted the function of AIC from the
perspective of economic, risky decisions13 and within the fra-
mework of Prospect theory6. Decisions are likely not only guided
by the rational, abstract processes depicted by economic models,
but are strongly influenced by emotional processes50. The AIC
has been suggested to occupy a central position in regulating
emotions as it receives interoceptive afferents from visceral
organs through the posterior granular insula area, representing
contextual information (as demonstrated by this study), and is
closely connected with the amygdala and autonomic nuclei15,51.
This study took the first step to delineate how the decision
context modulates economic value representation, and thereby
impacts the decision of subjects. Future work will further inves-
tigate the interacting functions of AIC in economic decisions,
emotions, and autonomic regulation.

Methods
All animal care and experimental procedures were conducted in accordance with
the US public Health Service policy on the humane care and use of laboratory
animals and were approved by the Johns Hopkins University Institutional Animal
Care and Use Committee (IACUC).

General. Two male rhesus monkeys (Monkey G: 7.2 kg, 7 years; Monkey O: 9.5 kg,
8 years) were trained to perform a token-based gambling task in this study.
MonkeyLogic software52 (https://www.brown.edu/Research/monkeylogic/) was
used to control task events, stimuli, and reward, as well as monitor and store
behavioral events. During the experimental sessions, the monkey was seated in an
electrically insulated enclosure with its head restrained, facing a video monitor. Eye
positions were monitored with an infrared corneal reflection system, EyeLink 1000
(SR Research) at a sampling rate of 1000 Hz. All analyses were performed using
self-written Matlab code, unless noted otherwise.

Behavioral tasks. The token-based gambling task was based on a previously
published task design53 and consisted of two types of trials: choice trails and forced
choice trials. In choice trials, two targets (a sure option and a gamble option) were
presented on the screen. Monkeys were allowed to choose one of the options by
making a saccade to the corresponding target. Choice trials allowed us to measure
the monkey’s risk attitude in different behavioral contexts of various value-
matching of gamble and sure. In forced choice trials, only one target (either a sure
option or a gamble option) was presented on the screen so the monkey was forced
to make a saccade to the given target. Comparing the neuronal activity in choice
and forced choice trials allowed us to identify neuronal signals specifically related
to decision-making. The choice and force choice trials were pseudo-randomly
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interleaved in blocks so that each block consisted of all 24 choice trials and 13 force
choice trials. The spatial location of the target cues indicating the options was
randomized across both choice and forced choice trials.

A choice trial began with the appearance of a fixation point surrounded by the
token cue. After the monkey had maintained its gaze at the central fixation point
(±1° of visual angle) for a delay period (0.5–1 s), two choice targets were displayed
on two randomly chosen locations among the four quadrants on the screen. The
monkey indicated its choice by shifting gaze to the target. Following the saccade,
the token cue moved to surround the chosen target and the unchosen target
disappeared from the screen. The monkey was required to keep fixating the chosen
target for 450–550 ms, after which the chosen target changed either color or shape.
If the chosen target was a gamble option, it changed from a two-colored square to a
single-colored square to indicate the outcome of the gamble. The color represented
the amount of gained or lost tokens in the present trial. If the chosen target was a
sure option, the shape changed from a square to a circle serves as a control to the
change in visual display that occurs during gamble option choices. Finally, after an
additional delay (500 ms) the token cue was updated. If the owned token number
was equal to or more than 6 at this stage, the monkey received a standard fluid
reward after an additional 450 ms waiting time. At the beginning of the next trial,
the remaining tokens were displayed with filled circles. Otherwise, if the owned
token number was smaller than 6, the monkey did not receive a fluid reward and
the updated token cue was displayed at the beginning of the next trial. If the owned
token number was smaller than 0, the intertrial-interval (ITI) for the next trial
would be prolonged (300 ms per owed token).

The monkey was required to maintain the fixation spot until it disappeared for
reward delivery. If the monkey broke fixation in either one of the two time periods,
the trial was aborted and no reward was delivered. The following trial repeated the
condition of the aborted trial contingent on the time of fixation break. A trial in
which the monkey broke fixation before the choice was followed by a trial in which
the same choice targets were presented, but at different locations. This ensured that
the monkey sampled every reward contingency evenly but could not prepare a
saccade in advance. On the other hand, a trial in which the monkey broke fixation
after the choice was followed by a forced choice trial in which only the chosen
target was presented. If the monkey broke fixation following a gamble choice, but
before the gamble outcome was revealed, the same gamble cue was presented. If the
monkey broke fixation following a sure choice or after a gamble outcome was
revealed, the same sure cue was presented. This ensured that the monkey could not
escape a choice once it was made and had to experience its outcome. All trials were
followed by a regular 1500–2000 ms ITI. The schedule of the token-based gambling
task is shown in Fig. 1a.

All options in this task were represented by sets of colored squares, with the
color of the square indicating the token amount that could be gained or lost (token
outcome) and the proportion of color indicating the probability that this event
would take place (outcome probability) (Fig. 1b). The sure options were single-
colored squares indicating a certain outcome (gain or loss of token). There were
seven different colors used for sure options representing the number of tokens that
were gained or lost ([−3, −2, −1, 0, +1, +2, +3]). The gamble options were two-
colored squares indicating two possible outcomes indicated by two different colors.
The portion of each color corresponded to the probability of each outcome. Six
gamble options were used in this task. Three of the gambles resulted in either a gain
of 3 or 0 token(s), but with different outcome probabilities (i.e., token [+3, 0] with
the probability combination of [0.1, 0.9], [0.5, 0.5], or [0.75, 0.25]). Another three
gambles resulted either in a loss of 0 or 3 token(s) with different outcome
probability (i.e., token [0, −3] with probability combination of [0.1, 0.9], [0.5, 0.5],
or [0.75, 0.25]). The choice trials were divided into a gain context and a loss context
(Fig. 1b). In the gain context, the three gamble options that resulted in either a gain
of +3 or 0 token with different outcome probabilities were paired with four sure
options that spanned the range of gaining outcomes (i.e., [0, +1, +2, +3]). These
resulted in 12 possible combinations of sure and gamble options. In the loss
context, the other three gamble options resulted either in a loss of 3 or 0 with
probability combination were paired with four sure options that spanned the range
of losing outcomes (i.e., [0, −1, −2, −3)). Thus, there were another 12 possible
combinations of sure and gamble options. This resulted in a total of 24 different
combinations of reward option combinations (half in the gain context and the
other half in the loss context) that are offered in choice trials. In the force choice
trials, all 13 different reward options (7 sure and 6 gamble options) which were
used in the choice trials are presented in isolation.

Saccade detection. Eye movements were detected offline using a computer
algorithm (saccade detection function) that searched first for significantly elevated
velocity (30°/s). Saccade initiations were defined as the beginning of the monotonic
change in eye position lasting 15 ms before the high-velocity gaze shift. A valid
saccade for choice was further admitted to the behavioral analysis if it started from
the central fixation window (1° × 1° of visual angle) and ended in the peripheral
target window (2.5° × 2.5° of visual angle).

Description of monkeys’ behavior. Fixation behavior: We examined whether and
how monkeys’motivations to initiate a new trial were influenced by the outcome of
the previous trial and the start token number of the current trial. We used two

behavioral signals as indications of the monkey’s motivational state: (1) fixation
latency (i.e., the time from fixation point onset until fixation by the monkey) and
(2) fixation break ratio (i.e., the frequency with which the monkey failed to fixate
on the fixation point long enough to initiate target onset). We used linear
regression models to test if there was a significant relationship between each of the
two variables describing motivational state and the variables describing history and
current state.

Response time: We examined whether and how response times were influenced
by different decision-related variables. For each trial, response time was defined as
the time period between target onset and saccade initiation estimated by the
saccade detection function. The response time dataset in each condition (e.g., trials
from context of gain or loss, trials with different start token numbers, trials with
different expected values of chosen option (chosen EV), or trials with different
absolute values of difference of expected values among the gamble and sure option
(|ΔEVgs|)) was fitted with an ex-Gaussian distribution algorithm54 (https://doi.org/
10.6084/m9.figshare.971318.v2). It returned three best-fitting parameter values of
the ex-Gaussian distribution: the mean μ, the variance σ, and the skewness τ of the
distribution. We used a one-sided permutation test to determine if the mean RTs of
trials from the gain and loss context are significantly different. We used linear
regression models to test whether there was a significant relationship between
mean RTs and start token number, chosen EV, or |ΔEVgs|.

Prospect theory model. Prospect theory is derived from classical expected value
theory in economics55 and assumes that the expected utility of a gamble depends
on the utility of the reward amount that can be earned, weighted by the subjective
estimation of the probability of the particular outcome. Both the utility function
and the probability function can be non-linear and thus might influence risk
preference.

We modeled the probability that monkeys chose the gamble option by a
softmax choice function whose argument was the difference between the expected
utility of each option.

Utility was parameterized as:

u xð Þ ¼ xα; for x > 0

�λð�xÞα; for x < 0

�
; ð1Þ

where α is a free parameter determining the curvature of the utility function, u xð Þ,
and x is the reward outcome (in units of gaining or losing token numbers). λ
indicates the modulation of utility function in loss context.

Subjective probability of each option is computed by:

w p
� � ¼ pγ

pγ þ 1� p
� �γ� �1=r ; ð2Þ

where γ is a free parameter determining the curvature of the probability weighting
function, w p

� �
, and p is the objective probability of receiving corresponding

outcome.
The expected utility (EU) of each option was computed by combining the

output of u xð Þ; and w p
� �

that map objective gains and losses relative to the
reference point and objective probability onto subjective quantities, respectively:

EUgamble ¼ u xwin
� �

´w pwin
� �þ u xloss

� �
´w 1� pwin

� �
; ð3Þ

EUsure ¼ u xð Þ ´w 1ð Þ: ð4Þ
The expected utility difference between the two options was then transformed

into choice probabilities via a softmax function with terms of slope s and bias s:

PðGambleÞ ¼ 1
1þ e�sðΔEU�biasÞ ; ð5Þ

where ΔEU ¼ EUgamble � EUsure, s determines the sensitivity of choices to the ΔEU,
and bias is the directional bias of choosing gamble.

For an alternative expected value (EV) model, the value of option is calculated
as:

EVgamble ¼ xwin ´ pwin þ xloss ´ ð1� pwinÞ; ð6Þ

EVsure ¼ xð Þ ´ 1ð Þ: ð7Þ
The expected value difference between the two options was then transformed

into choice probabilities via a softmax function with terms of slope s and bias s as
what we did in the PT model:

PðGambleÞ ¼ 1
1þ e�sðΔEV�biasÞ ;

where ΔEV ¼ EVgamble � EVsure, s determines the sensitivity of choices to the ΔEV,
and bias is the directional bias of choosing gamble.

We optimized model parameters, α, λ, γ in the PT model, and s and bias in both
PT and EV models by minimize the negative log likelihoods of the data given
different parameters setting using Matlab’s fmincon function, initialized at multiple
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starting points of the parameter space as follows:

0 < α; λ; γ < 5;

�10 < bias < 10

0 < s < 20

−2 negative log-likelihoods (�2 � LLmax, which measures the accuracy of the
fit) were used to compute classical model selection criteria. We also computed the
Bayesian information criterion (BIC):

BIC ¼ log nð Þ � df � 2 � LLmax;

where n is the number of training trial and df is the number of free parameters in
the model. The likelihood in BIC is penalized by adding more parameters into the
model. Thus, we use BIC to represent the trade-off between model accuracy and
model complexity and use it to guide model selection. We then compared �2 �
LLmax and BIC calculated from a 5-fold cross-validation with separate training and
testing for the PT model and EV model in one-sided paired t-tests.

As in classical expected value theory in economics56, a convex utility function
(α > 1) implies risk seeking, because in this scenario, the subject values large
reward amounts disproportionally more than small reward amounts. Gain from
winning the gamble thus has a stronger influence on choice than loss from losing
the gamble. In the same way, a concave utility function (α < 1) implies risk seeking,
because large reward amounts are valued disproportionally less than small ones.

The λ can further influence subject’s risk-attitude in the context of gain or loss
because it modulates the curvature of utility function in gain to that in the loss
context. With a λ > 1, the utility function in the loss context will be sharper than
that in the gain context, indicating the subject is more sensitive to the value change
in the loss context. While with a λ < 1, the utility function in the loss context will
be flatter than that in the gain context, indicating the subject is less sensitive to the
value change in the loss context.

Independently, a non-linear weighting of probabilities can also influence risk
attitude. For example, an S-shaped probability weighting function (γ < 1) implies
that the subject overweighs small probabilities and underweights the large
probabilities. This would lead to higher willingness to accept a risky gamble,
because small probabilities to win large amounts would be overweighed relative to
high probabilities to win moderate amounts.

The bias term in the softmax function can also influence a subject’s risky
choices independent to the expected utility of options. A negative bias will result
with risk-seeking behavior because the subject tends to choose gamble while the
EUs of gamble and sure are identical. In the other hand, a positive bias will result
with risk-aversive behavior because the subject tends to choose sure while the EUs
of gamble and sure are identical.

Cortical localization and estimation of recording locations. We used T1 and T2
magnetic resonance images (MRIs) obtained for the monkey (3.0 T) to determine
the location of the anterior insula. In primates, the insular cortex constitutes a
separate cortical lobe57, located on the lateral aspect of the forebrain, in the depth
of the Sylvian or lateral fissure (LF) (Fig. 3a, Supplementary Fig. 6). It is adjoined
anteriorly by the orbital prefrontal cortex, and it is covered dorsally by the fron-
toparietal operculum and ventrally by the temporal operculum. The excision of the
two opercula and part of the orbital prefrontal cortex reveals the insula proper,
delimited by the anterior, superior, and inferior peri-insular (or limiting or cir-
cular) sulci. We used the known stereoscopic recording chamber location and
recording depth of the electrode to estimate the location of each recorded neurons.
The estimated recording locations were superimposed on the MRI scans of each
monkey. Cortical areas were estimated using the second updated version of the
macaque monkey brain atlas by Saleem and Logothetis58 with a web-based brain
atlases59.

Surgical procedures. Each animal was surgically implanted with a titanium head
post and a hexagonal titanium recording chamber (29 mm in diameter) 20.5 mm
(Monkey G) and 16 mm (Monkey O) lateral to the midline, and 30 mm (Monkey
G) and 34.5 mm (Monkey O) anterior of the interaural line. A craniotomy was then
performed in the chambers on each animal, allowing access to the AIC. The
location of AIC was determined with T1 and T2 magnetic resonance images (MRIs,
3.0 T) obtained for each monkey. All sterile surgeries were performed under
anesthesia. Post-surgical pain was controlled with an opiate analgesic (buprenex;
0.01 mg/kg IM), administered twice daily for 5 days postoperatively.

Neurophysiological recording procedures. Single neuron activities were recorded
extracellularly with single tungsten microelectrodes (impedance of 2–4 MΩs,
Frederick Haer, Bowdoinham, ME). Electrodes were inserted through a guide tube
positioned just above the surface of the dura mater and were lowered into the
cortex under control of a self-built Microdrive system. The electrodes penetrated
the cortex perpendicular to the surface of the cortex. The depths of the neurons
were estimated by their recording locations relative to the surface of the cortex.
Electrophysiological data were collected using the TDT system (Tucker & Davis).
Action potentials were amplified, filtered, and discriminated conventionally with a

time–amplitude window discriminator. Spikes were isolated online if the amplitude
of the action potential was sufficiently above a background threshold to reliably
trigger a time–amplitude window discriminator and the waveform of the action
potential was invariant and sustained throughout the experimental recording.
Spikes were then identified using principal component analysis (PCA) and the time
stamps were collected at a sampling rate of 1000 Hz.

Spike density function. To represent neural activity as a continuous function, we
calculated spike density functions by convolving the peri-stimulus time histogram
with a growth-decay exponential function that resembled a postsynaptic potential60.
Each spike therefore exerts influence only forward in time. The equation describes
rate as a function of time R tð Þ;RðtÞ ¼ ð1� expð�t=τgÞÞ � expð�t=τdÞ, where τg is
the time constant for the growth phase of the potential and τd is the time constant
for the decay phase. Based on physiological data from excitatory synapses, we used
1 ms for the value of τg and 20ms for the value of τd61.

Decision variables used for regression analysis of neuronal coding. To
quantitatively characterize the variables that each AIC neuron encodes during the
choice period, we performed a series of multiple linear regressions. We tested if the
neuronal activity was related to three types of decision-related variables: token-
related variables, value-related-variables, and risk-related variables.

Token-related variables represented the start token number. We tested three
types of variables. The first type, the Parametric token signal, encoded the start
token number in a linear, continuous manner (monotonically rising or falling from
0 to 5). The second type, the Categorical token signal, encoded the start token
number in a binary, discontinuous manner (with a value of 1 for trials with start
token number 0 to 3 and a value of 2 for trials with start token number 3–5). The
third type, the Numerical token signal, encoded the start token number in a
Gaussian manner with the peak of the activity at one of the token numbers from 0
to 5, and the activity symmetrically falling for token numbers that were smaller or
larger than the peak, generating six distinct models to be tested.

Value-related variables represented the value of options. We tested five types of
variables. The first type, the Gain/Loss signal, encoded the context of gain or loss in
a binary manner. Trials in the gain context were indicated with a 1, and trials in the
loss context with a −1. The only exception were forced choice trials with a sure
option with EV = 0, which were indicated with a 0. The second type, the General
value signal, encoded the expected value of options in a linear, continuous manner
across both the gain and loss context (with a range from −3 to 3). The remaining
types also encoded the expected value of options, but contingent on the gain/loss
context. The third type, the Gain value signal, encoded the expected value of
options in a linear manner, but only in the gain context (options with EV larger
than 0 were encoded as the original number, otherwise were encoded as 0), while
the fourth type, the Loss value signal, encoded the expected value of options in a
linear manner only in the loss context (options with EV smaller than 0 were
encoded as the original number, otherwise were encoded as 0). The fifth type, the
Behavioral salience signal, encoded the expected value of options in a linear but
asymmetric direction for the gain and loss context. Thus, this signal encoded the
absolute distance of the value from zero, independent of whether it represented a
gain or a loss (e.g., both an option with EV = 1.5 and an option with EV = −1.5
would be encoded as 1.5).

Risk-related variables represented the risk associated with an option. Risk was
defined as the variance of possible outcomes of an option (calculated by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

p
,

in which p was the winning probability of the option). We considered two different
types. The first type, the Parametric risk signal, encoded the variance of outcome in
a linear manner proportional to the variance. The second type, the Categorical risk
signal, encoded whether the outcome of option was uncertain or not in a binary
manner (with a value of 1 for all gamble options and a value of 0 for all sure
options).

For all value-related and risk-related variables, outcomes (and their values) were
always defined as a relative change of tokens, independent of the start token
number. We also considered an End token signal (i.e., the sum of all possible end
token numbers, weight by their probability). This signal took into account not only
the possible change in token number, but also the start token number. Thus, it
represented the outcome of a choice in an absolute framework that reflected how
close the monkey was to earning fluid reward.

Mix-selective neuronal coding with regression analysis. To quantitatively
characterize the variables that each AIC neuron encodes, we examined the activity
of each neuron using a series of multiple linear regression models, with the mean
Firing rate (FR) within the choice period for each trial as the dependent variable,
and predictors derived from the decision-related variables as the independent
variables:

FR ¼ constantþ α1 � predictor1þ ::::::þ αi � predictor i
We tested all potential combinations of three types of basic variables (token,

value, and risk) and a baseline term. For each of the basic variable types, we tested
each model variant with a specific decision variable belonging to that type (eight
forms of token-encoding, five forms of value-encoding, and two forms of risk-
encoding). Within such a family of models, a particular basic variable type (e.g.,
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value) could only be represented by one specific decision variable (e.g., a model that
contained a value-related variable could include Gain value or Gain/Loss), but not
by combinations of specific variables (e.g., Gain/loss + Gain value was excluded).
This constraint was chosen because testing all possible combinations of our 15
decision variables would have resulted in 215 = 32,768 models that needed to be
tested for each model. Our data would not have allowed a robust differentiation of
such a large number of models.

The restricted combination of decision variables resulted in a total of 80 three-
variable encoding models (8 * 5 * 2), 66 two-variable models (8 * 5 + 2 * 5 + 2 *
8), and 15 single variable models (8 + 5 + 2). In addition, we tested a model that
included only End token number as a variable and a model containing only a
baseline term. Thus, in total, we tested 163 models for each neuron. We determined
the best-fitting model for each neuron using the Akaike information criterion and
classified it as belonging to different functional categories according to the variables
that were included in the best-fitting model. We computed the Akaike information
criterion (AIC):

AIC ¼ 2 � df � 2 � LLmax;

where df is the number of free parameters in the model and LLmax is the log-
likelihood.

Sensitivity to value changes in gain and loss value cells. We examined whether
neurons carrying Loss value signals and Gain Value signals showed different
sensitivity to changes in value. We estimated the absolute value of the standardized
regression coefficients (|SRCs|) of firing rate of Loss-Value Neurons in the loss
context and |SRCs| of firing rate of Gain-Value Neuron in the gain context,
respectively. We included all neurons, whose best-fitting model included a Loss or
Gain Value Signal. We performed a one-sided permutation test with 10,000
iterations to test if the normalized |SRCs| of Loss Value (n = 39) and Gain Value
neurons (n = 12) showed a significant difference (Fig. 4a).

We also examined whether the sensitivity to value change in neurons carrying
Loss value signals and Gain Value signals was influenced by the wealth level (i.e.,
the number of tokens owned at the beginning of the trial). We compared |SRCs| of
Loss and Gain Value neurons in trials with low [0, 1, 2] or high [3, 4, 5] token level.
We performed a one-sided permutation test with 10,000 iterations to test if the
normalized |SRCs| of Loss Value (n = 39) and Gain Value neurons (n = 12)
showed a significant difference for low and high token levels (Fig. 4c).

Receiver operating criterion (ROC) analysis. To determine whether neural
activity of the AIC neurons was correlated with the monkey’s choice behavior or
risk-attitude, we computed a ROC for each cell and computed the AUC as a
measure of the cell’s discrimination ability. An AUC value near 1 indicates an
almost perfect association between neuronal responses and state (e.g., the neuron
generates two non-overlapping firing rate distributions: a higher firing rate dis-
tribution when choosing the gamble option [state 1] and a lower firing rate dis-
tribution when choosing the sure option [state 2]), so that the ideal observer can
predict the behavioral state (e.g., the choice) near perfectly based on the neuronal
activity. On the other hand, an AUC value near 0.5 indicates no clear correlation
between neuronal responses and state (e.g., two overlapping FR distributions when
choosing the gamble and sure option) so that the ideal observer exhibits chance
performance. Thus, an AUC value significantly different from 0.5 indicates at least
a partial discrimination between two conditions. We computed the AUC value of
explicit choice by comparing the distributions of firing rates associated with each of
the two choices (i.e., choice of gamble or choice of sure). We computed the AUC
value of implicit risk-attitude by comparing the two distributions of firing rates
associated with risk-seeking and risk-avoidance behavior. Risk-seeking trials were
defined as trials where the monkey chose the gamble, even so the expected value of
the gamble option was smaller than the expected value of the sure option. We did
not include trials, in which the monkey chose the gamble option and it had a
higher expected value, because in that case the monkey’s choice did not give any
indication about his risk-attitude at that moment. Conversely, risk-avoiding trials
were defined as trials where the monkey chose the sure option, even so the expected
value of the sure option was smaller than the expected value of the gamble option.
Thus, trials used to compute the risk-seeking probability were a subset of the trials
used to compute choice probability, in which the monkeys did not make choices
that maximized the expected value of the chosen option. The expected value dif-
ference between gamble and sure option (ΔEV) itself was correlated with the
probability of choosing the gamble option (P(Gamble)). Therefore, neurons
encoding option value could have high AUC values, even if they did not predict
choice itself. To avoid such unreliable AUC estimations, we only include choice
trials with expected value difference between gamble and sure option (ΔEV) that
resulted in variable choices. We defined sufficient variability as a probability of
choosing the gamble option (P(Gamble)) between 0.25 and 0.75 (trials with ΔEV >
−1.5 and ΔEV < 0.25).

Chi-square test. To test whether neurons encoding specific behaviorally relevant
variables were more likely to carry significant choice or risk-attitude probability
signals, we used a chi-square test, which is used to determine whether there is a

statistically significant difference between the expected frequencies and the
observed frequencies in one or more categories.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source Data are provided with this paper for all data presented in graphs within the
figures. The raw data of behavior and neurophysiology are used for other papers under
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