
RESEARCH ARTICLE

Primate phylogenomics uncovers multiple
rapid radiations and ancient interspecific
introgression

Dan VanderpoolID
1*, Bui Quang Minh2,3, Robert LanfearID

3, Daniel Hughes4,

Shwetha Murali4, R. Alan HarrisID
4,5, Muthuswamy RaveendranID

4, Donna M. Muzny4,5,

Mark S. HibbinsID
1, Robert J. WilliamsonID

6, Richard A. Gibbs4,5, Kim C. WorleyID
4,5,

Jeffrey RogersID
4,5, MatthewW. HahnID

1

1 Department of Biology and Department of Computer Science, Indiana University, Bloomington, Indiana,
United States of America, 2 Research School of Computer Science, Australian National University,

Canberra, Australian Capital Territory, Australia, 3 Research School of Biology, Australian National
University, Canberra, Australian Capital Territory, Australia, 4 Human Genome Sequencing Center, Baylor

College of Medicine, Houston, Texas, United States of America, 5 Department of Molecular and Human
Genetics, Baylor College of Medicine, Houston, Texas, United States of America, 6 Department of Computer
Science and Software Engineering and Department of Biology and Biomedical Engineering, Rose-Hulman

Institute of Technology, Terre Haute, Indiana, United States of America

* danvand@indiana.edu

Abstract

Our understanding of the evolutionary history of primates is undergoing continual revision

due to ongoing genome sequencing efforts. Bolstered by growing fossil evidence, these

data have led to increased acceptance of once controversial hypotheses regarding phyloge-

netic relationships, hybridization and introgression, and the biogeographical history of pri-

mate groups. Among these findings is a pattern of recent introgression between species

within all major primate groups examined to date, though little is known about introgression

deeper in time. To address this and other phylogenetic questions, here, we present new ref-

erence genome assemblies for 3 Old World monkey (OWM) species: Colobus angolensis

ssp. palliatus (the black and white colobus),Macaca nemestrina (southern pig-tailed

macaque), andMandrillus leucophaeus (the drill). We combine these data with 23 additional

primate genomes to estimate both the species tree and individual gene trees using thou-

sands of loci. While our species tree is largely consistent with previous phylogenetic hypoth-

eses, the gene trees reveal high levels of genealogical discordance associated with multiple

primate radiations. We use strongly asymmetric patterns of gene tree discordance around

specific branches to identify multiple instances of introgression between ancestral primate

lineages. In addition, we exploit recent fossil evidence to perform fossil-calibrated molecular

dating analyses across the tree. Taken together, our genome-wide data help to resolve mul-

tiple contentious sets of relationships among primates, while also providing insight into the

biological processes and technical artifacts that led to the disagreements in the first place.
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Introduction

Understanding the history of individual genes and whole genomes is an important goal for

evolutionary biology. It is only by understanding these histories that we can understand the

origin and evolution of traits—whether morphological, behavioral, or biochemical. Until

recently, our ability to address the history of genes and genomes was limited by the availability

of comparative genomic data. However, genome sequences are now being generated extremely

rapidly. In primates alone, there are already 23 species with published reference genome

sequences and associated annotations (S1 Table), as well as multiple species with population

samples of whole genomes [1–11]. These data can now be used to address important evolu-

tionary questions.

Several studies employing dozens of loci sampled across broad taxonomic groups have pro-

vided rough outlines of the evolutionary relationships and divergence times among primates

[12,13]. Due to the rapid nature of several independent radiations within primates, these lim-

ited data cannot resolve species relationships within some clades [12–14]. For instance, the

NewWorld monkeys (NWM) experienced a rapid period of diversification approximately 15

to 18 million years ago (mya) [15] (Fig 1), resulting in ambiguous relationships among the 3

Cebidae subfamilies (Cebinae = squirrel monkeys and capuchins, Aotinae = owl monkeys, and

Callitrichinae = marmosets and tamarins) [12–14,16–18]. High levels of incomplete lineage

sorting (ILS) driven by short times between the divergence of distinct lineages have led to a

large amount of gene tree discordance in the NWM, with different loci favoring differing rela-

tionships among taxa. Given the known difficulties associated with resolving short internodes

[19–21], as well as the multiple different approaches and datasets used in these analyses, the

relationships among cebid subfamilies remain uncertain.

In addition to issues of limited data and rapid radiations, a history of hybridization and sub-

sequent gene flow between taxa means that there is no single dichotomously branching tree

that all genes follow. Although introgression once was thought to be relatively rare (especially

among animals [23]), genomic studies have uncovered widespread patterns of recent intro-

gression across the tree of life [24]. Evidence for recent or ongoing gene flow is especially com-

mon among the primates (e.g., [9,25–27]), sometimes with clear evidence for adaptive

introgression (e.g., [28–30]). Whether widespread gene flow among primates is emblematic of

their initial radiation (which began 60 to 75 mya [13,31–33]) or is a consequence of current

conditions—which include higher environmental occupancy and more secondary contact—

remains an open question [34].

Here, we report the sequencing and annotation of 3 new primate genomes, all Old World

monkey (OWM) species: Colobus angolensis ssp. palliatus (the black and white colobus),

Macaca nemestrina (southern pig-tailed macaque), andMandrillus leucophaeus (the drill).

Together with the published whole genomes of extant primates, we present a phylogenomic

analysis including 26 primate species and several closely related non-primates. Incorporating

recently discovered fossil evidence [35], we perform fossil-calibrated molecular dating analyses

to estimate divergence times, including dates for the crown primates as well as the timing of

more recent splits. Compared to recent hybridization, introgression that occurred between 2

or more ancestral lineages (represented by internal branches on a phylogeny) is difficult to

detect. To get around this limitation, we modify a previously proposed method for detecting

introgression [36] and apply it to our whole-genome datasets, finding additional evidence for

gene flow among ancestral primates. Finally, we closely examine the genealogical patterns left

behind by the NWM radiation, as well as the biases of several methods that have been used to

resolve this topology. We use multiple approaches to provide a strongly supported history of
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the NWM and primates in general, while also highlighting the large amounts of gene tree dis-

cordance across the tree caused by ILS and introgression.

Results and discussion

Primate genome sequencing

The 3 species sequenced here are all OWMs, and each is closely related to an already-

sequenced species. This sampling scheme provides us increased power to detect introgression

among each of the sub-clades containing these species. The assembly and annotation of each

of the 3 species sequenced for this project are summarized here, with further details listed in

Table 1. A summary of all published genomes used in this study, including links to the assem-

blies and NCBI BioProjects, is available in S2 Table. All species were sequenced using standard

methods according to Illumina (San Diego, California, United States of America) Hi-seq pro-

tocols. Additional long-read sequencing was performed using Pacific Biosciences (Menlo

Park, California, USA) technology forM. nemestrina.

The sequencing effort for C. angolensis ssp. palliatus produced 514 Gb of data, which are

available in the NCBI Short Read Archive (SRA) under the accession SRP050426 (BioProject

PRJNA251421). The biological sample used for sequencing was kindly provided by Dr. Oliver

Ryder (San Diego Zoo). Assembly of these data resulted in a total assembly length of 2.97 Gb

in 13,124 scaffolds (NCBI assembly Cang.pa_1.0; GenBank accession GCF_000951035.1) with

an average per base coverage of 86.8X. Subsequent annotation via the NCBI Eukaryotic

Genome Annotation Pipeline (annotation release ID: 100) resulted in the identification of

20,222 protein-coding genes and 2,244 noncoding genes. An assessment of the annotation per-

formed using Benchmarking Universal Single-Copy Orthologs (BUSCO) 3.0.2 [37] in con-

junction with the Euarchontoglires ortholog database 9 (https://busco-archive.ezlab.org/v3/

datasets/euarchontoglires_odb9.tar.gz) indicated that 95.82% single-copy orthologs (91.68%

complete and 4.13% fragmented) were present among the annotated protein-coding genes.

Comprehensive annotation statistics for C. angolensis ssp. palliatus with links to the relevant

annotation products available for download can be viewed at https://www.ncbi.nlm.nih.gov/

genome/annotation_euk/Colobus_angolensis_palliatus/100/.

ForM. nemestrina, 1,271 Gb of data were produced (SRA accession SRP045960; BioProject

PRJNA251427), resulting in an assembled genome length of 2.95 Gb in 9,733 scaffolds

(Mnem_1.0; GenBank accession GCF_000956065.1). This corresponds to an average per base

coverage of 113.1X when both short- and long-read data are combined (Materials and meth-

ods). The biological sample used for sequencing was kindly provided by Drs. Betsy Ferguson

and James Ha (Washington National Primate Research Center). The NCBI annotation

resulted in 21,017 protein-coding genes and 13,163 noncoding genes (annotation release ID:

101). A BUSCO run to assess the completeness of the annotation (as above) indicated that

95.98% single-copy orthologs (92.23% complete and 3.75% fragmented) were present among

the annotated protein-coding genes. Comprehensive annotation statistics forM. nemestrina

with links to the relevant annotation products available for download can be viewed at https://

www.ncbi.nlm.nih.gov/genome/annotation_euk/Macaca_nemestrina/101/.

Sequencing ofM. leucophaeus libraries resulted in 334.1 Gb of data (SRA accession

SRP050495; BioProject PRJNA251423) that once assembled resulted in a total assembly length

of 3.06 Gb in 12,821 scaffolds (Mleu.le_1.0; GenBank accession GCF_000951045.1) with an

average coverage of 117.2X per base. The biological sample used for sequencing was kindly

provided by Dr. Oliver Ryder (San Diego Zoo). The NCBI annotation produced 20,465 pro-

tein-coding genes and 2,300 noncoding genes (annotation release ID: 100). A BUSCO run to

assess the completeness of the annotation (as above) indicated that 95.45% single-copy

PLOS BIOLOGY Ancient introgression in primates

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000954 December 3, 2020 3 / 27

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

Abbreviations: BUSCO, Benchmarking Universal

Single-Copy Orthologs; CDS, coding sequences;

gCF, gene concordance factor; HGCS, Human

Genome Sequencing Center; ILS, incomplete

lineage sorting; ML-CONCAT, maximum likelihood

concatenated; my, million years; mya, million years

ago; NWM, NewWorld monkey; OWM, Old World

monkey; PAUP�, Phylogenetic Analysis Using

Parsimony�; sCF, site concordance factor; SRA,

Short Read Archive.

https://busco-archive.ezlab.org/v3/datasets/euarchontoglires_odb9.tar.gz
https://busco-archive.ezlab.org/v3/datasets/euarchontoglires_odb9.tar.gz
https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Colobus_angolensis_palliatus/100/
https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Colobus_angolensis_palliatus/100/
https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Macaca_nemestrina/101/
https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Macaca_nemestrina/101/
https://doi.org/10.1371/journal.pbio.3000954


Fig 1. Species tree estimated using ASTRAL III with 1,730 gene trees (theMus musculus outgroup was removed to allow for a visually finer scale). Common
names for each species can be found in S1 Table. Node labels indicate the bootstrap value from a maximum likelihood analysis of the concatenated dataset as well as
the local posterior probability from the ASTRAL analysis. gCFs and sCFs are also reported. Eight fossil calibrations (blue stars; S6 Table) were used to calibrate node
ages. Gray bars indicate the minimum andmaximummean age from independent dating estimates. The inset tree with colored branches shows the maximum
likelihood branch lengths estimated using a partitioned analysis of the concatenated alignment. Colors correspond to red = Strepsirrhini, cyan = Tarsiiformes,
green = Platyrrhini (NWMs), blue = Cercopithecoidea (OWMs), and orange = Hominoidea (Apes). All alignments used for phylogenomic analyses
(1730_Alignments_FINAL.tar.gz) and dating analyses (All_Dating_Datasets_DRYAD.tar.gz) are available via Data Dryad: https://doi.org/10.5061/dryad.rfj6q577d
[22]. gCF, gene concordance factor; NWM, NewWorld monkey; OWM, OldWorld monkey; sCF, site concordance factor.

https://doi.org/10.1371/journal.pbio.3000954.g001
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orthologs (91.38% complete, 4.07% fragmented) were present among the annotated protein-

coding genes. The full annotation statistics with links to the associated data can be viewed at

https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Mandrillus_leucophaeus/100/.

Phylogenetic relationships among primates

To investigate phylogenetic relationships among primates, we selected the longest isoform for

each protein-coding gene from 26 primate species and 3 non-primate species (S1 Table). After

clustering, aligning, trimming, and filtering (Materials and methods), there were 1,730 single-

copy orthologs present in at least 27 of the 29 species (see S3 Table for the orthogroup, protein

name, chromosome, and location of each single-copy ortholog in the human genome). The

cutoffs used to filter the dataset ensure high species coverage while still retaining a large num-

ber of orthologs. The coding sequences (CDS) of these orthologs have an average length of

1,018 bp and 178 parsimony informative characters per gene. Concatenation of these loci

resulted in an alignment of 1,761,114 bp, with the fraction of gaps/ambiguities varying from

4.04% (Macaca mulatta) to 18.37% (Carlito syrichta) (S4 Table).

We inferred 1,730 individual gene trees from nucleotide alignments using maximum likeli-

hood in IQ-TREE 2 [38] and then inferred a species tree using these gene tree topologies as

input to ASTRAL III ([39]; Materials and methods). We used the mouse,Mus musculus, as an

outgroup to root the species tree. This approach resulted in a topology (which we refer to as

“ML-ASTRAL”; Fig 1) that largely agrees with previously published phylogenies [12,13]. We

also used IQ-TREE to carry out a maximum likelihood analysis of the concatenated nucleotide

alignment (a topology we refer to as ML-CONCAT). This analysis resulted in a topology that

differed from the ML-ASTRAL tree only with respect to the placement of Aotus nancymaae

(owl monkey), rather than sister to the Saimiri+Cebus clade (as in Fig 1), the ML-CONCAT

tree places Aotus sister to Callithrix jacchus, a minor rearrangement around a very short inter-

nal branch (Fig 1). All branches of the ML-ASTRAL species tree are supported by maximum

local posteriors, the default support values provided by ASTRAL III [40], except for the branch

that defines Aotus as sister to the Saimiri+Cebus clade (0.46 local posterior probability). Like-

wise, each branch in the ML-CONCAT tree is supported by 100% bootstrap values, including

the branch uniting Aotus and Callithrix. We return to this conflict in the next section.

There has been some contention as to the placement of the mammalian orders Scandentia

(treeshrews) and Dermoptera (colugos) [41–50]. The controversy concerns whether Dermop-

tera is sister to Primates, Scandentia is sister to Primates, or Dermoptera and Scandentia are

sister groups. As expected, both the ML-ASTRAL and ML-CONCAT trees place these 2

groups outside the Primates with maximal statistical support (i.e., local posterior probabilities

of 1.0 and bootstrap values of 100%; Fig 1); they also both point to Dermoptera as the closest

sister lineage to the Primates [12,51–53]. However, while support values such as the bootstrap

Table 1. Genomes sequenced in this study and associated assembly and annotation metrics.

Species name Assembly
accession

Assembly total
length

No. of
scaffolds

Scaffold N50
(mb)

Contig N50
(kb)

Protein-coding
genes

BUSCO

Colobus angolensis ssp. palliatus (the black
and white colobus)

GCF_000951035.1 2,970,124,662 13,124 7.84 38.36 20,222 95.82%

Macaca nemestrina (pig-tailed macaque) GCF_000956065.1 2,948,703,511 9,733 15.22 106.89 21,017 95.98%

Mandrillus leucophaeus (drill) GCF_000951045.1 3,061,992,840 12,821 3.19 31.35 20,465 95.45%

BUSCO percentages reflect the complete and fragmented genes relative to the Euarchontoglires ortholog database v9.

BUSCO, Benchmarking Universal Single-Copy Orthologs.

https://doi.org/10.1371/journal.pbio.3000954.t001
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or posterior probability provide statistical confidence in the species tree topology, there can be

large amounts of underlying gene tree discordance even for branches with 100% support (e.g.,

[54–56]). To assess discordance generally, and the relationships among the Primates, Scanden-

tia, and Dermoptera in particular, we used IQ-TREE to calculate both the gene concordance

factor (gCF) and site concordance factor (sCF) [57] for each internal branch of the topology in

Fig 1. These 2 measures represent the fraction of genes and sites, respectively, which are in

agreement with the species tree for any particular branch.

Examining concordance factors helps to explain previous uncertainty in the relationships

among Primates, Scandentia, and Dermoptera (Fig 1). Although the bootstrap support is 100%

and the posterior probability is 1.0 on the branch leading to the Primate common ancestor, the

gCF is 45%, and the sCF is 39%. These values indicate that, of decisive gene trees (n = 1,663),

only 45% of them contain the branch that is in the species tree; this branch reflects the Pri-

mates as a single clade that excludes Scandentia and Dermoptera. While the species tree repre-

sents the single topology supported by the most gene trees (hence the strong statistical support

for this branch), the concordance factors also indicate that a majority of gene tree topologies

differ from the estimated species tree. In fact, the gCF value indicates that 55% of trees do not

support a monophyletic Primate order, with either Dermoptera, Scandentia, or both lineages

placed within Primates. Likewise, the sCF value indicates that only 39% of decisive sites in the

total alignment support the branch uniting all primates, with 30% favoring Dermoptera as sis-

ter to the Primate suborder Strepsirrhini and 31% placing Dermoptera sister to the Primate

suborder Haplorrhini. Similarly, only a small plurality of genes and sites have histories that

place Dermoptera as sister to the Primates rather than either of the 2 alternative topologies

(gCF = 37, sCF = 4 0; Fig 1), despite the maximal statistical support for these relationships.

While discordance at individual gene trees can result from technical problems in tree inference

(e.g., long-branch attraction, low phylogenetic signal, poorly aligned sequences, or model mis-

specification), it also often reflects biological causes of discordance such as ILS and introgres-

sion. We further address the possible role of technical errors in generating patterns of

discordance in the section entitled “Sources of gene tree discordance” below.

Within the Primates, the phylogenetic affiliation of tarsiers (represented here by C. syrichta)

has been debated since the first attempts by Buffon (1765) and Linnaeus (1767 to 1770) to sys-

tematically organize described species [58]. Two prevailing hypotheses group tarsiers (Tarsii-

formes) with either lemurs and lorises (the “prosimian” hypothesis [59]) or with Simiiformes

(the “Haplorrhini” hypothesis [60], where Simiiformes = Apes+OWM+NWM). The ML-AS-

TRAL and ML-CONCAT analyses place Tarsiiformes with Simiiformes, supporting the Hap-

lorrhini hypothesis (Fig 1). The Strepsirrhines come out as a well-supported group sister to the

other primates. Again, our inference of species relationships is consistent with previous geno-

mic analyses [61,62] but also highlights the high degree of discordance in this part of the tree.

The rapid radiation of mammalian lineages that occurred in the late Paleocene and early

Eocene [32] encompassed many of the basal primate branches, including the lineage leading to

Haplorrhini. The complexity of this radiation is likely the reason for low gCF and sCFs (39.5%

and 36%, respectively) for the branch leading to Haplorrhini and perhaps explains why previ-

ous studies recovered conflicting resolutions for the placement of tarsiers [31,63,64].

The remaining branches of the species tree that define major primate clades all have

remarkably high concordance with the underlying gene trees (gCF>80%), though individual

branches within these clades do not. The gCFs for the branches defining these clades are Strep-

sirrhini (lemurs+lorises) = 84.5, Catarrhini (OWM+Apes) = 90.0, Platyrrhini (NWM) = 96.6,

Hominoidea (Apes) = 82.7, and Cercopithecidae (OWM) = 92.3 (Fig 1). High gene tree/spe-

cies tree concordance for these branches is likely due to a combination of more recent diver-

gences (increasing gene tree accuracy) and longer times between branching events [65].
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Within these clades, however, we see multiple recent radiations. One of the most contentious

has been among the NWMs, a set of relationships we address next.

ML concatenation affects resolution of the NewWorld monkey radiation

Sometime during the mid to late Eocene (approximately 45 to 34 mya), a small number of pri-

mates arrived on the shores of South America [15,66]. These monkeys likely migrated from

Africa [66] and on arrival underwent multiple rounds of extinction and diversification [15].

Three extant families from this radiation now make up the NWMs (Platyrrhini; Fig 1). Because

of the rapidity with which these species spread and diversified across the new continent, rela-

tionships at the base of the NWM have been hard to determine [12–14,16–18].

As reported above, the concatenated analysis (ML-CONCAT) gives a different topology

than the gene tree-based analysis (ML-ASTRAL). Specifically, the ML-CONCAT analysis sup-

ports a symmetrical tree, with Aotus sister to Callithrix (Fig 2A). In contrast, ML-ASTRAL

supports an asymmetrical (or “caterpillar”) tree, with Aotus sister to a clade comprised of Sai-

miri+Cebus (Fig 2B). There are reasons to have doubts about both topologies. It is well known

that carrying out maximum likelihood analyses of concatenated datasets can result in incorrect

species trees, especially when the time between speciation events is short [67,68]. In fact, the

specific error that is made in these cases is for ML concatenation methods to prefer a

Fig 2. The 3 most frequent topologies of NWMs. (A) Tree 1 is the symmetrical topology inferred by the
ML-CONCAT analysis of 1,730 loci (1.76 Mb). (B) Tree 2 is the asymmetrical topology inferred by ASTRAL III using
either maximum likelihood (ML-ASTRAL) or maximum parsimony (MP-ASTRAL) gene tree topologies. Using
maximum parsimony on the concatenated alignment also returns this tree (MP-CONCAT). (C) Tree 3 is the
alternative resolution recovered at high frequency in all gene tree analyses, though it is not the optimal species tree
using any of the methods. (D) Number of gene trees supporting each of the 3 resolutions of the NWM clade when
maximum likelihood is used to infer gene tree topologies. There are 1,637 decisive gene trees for these splits. (E) Gene
tree counts when maximum parsimony is used to infer gene tree topologies. (F) Number of parsimony informative
sites in the concatenated alignment supporting each of the 3 resolutions. ML-CONCAT, maximum likelihood
concatenated; NWM, NewWorld monkey.

https://doi.org/10.1371/journal.pbio.3000954.g002
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symmetrical 4-taxon tree over an asymmetrical one, exactly as is observed here. Gene tree-

based methods such as ASTRAL are not prone to this particular error, as long as the underly-

ing gene trees are all themselves accurate [69,70]. However, if there is bias in gene tree recon-

struction, then there are no guarantees as to the accuracy of the species tree. In addition, the

ML-ASTRAL tree is supported by only a very small plurality of gene trees: There are 442 trees

supporting this topology, compared to 437 supporting the ML-CONCAT topology and 413

supporting the third topology (Fig 2D). This small excess of supporting gene trees also explains

the very low posterior support for this branch in the species tree (Fig 1). Additionally, a polyt-

omy test [71], implemented in ASTRAL and performed using ML gene trees, failed to reject

the null hypothesis of “polytomy” for the branch uniting Aotus+(Saimiri,Cebus) (P = 0.47).

To investigate these relationships further, we carried out additional analyses. The trees pro-

duced from concatenated alignments can be biased in situations with high ILS when maxi-

mum likelihood is used for inference, but this bias does not affect parsimony methods [21,72].

Therefore, we analyzed exactly the same concatenated 1.76 Mb alignment used as input for

ML but carried out a maximum parsimony analysis in PAUP� [73]. As would be expected

given the known biases of ML methods, the maximum parsimony tree (which we refer to as

“MP-CONCAT”) returns the same tree as ML-ASTRAL, supporting an asymmetric topology

of NWMs (Fig 2B). Underlying this result is a relatively large excess of parsimony informative

sites supporting this tree (Fig 2F), which results in maximal bootstrap values for every branch.

The 2 most diverged species in this clade (Saimiri and Callithrix) are only 3.26% different at

the nucleotide level, so there should be little effect of multiple substitutions on the parsimony

analysis.

As mentioned above, gene tree-based methods (such as ASTRAL) are not biased when

accurate gene trees are used as input. However, in our initial analyses, we used maximum like-

lihood to infer the individual gene trees. Because protein-coding genes are themselves often a

combination of multiple different underlying topologies [74], ML gene trees may be biased

and using them as input to gene tree-based methods may still lead to incorrect inferences of

the species tree [75]. Therefore, we used the same 1,730 loci as above to infer gene trees using

maximum parsimony with MPBoot [76]. Although the resulting topologies still possibly repre-

sent the average over multiple topologies contained within a protein-coding gene, using parsi-

mony ensures that this average tree is not a biased topology. These gene trees were used as

input to estimate a species tree using ASTRAL; we refer to this as the “MP-ASTRAL” tree.

Once again, the methods that avoid known biases of ML lend further support to an asymmet-

ric tree, placing Aotus sister to the Saimiri+Cebus clade (Fig 2B). In fact, the gene trees inferred

with parsimony now show a much greater preference for this topology, with a clear plurality of

gene trees supporting the species tree (473 versus 417 supporting the second most common

tree; Fig 2E). As a consequence, the local posterior for this branch in the MP-ASTRAL tree is

0.92, and the polytomy test performed using MP gene trees rejects (P = 0.037) the null hypoth-

esis of “polytomy” for the branch uniting Aotus+(Saimiri,Cebus). The increased number of

concordant gene trees using parsimony suggests that the gene trees inferred using ML may

well have been suffering from the biases of concatenation when multiple trees are brought

together (as observed in the Great Apes [74]), reducing the observed levels of concordance.

A recent analysis of NWM genomes found Aotus sister to Callithrix, as in the ML-CON-

CAT tree, despite the use of gene trees to build the species tree [18]. However, the outgroup

used in this analysis is a closely related species (Brachyteles arachnoides) that diverged during

the NWM radiation and that shares a recent common ancestor with the ingroup taxa [12,13].

If the outgroup taxon used to root a tree shares a more recent common ancestor with subsets

of ingroup taxa at an appreciable number of loci, the resulting tree topologies will be biased. A

similar problem likely arose in previous studies that have used the Scandentia or Dermoptera
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as outgroups to Primates. In general, this issue highlights the difficulty in choosing outgroups:

Though we may have 100% confidence that a lineage lies outside our group of interest in the

species tree, a reliable outgroup must also not have any discordant gene trees that place it

inside the ingroup.

Sources of gene tree discordance

As previously mentioned, there are both biological reasons for gene tree discordance (e.g., ILS

or introgression) and technical reasons (e.g., long-branch attraction, homoplasy, low phyloge-

netic signal, poorly aligned sequences, or model misspecification). All of these phenomena

may be reflected in gCFs and sCFs, but the proportion of discordance attributable to biological

versus technical factors is often difficult to ascertain. We therefore performed additional analy-

ses to assess the impact of error on estimates of concordance factors.

In order to determine the degree to which short alignments or genes with low phylogenetic

signal contribute to inaccurate gene trees, we recalculated gCFs and sCFs using the genes with

the 200 longest alignments in our dataset (lengths ranging from 1,640 bp to 6,676 bp, with 116

to 2,101 parsimony informative sites). The resulting gCFs for the branch leading to the Primate

common ancestor increases from 45% to 66%, while the sCFs remain unchanged (S1 Fig). For

the branch placing Dermoptera sister to Primates, using trees estimated from the 200 longest

alignments resulted in a modest increase in gCFs from 37% to 45%. Overall, the gCFs for the

200 longest genes were higher for all branches in the tree, with the average gCF increasing

from 65.18% to 79.74%. The consistent increase in gCF but not sCF when using longer genes

points to errors in gene tree inference as a small, but significant, factor in our dataset.

Using a single outgroup (mouse) could potentially lead to biases such as long-branch attrac-

tion near the base of the tree. To ameliorate these concerns, we performed an additional analy-

sis using 150 randomly chosen single-copy orthologs, with pika (Ochotona princeps) included

as a second outgroup. As in the full dataset, maximum likelihood and parsimony were both

applied to a concatenated dataset, and gene trees were also inferred via both ML and parsi-

mony. Parsimony analysis of the concatenated alignment resulted in the same topology as in

Fig 1, while a maximum likelihood analysis produced the same topology as the full ML-CON-

CAT tree from 1,730 loci, preferring a symmetric tree for the NWM clade. To assess the effect

of including an additional outgroup on concordance factors, we calculated gCFs and sCFs

using the 150 single-copy orthologs both with (S2A Fig) and without (S2B Fig) pika (using ML

gene trees). In contrast to expectations about any error introduced by long-branch attraction,

we observe slightly lower gCFs near the base of the tree when pika is included (S2A Fig). sCFs

are not affected by the inclusion of pika. These analyses indicate that including additional out-

groups when analyzing the full dataset is unlikely to reduce concordance factors or to change

inferences of the species tree.

Technical errors leading to discordance should be more prominent deeper in the tree, as

there is more opportunity for long-branch attraction, homoplasy, poor alignments, or model

misspecification to cause problems. To determine whether concordance factors for deep

branches in the primate tree are disproportionately affected by error, we looked for a correla-

tion between concordance factors and the age of each bifurcation in the tree. For gCFs, we

found no correlation with node age (r2 = 0.0094), while sCFs were slightly negatively correlated

(r 2 = 0.2998; S3 Fig). The negative correlation found between sCFs and node age is consistent

with the expectation that substitutions occurring on deeper branches of the tree are more likely

to suffer from the effects of multiple substitutions (homoplasy). While there may still be tech-

nical factors affecting gCFs, true discordance throughout the tree is high enough to mask any

such effect.
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A recent simulation study [77] reported that negative selection, in combination with large

differences in effective population size, can generate strong enough asymmetries in gene tree

topologies that the most common topology does not match the species tree. Such an effect, if

real, would mislead both gene tree-based and concatenation-based approaches to species tree

inference. However, previous theoretical results predict that there should be no effect of nega-

tive selection on the distribution of tree topologies [78–81], and the new results were obtained

using custom simulation software. To clarify this issue, we used the open-source simulator

SLiM [82] to study non-recombining loci under the most extreme parameters used by He and

colleagues [77] (see Materials and methods). We found no evidence for the bias in gene tree

frequencies recently reported (S4A Fig). However, we observed fewer than 1 mutation per

locus at the end of our simulations under the parameters exactly replicating He and colleagues

[77], suggesting we may not have generated sufficient deleterious variation to observe the

effect. To address this, we simulated the same conditions but with the deleterious mutation

rate increased by 2 orders of magnitude and still did not observe a bias in topology frequencies

(S4B Fig). Our results therefore indicate that weak negative selection does not generate gene

tree discordance, consistent with population genetic theory [78–81].

Strongly supported divergence times using fossil calibrations

Fossil-constrained molecular dating was performed using 10 independent datasets, each of

which consisted of 40 protein-coding genes randomly selected (without replacement) and

concatenated. The resulting datasets had an average alignment length of 39,374 bp

(SD = 2.6 × 103; S5 Table). Although individual discordant trees included in this analysis may

have different divergence times, the difference in estimates of dates should be quite small [83].

We used 8 dated fossils (blue stars in Fig 1) from 10 studies for calibration (S6 Table). The

most recent of these fossils is approximately 5.7 mya [84], while the most ancient is 55.8 mya

[85]. Each separate dataset and the same set of “soft” fossil constraints, along with the species

tree in Fig 1, were used as input to PhyloBayes 3.3 [86], which was run twice to assess conver-

gence (Materials and methods).

We observed tight clustering of all estimated node ages across datasets and independent

runs of PhyloBayes (Fig 3 and S6 Table). In addition, the ages of most major crown nodes esti-

mated here are largely in agreement with previously published age estimates (Table 2). Some

exceptions include the age of the crown Strepsirrhini (47.4 mya) and Haplorrhini (59.0 mya),

which are more recent than many previous estimates for these nodes (range in the literature is

Strepsirrhini = 51.6 to 68.7, Haplorrhini = 60.6 to 81.3; see Table 2). The crown nodes for Cat-

arrhini, Hominoidea, and Cercopithecidae (28.4, 21.4, and 16.8 mya, respectively) all fall

within the range of variation recovered in previous studies (Table 2).

Our estimate for the most recent common ancestor of the extant primates (i.e., the last

common ancestor of Haplorrhini and Strepsirrhini) is 61.7 mya, which is slightly more recent

than several studies [13,31,33,88] and much more recent than other studies [12,87,89]

(Table 2). However, our estimate is in good agreement with Herrera and colleagues [32], who

used 34 fossils representing extinct and extant lineages (primarily Strepsirrhines) to infer

divergence times among primates, concluding that the split occurred approximately 64 mya.

Despite limited overlap in taxon sampling, 1 similarity between our study and that of Herrera

and colleagues is that we have both used the maximum constraint of 65.8 million years (my)

on the ancestral primate node suggested by Benton and colleagues [90], which likely contrib-

utes to the more recent divergence. It is worth noting that the soft bounds imposed in our anal-

ysis permit older ages to be sampled from the Markov chain, but these represented only a

small fraction (median 3.37%) of the total sampled states after burn-in (S6 Table). To
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determine the effects of imposing the 65.8 my maximum constraint on the Primate node, we

analyzed all 10 datasets for a third time with this constraint removed and report the divergence

time of major primate clades in Table 2 (“No Max” entries). However, it may be that using

genes that have gene trees most similar to the topology being dated will reduce bias caused by

concatenation [74]. To determine whether using concordant loci has an impact on the esti-

mated dates, we constructed an 11th dataset consisting of approximately 43 kb from the 20

loci most similar to the species tree in Fig 1 (as determined by Robinson–Foulds distances).

There was no consistent difference in the dates estimated with this dataset (“Concord” entries

in Table 2).

There are several caveats to our age estimates that should be mentioned. Maximum age esti-

mates for the crown node of any given clade are defined by the oldest divergence among

Fig 3. Mean node ages for independent Phylobayes dating runs. Box plots show the median, interquartile range, and both minimum and maximum values of the
mean nodes ages for 10 different datasets (with each dataset run twice). An additional run was performed with no sequence data to ascertain the prior on node
divergence times in the presence of fossil calibrations (pink asterisks). Some prior ages were too large to include in the plot while still maintaining detail; these ages
are given as numeric values. The species tree topology is from Fig 1; 95% HPD intervals for each node are reported in S7 Table. Node age estimates for each
independent PhyloBayes run are provided in S1 Data. HPD, highest posterior density.

https://doi.org/10.1371/journal.pbio.3000954.g003
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sampled taxa in the clade. This limitation results in underestimates for nearly all crown node

ages as, in practice, complete taxon sampling is difficult to achieve. Fossil calibrations are often

employed as minimum constraints in order to overcome the limitations imposed by taxon

sampling, allowing older dates to be estimated more easily. On the other hand, the systematic

underestimation of crown node ages due to taxon sampling is somewhat counteracted by the

overestimation of speciation times due to ancestral polymorphism. Divergence times esti-

mated from sequence data represent the coalescence times of sequences, which are necessarily

older than the time at which 2 incipient lineages diverged [91,92]. This overestimation will

have a proportionally larger effect on recent nodes (such as theHomo/Pan split; Fig 3, node

15), but the magnitude can be no larger than the average level of polymorphism in ancestral

populations and will be additionally reduced by post-divergence gene flow.

Introgression during the radiation of primates

There is now evidence for recent interspecific gene flow between many extant primates,

including introgression events involving humans [25], gibbons [93,94], baboons [9,27],

macaques [95,96], and vervet monkeys [10], among others. While there are several widely used

methods for detecting introgression between closely related species (see chapters 5 and 9 in

[97]), detecting ancient gene flow is more difficult. One of the most popular methods for

detecting recent introgression is the D test (also known as the “ABBA-BABA” test; [98]). This

test is based on the expectation that, for any given branch in a species tree, the 2 most frequent

alternative resolutions should be present in equal proportions. However, the D test uses indi-

vidual SNPs to evaluate support for alternative topologies and explicitly assumes an infinite

sites model of mutation (i.e., no multiple hits). As this assumption will obviously not hold the

further back in time one goes, a different approach is needed.

Fortunately, Huson and colleagues [36] described a method that uses gene trees themselves

(rather than SNPs) to detect introgression. Using the same expectations as in the D test, these

authors looked for a deviation from the expected equal numbers of alternative tree topologies

using a test statistic they refer to as Δ. As far as we are aware, Δ has only rarely been used to test

for introgression in empirical data, possibly because of the large number of gene trees needed

to assess significance or the assumptions of the parametric method proposed to obtain P

Table 2. Mean crown node divergence times estimated in this study compared with mean divergences times estimated by 8 prior studies.

Node This
study

This
study, no
max�

This study,
concord†

Herrera
et al. [32]

Kistler
et al. [33]

Perez
et al.
[17]

Springer
et al. [13]

Meredith
et al. [45]

Perelman
et al. [12]

Wilkinson
et al. [87]

Chatterjee
et al. [31]

Primates 61.7 67.5 63 63.9 68 NA 67.8 71.5 87.2 84.5 63.7

Strepsirrhini 47.4 50.2 48.4 61.4 59 NA 54.2 55.1 68.7 49.8 51.6

Haplorrhini 59.0 63.8 59.8 61.9 67 60.6 61.2 62.4 81.3 NA NA

Catarrhini 28.4 29.0 27.2 32.1 33 27.8 25.1 20.6 31.6 31.0 29.3

Hominoidea 21.4 21.6 19.9 NA 21 18.44 17.4 14.4 20.3 NA 21.5

Cercopithecidae 16.8 16.9 14.2 NA 24 13.4 13.2 NA 17.6 14.1 23.4

Estimates were calculated by averaging the mean times across all runs for 10 independent datasets.
�Refers to the average divergence time of the crown node for the indicated taxonomic group when the 65.8 my maximum constraint was removed from the Primate

node.
†Refers to the average divergence time of the crown node for the indicated taxonomic group when divergence times were estimated using the most concordant gene

trees. Datasets used in all dating analyses are available via Data Dryad in the archive All_Dating_Datasets_DRYAD.tar.gz, https://doi.org/10.5061/dryad.rfj6q577d [22].

my, million years; NA, not applicable.

https://doi.org/10.1371/journal.pbio.3000954.t002
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values. Here, given our large number of gene trees and large number of internal branches to be

tested, we adapt the Δ test for genome-scale data.

To investigate patterns of introgression within primates, we used 1,730 single-copy loci to

test for deviations from the null expectation of Δ on each of the 24 internal branches of the pri-

mate phylogeny (Materials and methods). To test whether deviations in Δ were significant

(i.e., Δ > 0), we generated 2,000 resampled datasets of 1,730 gene tree topologies each. P values

were calculated from Z-scores generated from these resampled datasets. Among the 17

branches where at least 5% of topologies were discordant, we found 7 for which Δ had

P< 0.05.

To further verify these instances of potential introgression, for each of these 7 branches we

increased the number of gene trees used, as well as the alignment length for each locus, by sub-

sampling a smaller set of taxa. We randomly chose 4 taxa for each internal branch tested that

also had this branch as an internal branch and then aligned all orthologs present in a single

copy in each taxon. These steps resulted in approximately 3,600 to 6,400 genes depending on

the branch being tested (S8 Table). Additionally, because instances of hybridization and intro-

gression are well documented among macaques [96,99,100], we similarly resampled orthologs

from the 3Macaca species in our study.

We recalculated Δ using the larger gene sets and found significant evidence (after correcting

form = 17 multiple comparisons by using a cutoff of P = 0.00301) for 6 introgression events,

all of which occurred among the Papionini (Fig 4 and see next paragraph). Within the Homi-

noidea, we found Δ = 0.0518 for the branch leading to the great apes (P = 0.030). The asymme-

try in gene tree topologies here suggests that gene flow may have happened between gibbons

(represented by Nomascus) and the ancestral branch leading to the African hominoids

Fig 4. Introgression among Papionini taxa (the species tree is unrooted for clarity).Arrows indicate that a
significant Δ was found in our 4 taxon tests and identify the 2 lineages inferred to have exchanged genes (values
underlying these tests are listed in S8 Table). Among the Papionini, there was evidence of introgression between
African taxa (Papio, Theropithecus, and Cercocebus) and AsianMacaca species (light gray arrows). Introgression events
likely occurred between African taxa and the ancestralMacaca, which had a wide distribution across Northern Africa
prior to the radiation throughout Asia 2–3 mya [103]. More recent instances of introgression are inferred between
macaque species and among the African Papionini (dark gray arrows). mya, million years ago.

https://doi.org/10.1371/journal.pbio.3000954.g004
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(humans, chimpanzees, and gorillas), but, like theD test, Δ cannot tell us the direction of intro-

gression. Although currently separated by significant geographic distances (African apes south

of the Sahara Desert and gibbons all in Southeast Asia), it is worth noting that fossil hominoids

dating from the early to late Miocene had a broad distribution extending from Southern Africa

to Europe and Asia [101]. Support for introgression between ancestral hominins and ancestral

chimpanzees has been previously reported [102]; our 4-taxon analyses found marginal support

for this conclusion (Δ = 0.0917, P = 0.055).

Within the OWM, approximately 40% of Cercopithicine species are known to hybridize in

nature [34]. Consistent with this,M. nemestrina andMacaca fascicularis showed a strong sig-

nature of gene flow in our data (Δ = 0.1761, P = 1.377e-09). These 2 species have ranges that

currently overlap (S5 Fig). In contrast to the clear signal of recent gene flow in the macaques,

we detected a complex pattern of ancient introgression between the African Papionini (Cerco-

cebus,Mandrillus, Papio, and Theropithecus) and the Asian Papionini (Macaca) (Fig 4). The Δ
test was significant using multiple different subsamples of 4 taxa, suggesting multiple ancestral

introgression events. An initial attempt to disentangle these events using Phylonet v3.8.0 [104]

with the 7 Papionini species and an outgroup was unsuccessful, as Phylonet failed to converge

on an optimal network for these taxa. An attempt to infer the network with SNaQ [105] gave

similarly ambiguous results. When there are multiple episodes of gene flow within a clade,

even complex computational machinery may be unable to infer the correct combination of

events.

As an alternative approach, we used 4-taxon trees to estimate Δ for eachMacaca species

paired with 2 African Papionini (1 from the Papio+Theropithecus clade and 1 from theMan-

drillus +Cercocebus clade; see S8 Table) and an outgroup. Significant introgression was

detected using each of theMacaca species and 3 of the 4 African Papionini species (Cercocebus,

Theropithecus, and Papio). These results suggest gene flow between the ancestor of the 3

Macaca species in our analysis and the ancestors of the 3 African Papionini in our analysis, or

1 introgression event involving the ancestor of all 4 African species coupled with a second

event that masked this signal inMandrillus. This second event may have been either biological

(additional introgression events masking the signal) or technical (possibly the lack of continu-

ity or completeness of theMandrillus reference genome sequence), but in either case, we could

not detect introgression in the available drill sequence. The latter scenario would fit better with

the current geographic distributions of these species, as they are on 2 different continents.

However, the fossil record indicates that by the late Miocene to late Pleistocene, the ancestral

distribution of the genusMacaca covered all of North Africa, into the Levant, and as far north

as the United Kingdom (S5 Fig; [106]). The fossil record for Theropithecus indicates that sev-

eral species had distributions that overlapped withMacaca during this time, including in

Europe and as far east as India (S5 Fig; [107,108]). Ancestral macaques and ancestral Papionini

may therefore have come into contact in the area of the Mediterranean Sea. The Sahara Desert

is also responsible for the current disjunct distributions of many of these species. However,

this region has experienced periods of increased rainfall or “greenings” over the past several

million years [109–111]. Faunal migration through the Sahara, including by hominins, is

hypothesized to have occurred during these green periods [110,112,113], resulting in succes-

sive cycles of range expansion and contraction [114]. Hybridization and introgression could

have occurred between the ancestors of these groups during 1 of these periods.

Our results on introgression come with multiple caveats, both about the events we detected

and the events we did not detect. As with the D test, there are multiple alternative explanations

for a significant value of Δ besides introgression. Ancestral population structure can lead to an

asymmetry in gene tree topologies [115] though it requires a highly specific, possibly unlikely

population structure. For instance, if the ancestral population leading toM. nemestrina was
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more closely related toM. fascicularis than was the ancestral population leading to its sister

species,M.mulatta (Fig 4), then there could be an unequal number of alternative topologies.

Similarly, any bias in gene tree reconstruction that favors 1 alternative topology over the other

could potentially lead to a significant value of Δ. While this scenario is unlikely to affect recent

divergences using SNPs, well-known biases that affect topology reconstruction deeper in the

tree (such as long-branch attraction) could lead to gene tree asymmetries. However, we did

not observe any significant Δ-values for branches more than approximately 10 my old. One

alternative approach to avoid biases in reconstruction could be the use of transposon inser-

tions or other rare genomic changes (cf. [116,117]). Future analyses that compare these differ-

ent approaches to detecting introgression would be especially useful.

There are also multiple reasons why our approach may have missed introgression events,

especially deeper in the tree. All methods that use asymmetries in gene tree topologies miss

gene flow between sister lineages, as such events do not lead to changes in the proportions of

underlying topologies. Similarly, equal levels of gene flow between 2 pairs of non-sister line-

ages can mask both events, while even unequal levels will lead one to miss the less frequent

exchange. More insidiously, especially for events further back in time, extinction of the descen-

dants of hybridizing lineages will make it harder to detect introgression (though extinction of

donor lineages is less of a problem than extinction of lineages receiving migrants). Internal

branches closer to the root will be on average longer than those near the tips because of extinc-

tion [118], and therefore, introgression between non-sister lineages would have to occur lon-

ger after speciation in order to be detected. For instance, gene flow among Strepsirrhine

species has been detected in many previous analyses of more closely related species (e.g., [119–

122]), but the deeper relationships among the taxa sampled here may have made it very diffi-

cult to detect introgression. Nevertheless, our analyses were able to detect introgression

between many primate species across the phylogeny.

Conclusions

Several previous phylogenetic studies of primates have included hundreds of taxa, but fewer

than 70 loci [12,13]. While the species tree topologies produced by these studies are nearly

identical to the one recovered in our analysis, the limited number of loci meant that it was dif-

ficult to assess gene tree discordance accurately. By estimating gene trees from 1,730 single-

copy loci, we were able to assess the levels of discordance present at each branch in the primate

phylogeny. Understanding discordance helps to explain why there have been long-standing

ambiguities about species relationships near the base of primates and in the radiation of

NWMs. Our analyses reveal how concatenation of genes—or even of exons—can mislead max-

imum likelihood phylogenetic inference in the presence of discordance, but also how to over-

come these biases. Discordance also provides a window into introgression among lineages,

and here, we have found evidence for exchange among several species pairs. Each instance of

introgression inferred from the genealogical data is plausible insofar as it can be reconciled

with current and ancestral species distributions.

Materials andmethods

Source material and sequencing

The San Diego Zoo and the Washington National Primate Research Center provided biomate-

rials to the Human Genome Sequencing Center (HGSC), Baylor College of Medicine under an

agreement that granted permission to the HGSC to use the biomaterials for academic scientific

research. This is the standard agreement between these institutions which regularly provide

this service and the academic community that uses their biomaterials for various types of
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analyses. The HGSC does not pay for biomaterials but does cover the costs of shipping the bio-

materials from the provider Baylor.

For the sequencing of the C. angolensis palliatus genome, paired-end (100 bp) libraries were

prepared using DNA extracted from heart tissue (isolate OR3802 from the San Diego Zoo).

Sequencing was performed using 9 Illumina Hi-seq 2000 lanes and 4 Illumina Hi-seq 2500

lanes with subsequent assembly carried out using ALLPATHS-LG software (v. 48744) [123].

Additional scaffolding and gap-filling was performed using Atlas-Link v. 1.1 (https://www.

hgsc.bcm.edu/software/atlas-link) and Atlas-GapFill v. 2.2. (https://www.hgsc.bcm.edu/

software/atlas-gapfill), respectively. Annotation for all 3 species was carried out using the

NCBI Eukaryotic Genome Annotation Pipeline. A complete description of the pipeline can be

viewed at https://www.ncbi.nlm.nih.gov/genome/annotation_euk/process/.

For the sequencing of theM. nemestrina genome, DNA was extracted from a blood sample

(isolate M95218 from the Washington National Primate Research Center). Paired-end librar-

ies were prepared and sequenced on 20 Illumina Hi-Seq 2000 lanes with the initial assembly

performed using ALLPATHS-LG as above. Scaffolding was conducted using Atlas-Link v. 1.1.

Additional gap-filling was performed using the original Illumina reads and Atlas-GapFill v.

2.2, as well as long reads generated using the Pacific Biosciences RS (60 SMRT cells) and RSII

(50 SMRT cells) platforms. The PacBio reads were mapped to scaffolds to fill remaining gaps

in the assembly using PBJelly2 (v. 14.9.9) [124].

For the sequencing of theM. leucophaeus genome, DNA was extracted from heart tissue

(isolate KB7577 from the San Diego Zoo). Paired-end libraries were prepared and sequenced

on 9 Illumina Hi-Seq 2000 lanes with the initial assembly performed using ALLPATHS-LG as

above. Additional scaffolding was completed using Atlas-Link v. 1.1, and additional gap-filling

in scaffolds was performed using the original Illumina reads and Atlas-GapFill v. 2.2.

Phylogenomic analyses

The full set of protein-coding genes for 26 primates and 3 non-primates were obtained by

combining our newly sequenced genomes with already published data (see S1 Table for refer-

ences and accessions and Table 1 and S2 Table for genome statistics). Ortholog clustering was

performed by first executing an all-by-all BLASTP search [125,126] using the longest isoform

of each protein-coding gene from each species. The resulting BLASTP output was clustered

using the mcl algorithm [127] as implemented in FastOrtho [128] with various inflation

parameters (the maximum number of clusters was obtained with inflation = 5). Orthogroups

were then parsed to retain those genes present as a single copy in all 29 taxa (1,180 genes), 28

of 29 taxa (1,558 genes), and 27 of 29 taxa (1,735 genes). We chose to allow up to 2 missing spe-

cies per alignment to maximize the data used in our phylogenomic reconstructions while

maintaining high taxon occupancy in each alignment.

CDS for each single-copy orthogroup were aligned, cleaned, and trimmed via a multistep pro-

cess: First, sequences in each orthogroup were aligned by codon using GUIDANCE2 [129] in con-

junction withMAFFT v7.407 [130] with 60 bootstrap replicates. GUIDANCE2 uses multiple

bootstrapped alignments to generate quality scores for each column in the final alignment as well

as for each taxon sequence in each alignment. Sequence residues in the resulting MAFFT align-

ment with GUIDANCE scores<0.93 were converted to gaps, and sites with>50% gaps were

removed using Trimal v1.4.rev22 [131]. Alignments shorter than 200 bp (full dataset) or 300 bp

(4-taxon tests for introgression), and alignments that were invariant or contained no parsimony

informative characters, were removed from further analyses. Alignments with high numbers of

discordant sites were further inspected for errors and removed from the analysis when warranted.

This resulted in 1,730 loci for the full analysis (see S8 Table for gene counts used in 4-taxon tests).
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IQ-TREE v2-rc1 was used with all 1,730 aligned loci to estimate a maximum likelihood

concatenated tree with an edge-linked, proportional-partition model, and 1,000 ultrafast boot-

strap replicates [132,133]. This strategy uses ModelFinder [134] to automatically find the best-

fit model for each ortholog alignment (partition). Branch lengths are shared between parti-

tions, with each partition having its own rate that rescales branch lengths, accommodating dif-

ferent evolutionary rates between partitions. The full IQ-TREE command line used was “iqtree

-p Directory_of_Gene_Alignments--prefix -mMFP -c 8 -B 1000”. Maximum likelihood gene

trees were estimated for each alignment with nucleotide substitution models selected using

ModelFinder [134] as implemented in IQ-TREE. The full IQ-TREE command line used was

“iqtree -s Directory_of_Gene_Alignments--prefix -mMFP -c 8”. We used the resulting maxi-

mum likelihood gene trees to estimate a species tree using ASTRAL III (ML-ASTRAL) [39].

Parsimony gene trees were generated using MPboot [76] and used to estimate a species tree

using ASTRAL III (MP-ASTRAL), while PAUP� [73] was used to estimate the concatenated

parsimony tree (MP-CONCAT) with 500 bootstrap replicates. IQ-TREE was used to calculate

both gCFs and sCFs, with sCFs estimated from 300 randomly sampled quartets using the com-

mand line “iqtree--cf-verbose--gcf 1730_GENETREE.treefile -t Species_tree_file--df-tree--scf

300 -p Directory_of_Gene_Alignments -c 4”.

Effects of selection on gene tree distributions

We performed 100 replicate simulations for each mutation rate condition using SLiM version

3.3.1 [82], with tree sequence recording turned on and no neutral mutations. Each replicate

simulation consisted of 50 non-recombining loci of 1 kb each, with free recombination

between loci, for 3 populations with the phylogenetic relationship ((p2,p3),p1). These simula-

tions closely match the population genetic parameters under the most extreme asymmetry

condition reported in He and colleagues [77], with population sizes, selection coefficients, and

mutation rates rescaled 2 orders of magnitude for performance (SLiM recipes are available via

Data Dryad: https://doi.org/10.5061/dryad.rfj6q577d [22]). These parameters include a per-

locus deleterious mutation rate of 3 × 10−7 per generation; a population-scaled selection coeffi-

cient (Ns) of −7.5; an internal branch subtending p2 and p3 of 0.01N generations (where N is

the population size of p1 and p2); a population size for p3 that is 0.04 times than that of p1 and

p2; and tip branch lengths of 8N generations. In the higher mutation rate condition, the per-

locus rate was increased to 3 × 10−5 per generation. We randomly sampled 1 chromosome

from each population at each locus at the end of the simulation and obtained the genealogy of

these samples recorded in the tree sequence at the locus.

Introgression analyses

For each internal branch of the primate tree where the proportion of discordant trees was

>5% of the total, concordance factors were used to calculate the test statistic Δ, where

D ¼
Number of DF1 trees� Number of DF2 trees

Number of DF1 treesþ Number of DF2 trees
;

where DF1 trees represent the most frequent discordant topology, and DF2 trees are the sec-

ond most frequent discordant topology. This is a normalized version of the statistic proposed

by Huson and colleagues [36], which only included the numerator of this expression. Note

also that, by definition, Δ here is always equal to or greater than 0. To test whether deviations

from zero were significant (i.e., Δ > 0), we calculated Δ for 2,000 pseudo-replicate datasets gen-

erated by resampling gene trees with replacement. The resulting distribution was used to cal-

culate Z-scores and the resulting P values for the observed Δ value associated with each branch
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tested [135]. Of the 17 internal branches where>5% of topologies were discordant, 7 were sig-

nificant at P< 0.05, and selected for more extensive testing. For each of the 7 significant

branches in the all-Primates tree, 4 taxa were selected that included the target branch as an

internal branch. Single-copy genes present in each taxon were aligned as previously described.

Alignments with no variant or parsimony informative sites were removed from the analysis,

and gene trees were estimated using maximum likelihood in IQ-TREE 2. The test statistic, Δ,
was calculated, and significance was again determined using 2,000 bootstrap replicates with

the P value threshold for significance corrected for multiple comparisons (m = 17) using the

Dunn–Šidák correction [136,137].

Molecular dating

Molecular dating analyses were performed on 10 datasets consisting of 40 CDS alignments

each sampled randomly without replacement from the 1,730 loci used to estimate the species

tree. Gene alignments were concatenated into 10 supermatrices ranging from 36.7 kb to 42.7

kb in length (see S5 Table for the length of each alignment). Each dataset was then analyzed

using PhyloBayes 3.3 [86] with sequences modeled using a site-specific substitution process

with global exchange rates estimated from the data (CAT-GTR; [138]). Among-site rate varia-

tion was modeled using a discrete gamma distribution with 6 rate categories. A relaxed molec-

ular clock [139] with 8, soft-bounded, fossil calibrations (see S6 Table) was used to estimate

divergence times on the fixed species tree topology (Fig 1); the analyses were executed using

the following command line: pb -x 1 15000 -d Alignment.phy -T Tree_file.tre -r outgroup_file.

txt -cal 8_fossil.calib -sb -gtr -cat -bd -dgam 6 -ln -rp 90 90. Each dataset was analyzed for

15,000 generations, sampling every 10 generations, with 5,000 generations discarded as burn-

in. Each dataset was analyzed twice to ensure convergence of the average age estimated for

each node (Fig 3 shows the node age for both runs). To determine the effect of including a

maximum constraint on the root of the Primates, we analyzed each dataset a third time with

this constraint removed. Both the constrained and unconstrained node ages for major groups

within the Primates are reported in Table 2.

Single-copy CDS gene alignments, gene trees, dating datasets, SLiM3 recipes, unaligned

gene sequences, and PAUP commands can be accessed via the Data Dryad repository located

at https://doi.org/10.5061/dryad.rfj6q577d [22].

Supporting information

S1 Fig. Concordance factors for the species tree in Fig 1 calculated using maximum likeli-

hood gene trees and site patterns from the 200 longest single-copy loci alignments used in

the 1,730-gene analysis. In general, gCFs increase, while the sCFs remain the same, indicating

that gene tree error is a likely source of some discordance. gCF, gene concordance factor; sCF,

site concordance factor.

(PDF)

S2 Fig. Concordance factors calculated using 150 randomly chosen single-copy orthologs,

with pika (Ochotona princeps) included as an additional outgroup to mouse. (A) gCFs and

sCFs for these 150 genes when pika is included. (B) gCFs and sCFs for these same genes when

pika is not included. We observe slightly higher gCFs near the base of the tree with pika

excluded (red boxes). Note that these species trees use unit-length branch lengths for readabil-

ity of branch labels. gCF, gene concordance factor; sCF, site concordance factor.

(PDF)

PLOS BIOLOGY Ancient introgression in primates

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000954 December 3, 2020 18 / 27

https://doi.org/10.5061/dryad.rfj6q577d
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000954.s001
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000954.s002
https://doi.org/10.1371/journal.pbio.3000954


S3 Fig. Gene and site concordance factors plotted as a function of node depth (in millions

of years).No correlation was found between gCFs and node depth, whereas a slightly negative

correlation was found between sCFs and node depth. This relationship indicates that homo-

plasy may act to slightly reduce sCFs deeper in the tree. The data underlying mean node ages

are provided in S1 Data. gCF, gene concordance factor; sCF, site concordance factor.

(PDF)

S4 Fig. Forward simulations using SLiM3 with the most extreme parameters used by He

et al. (2020): population size combination “F” with s = −7.5 × 10−6 and Δτ = 2,000. Our results

show no significant difference in the distribution of gene tree topologies in the presence of

negative selection (A). This result holds for simulations in which we increased the per-locus

mutation rate by 2 orders of magnitude (B). SLiM3 recipes are available via Data Dryad at

https://doi.org/10.5061/dryad.rfj6q577d [22]. Gene tree counts for both simulations, A and B,

are available in S1 Data.

(PDF)

S5 Fig. Present-day species distributions for 4 African Papionini (Papio, Theropithecus,

Mandrillus, and Cercocebus) and 3 AsianMacaca species included in the introgression

analysis. The ancestralMacaca distribution (gray shading) is inferred fromMacaca fossil

localities in Africa and Europe as reviewed in Roos et al. [106]. The ancestralMacaca distribu-

tion likely represents only a fraction of the species range from the late Miocene to the late

Pleistocene in Africa and Europe. The contemporary distribution of the AfricanMacaca sylva-

nus (bright green) is included for reference; the current distribution ofMacaca nemestrina is

completely contained within that ofMacaca fascicularis. Fossil localities for Theropithecus spe-

cies hypothesized to overlap contemporaneously with various ancestralMacaca are included.

Citations for spatial data of extant species:M. nemestrina (Richardson et al., 2008),M. fascicu-

laris (Ong and Richardson, 2008),M. sylvanus (Butynski et al., 2008),Macaca mulatta (Tim-

mins et al., 2008), Theropithecus gelada (Gippoliti et al., 2019), Papio anubis (Kingdon et al.,

2008), Cercocebus atys (Oates et al., 2016), andMandrillus leucophaeus (Oates and Butynski,

2008). Base map was obtained from the public domain map database Natural Earth (http://

www.naturalearthdata.com/downloads/).

(PDF)

S1 Table. Genomes analyzed in this study with the original NCBI release date, the publica-

tion for the reference used, and the accession number for the assembly.When possible, the

most recent version for each genome was used.

(DOCX)

S2 Table. All published genomes used in this study, including links to the assemblies and

NCBI BioProjects. Annotation information is included for each genome at the time of down-

load.

(XLSX)

S3 Table. Orthogroup, protein name, human chromosome number, and coordinates for

the single-copy human orthologs used in the 1,730 gene analysis. Alignment files are named

by orthogroup, allowing the use of this table to identify the protein in each alignment.

(XLSX)

S4 Table. Gaps/ambiguities by species and as a percentage of total alignment length. �

denotes species sequenced this study.

(DOCX)
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S5 Table. Lengths for each 40-locus concatenated alignment used in the molecular dating

analyses. Each dataset was analyzed twice until node age estimates converged (15–25k steps)

using a log-normal auto-correlated model [139]. Datasets are available via Data Dryad at

https://doi.org/10.5061/dryad.rfj6q577d [22].

(DOCX)

S6 Table. Fossil calibrations employed in this study. Node numbering corresponds to the

numbering in Fig 3. Median underflow/overflow for each calibration was calculated from 20

independent runs performed on 10 datasets (2 runs per dataset).

(DOCX)

S7 Table. Mean node age for 20 independent PhyloBayes dating runs.Node numbers corre-

spond to the numbering in Fig 3. The 95% HPD intervals were calculated by averaging the

minimum and maximum of the 95% HPD interval for each dating run. HPD, highest posterior

density.

(DOCX)

S8 Table. Quartets used to test for significant Δ values for internal branches of the primate

tree. Branches tested correspond to the labeled branches in Fig 3. After correcting for multiple

comparisons (Dunn–Šidák, P = 0.00301), 3 internal branches and 8 quartets were found to

have significant Δ values, indicating a likely introgression event.

(DOCX)

S1 Data. The Excel workbook contains 5 different tabs. Tab 1, Fig 3 Data: consists of the

node age estimates for all 20 independent PhyloBayes dating analyses as well as the run used to

determine the prior for each node; each estimate is plotted separately in Fig 3. Tab 2, Fig 3

Data for R: the same data as in tab 1, but formatted for analysis with the accompanying R script

“plot_DATING.R” available via Data Dryad: https://doi.org/10.5061/dryad.rfj6q577d [22].

Tab 3, S3_Fig_Data: the data used to generate S3 Fig. The average node ages estimated in tab 1

are used here to plot age vs. concordance factors estimated for each node in IQ-TREE. Tab 4,

S4_Fig_PanelA_Data: contains the tree counts that resulted from the SLiM3 simulation condi-

tions pictured in S4A Fig. Tab 5, S4_Fig_PanelB_Data: contains the tree counts for the SLiM3

simulation conditions pictured in S4B Fig. SLiM3 recipes for both simulations are available via

Data Dryad at https://doi.org/10.5061/dryad.rfj6q577d [22].

(XLSX)
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