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1. Introduction. Right alternative rings arise when the alternative

identity is weakened [l]. That is, a ring R is called right alternative

if the identity (y, x, x)=0 is satisfied for all x, y in R where the

associator is defined as (x, y, z) = (xy)z—x(yz). When the characteris-

tic of R is prime to 2 this is equivalent to the identity

(1) (x, y, z) + (x, z, y) = 0        for all x, y, z £ R.

Many authors have investigated right alternative rings (see the

bibliography). In this paper we examine a subclass of these rings,

the ( — 1, 1) rings. Such rings R satisfy (1) and the identity

(2) (x, y, z) + (y, z, x) + (z, x, y) = 0        for all x, y, z E R-

Maneri [7] proved that a simple ring of type ( —1, 1) with charac-

teristic prime to 6 having an idempotent e^Q, 1 is associative. It is

shown in this paper that when R is a (—1, 1) ring with no trivial

ideals which has characteristic prime to 6, then if R contains an

idempotent e^Q, 1, it has a Peirce decomposition relative to e.

Further, the multiplicative relations between the submodules of the

Peirce decomposition relative to containment are the same as those

for an associative ring. Under the additional assumption that R is a

prime ring it is proven that R must be associative.

2. Preliminary section. A Peirce decomposition. We will assume

throughout this section that i? is a ( — 1, 1) ring with characteristic

prime to 6 having an idempotent e^O, 1. When other conditions on

R are needed they will be noted.

The commutator is defined as (x, y) =xy—yx where x, yER- It is

simple to verify that the identity C(x, y, z) = (xy, z) —x(y, z) — (x, z)y

— (x, y, z)-\-(x, z, y) — (z, x, y) =0 is satisfied by all elements x, y, z

in an arbitrary ring. When R satisfies (1) this reduces to

(3) C(x, y, z) = (xy, z) - x(y, z) - (x, z)y - 2(x, y, z) - (z, x, y) = 0.

The following identities hold in an arbitrary right alternative

ring [5].
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(4) Jix, w, y, z) — ix, w, yz) + ix, y, wz) — ix, w, z)y — ix, y, z)w = 0,

(5) Kix, y, z) = ix, y2, z) - ix, y, yz + zy) = 0.

When R, in addition, satisfies (2) and has an idempotent e, the

following identities are satisfied for all x, y, wER [7].

(6) ix, ie, e, y)) = 0,

(7) («, e, y)ie, e, w) = 0,

(8) ie, e, ie, x))y = (e, e, y(e, x)).

Next,define U= {uER\ («, R) = 0}. Then if u is in U,0 = Cix, x, u)

= —2(x, x, u) and so

(9) (*, x, u) = 0.

From (1) it then follows that (x, u, x) =0. If x is replaced by x+y

in (9) and the last equation we obtain

(10) ix, y,u) = - iy, x, u),        ix, u, y) = - (y, «, x).

We will find the Teichmtiller identity, which follows, useful. For

all x, y, z, wER, where R is an arbitrary ring,

Fix, y, z, w) = ixy, z, w) - ix, yz, w) + ix, y, zw)

— xiy, z, w) — ix, y, z)w = 0.

Lemma 1. Let A 5^0 be an ideal of R. Then the set of two-sided anni-

hilators of A is an ideal of R.

Proof. Suppose x is in R and xA=Ax = 0. Let a belong to A and

y to R. From (1) we get 0 = iy, a, x) + iy, x, a) = iy, x, a) = (yx)a and

0 = (x, a, y) + (x, y, a) = (x, y, a) = ixy)a. Then from (2), 0= (a, x, y)

+ (x, y, a) + (y, a, x) = (a, x, y) + (x, y, a) = -aixy) + ixy)a = -aixy)

and 0 = (a, y, x) + (y, x, a) + (x, a, y) = ia, y, x) + (y, x, a) = —a(yx)

+ (yx)a= — a(yx). Hence, the two-sided annihilators of A form an

ideal of R.

The next lemma is crucial to the existence of a Peirce decomposi-

tion relative to e.

Lemma 2. Let R have characteristic prime to 6. Then let s belong to R

such that s and sR belong to U. Define

B,= {x E R | xs = xisR) = ixR)s = iRx)s

= ixR)iRs) = iRx)iRs) =0}.

Then Bs is an ideal of R.
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Proof. Let xEB. and y, z, wER- From the definition of B„ it

is immediate that

(12) ixw)s = iwx)s = ixw)iys) = iwx)iys) = 0.

Now iwx, y, s)= — iy, wx, s) and (w, y, s) = — (y, xw, s) from (10)

since 5 is in U. Expanding these associators, we have [(wx)y]s

= — [yiwx)]s and [(xw)y]s = — [y(xw)]s. However, iwx, y, s)

= — (wx, s, y)=0 and ixw, y, s)= — ixw, s,y)=0 from (12). We con-

clude that

(13) [(wx)y]s = [(xw)y]s = [y(wx)]5 = [y(xwj]s = 0.

It remains to show that [ixw)y]isz)=[iwx)y]isz)=[yixw)]isz)

= [yiwx)]isz)=0. We will show that the expressions involving xw

vanish, and note that an identical proof applies to the remaining two

expressions. We have, from (4), 0 = Jixw, s, y, z) = ixw, s, yz)

+ ixw, y, sz) — ixw, s, z)y—ixw, y, z)s. Since (xw, s, yz) = (xw, s, z)y = 0

by (12) and (13) we obtain (xw, y, 52) = (xw, y, z)s. Combining this

equation with the fact that sz is in U we get (xw, y, sz) = — (xw, sz, y)

= iy, sz, xw) = (xw, y, z)s. Expanding the latter three associators and

using (12) and (13) we obtain

(14) [y(.?3)](xw) = ixw)[isz)y] = {[ixw)y]z}s.

Next, we have 0 = (xw, y,sz) + iy, sz, xw) + isz, xw, y) = — 2 (xw, sz, y)

— isz, y, xw)=2ixw)[isz)y]— [isz)y]ixw) + isz) [yixw)] from (2), (10)

and (12). Then, from (14) and the fact that szE U, we obtain

(15) ixw) [isz)y] = — isz)[yixw)].

Now, from (1), (xw, y, sz) = — (xw, sz, y). Expanding these associ-

ators and using (12) we obtain [ixw)y]isz) — ixw) [yisz)] = (xw) [(sz)y].

Since sz belongs to U this equation becomes

(16) 2ixw)[isz)y] = [ixw)y]isz).

Combining (15) and (16) we get

(17) 2isz)[yixw)] + [ixw)y]isz) = 0.

From (14) and (16) and the fact that s belongs to U we have

(18) 2{ [(zw)y]3}5 = [ixw)y]izs).

It then follows from (18) that iixw)y, z, s) = — { [(xw)y]z}5. How-

ever, Hxw)y, z, s) — —iixw)y, s, z) = [ixw)y]isz) from (13) and so,

[(xw)y](52) = — { [(xw)y]z}s. This equation, combined with (18),

yields [(xw)y](zs) =0 when divided by 3. Whence, from (17) and the
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fact that 53 is in U, it follows that [y(xw)](sz) =0. Thus Bs is an ideal

of R.

We now assume that R has no trivial ideals. The following lemma

leads directly to the existence of the Peirce decomposition.

Lemma 3. (e, e,(e, x)) = 0 for all x in R.

Proof. Let (e, e, (e, x))=b. Then from (6) we obtain (b, R)=0.

Furthermore, (bR, R)=0 from (8). Thus the element b satisfies the

requirements for the element 5 of Lemma 2.

On the other hand, it is quite clear from (6), (7), and (8) that b

also belongs to Bb. Now let C be the ideal generated by b. Then C

is contained in Bb. But from Lemma 2 it is evident that Bbb = bBb = 0.

Then from Lemma 1 it follows that since the two-sided annihilators

of an ideal form an ideal of R, CBb = BbC—0 and so C2 = 0. That is,

C is a trivial ideal of R. Hence, C = 0.

Theorem 1. Let R be a (—1, 1) ring with no trivial ideals. Further,

suppose that the characteristic of R is prime to 6. Then if R has an idem-

potent, e, R has the desired Peirce decomposition R = Ru-\-Rio-\-Roi+Roo

where x belongs to Rtj if and only if ex = ix and xe =jx for i, j = 0, 1

and the sum of the submodules is direct.

Proof. It suffices to show that (e, e, x) = (e, x, e) = (x, e, e) = 0 for

all x in R. From the fact that R is right alternative, (x, e, e) =0 for all

x in R. Next, from (5), 0 = K(e, e, x) = (e, e, x) — (e, e, ex-\-xe). Since

(e, e, (e, x)) =0 from Lemma 3 we obtain (e, e, x)—2(e, e, ex) =0. Re-

placing x with ex in the last equation we get (e, e, ex) — 2(e, e,e(ex)) =0.

Since (e, e, x) is in U, it follows from (9) with e and (e, e, x) sub-

stituted for x and u that 0 = (e, e, (e, e, x)) = (e, e, ex) — (e, e, e(ex)).

Thus, (e, e, ex) =0. But then (e, e, x) =0. Finally, from (1), (e, x,e)=0

and R has the desired Peirce decomposition relative to e.

3. Main section. Let R be a ( —1, 1) ring with no trivial ideals

containing an idempotent ey^O, 1. Under the assumption that the

characteristic of R is prime to 6 the following two lemmas are

satisfied by R [7].

Lemma 4. The following multiplication table, with respect to contain-

ment, holds for the submodules i?,y of the Peirce decomposition of R.

i
RijRkm Q 8jkRim except Ra Q Ra where i, j, k, m = 0, 1 and

8jk is the Kronecker delta.

Lemma 5. For all x, y in R and the idempotent e the following iden-

tity holds.
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(20) ie, x, y) = 0.

We now proceed to examine the submodules 2?i0 and 2?0i carefully.

We will show that R% = 0 when i = 0, 1 and j= 1 — i and that R2} is in

the center of R. It is then easy to show that R2j is a trivial ideal of R

and hence must be zero.

Lemma 6. R3i = d for i = 0, 1 and j=l—i.

Proof. Let x,y, ytj, zi3 belong to 2?y. Then

0 = iytj, xn, Xij) = iyijXij) Xij-yaix2)).

But y,yxtj = 0 from (19) and so

(21) iyijXij)xij = 0.

Next, 0 = ixij, yn, e) + (y.y, e, xi3) + ie, xi3, yi3) = (x,>, yiit e) + (yi3, e, xi3)

from (2) and (20). Expanding these associators we get

(22) ix^ yi3) = 0.

Combining (21) and (22) and using (19) we obtain 0 = ixny^x^

= ixij, yn, Xij) = —ixi3, Xij, yn)= —x2t]yij. Then replacing x(i with

Xi3+Zij in the last expression we get (x,;Z»7+z<yXy)y<y = 0. This result,

combined with (22), yields (xty2j;)yi; = 0. Hence 2?y = 0.

Lemma 7. (2?, 2?^) =0 where i = 0, 1 and j = l—i.

Proof. From Lemma 6 and (19), it suffices to consider commuta-

tors (x, y) where x belongs to RjXJRn and y to 2^,. First, let xiit ytj

belong to Ri3 and zjt to 2?yi. Now 0 = (x,7, yn, 0y,) + (x<y, z3i, yi3)

= ixn, Zji, yi3) from (19). Then 0=(x<„ yw, z3i) + (y{j, z3i, xi3)

+ izjt, Xij, yi3) = izji, xn, y,7) = —zH (xwy0) from (2) and (19). Hence

RjiR% = RlR,i = 0.
It remains to show that elements from 2?y commute with elements

of ''Rii. To this end, let X;y, y,> belong to 2?,3- and Zu to 2?,,-. Then

o = (x,y, yn, zu) + ixij, zti, y«) = (*«y«)»«—*«(*«y«)Irom (19). Since

the elements in R{j commute, (22), we have

<23) ixijyij)zu = izuyi3)xij = (y<,x«)z« = (z«*«)y<y-

Next, 0 = (z«, x,j, y,y) + (xiy, y,7, z.-O + (y,y, z«, xtJ) = (zti, x,y, yt;)

+ ixi,jyij)Zii—yi,iZiiXii) from (2) and (19). Then from (19), (23) and

the fact that elements from 2?i;- commute with each other we conclude

that

(24) izn, xn, yi3) = 0.

Expanding   this   associator   and   using   (22)   and   (23)   we   get
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0=(zuXij)yij — Zii(xijyij) = (yijXii)Zii — Zii(xijyij).   Hence   (Ri{,  i?,;)=0

and we conclude that (R, R2]) =0.

To prove that R% where i = 0, 1 and j=l—i are in the center of R

it remains to show that they are contained in the nucleus of R.

Lemma 8. R% is in the center of R when i = 0, 1 and j = l—i.

Proof. Consider associators of the form (xkp, ytjZij, wmn) where

x/tp belongs to Rkp, wmn to Rmn and y,y, 2,7 to i?tJ- and k, p, m, n = 0, 1.

We recall, first, that Rij+Rji-{-Rjj annihilates R2tj from both sides.

Hence the above associator vanishes unless k = p = i or m = w = ?'.

Suppose that k = p = i. If m=j, 0 = (xu, ytjZtj, win) from (19) regard-

less of the value of n. Next, let k=p = m = i and n—j. Then

0 = (*«, yaZij, Wij) + (xii, Wij, yijZij) = (xii, ynZij, wi}) from (19) and

Lemma 7.

Elements from R2tj belong to U by Lemma 7. Hence, from (10),

(xkp, yifin, wmn) = — (wmn, yijZn, xkp). If we now assume that m = n = i

the argument of the last paragraph applies and we can conclude that

unless k = p — m = n = i, the original associator vanishes.

We have left to consider associators of the form (xu, yijZtj, wu).

From (4) and (24) we obtain 0 = J(xiit wu, ytj, zi3) = (xu, Wu, y,jZij)

1 {Xu, yij, WiiZij) \Xa, Wu, Zij)yij \xu, y%j, Zijjwu—KXu, wu, yijZij)

— (xu, Wu, Zij)yij. However, 0 = (xu, wti, Zif) + (xu, zijt wti) = (xu, wu, z,y)

from (19) and so we have 0=(xti, wti, y,;S,y) = — (x,-,-, yijZtj, Wu).

Therefore, R2^ is in the middle nucleus of R. It follows from (1) and

(2) that whenever an element is contained in the middle nucleus of R

it is contained in the nucleus of R. Hence, R?t] is in the nucleus of R.

Lemma 9. R2tjis a trivial ideal of R, where i = 0, 1 and j=l—i.

Proof. (R2,, R)=0 and (Rij+Rji+Rjj)R2j = 0. Also, from (23),

when Xa, ytj belong to R{i and z« to Ra, (xijyij)zii= (zity<y)xtv. There-

fore, R*j is an ideal of R. But, from Lemmas 6 and 8, when xfj, ytj,

Zij, w^ belong to Riit (xijyij)(zijWij) = [(xijyij)zij]wij = 0. Hence, R%

is a trivial ideal of R.

Corollary. R% = 0 where i = 0, 1 and j = 1 — i.

Proof. Immediate from Lemma 9 and the fact that R has no trivial

ideals.

It is now clear that the submodules i?„, where i, j = 0, 1, satisfy

the same multiplicative relations as those for an associative ring with

idempotent. Namely,

(25)   RijRkp C 8jkRip where *,/, k, p = 0,1 and 8jk is the Kronecker delta.
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As an immediate consequence of (25), by direct computation, e

is contained in the nucleus of R.

The next lemma is true for arbitrary rings of type ( — 1, 1).

Lemma 10. Let y belong to the nucleus of R where R is a ring of type

( — 1, 1). Then iy, z) belongs to the nucleus of R for all z in R.

Proof. Let x, w, z belong to R. Then from (4), 0 = Jr(x, w, y, z)

= (x, w, yz) + ix, y, wz) — ix, w, z)y — ix, y,z)w= ix, w, yz) — ix, w, z)y.

Also, from (11), 0 = F(x, w, z, y) = ixw, z, y) — (x, wz, y) + (x, w, 2y)

—x(w, z, y) — (x, w, 2)y = (x, w, 2y) — (x, w, 2)y. Combining the above

results, we conclude that (x, w, yz) = (x, w, zy) and thus (x, w, (y,z))= 0.

Therefore, iy, z) is in the right nucleus of R. Finally, from (1) and

(2), (y, z) is contained in the nucleus of R.

Lemma 11. The set B=RioRoi+Rio+Roi+RoiRio is an ideal in the

nucleus of R.

Proof. It was mentioned above that e is in the nucleus of R. Let

Xij belong to 2?,y. Then from Lemma 10, (e, xi3) also belongs to the

nucleus of R. But (e, xi3) = ix,-,- when i^j and so 2?i0 and 2?0i are in

the nucleus of R. From this fact and (25), it is immediate that B is

an ideal of R contained in the nucleus of R.

We now make the additional assumption that R is a prime ring.

A ring R is called prime if, whenever I and / are ideals in R such that

2/ = 0, then either 1 = 0 or 7 = 0.

Lemma 12. Let R be an arbitrary nonassociative prime ring. Then R

can contain no nonzero nuclear ideals.

Proof. Let A be an ideal in the nucleus of R. Then if x, y, z, w

belong to R and a to A, we have 0 = Fia, x, y, z) = (ax, y, z) — (a, xy, z)

+ (a, x, yz)—aix, y, 2) —(a, x, y)z= — a(x, y, 2). Further, a[(x, y, 2)w]

= [a(x, y, 2)]w = 0. But finite sums of elements of the form (2?, R, R)

and (2?, R, R)R form a 2-sided ideal in an arbitrary ring. Hence A

annihilates an ideal of R containing all associators of R. Since R is

prime and not-associative, A = 0.

It is now clear that 2J=2?i02?0i+2?io+2?oi+2voi2?io = 0 and R as-

sumes the form 2? = 2?n+2?0o unless R is associative. But then Rn

and 2?oo become orthogonal ideals of R. Since R is prime this means

that either 2?n = 0 or 2?0o = 0. However, e^0 belongs to Rn. Thus

i?oo = 0. If this is the case, R = Rn and e is the identity of R, contrary

to our assumption that e^l. Hence, R must be associative.

Theorem 2. Let Rbea prime ring of type ( — 1, 1) with characteristic
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prime to 6. If R has an idempotent e^O, 1, then R is associative.

It should be noted that an arbitrary primitive ring is also prime

[°]. Hence, by constructing a suitable radical, the results of this

paper could be extended to semisimple rings.

Bibliography

1. A. A. Albert, On right alternative algebras, Ann. of Math. 50 (1948), 1-13.

2. -, Almost alternative algebras, Portugal Math. 8 (1949), 23-36.

3. -, The structure of right alternative algebras, Ann. of Math. (2) 59 (1954),

408-417.

4. M. M. Humm, On a class of right alternative rings without nilpotent ideals,

Ph.D. dissertation, Syracuse Univ., Syracuse, N. Y., 1965.

5. E. Kleinfeld, Right alternative rings, Proc. Amer. Math. Soc. 4 (1953), 939-944.

6. -, On a class of right alternative rings, Math. Z. 87 (1965), 12-16.

7. C. Maneri, Simple ( — 1,1) rings with an idempotent, Proc. Amer. Math. Soc.

14 (1963), 110-117.

8. R. L. San Soucie, Right alternative division rings of characteristic 2, Proc. Amer.

Math. Soc. 6 (1955), 291-296.
9. -, Weakly standard rings, Amer. J. Math. 79 (1957), 80-86.
10. L. A. Skornyakov, Right alternative fields, Izv. Akad. Nauk SSSR Ser. Mat.

15 (1951), 177-184.

Syracuse University and

SUNY at Binghamton

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


