Prime and Almost Prime Integral Points on Principal Homogeneous Spaces

by

Amos Nevo and Peter Sarnak
Technion, Haifa

Abstract

We develop the affine sieve in the context of orbits of congruence subgroups of semisimple groups acting linearly on affine space. In particular we give effective bounds for the saturation numbers for points on such orbits at which the value of a given polynomial has few prime factors. In many cases these bounds are of the same quality as what is known in the classical case of a polynomial in one variable and the orbit is the integers. When the orbit is the set of integral matrices of a fixed determinant we obtain a sharp result for the saturation number, and thus establish the Zariski density of matrices all of whose entries are prime numbers. Among the key tools used are explicit approximations to the generalized Ramanujan conjectures for such groups and sharp and uniform counting of points on such orbits when ordered by various norms.

Keywords : Affine sieve, Semisimple groups, Arithmetic lattices, Lattice points, Prime numbers, Principal homogeneous spaces, Spectral gap, Mean ergodic theorem.

Acknowledgements :

A. N. was supported by the Institute for Advanced Study, Princeton and ISF grant 975/05.
P. S. was supported by an NSF grant and BSF grant 2006254.

Section 1.

1.A: Prime and almost prime integral matrices of a given determinant.

For integers $n \geq 2$ and $m \neq 0$ let $V_{m, n}(\mathbb{Z})$ or $\mathcal{O}^{m, n}$ denote the set of $n \times n$ integral matrices of determinant equal to m. We study the points $x \in \mathcal{O}^{m, n}$ for which $f(x)=\prod_{1 \leq i \leq j \leq n} x_{i j}$, or more generally any $f \in \mathbb{Q}\left[x_{i j}\right]$ which is integral on $\mathcal{O}^{m, n}$ has few (or fewest possible) prime factors. In general, given a set \mathcal{O} of integer points in $\mathrm{Mat}_{n \times n}$ and $d \geq 1$ let \mathcal{O}_{d} denote the reduction of \mathcal{O} in $\operatorname{Mat}_{n \times n}(\mathbb{Z} / d \mathbb{Z})$. We say f is weakly primitive for \mathcal{O} if $\operatorname{gcd}\{f(x): x \in \mathcal{O}\}$ is 1 . If f is not weakly primitive then $\frac{1}{N} f$ is, where $N=\operatorname{gcd} f(\mathcal{O})$ and we can represent any weakly primitive f as $\frac{1}{N} g$ with $g \in \mathbb{Z}\left[x_{i j}\right]$ and $N=\operatorname{gcd} g(\mathcal{O})$.

Define the saturation number r_{0} of the pair $\left(\mathcal{O}^{m, n}, f\right)$ to be the least r such that the set of $x \in \mathcal{O}^{m, n}$ for which $f(x)$ has at most r prime factors, is Zariski dense in the affine variety $V_{m, n}=\left\{x \in \operatorname{Mat}_{n \times n}: \operatorname{det} x=m\right\}=Z c \ell\left(\mathcal{O}^{m, n}\right)$ (we denote by $Z c \ell$ the operation of taking Zariski closure in affine space, also see [Sa1] for a further discussion and motivation for this set up). It turns out that r_{0} is finite though this is by no means obvious. The coordinate ring $\mathbb{Q}\left[x_{i j}\right] /\left(\operatorname{det}\left(x_{i j}\right)-m\right)$ is a unique factorization domain [San] and we factor f into $t=t(f)$ irreducibles $f_{1} f_{2} \ldots f_{t}$ in this ring. We assume that the f_{j} 's are distinct and for simplicity that they are irreducible in $\overline{\mathbb{Q}}\left[x_{i j}\right] /\left(\operatorname{det} x_{i j}-m\right)$. It is clear that $r_{0}\left(\mathcal{O}^{m, n}, f\right) \geq t$ and if f and the f_{j} 's have integer coefficients, that $r_{0}\left(\mathcal{O}^{m, n}, f\right)=t$ iff the set of $x \in \mathcal{O}^{m, n}$ for which $f_{j}(x)$ are all prime, is Zariski dense in $V_{m, n}$. The general local to global conjectures in [B-G-S2] when applied to the pair $\left(V_{m, n}(\mathbb{Z}), f\right)$ assert that $r_{0}\left(V_{m, n}(\mathbb{Z}), f\right)=t$. In the case that f and f_{j} are in $\mathbb{Z}\left[x_{i j}\right]$ we even expect a "prime number theorem" type of asymptotics as follows:

Let | | be any norm on the linear space $\operatorname{Mat}_{n \times n}(\mathbb{R})$ and for $T \geq 1$ set

$$
\begin{equation*}
N_{m, n}(T)=\left|\left\{x \in \mathcal{O}^{m, n}:|x| \leq T\right\}\right| . \tag{1.1}
\end{equation*}
$$

It is known [D-R-S], [Ma], [G-N1] that

$$
\begin{equation*}
N_{m, n}(T) \sim c\left(\mathcal{O}^{m, n}\right) T^{n^{2}-n} \text { as } T \longrightarrow \infty \tag{1.2}
\end{equation*}
$$

Here c is positive constant and is given as a product of local densities associated with $\mathcal{O}^{m, n}$. Let

$$
\begin{equation*}
\pi_{m, n, f}(T)=\mid\left\{x \in \mathcal{O}^{m, n}:|x| \leq T \text { and } f_{j}(x) \text { is prime for } j=1,2, \ldots, t\right\} \mid \tag{1.3}
\end{equation*}
$$

Our conjectured asymptotics for $\pi_{m . n . f}$ is then as follows :

$$
\begin{equation*}
\pi_{m, n, f}(T) \sim \frac{c(m, n, f) N_{m, n}(T)}{(\log T)^{t(f)}} \text { as } T \longrightarrow \infty \tag{1.4}
\end{equation*}
$$

where for an orbit \mathcal{O} we set

$$
\begin{equation*}
c(\mathcal{O}, f)=c_{\infty}(\mathcal{O}, f) \prod_{p<\infty}\left[\left(1-\frac{\left|\mathcal{O}_{p}^{f}\right|}{\left|\mathcal{O}_{p}\right|}\right)\left(1+\frac{t(f)}{p}\right)\right] \tag{1.5}
\end{equation*}
$$

and \mathcal{O}_{p}^{f} is the subset of \mathcal{O}_{p} at which $f(x)=0(\bmod p)$ while the positive archimedian factor $c_{\infty}(\mathcal{O}, f)$ is a bit more complicated to describe. We will see that the product of local densities in (1.5) converges absolutely and each factor is non-zero since we are assuming that f is primitive.

The main tool that we develop in this paper is an affine linear sieve for homogeneous spaces and as in the more familiar classical one-variable sieve [H-R], our main results are upper bounds which are sharp up to a multiplicative constant for $\pi_{\mathcal{O}, f}(T)$ and lower bounds, which are also sharp up to a constant factor, for points $x \in \mathcal{O}$ for which f has at most a fixed number of large prime factors ("almost primes").

In particular, for the set $\mathcal{O}^{m, n}$ of integral $n \times n$ matrices of determinant m the upper bound is given by
Theorem 1.1. Let $\mathcal{O}^{m, n}$ be as above and $f \in \mathbb{Z}\left[x_{i j}\right]$ be weakly primitive with $t(f)$ irreducible factors in $\mathbb{Q}\left[x_{i j}\right] /\left(\operatorname{det} x_{i j}-m\right)$. Then

$$
\pi_{m, n, f}(T) \ll \frac{N_{m, n}(T)}{(\log T)^{t(f)}},
$$

the implied constant depending explicitly on m, n and f.

The lower bound is given by
Theorem 1.2. Let $\mathcal{O}^{m, n}$ be as above and let $f \in \mathbb{Q}\left[x_{i j}\right]$ weakly primitive and taking integer values on $\mathcal{O}^{m, n}$. Assume that f has $t(f)$ distinct irreducible factors in both $\mathbb{Q}\left[V_{m, n}\right]$ and $\overline{\mathbb{Q}}\left[V_{m, n}\right]$ and let $r>18 \cdot t(f) \cdot n_{e}^{3} \cdot \operatorname{deg}(f)$. Then

$$
\begin{equation*}
\left\{x \in \mathcal{O}^{m, n}:|x| \leq T \text { and } f(x) \text { has at most } r \text { prime factors }\right\} \gg \frac{N_{m, n}(T)}{(\log T)^{t(f)}} \tag{1.6}
\end{equation*}
$$

Here n_{e} is the least even integer $\geq(n-1)$, and again the implied positive constant depends on m, n and f.

Corollary 1.3. Under the assumptions in Theorem 1.2, the saturation number satisfies the upper bound $r_{0}\left(V_{m, n}(\mathbb{Z}), f\right) \leq 18 . t(f) \cdot n_{e}^{3}$. deg $(f)+1$. Namely the set of $x \in V_{m, n}(\mathbb{Z})$ for which $f(x)$ has at most r_{0} prime factors, is Zariski dense in $V_{m, n}$.

In the case that $f(x)=\prod_{1 \leq i \leq j \leq n} x_{i j}$ Corollary 1.3 can be sharpened considerably. Exploiting the linearity of the determinant form in the rows and columns of a matrix, we use the method of Vinogradov [Vi] (see [Va]) for handling one linear equation in 3 or more prime variables to show that we can make all coordinates of the matrix simultaneously prime as long as there is no local obstruction. We have

Theorem 1.4. $f(x)=\prod_{1 \leq i \leq j \leq n} x_{i j}$ is weakly primitive for $V_{m, n}(\mathbb{Z})$ iff $m \equiv 0\left(\bmod 2^{n-1}\right)$, and if this is the case and $n \geq 3$ then $r_{0}\left(V_{m, n}(\mathbb{Z}), f\right)=n^{2}$. That is for $n \geq 3$ the set of $x \in V_{m, n}(\mathbb{Z})$ for which each $x_{i j}$ is prime, is Zariski dense in $V_{m, n}$ iff $m \equiv 0\left(2^{n-1}\right)$.

Remarks 1.5

1) The proof of Theorem 1.4 provides a lower bound for $\pi_{m, n, f}(T)$ which is a power of T but not the one expected in Conjecture (1.4).
2) Theorem 1.4 should hold when $n=2$ but Vinogradov's methods don not apply in this binary case. For m fixed the infinitude of $x_{i j}$ satisfying $x_{11} x_{22}-x_{12} x_{21}=2 m$ and $x_{i j}$ prime, is apparently not known. Recent work of Goldston-Graham-Pintz and Yildrim [G-G-P-Y] on small differences of numbers which are products of exactly two primes, shows that the desired set is infinite for at least one number m in $\{1,2,3\}$.
3) An immediate improvement to the value of r_{0} arises by choosing the norm to be invariant under the rotation group. This improvement, together with much more significant ones, will be considered systematically in $\S 6$.

1.B: Prime and almost prime points on principal homogeneous spaces.

Theorem 1.1 and 1.2 are special cases of more general results which are concerned with finding points on an orbit \mathcal{O} of $v \in \mathbb{Z}^{n}$ under a subgroup Γ of $G L_{n}(\mathbb{Z})$ at which a given polynomial $f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ which is integral on \mathcal{O}, has few prime factors. The approach is based on the "affine linear sieve" introduced recently in [B-G-S2]. Our purpose here is to specialize to Γ being a congruence subgroup of an algebraically simply connected semisimple linear algebraic group $\mathbb{G} \subset G L_{n}$ defined over \mathbb{Q} and for which the stabilizer of v in \mathbb{G} is trivial. This allows us to make use of the well developed analytic methods [D-R-S], [G-N1] for counting points in such orbits in a big Euclidean ball, as well as the strong bounds towards the general Ramanujan Conjectures that are known from the theory of automorphic forms (see [Cl], [Sa1]). Our restriction to principal homogeneous spaces (i.e. the stabilizer of v
being trivial) or \mathbb{G} being algebraically simply connected are not serious ones as far as the production of a Zariski dense set of points x on an orbit at which $f(x)$ has few prime factors. As explained in [B-G-S2] the dominant \mathbb{Q}-morphisms from \mathbb{G} to an orbit \mathbb{G} / \mathbb{H} and from the simply connected cover \mathbb{G} of \mathbb{G}, to \mathbb{G}, reduce the basic saturation problem for orbits of more general congruence groups to the cases that we consider in this paper.

We describe our results in more detail. Let $\mathbb{G} \subset G L_{n}(\mathbb{C})$ be a connected and algebraically simply connected semi-simple algebraic matrix group defined over \mathbb{Q}. Let $G(\mathbb{Q})$ be its rational points and $\Gamma=\mathbb{G}(\mathbb{Z})=\mathbb{G}(\mathbb{Q}) \cap G L_{n}(\mathbb{Z})$ its integral points. Fix $v \in \mathbb{Z}^{n}$ and let $V=\mathbb{G} . v$ be the corresponding orbit which we assume is Zariski closed in A^{n}. Since \mathbb{G} is algebraically connected and the stabilizer of v is assumed to be trivial, V is an absolutely irreducible affine variety defined over \mathbb{Q} and has dimension equal to $\operatorname{dim} \mathbb{G}$. The ring of \mathbb{G}-invariants for the action of \mathbb{G} on the n-dimensional space A^{n} separates the closed \mathbb{G}-orbits ([B-HC]). We can choose generators $h_{1}, h_{2}, \ldots, h_{\nu}$ in $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ of this ring so that V is given by

$$
\begin{equation*}
V: h_{j}(x)=\lambda_{j}, j=1, \ldots \nu, \text { with } \lambda_{j} \in \mathbb{Q} . \tag{1.7}
\end{equation*}
$$

Let $\mathcal{O}=\Gamma . v$ be the Γ-orbit of v in \mathbb{Z}^{n}. According to [Bo] \mathcal{O} is Zariski dense in V. The coordinate ring of $V, \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] /\left(h_{1}-\lambda_{1}, \ldots, h_{\nu}-\lambda_{j}\right)$ is a unique factorization domain [San]. Hence an $f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ factors into irreducibles $f=f_{1} f_{2} \cdots f_{t}$ in this ring. We assume that these f_{j} 's are distinct and that they are irreducible in $\mathbb{Q}\left[x_{1}, \ldots x_{n}\right] /\left(h_{1}-\lambda_{1}, \ldots, h_{\nu}-\lambda_{\nu}\right)$, that f takes integer values on \mathcal{O} and that it is \mathcal{O}-weakly primitive. The saturation number $r_{0}(\mathcal{O}, f)$ of the pair (\mathcal{O}, f) is the least r such that the set of $x \in \mathcal{O}$ for which $f(x)$ has at most r prime factors is Zariski dense in $V(=\operatorname{Zcl}(\mathcal{O}))$.

To order the elements of \mathcal{O} we use the following "height" functions. Let || || be any norm on the linear space $\operatorname{Mat}_{n \times n}(\mathbb{R})$. For $T>0$ set

$$
\begin{equation*}
\mathcal{O}(T)=\{\gamma v:\|\gamma\| \leq T, \gamma \in \Gamma\} \tag{1.8}
\end{equation*}
$$

(this depends on v but in an insignificant way).
In many interesting cases these sets $\mathcal{O}(T)$ can be described as $\{x \in \mathcal{O}:|x| \leq T\}$ where $\left|\mid\right.$ is a norm on \mathbb{R}^{n}, but this is not true in general. The main term of the asymptotics for $N_{\mathcal{O}}(T)=|\mathcal{O}(T)|$ is known for any norm ([G-W], [Ma], [GN1]) and takes the form

$$
\begin{equation*}
N_{\mathcal{O}}(T) \sim c_{1}(\mathcal{O}) T^{a}(\log T)^{b} \tag{1.9}
\end{equation*}
$$

with $c_{1}(\mathcal{O})>0$ and $a>0$, and $b \in \mathbb{N}$ a non-negative integer. The numbers a and b are given explicitly in terms of the data in Theorem 3.1 below (see the discussion following that theorem) and they are independent of $\|\|$.

Theorem 1.6. Let \mathcal{O} and f be as above and assume that $f_{j}, j=1, \ldots, t(f)$, are integral on \mathcal{O}, then for $T \geq 2$,

$$
\mid\left\{x \in \mathcal{O}(T): f_{j}(x) \text { is prime for } j=1,2, \ldots, t(f)\right\} \left\lvert\, \ll \frac{N_{\mathcal{O}}(T)}{(\log T)^{t(f)}}\right.
$$

the implied constant depending on f and \mathcal{O}.

Theorem 1.7. Let \mathcal{O} and f be as above and let $r>\left(9 t(f)(1+\operatorname{dim} G)^{2} \cdot 2 n_{e}(\Gamma) \operatorname{deg}(f)\right) / a$, where $n_{e}(\Gamma)$ is the integer defined following Theorem 3.3. Then as $T \longrightarrow \infty$

$$
\mid\{x \in \mathcal{O}(T): f(x) \text { has at most } r \text { prime factors }\} \left\lvert\, \gg \frac{N_{\mathcal{O}}(T)}{(\log T)^{t(f)}}\right.
$$

the implied constant depending on f and \mathcal{O}.
Corollary 1.8. Let \mathcal{O} and f be as above. Then

$$
r_{0}(\mathcal{O}, f) \leq \frac{9 t(f)(1+\operatorname{dim} G)^{2} \cdot 2 n_{e}(\Gamma) \operatorname{deg}(f)}{a}+1
$$

Remark 1.9

(i) The integer $n_{e}(\Gamma)$ is at least 1 and is determined by the extent to which the representation spaces $\left.L_{0}^{2}(G) / \Gamma(q)\right)$ weakly contain non-tempered irreducible representations of $G=\mathbb{G}(\mathbb{R})$. Here $L_{0}^{2}(G / \Gamma)$ is the space of functions with zero integral, and $\Gamma(q)$ any congruence subgroup of Γ. The non-temperedness is measured by the infimum over all $p>0$ for which the representation space contains a dense subspace of matrix coefficients belonging to $L^{p}(G)$. Thus $n_{e}(\Gamma)$ is directly connected to the generalized Ramanujan Conjectures for $\mathbb{G}(\mathbb{A}) / \mathbb{G}(\mathbb{Q})$ [Sa1].
(ii) Theorems 1.1, 1.2 and Corollary 1.3 are connected to the general Theorems 1.6, 1.7 and 1.8 as follows; $\Gamma=S L_{n}(\mathbb{Z})$ acts on $V_{n, m}(\mathbb{Z})$ by left multiplication. This action has finitely many orbits. So with $\mathbb{G}=S L_{n} \subset G L_{M}, M=n^{2}$ and this action, $V_{n, m}=\mathbb{G} . v$ where $\operatorname{det}(v)=m$. Theorem 1.1 then follows by applying Theorem 1.6 to each orbit separately. For Theorem 1.2, the difference between the individual orbit \mathcal{O} of $S L_{n}(\mathbb{Z})$ and all of $V_{m, n}(\mathbb{Z})$ raises the issue of the weak primitivity of f on $V_{m, n}(\mathbb{Z})$. So one needs to globalize the argument as is explained in Section 4.

The values of r in Theorem 1.7 and Corollary 1.8 are by no means optimal. There are various places where the analysis can be modified to give far better bounds. Firstly by using
smooth positive weights instead of the sharp cutoff counting function in (2.9) and Theorem 3.2, we can improve the level of distribution τ in (4.15). We carry this out in Section 6 for the case that Γ is co-compact in $G=\mathbb{G}(\mathbb{R})$. In Theorem 6.1 we obtain the sharpest possible remainder for such smooth sums in terms of bounds towards the Ramanujan Conjectures. This leads to the improvement in the value for r that is given in (6.5). A further improvement is gotten by using a weighted sieve ($[\mathrm{H}-\mathrm{R}],[\mathrm{D}-\mathrm{H}]$) rather than the simple sieve from Section 2. This leads to the improved value for r given in (6.15). Finally there are cases such as the following for which very strong bounds on the spectrum of $L_{0}^{2}(G / \Gamma(q))$ are known and which result in quite good values for r_{0}. Let D be a division algebra over \mathbb{Q} of degree n (which for technical reasons we assume is prime) and for which $D \otimes \mathbb{R} \cong \operatorname{Mat}_{n \times n}(\mathbb{R})$. Then $D(\mathbb{Q})$ has dimension $M=n^{2}$ over \mathbb{Q} and choosing a basis gives a \mathbb{Z}-structure for D, that is M coordinates $x_{i j}$. Consider the reduced norm and let \mathbb{G} be the linear algebraic group of elements of reduced norm 1. Let $\Gamma=\mathbb{G}(\mathbb{Z}) \subset G L_{M}$ where the action is by multiplication on the left. Let $\mathcal{O}=\Gamma . v$ where $v \in D(\mathbb{Z})$ has reduced norm $m \neq 0$, and let $f \in \mathbb{Q}\left[x_{i j}\right]$ be \mathcal{O} integral and weakly primitive. Then all the improvements mentioned above apply to the pair (\mathcal{O}, f) and Theorem 1.7 and Corollary 1.8 apply with the following value for r_{0} (see Theorem 6.3):

$$
\begin{equation*}
r_{0}(\mathcal{O}, f) \leq 6 \operatorname{deg}(f)+t(f) \log t(f) \tag{1.10}
\end{equation*}
$$

This bound is independent of dimension and it is of the same quality and shape, in terms of dependence on the degree of f and the number of its irreducible factors, as what is known for r-almost primes for values of $f(x)$ in the classical case of one variable ($[\mathrm{H}-\mathrm{R}]$).

Uniform bounds such as those in (1.10) are useful when combined with \mathbb{Q}-morphisms. Let $\phi: \mathbb{G} \longrightarrow A^{k}$ be a \mathbb{Q}-morphism of affine varieties for which $\mathcal{O}=\phi(\mathbb{G}(\mathbb{Z})) \subset \mathbb{Z}^{k}$. Then if $f \in \mathbb{Q}\left[x_{1}, \ldots, x_{k}\right]$ is \mathcal{O}-integral and weakly primitive then $\phi^{*}(f)=f \circ \phi$ is $\mathbb{G}(\mathbb{Z})$-integral and weakly primitive. Moreover, $r_{0}(\mathcal{O}, f) \leq r_{0}\left(\mathbb{G}(\mathbb{Z}), \phi^{*}(f)\right)$. If \mathcal{O} is part of a larger set of integral points that can be swept out by varying ϕ suitably, then the uniformity allows one to give bounds for saturation numbers for the larger set. This of course applies also with $\mathbb{G}=A^{1}$ in which case one can apply the classical 1 -variable sieve. For example, Corollary 1.3 can be approached by this more elementary method. Let $y \in V_{m, n}(\mathbb{Z})$ and let $\phi_{y}: A^{1} \longrightarrow V_{m, n}$ be the morphism

$$
\phi_{y}: x \longrightarrow\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & x \\
& 1 & & & 0 \\
& & & & 0 \\
& 0 & & & 1
\end{array}\right] y
$$

Then $\mathcal{O}=\phi_{y}(\mathbb{Z}) \subset V_{m, n}(\mathbb{Z})$. Apply the classical 1-variable results about almost primes to the pair $\left(\mathbb{Z}, \phi^{*}(f)\right)$. For a generic y the bound for r_{0} depends only on t and d and the set of such y 's is Zariski dense in $V_{m, n}$. In this way one can establish Corollary 1.3 with r_{0} comparable to (1.10) above. This approach is possible whenever G has \mathbb{Q}-unipotent elements. However,
in the opposite case when $\mathbb{G}(\mathbb{R}) / \mathbb{G}(\mathbb{Z})$ is compact, such as in the division algebra examples above, there are no such \mathbb{Q}-rational parametric affine curves in $G=\mathbb{G}(\mathbb{R})$ and the general affine linear sieve developed in this paper is the only approach that we know of to obtain Corollary 1.8. In [L-S] this technique is developed for anisotropic quadratics in 3-variables.

Section 2. The Combinatorial Sieve

To begin with we make use of a simple version of the combinatorial sieve, see [IK, §6.1-6.4] and [H-R Theorem 7.4]. Later we will use more sophisticated versions. Our formulation is tailored to the applications.

Let $\mathcal{A}=\left(a_{k}\right)_{k \geq 1}$ be a finite sequence of nonnegative numbers. Denote by X the sum

$$
\begin{equation*}
\sum_{k} a_{k}=X \tag{2.1}
\end{equation*}
$$

We think of X as large, tending to infinity as the number of elements of \mathcal{A} increases. Fix a finite set B of "ramified" primes which for the most part will be the empty set. For z a large parameter (in applications z will be a small power of X) set

$$
\begin{equation*}
P=P_{z, B}=\prod_{\substack{p \leq z \\ p \notin B}} p \tag{2.2}
\end{equation*}
$$

Under suitable assumptions about the sums of the a_{k} 's in progressions with moderately large moduli, the sieve gives upper and lower estimates which are of the same order of magnitude, for the sums of \mathcal{A} over k 's which remain after sifting out numbers with prime factors in P.

More precisely let

$$
\begin{equation*}
S(\mathcal{A}, P):=\sum_{(k, P)=1} a_{k} . \tag{2.3}
\end{equation*}
$$

The assumptions for the sums over progressions that we make are as follows:
$\left(\mathrm{A}_{0}\right)$ For d square free and having no prime factors in $B,(d<X)$, we assume that the sum over multiples of d takes the form

$$
\begin{equation*}
\sum_{k \equiv 0(d)} a_{k}=\frac{\rho(d)}{d} X+R(\mathcal{A}, d) \tag{2.4}
\end{equation*}
$$

where $\rho(d)$ is multiplicative in d and for $p \notin B$

$$
\begin{equation*}
0 \leq \frac{\rho(p)}{p} \leq 1-\frac{1}{c_{1}} \tag{2.5}
\end{equation*}
$$

The understanding being that $\frac{\rho(d)}{d} X$ is the main term in (2.4) and $R(\mathcal{A}, d)$ is smaller, at least on average.
$\left(\mathrm{A}_{1}\right) \mathcal{A}$ has level distribution $D=D(X)$, that is for some $\epsilon>0$ there is $C_{\epsilon}<\infty$ such that

$$
\begin{equation*}
\sum_{d \leq D}|R(d, \mathcal{A})| \leq C_{\epsilon} X^{1-\epsilon} \tag{2.6}
\end{equation*}
$$

If this holds with $D=X^{\tau}$ we say that the level distribution is τ.
$\left(\mathrm{A}_{2}\right) \mathcal{A}$ has sieve dimension t, that is there is C_{2} fixed such that

$$
\begin{equation*}
-C_{2} \leq \sum_{\substack{(p, B)=1 \\ w \leq p \leq z}} \frac{\rho(p) \log p}{p}-t \log \frac{z}{w} \leq C_{2}, \quad \text { for } 2 \leq w \leq z \tag{2.7}
\end{equation*}
$$

Assuming $\left(\mathrm{A}_{0}\right),\left(\mathrm{A}_{1}\right)$ and $\left(\mathrm{A}_{2}\right)$ the simple combinatorial sieve that we use asserts that for $s>9 t$ and $z=D^{1 / s}$ and X large enough

$$
\begin{equation*}
\frac{X}{(\log X)^{t}} \ll S(\mathcal{A}, P) \ll \frac{X}{(\log X)^{t}} \tag{2.8}
\end{equation*}
$$

where the implied constants depend explicitly on $t, \epsilon, C_{1}, C_{2}$ and C_{ϵ} (all of which are fixed).
For our application $V \subset A^{n}$ is a principal homogeneous space for G and $\mathcal{O}=G(\mathbb{Z}) \cdot v$ is an orbit of integral points in $V . f \in \mathbb{Q}\left[x_{1}, \cdots x_{n}\right]$ is integral on \mathcal{O} and $\|\|$ is the norm described in Section 1. For $k \geq 0$, we let $a_{k}=a_{k}(T)$ be given by

$$
\begin{equation*}
a_{k}(T):=\sum_{\substack{\| \|\| \| \leq T \\|f(\gamma v)|=k}} 1 . \tag{2.9}
\end{equation*}
$$

Under the assumptions (2.4), (2.6) and (2.7) on the level distribution it follows that

$$
\begin{equation*}
a_{0}(T) \ll \frac{1}{D} X \log X \tag{2.10}
\end{equation*}
$$

where D is the level. Hence for our purposes we may include $k=0$ into the sieve analysis without affecting (2.8).

A large part of the paper is concerned with verifying $\left(\mathrm{A}_{0}\right)\left(\mathrm{A}_{1}\right)$ and $\left(\mathrm{A}_{2}\right)$ for this sequence and determining an admissible level of distribution.

Section 3. Uniform Lattice Point Count

In this and the next section we will identify the main term in the asymptotics of $\sum_{k \equiv 0(d)} a_{k}(T)$ (condition $\left(\mathrm{A}_{0}\right)$), as well as estimate the level of distribution D (condition $\left.\left(\mathrm{A}_{1}\right)\right)$. In $\S 4.1$ we will establish the multiplicativity of $\rho(d) / d$, the coefficient of the main term, concluding the proof of $\left(\mathrm{A}_{0}\right)$ and $\left(\mathrm{A}_{1}\right)$. The most demanding part is establishing an
explicit bound on the error terms $\sum_{d<D}|R(d, \mathcal{A})|$ appearing in condition $\left(\mathrm{A}_{1}\right)$. Here the basic ingredient will be an error estimate for the lattice points counting problem which is uniform over all cosets of all congruence groups. This will be established in $\S 3.2$ and $\S 3.3$.

3.1 Spectral estimates

Let $\mathbb{G} \subset G L_{n}(\mathbb{C})$ be a connected semisimple algebraic matrix group defined over \mathbb{Q}, with $G=\mathbb{G}(\mathbb{R})$ having no non-trivial compact factors. Fix any norm on the linear space $M_{n}(\mathbb{R})$. Let $\Gamma(1)=\mathbb{G}(\mathbb{Z})$ be the group of integral points, which is a lattice subgroup of $G[\mathrm{~B}-\mathrm{HC}]$ and a subgroup of $G L_{n}(\mathbb{Z})$. Let $\Gamma(q), q \in \mathbb{N}$ denote the principal congruence subgroup of level q, namely

$$
\Gamma(q)=\{\gamma \in \Gamma ; \gamma \equiv I(\bmod q)\}
$$

We begin by stating the following volume asymptotic, established in [G-W], [Ma] .
Theorem 3.1. Let \mathbb{G} and G be as above and let $\left\|\|\right.$ be any norm on $M_{n}(\mathbb{R})$. Then there exists $a>0$ and a non-negative integer b both depending only on G, and a constant B depending also on the norm, such that

$$
\lim _{T \rightarrow \infty} \frac{\operatorname{vol}\{g \in G ;\|g\| \leq T\}}{B T^{a}(\log T)^{b}}=1
$$

The exponent a has the following simple algebraic description [G-W][Ma]. Let A denote a maximally \mathbb{R}-split Cartan subgroup of $G=\mathbb{G}(\mathbb{R})$, with Lie algebra \mathfrak{a}. Let \mathcal{C} denote the convex hull of the weights of \mathfrak{a} associated with the representation of G in $G L_{n}(\mathbb{R})$. Let $2 \rho_{G}$ denote the sum of all the positive roots (counted with multiplicities) of \mathfrak{a}. Then a is the unique positive real number with the property that $2 \rho_{G} / a \in \partial \mathcal{C}$. The parameter $b+1$ is a positive integer, which is at most the $\mathbb{R}-\operatorname{rank} G$, and is equal to the codimension of a minimal face of the polyhedron \mathcal{C} containing the point $2 \rho_{G} / a$. In particular, both a and b are independent of the norm.

We now state the following uniform remainder estimate for the lattice point counting problem, which underlies our estimate of the level of distribution.

Theorem 3.2. Let $\mathbb{G}, G, \Gamma(q)$ and $\|\|$ be as above and normalize Haar measure on G so that $\operatorname{vol}(G / \Gamma(1))=1$. Then the following uniform error estimate holds (for any $\eta>0$)

$$
\frac{\#\{w \in \Gamma(q) y ;\|w\| \leq T\}}{\operatorname{vol}\{g \in G ;\|g\| \leq T\}}=\frac{1}{[\Gamma: \Gamma(q)]}+O_{\eta}\left(T^{-\frac{\theta}{1+d i m G}+\eta}\right)
$$

where

- $\theta=\frac{a}{2 n_{e}(G, \Gamma)}>0$ is explicit and depends only on the bounds towards the generalized Ramanujan conjecture for the homogeneous spaces $G / \Gamma(q)$ (see Theorem 3.3 below),
- the estimate holds uniformly over all cosets of all congruence subgroups $\Gamma(q)$ in $\Gamma(1)$, namely the implied constant is independent of q and $y \in \Gamma(1)$ (it depends only on η and the chosen norm).

A general approach to the lattice point counting problem with error estimate for S algebraic groups is developed in [GN1], based on establishing quantitative mean ergodic theorems for the Haar-uniform averages supported on the norm balls. In $\S \S 3.2-3.3$ we follow this approach and give a short proof of Theorem 3.2, thus establishing the uniformity of the error term, which is crucial for our considerations. More general results can be found in [GN2].

Let $B_{t} \subset G, t \in \mathbb{R}_{+}$denote the family of subsets

$$
B_{t}=\left\{g \in G:\|g\| \leq e^{t}\right\},
$$

and let $\pi_{G / \Gamma}\left(\beta_{t}\right)$ denote the following averaging operator acting in $L^{2}(G / \Gamma)$:

$$
\pi_{G / \Gamma}\left(\beta_{t}\right) f(x)=\int_{g \in B_{t}} f\left(g^{-1} x\right) d m_{G}
$$

The subspace $L_{0}^{2}(G / \Gamma)$ of functions of zero mean is obviously an invariant subspace, and the representation there is denoted by $\pi_{G / \Gamma}^{0}$.

The fundamental spectral estimate in our discussion is given by
Theorem 3.3. Let $\mathbb{G}, G, \Gamma(q)$ and B_{t} be as above. Then for $\theta=\frac{a}{2 n_{e}(G, \Gamma)}>0$, uniformly for every $q \in \mathbb{N}$

$$
\left\|\pi_{G / \Gamma(q)}\left(\beta_{t}\right) f-\int_{G / \Gamma(q)} f d m_{G / \Gamma(q))}\right\|_{L^{2}(G / \Gamma(q))} \leq C_{\eta} e^{-(\theta-\eta) t}\|f\|_{L^{2}(G / \Gamma(q))}
$$

where $m_{G / \Gamma(q)}$ is the G-invariant probability measure on $G / \Gamma(q)$. Here $\eta>0$ is arbitrary, a is the exponent in the rate of exponential volume growth of B_{t}, and $n_{e}(G, \Gamma)$ is the least even integer $\geq p(G, \Gamma) / 2$, with $p(G, \Gamma)$ the bound towards the Ramanujan conjecture described in the proof.

Proof. The proof of Theorem 3.3 consists of two parts. The first part is to note that the bounds towards the generalized Ramanujan conjecture (see [Cl1] and [Sa1]) imply that there exists an explicit $p=p(G, \Gamma)$ with the property that all the (K-finite) matrix coefficients occurring in $L_{0}^{2}(G / \Gamma(q))$ are in $L^{p+\eta}(G)$ for all $\eta>0$, and all $q \in \mathbb{N}$. The second is to use this information to give an explicit estimate for θ.

For the first part, let us note that our lattice $\Gamma=\mathbb{G}(\mathbb{Z})$ is an irreducible lattice, and as a result, in the unitary representation of G in $L_{0}^{2}(G / \Gamma)$, the matrix coefficients decay to zero as
$g \rightarrow \infty$ in G, namely the representation is strongly mixing (recall that we assume G has no non-trivial compact factors). In particular, if H is an almost-simple component of G, then H has no invariant unit vectors in $L_{0}^{2}(G / \Gamma(q))$. We now divide the argument into two cases.

1. Assume that H has property T. Then there exists $p=p_{H}$, such that every unitary representation of H without H-fixed unit vectors has its (K-finite) matrix coefficients in $L^{p+\eta}$ for all $\eta>0[\mathrm{Co}]$. Thus we can use as a bound for the automorphic spectrum a bound valid for all unitary representations of H. Therefore in this case the integrability parameter p above depends only on H but not on Γ. In particular, the bound holds in $L_{0}^{2}(G / \Gamma(q))$ for all finite-index subgroups $\Gamma(q)$, including the principal congruence subgroups.
However, note that for some lattices Γ one can do better; this applies in particular to certain uniform arithmetic lattices, as will be discussed further in $\S 6$ below.
For a list of p_{H} for classical simple groups H with property T we refer to [Li], and for exceptional groups, to [LZ], [Oh] and [Lo-S]. Thus for example $p_{S L_{n}(\mathbb{R})}=2(n-1)(n \geq 3)$, and $p_{S p(n, \mathbb{R})}=2 n(n \geq 2)$.
2. G is defined over \mathbb{Q}, and so are its simple component subgroups. Let now H be a simple algebraic \mathbb{Q}-subgroup of real rank one which does not satisfy property T, and $\Gamma=\mathbb{G}(\mathbb{Z})$. Then there still exists $p=p(H, \Gamma)$, such that the set of representations of H obtained as restrictions from the representations of G on $L_{0}^{2}(G / \Gamma(q))$ have their (K-finite) matrix coefficients in $L^{p+\eta}(H), \eta>0$ for all $q \in \mathbb{N}$. This fact is established in most cases in [B-S], and in the missing cases by [Cl]. These results yield the following explicit estimate. Let $\rho_{H}=\frac{1}{2}\left(m_{1}+2 m_{2}\right)$ where m_{1} (resp. $\left.m_{2}\right)$ is the multiplicity of the short (resp. long) root in the root system associated with a maximal \mathbb{R}-split torus in H. The parameter s of a non-trivial complementary series representation π_{s} that can occur in the automorphic spectrum of H is constrained to satisfy $s \leq \rho_{H}-\frac{1}{4}$. Now the volume density on H in radial coordinates is comparable to $\exp \left(2 \rho_{H} t\right)$, and the decay of the spherical function φ_{s} is comparable to $\exp \left(-\frac{1}{4} t\right)$, so that the matrix coefficients are in $L^{p+\eta}(H)$ where $p=8 \rho_{H}=4\left(m_{1}+2 m_{2}\right)$.

Finally to conclude the first part of the proof, note that for $p=p(G, \Gamma)$ we may take the maximum of $p(H, \Gamma)$ as H ranges over the almost-simple \mathbb{Q}-subgroups, since any (normalized) matrix coefficient has absolute value bounded by 1 .

The second part of the proof consists of showing how to derive an explicit estimate for the decay of the operator norms of $\pi_{G / \Gamma(q)}^{0}\left(\beta_{t}\right)$ from the bound on the automorphic spectrum. Let $p=p(G, \Gamma)$ be the minimum value such that every strongly mixing unitary representation weakly contained has its (K-finite) matrix coefficients in $L^{p+\eta}(G)$ for all $\eta>0$. Recall that we define $n_{e}=n_{e}(\Gamma)$ is the least even integer greater than or equal to $p(G, \Gamma) / 2$. By [N 1 , Thm. 1]

$$
\left\|\pi_{G / \Gamma}^{0}\left(\beta_{t}\right)\right\|_{L_{0}^{2}(G / \Gamma)} \leq\left\|\lambda_{G}\left(\beta_{t}\right)\right\|_{L^{2}(G)}^{\frac{1}{n_{e}}}
$$

where λ_{G} is the regular representation of G on $L^{2}(G)$. Now following [N1, Thm. 4], by the Kunze-Stein phenomenon the norm of the convolution operator $\lambda_{G}\left(\beta_{t}\right)$ determined by β_{t} on $L^{2}(G)$ is bounded by $C_{\eta}^{\prime} \operatorname{vol}\left(B_{t}\right)^{-\frac{1}{2}+\eta}$. Taking the volume asymptotics of B_{t} stated in Theorem 3.1 into account, we conclude that $\theta=a / 2 n_{e}$ gives the norm bound stated in Theorem 3.3.

3.2 Averaging operators and counting lattice points

We now turn to a proof of Theorem 3.2, and begin by explicating the connection between the averaging operators associated with β_{t} and counting lattice points, following the method developed in [GN1].

Consider the bi- K-invariant Riemannian metric on G covering the Riemannian metric associated with the Cartan-Killing form on the symmetric spaces $S=G / K$, and let d denote the distance function. Let vol denote the Haar measure defined by the volume form associated with the Riemannian metric. Define

$$
O_{\epsilon}=\{g \in G: d(g, e)<\epsilon\} .
$$

Recall that $B_{t} \subset G, t \in \mathbb{R}_{+}$is the family of subsets

$$
B_{t}=\left\{g \in G ;\|g\| \leq e^{t}\right\}
$$

The sets B_{t} enjoy the following stability and regularity properties.
Proposition 3.4. [GN1, Thm. 3.15]. The family B_{t} is admissible, namely there exists $c>0$, $\epsilon_{0}>$ and $t_{0}>0$ such that for all $t \geq t_{0}$ and $0<\epsilon<\epsilon_{0}$

$$
\begin{gather*}
O_{\epsilon} \cdot B_{t} \cdot O_{\epsilon} \subset B_{t+c \epsilon} \tag{3.1}\\
\operatorname{vol}\left(B_{t+\epsilon}\right) \leq(1+c \epsilon) \cdot \operatorname{vol}\left(B_{t}\right) \tag{3.2}
\end{gather*}
$$

Given the lattice $\Gamma=\Gamma(1)=G(\mathbb{Z})$, fix the unique invariant volume form vol= $=\operatorname{vol}_{G}$ on G satisfying $\operatorname{vol}(G / \Gamma)=1$. We denote by $\operatorname{vol}_{G / \Gamma(q)}$ the volume form induced on $G / \Gamma(q)$ by the volume form on G. Then $\operatorname{vol}_{G / \Gamma(q)}(G / \Gamma(q))=[\Gamma: \Gamma(q)]$ is the total volume of the locally symmetric space $G / \Gamma(q)$. We also let $m_{G / \Gamma(q)}$ denote the corresponding probability measure on $G / \Gamma(q)$, namely $\left.\operatorname{vol}_{G / \Gamma(q)} /[\Gamma: \Gamma(q)]\right)$.

We note that clearly $\frac{1}{2} \epsilon^{\operatorname{dim} G} \leq \operatorname{vol}\left(O_{\epsilon}\right) \leq 2 \epsilon^{\operatorname{dim} G}$, for $0<\epsilon \leq \epsilon_{0}^{\prime}$. Denote

$$
\chi_{\epsilon}=\frac{\chi_{O_{\epsilon}}}{\operatorname{vol}\left(O_{\epsilon}\right)}
$$

We now fix a congruence subgroup $\Gamma(q) \subset \Gamma=\Gamma(1)$, and define, for every given $y \in \Gamma(1)$

$$
\phi_{\epsilon}^{y}(g \Gamma(q))=\sum_{\gamma \in \Gamma(q)} \chi_{\epsilon}(g \gamma y),
$$

so that ϕ_{ϵ}^{y} is a measurable bounded function on $G / \Gamma(q)$ with compact support, and

$$
\int_{G} \chi_{\epsilon} d \mathrm{vol}=1, \text { and } \int_{G / \Gamma(q)} \phi_{\epsilon}^{y} d \operatorname{vol}_{G / \Gamma(q)}=1, \text { and so } \int_{G / \Gamma(q)} \phi_{\epsilon}^{y} d m_{G / \Gamma(q)}=\frac{1}{[\Gamma: \Gamma(q)]} .
$$

Clearly, for any $\delta>0, h \in G$ and $t \in \mathbb{R}_{+}$, the following are equivalent (for any function on $G / \Gamma(q)))$:

$$
\begin{gather*}
\left|\pi_{G / \Gamma}\left(\beta_{t}\right) \phi_{\epsilon}^{y}(h \Gamma(q))-\frac{1}{[\Gamma: \Gamma(q)]}\right| \leq \delta \tag{3.3}\\
\frac{1}{[\Gamma: \Gamma(q)])}-\delta \leq \frac{1}{\operatorname{vol}\left(B_{t}\right)} \int_{B_{t}} \phi_{\epsilon}^{y}\left(g^{-1} h \Gamma(q)\right) d \operatorname{vol}(g) \leq \frac{1}{[\Gamma: \Gamma(q)]}+\delta . \tag{3.4}
\end{gather*}
$$

The set where the first inequality holds will be estimated using the quantitative mean ergodic theorem. The integral in the second expression is connected to lattice points as follows:

Lemma 3.5. For every $t \geq t_{0}+c \epsilon_{0}, 0<\epsilon \leq \epsilon_{0}$ and for every $h \in \mathcal{O}_{\epsilon}$,

$$
\int_{B_{t-c \epsilon}} \phi_{\epsilon}^{y}\left(g^{-1} h \Gamma(q)\right) d \operatorname{vol}(g) \leq\left|B_{t} \cap \Gamma(q) y\right| \leq \int_{B_{t+c \epsilon}} \phi_{\epsilon}^{y}\left(g^{-1} h \Gamma(q)\right) d \operatorname{vol}(g) .
$$

Proof. If $\chi_{\epsilon}\left(g^{-1} h \gamma y\right) \neq 0$ for some $g \in B_{t-c \epsilon}, h \in O_{\epsilon}$ and $\gamma y \in \Gamma(q) y$, then by (3.1)

$$
\gamma y \in h^{-1} . B_{t-c \epsilon} \cdot\left(\operatorname{supp} \chi_{\epsilon}\right) \subset B_{t} .
$$

Hence,

$$
\int_{B_{t-c \epsilon}} \phi_{\epsilon}^{y}\left(g^{-1} h \Gamma(q)\right) d \operatorname{vol}(g) \leq \sum_{\gamma y \in B_{t} \cap \Gamma(q) y} \int_{B_{t}} \chi_{\epsilon}\left(g^{-1} h \gamma y\right) d \operatorname{vol}(g) \leq\left|B_{t} \cap \Gamma(q) y\right| .
$$

In the other direction, for $\gamma y \in B_{t} \cap \Gamma(q) y$ and $h \in O_{\epsilon}$,

$$
\operatorname{supp}\left(g \mapsto \chi_{\epsilon}\left(g^{-1} h \gamma y\right)\right)=h \gamma y\left(\operatorname{supp} \chi_{\epsilon}\right)^{-1} \subset B_{t+c \epsilon} .
$$

and since $\chi_{\epsilon} \geq 0$, again by (3.1) :

$$
\int_{B_{t+c \epsilon}} \phi_{\epsilon}^{y}\left(g^{-1} h \Gamma(q)\right) d \operatorname{vol}(g) \geq \sum_{\gamma y \in B_{t} \cap \Gamma(q) y^{\prime}} \int_{B_{t+c \epsilon}} \chi_{\epsilon}\left(g^{-1} h \gamma y\right) d \operatorname{vol}(g) \geq\left|B_{t} \cap \Gamma(q) y\right| .
$$

3.3 Uniform error estimates for congruence groups

We now complete the proof of Theorem 3.2 (compare [GN1, $\S 6.6]$).
For the lattices $\Gamma(q)$ the action of the operators $\pi_{G / \Gamma(q)}\left(\beta_{t}\right)$ on $L_{0}^{2}(G / \Gamma(q))$ satisfies the spectral estimate stated in Theorem 3.3, uniformly in q. It follows that for the probability spaces $\left(G / \Gamma(q), m_{G / \Gamma(q)}\right)$ we have for all $t>0$ and every $\theta^{\prime}<\theta$

$$
\left\|\pi_{G / \Gamma(q)}\left(\beta_{t}\right) \phi_{\epsilon}^{y}-\int_{G / \Gamma(q)} \phi_{\epsilon}^{y} d m_{G / \Gamma(q)}\right\|_{L^{2}\left(m_{G / \Gamma(q)}\right)} \leq C_{\theta^{\prime}} e^{-\theta^{\prime} t}\left\|\phi_{\epsilon}^{y}\right\|_{L^{2}\left(m_{G / \Gamma(q)}\right)}
$$

Therefore for all $\delta>0$, all $t>0$ and $\epsilon<\epsilon_{0}^{\prime}$
$m_{G / \Gamma(q)}\left\{h \Gamma(q) ;\left|\pi_{G / \Gamma(q)}\left(\beta_{t}\right) \phi_{\epsilon}^{y}(h \Gamma(q))-\frac{1}{[\Gamma: \Gamma(q)])}\right|>\delta\right\} \leq C_{\theta^{\prime}}^{2} \delta^{-2} e^{-2 \theta^{\prime} t}\left\|\phi_{\epsilon}^{y}\right\|_{L^{2}\left(m_{G / \Gamma(q))}^{2}\right.}$.

Clearly, we can fix $\epsilon_{0}^{\prime \prime}$ such that if $\epsilon<\epsilon_{0}^{\prime \prime}$ then the translates $O_{\epsilon} w$ are disjoint for distinct $w \in \Gamma(1)$. Then the supports of the functions $\chi_{\epsilon}(h \gamma y)$ for $\gamma \in \Gamma(q)$ (and a fixed $\left.y \in \Gamma(1)\right)$ do not intersect, and so

$$
\begin{gathered}
\left\|\phi_{\epsilon}^{y}\right\|_{L^{2}\left(m_{G / \Gamma(q))}^{2}\right.}^{2}=\int_{G / \Gamma(q)} \phi_{\epsilon}^{y}(h \Gamma(q))^{2} d \operatorname{vol}_{G / \Gamma(q)} /[\Gamma: \Gamma(q)]= \\
\left.=\int_{G} \chi_{\epsilon}^{2}(g) \operatorname{dvol}(g) /[\Gamma: \Gamma(q)]\right)=\frac{1}{\operatorname{vol}\left(\mathcal{O}_{\epsilon}\right)[\Gamma: \Gamma(q)]} \leq \frac{2 \epsilon^{-\operatorname{dim} G}}{[\Gamma: \Gamma(q)]} .
\end{gathered}
$$

We conclude that

$$
\begin{equation*}
m_{G / \Gamma(q)}\left\{h \Gamma(q) ;\left|\pi_{G / \Gamma(q)}\left(\beta_{t}\right) \phi_{\epsilon}^{y}(h \Gamma(q))-\frac{1}{[\Gamma: \Gamma(q)])}\right|>\delta\right\} \leq \frac{2 C_{\theta^{\prime}}^{2} \delta^{-2} \epsilon^{-\operatorname{dim} G} e^{-2 \theta^{\prime} t}}{[\Gamma: \Gamma(q)]} . \tag{3.5}
\end{equation*}
$$

In particular, the measure of the latter set decays exponentially fast with t. Therefore, it will eventually be strictly smaller than $m_{G / \Gamma(q)}\left(O_{\epsilon} \Gamma\right)$, and for $\epsilon<\epsilon_{0}^{\prime \prime}$, we clearly have $m_{G / \Gamma(q)}\left(O_{\epsilon} \Gamma(q)\right)=\operatorname{vol}\left(O_{\epsilon}\right) /[\Gamma: \Gamma(q)]$.

For any t such that the measure in (3.5) is sufficiently small, clearly

$$
\begin{equation*}
O_{\epsilon} \Gamma(q) \cap\left\{h \Gamma(q) ;\left|\pi_{G / \Gamma(q)}\left(\beta_{t}\right) \phi_{\epsilon}^{y}(h \Gamma(q))-\frac{1}{[\Gamma: \Gamma(q)]}\right| \leq \delta\right\} \neq \emptyset \tag{3.6}
\end{equation*}
$$

and thus for any h_{t} such that $h_{t} \Gamma(q)$ is in the non-empty intersection (3.6)

$$
\frac{1}{\operatorname{vol}\left(B_{t}\right)} \int_{B_{t}} \phi_{\epsilon}^{y}\left(g^{-1} h_{t} \Gamma(q)\right) d \operatorname{vol}(g) \leq \frac{1}{[\Gamma: \Gamma(q)]}+\delta
$$

On the other hand, by Lemma 3.5 for any $\epsilon \leq \epsilon_{0}, t \geq t_{0}+c \epsilon_{0}$ and $h \in \mathcal{O}_{\epsilon}$

$$
\begin{equation*}
\left|\Gamma(q) y \cap B_{t}\right| \leq \int_{B_{t+c \epsilon}} \phi_{\epsilon}^{y}\left(g^{-1} h \Gamma(q)\right) d \operatorname{vol}(g) \tag{3.7}
\end{equation*}
$$

Combining the foregoing estimates and using (3.2), we conclude that

$$
\left|\Gamma(q) y \cap B_{t}\right| \leq\left(\frac{1}{[\Gamma: \Gamma(q)]}+\delta\right) \operatorname{vol}\left(B_{t+c \epsilon}\right) \leq\left(\frac{1}{[\Gamma: \Gamma(q)]}+\delta\right)(1+c \epsilon) \operatorname{vol}\left(B_{t}\right)
$$

This estimate holds as soon as (3.6) holds, and so certainly when

$$
\frac{2 C_{\theta^{\prime}}^{2}}{[\Gamma: \Gamma]} \delta^{-2} \epsilon^{-\operatorname{dim} G} e^{-2 \theta^{\prime} t} \leq \frac{1}{2} \cdot \frac{\frac{1}{2} \epsilon^{\operatorname{dim} G}}{[\Gamma: \Gamma(q)]} \leq \frac{1}{2} m_{G / \Gamma}\left(\mathcal{O}_{\epsilon} \Gamma\right)
$$

Thus we seek to determine the parameters so that $8 C_{\theta^{\prime}}^{2} \delta^{-2} \exp \left(-2 \theta^{\prime} t\right)=\epsilon^{2 \operatorname{dim} G}$. In order to balance the two significant parts of the error term, let us take $c \epsilon=\delta$, and then

$$
\delta=C_{\theta^{\prime}}^{\prime} e^{-2 \theta^{\prime} t /(2 \operatorname{dim} G+2)}
$$

and so as soon as $\delta<1$, we have, using also that $[\Gamma: \Gamma(q)] \geq 1$

$$
\begin{aligned}
& \frac{\left|\Gamma(q) y \cap B_{t}\right|}{\operatorname{vol}\left(B_{t}\right)} \leq\left(\frac{1}{[\Gamma: \Gamma(q)]}+\delta\right)(1+c \epsilon) \leq \frac{1}{[\Gamma: \Gamma(q)]}+\delta+c \epsilon+\delta c \epsilon \\
& \leq \frac{1}{[\Gamma: \Gamma(q)}+3 C_{\theta^{\prime}}^{\prime} e^{-\theta^{\prime} t /(\operatorname{dim} G+1)}
\end{aligned}
$$

Note that both the estimate (3.4) as well as the comparison argument in Lemma 3.5, give a lower bound in addition to the foregoing upper bound. Thus the same arguments can be repeated to yield also a lower bound for the uniform lattice points count. This concludes the proof of Theorem 3.2.

Remark. When the admissible family of sets B_{t} consists of bi- K-invariant sets, namely sets that are invariant under left and right multiplication by a maximal compact subgroup K of G, two improvements are possible in the previous result.
(i) First, the parameter θ which controls the exponential decay of the operator norm $\left\|\pi_{G / \Gamma(q)}^{0}\left(\beta_{t}\right)\right\|$ depends only on the spherical spectrum and can be estimated directly by the spectral theory of spherical functions. The resulting estimate is $\theta=a / p_{K}$, where $p_{K}(G, \Gamma)$ is the $L^{p}(G)$-integrability parameter associated with the spherical functions in $\pi_{G / \Gamma}^{0}$. This estimates eliminates the lack of resolution that can be caused by the tensor power argument, which gives $\theta=a / 2 n_{e}, n_{e}$ the least even integer $\geq p(G, \Gamma) / 2$.
(ii) Second, when B_{t} are bi- K-invariant, the arguments in the proof of Theorem 3.2 can be applied in the obvous manner to the symmetric space G / K whose dimension is $\operatorname{dim} G-\operatorname{dim} K$, so that the exponent in the resulting error estimate is $\frac{a}{p_{K}(1+\operatorname{dim} G / K)}$.

Section 4. Multiplicativity and Sieve Dimension

As before, let $\mathbb{G} \subset G L(n, \mathbb{C})$ be an algebraically connected semisimple algebraic matrix group defined over \mathbb{Q} which we now assume is also simply connected. Denote by $\mathbb{G}(R)$ the points of G with coefficients in a ring R, and set $G=\mathbb{G}(\mathbb{R})$. Fix $v_{0} \in \mathbb{Z}^{n}$ and let $V=\mathbb{G} . v_{0}$ be the corresponding orbit which we assume is Zariski closed in affine n-space A^{n}. We assume further that the stabilizer of v_{0} in \mathbb{G} is trivial. Thus V is a principal homogeneous space for \mathbb{G} and it is defined over \mathbb{Q}. Since \mathbb{G} is connected it follows that V is an (absolutely) irreducible affine variety defined over \mathbb{Q} and is of dimension equal to $\operatorname{dim} \mathbb{G}$. The ring of \mathbb{G}-invariants for the action of \mathbb{G} on n-dimensional space separates the closed \mathbb{G}-orbits (see [B-HC] and we may choose generators $h_{1}, h_{2}, \ldots, h_{\nu}$ in $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ of this ring so that V is given by

$$
\begin{equation*}
V: h_{j}(x)=\lambda_{j} \text { for } j=1, \ldots \nu \text { and } \lambda_{j} \in \mathbb{Q} \tag{4.1}
\end{equation*}
$$

Let $V(\mathbb{Z}), V(\mathbb{Q})$ denote the points of V with coordinates in \mathbb{Z}, \mathbb{Q}, etc.

4.1 Congruential analysis:

Let $\Gamma=G(\mathbb{Z}) \subset G L_{n}(\mathbb{Z})$ and $\mathcal{O}=\Gamma . v_{0}$ be the corresponding orbit in \mathbb{Z}^{n}. Since $\operatorname{Zcl}(\Gamma)=$ G (see $[\mathrm{B}]), \operatorname{Zcl}(\mathcal{O})=V$. For $d \geq 1$ an integer let \mathcal{O}_{d} be the subset of $(\mathbb{Z} / d \mathbb{Z})^{n}$ which is obtained by reducing \mathcal{O} modulo d. Similarly let Γ_{d} be the reduction of Γ in $G L_{n}(\mathbb{Z} / d \mathbb{Z})$, and so $\mathcal{O}_{d}=\Gamma_{d} . v_{0}(\bmod d)$.

For $g \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ let

$$
\begin{equation*}
\mathcal{O}_{d}^{g}=\left\{x \in \mathcal{O}_{d}: g(x) \equiv 0(d)\right\} \tag{4.2}
\end{equation*}
$$

According to the strong approximation theorem (see [P-R], recall that we are assuming that $G(\mathbb{R})$ has no compact factors) the diagonal embedding

$$
\begin{equation*}
\Gamma \longrightarrow \prod_{p} G\left(\mathbb{Z}_{p}\right) \tag{4.3}
\end{equation*}
$$

is dense, where \mathbb{Z}_{p} are the p-adic integers. Hence if $\left(d_{1}, d_{2}\right)=1$ then

$$
\begin{equation*}
\Gamma_{d}=\Gamma_{d_{1}} \times \Gamma_{d_{2}} \tag{4.4}
\end{equation*}
$$

as a subgroup of $G L_{n}(\mathbb{Z} / d \mathbb{Z}) \cong G L_{n}\left(\mathbb{Z} / d_{1} \mathbb{Z}\right) \times G L_{n}\left(\mathbb{Z} / d_{2} \mathbb{Z}\right)$.
It follows that in $(\mathbb{Z} / d \mathbb{Z})^{n} \simeq\left(\mathbb{Z} / d_{1} \mathbb{Z}\right)^{n} \times\left(\mathbb{Z} / d_{2} \mathbb{Z}\right)^{n}$

$$
\begin{equation*}
\mathcal{O}_{d}=\mathcal{O}_{d_{1}} \times \mathcal{O}_{d_{2}} \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{O}_{d}^{g}=\mathcal{O}_{d_{1}}^{g} \times \mathcal{O}_{d_{2}}^{g} . \tag{4.6}
\end{equation*}
$$

Now let $f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ with $f=g / N, N \geq 1$ where $g \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ with $\operatorname{gcd}(g(\mathcal{O}))=$ N. Note that $f(\mathcal{O}) \subset \mathbb{Z}$. For $d \geq 1$ let

$$
\begin{equation*}
\rho_{f}(d)=\frac{d\left|\mathcal{O}_{d N}^{g}\right|}{\left|\mathcal{O}_{d N}\right|} . \tag{4.7}
\end{equation*}
$$

Proposition 4.1. $\rho_{f}(d)$ is multiplicative in d and for p prime $0 \leq \rho_{f}(p)<p$.
Proof. Let $d=d_{1} d_{2}$ with $\left(d_{1}, d_{2}\right)=1$ and write $N=N_{1} N_{2}$ with $\left(N_{1}, d_{2}\right)=1,\left(N_{2}, d_{1}\right)=1$ and $\left(N_{1}, N_{2}\right)=1$. Clearly :

$$
\left|\mathcal{O}_{d_{1} d_{2} N_{1} N_{2}}\right|=\frac{\left|\mathcal{O}_{d_{1} N_{1} N_{2}}\right|\left|\mathcal{O}_{d_{2} N_{2} N_{1}}\right|}{\left|\mathcal{O}_{N}\right|}=\frac{\left|\mathcal{O}_{d_{1} N}\right|\left|\mathcal{O}_{d_{2} N}\right|}{\left|\mathcal{O}_{N}\right|} .
$$

Furthermore :

$$
\begin{aligned}
\left|\mathcal{O}_{d_{1} d_{2} N_{1} N_{2}}^{g}\right| & =\left|\mathcal{O}_{d_{1} N_{1}}^{g}\right| \cdot\left|\mathcal{O}_{d_{2} N_{2}}^{g}\right| \\
& =\frac{\left|\mathcal{O}_{d_{1} N_{1} N_{2}}\right|}{\left|\mathcal{O}_{N_{2}}\right|} \cdot \frac{\left|\mathcal{O}_{2 N_{2} N_{2} N_{1}}\right|}{\left|\mathcal{O}_{N_{1} \mid}^{g}\right|} \\
& =\frac{\left|\mathcal{O}_{d_{1} 1}^{g}\right|\left|\mathcal{O}_{d_{2} N}^{g}\right|}{\left|\mathcal{O}_{N}^{g}\right|} .
\end{aligned}
$$

and hence

$$
\begin{aligned}
\rho_{f}\left(d_{1} d_{2}\right) & =\frac{\left|\mathcal{O}_{1_{1} d_{2} N}^{g}\right|}{\left|\mathcal{O}_{d_{1} d_{2} N \mid}\right|}=\frac{\left|\mathcal{O}_{d_{1} N}^{g}\right|\left|\mathcal{O}_{d_{2} N}^{g}\right|}{\left|\mathcal{O}_{N}^{g}\right|} \frac{\left|\mathcal{O}_{N}\right|}{\left|\mathcal{O}_{d_{1} N}\right|\left|\mathcal{O}_{d_{2} N}\right|} \\
& =\rho_{f}\left(d_{1}\right) \rho_{f}\left(d_{2}\right)
\end{aligned}
$$

since

$$
\left|\mathcal{O}_{N}^{g}\right|=\left|\mathcal{O}_{N}\right| .
$$

For $d=p$ there is $x \in \mathcal{O}$ s.t.

$$
\frac{g(x)}{N} \not \equiv 0(p) \text { since } \operatorname{gcd}(g(\mathcal{O}))=N
$$

Hence $x \notin \mathcal{O}_{d N}^{g} \Longrightarrow \rho_{f}(p)<p$.

Factoring $f \in \mathbb{Q}[V]$ into $t=t(f)$ irreducibles we get $f=f_{1} f_{2} \ldots f_{t}$, where we are assuming further that each f_{j} is irreducible in $\mathbb{C}[V]$ and that the f_{j} 's are distinct. According to E . Noether's Theorem [No] there is a finite set of primes S such that for $p \notin S, V$ is absolutely irreducible over $\mathbb{Z} / p \mathbb{Z}=\mathbb{F}_{p}$. By increasing the set S if necessary, we can assume that for $p \notin S$ the equations defining G also yield an absolutely irreducible variety over \mathbb{F}_{p}. According to Lang's Theorem [La] we have that

$$
\begin{equation*}
V(\mathbb{Z} / p \mathbb{Z})=V\left(\mathbb{F}_{p}\right)=\mathbb{G}\left(\mathbb{F}_{p}\right) \cdot v . \tag{4.8}
\end{equation*}
$$

By strong approximation we have (again increasing S if needed) that for $p \notin S$

$$
\begin{equation*}
\mathbb{G}(\mathbb{Z} / p \mathbb{Z})=\Gamma_{p} . \tag{4.9}
\end{equation*}
$$

and hence that

$$
\begin{equation*}
\mathcal{O}_{p}=V\left(\mathbb{F}_{p}\right) \quad \text { for } \quad p \notin S \tag{4.10}
\end{equation*}
$$

Also when p does not divide N we have that

$$
\mathcal{O}_{p}^{f}=\left\{x \in \mathcal{O}_{p}: f(x) \equiv 0(\bmod p)\right\}
$$

is well defined and

$$
\begin{equation*}
\frac{\left|\mathcal{O}_{p}^{f}\right|}{\left|\mathcal{O}_{p}\right|}=\frac{\left|\mathcal{O}_{p N}^{g}\right|}{\left|\mathcal{O}_{p N}\right|} . \tag{4.11}
\end{equation*}
$$

Finally for $1 \leq j \leq t(f)$ let

$$
\begin{equation*}
W_{j}=\left\{x \in V: f_{j}(x)=0\right\} \tag{4.12}
\end{equation*}
$$

W_{j} is an (absolutely irreducible) affine variety defined over \mathbb{Q} of dimension $\operatorname{dim} V-1$. Hence again by Noether's Theorem W_{j} is absolutely irreducible over \mathbb{F}_{p} for p outside S^{\prime} say. For such p we apply a weak form of the Weil conjectures to W_{j} (see [L-W] or [Sch] for an elementary treatment) to conclude that

$$
\begin{equation*}
\left|W_{j}\left(\mathbb{F}_{p}\right)\right|=p^{\operatorname{dim} V-1}+O\left(p^{\operatorname{dim} V-\frac{3}{2}}\right) \tag{4.13}
\end{equation*}
$$

where the implied constant depends on j only.
Furthermore, since the f_{j} 's are distinct irreducibles in $\mathbb{C}[V]$, we have for $i \neq j$

$$
\begin{equation*}
\operatorname{dim}\left(W_{i} \cap W_{j}\right) \leq \operatorname{dim} V-2 \tag{4.14}
\end{equation*}
$$

Hence for $p \notin S \cup S^{\prime}$ we have

$$
\begin{align*}
\left.\mid \mathcal{O}_{p}^{f}\right) \mid & =\sum_{j=1}^{t(f)}\left|W_{j}\left(\mathbb{F}_{p}\right)\right|+O\left(p^{\operatorname{dim} V-2}\right) \tag{4.15}\\
& =t(f) p^{\operatorname{dim} V-1}+O\left(p^{\operatorname{dim} V-\frac{3}{2}}\right)
\end{align*}
$$

and similarly

$$
\begin{equation*}
\left.\mid \mathcal{O}_{p}\right)\left|=\left|V\left(\mathbb{F}_{p}\right)\right|=p^{\operatorname{dim} V}+O\left(p^{\operatorname{dim} V-\frac{1}{2}}\right) .\right. \tag{4.16}
\end{equation*}
$$

Combining the above, we have that for $p \notin S \cup S^{\prime}$

$$
\begin{equation*}
\frac{\left|\mathcal{O}_{p}^{f}\right|}{\left|\mathcal{O}_{p}\right|}=\frac{t(f)}{p}+O\left(p^{-\frac{3}{2}}\right) \tag{4.17}
\end{equation*}
$$

and hence that

$$
\begin{equation*}
\left|\rho_{f}(p)-t(f)\right| \leq C p^{-\frac{1}{2}} \tag{4.18}
\end{equation*}
$$

where C depends only on \mathcal{O} and f.

4.2 Applying the sieve

As in (2.9) we define the sequence $a_{k}(T), k \geq 0$ by

$$
\begin{equation*}
a_{k}(T)=\sum_{\substack{\gamma \in \Gamma ; \| \gamma \mid \leq T \\ \text { |f(v)| }}} 1 . \tag{4.19}
\end{equation*}
$$

The sums on progressions are then, for $d \geq 1$ square free

$$
\begin{gather*}
\sum_{k \equiv 0(d)} a_{k}(T)=\sum_{\substack{\gamma \in \Gamma ;\|\gamma\| \leq T \\
f(\gamma v) \equiv 0(d)}} 1 \tag{4.20}\\
=\sum_{\substack{\delta \in \Gamma / \Gamma(d N) \\
g(\delta v)\rangle(d N)}} \sum_{\substack{\gamma \in \Gamma(d N) \\
\|\delta \gamma\| \leq T}} 1 \tag{4.21}
\end{gather*}
$$

where $\Gamma(q)$ is the congruence subgroup of Γ of level q and $f=g / N$ as in $\S 4.1$.
According to Theorem 3.2, (4.21) becomes

$$
\begin{aligned}
& =\sum_{\substack{\delta \in \Gamma / \Gamma(d N) \\
g(\delta v)=0(d N)}}\left(\frac{\operatorname{vol}\{\|w\| \leq T\}}{[\Gamma: \Gamma(d N)]}+O_{\epsilon}\left(T^{a-\frac{\theta}{1+d i m G}+\epsilon}\right)\right) \\
& =X \cdot \sum_{\substack{\delta \in \Gamma / \Gamma(d N) \\
g(\delta v) \equiv 0(d N)}} \frac{1}{[\Gamma: \Gamma(d N)]}+O_{\epsilon}\left(\left|\mathcal{O}_{d N}^{g}\right| T^{a-\frac{\theta}{1+\operatorname{dim} G}+\epsilon}\right)
\end{aligned}
$$

where

$$
\begin{equation*}
X=\sum_{k \in \mathbb{N}} a_{k}(T) . \tag{4.22}
\end{equation*}
$$

Now

$$
\mathcal{O}_{d N}=\Gamma_{d N} \cdot v(\bmod d N)
$$

and hence

$$
\begin{equation*}
\left|\mathcal{O}_{d N}\right|=\frac{\left|\Gamma_{d N}\right|}{\left|H_{d N}\right|} \tag{4.23}
\end{equation*}
$$

where $H_{d N}$ is the stabilizer of v in $\Gamma_{d N}$. Also $\Gamma / \Gamma(d N) \cong \Gamma_{d N}$ and so

$$
\begin{equation*}
\left|\left\{\delta \in \Gamma_{d N}: g(\delta v) \equiv 0(d N)\right\}\right|=\left|\mathcal{O}_{d N}^{g}\right|\left|H_{d N}\right| \tag{4.24}
\end{equation*}
$$

Thus (4.20) becomes

$$
\begin{equation*}
\sum_{k \equiv 0(d)} a_{k}(T)=\frac{X\left|\mathcal{O}_{d N}^{g}\right| \cdot\left|H_{d N}\right|}{\left|\Gamma_{d N}\right|}+O_{\epsilon}\left(d^{\operatorname{dim} G} T^{a-\frac{\theta}{1+\operatorname{dimG}}+\epsilon}\right) \tag{4.25}
\end{equation*}
$$

where we have used $\left|\mathcal{O}_{d N}^{g}\right| \ll d^{\operatorname{dim} G}$, though for later note that from (4.15) and (4.6)

$$
\begin{equation*}
\left|\mathcal{O}_{d N}^{g}\right| \ll d^{\operatorname{dim} G-1} \tag{4.26}
\end{equation*}
$$

Hence from (4.23) and (4.25) we have

$$
\begin{equation*}
\sum_{k \equiv 0(d)} a_{k}(T)=\frac{\rho_{f}(d)}{d} X+R(\mathcal{A}, d) \tag{4.27}
\end{equation*}
$$

with

$$
\begin{equation*}
\rho_{f}(d)=\frac{d\left|\mathcal{O}_{d N}^{g}\right|}{\left|\mathcal{O}_{d N}\right|} \tag{4.28}
\end{equation*}
$$

and

$$
\begin{align*}
|R(\mathcal{A}, d)| & \underset{\epsilon}{\ll} d^{\operatorname{dim} G} T^{a\left(1-\frac{\theta}{a(1+\operatorname{dim} G)}\right)+\epsilon} \\
& \lll d^{\operatorname{dim} G} X^{1-\frac{\theta}{a(1+\operatorname{dim} G)}+\epsilon} \tag{4.29}\\
& \lll d^{\operatorname{dim} G} X^{1-\frac{1}{2 n_{e}(1+\operatorname{dim} G)}+\epsilon}
\end{align*}
$$

according to Theorem 3.3, since $\theta=a / 2 n_{e}$.
By Proposition 4.1, (4.27) establishes axiom $\left(A_{0}\right)$ with B the empty set. As for the level distribution $\left(A_{1}\right)$ we have from (4.29) that

$$
\begin{align*}
\sum_{d \leq D}|R(\mathcal{A}, d)| & \underset{\epsilon}{<} D^{1+\operatorname{dim} G} X^{1-\frac{1}{2 n_{e}(1+\operatorname{dim} G)}+\epsilon} \tag{4.30}\\
& =O\left(X^{1-\zeta}\right)
\end{align*}
$$

as long as

$$
\begin{equation*}
D \leq X^{\tau} \text { with } \tau<\frac{1}{2 n_{e}(1+\operatorname{dim} G)^{2}} \tag{4.31}
\end{equation*}
$$

Finally axiom $\left(A_{2}\right)$ follows with a suitable $C_{2}=C_{2}(\mathcal{O}, f)$ from (4.18). We apply the combinatorial sieve in the form (2.8) to conclude that for

$$
\begin{equation*}
z=X^{\alpha} \quad \text { with } \alpha=\frac{1}{9 t(f)(1+\operatorname{dim} G)^{2} \cdot 2 n_{e}} \tag{4.32}
\end{equation*}
$$

and for

$$
P=\prod_{p \leq z} p
$$

with X large enough,

$$
\begin{equation*}
\frac{X}{(\log X)^{t(f)}} \ll S(\mathcal{A}, P) \ll \frac{X}{(\log X)^{t(f)}} \tag{4.33}
\end{equation*}
$$

where the implied constants depend only on f and the orbit \mathcal{O}.

4.3 Completion of proofs of Theorems 1.6, 1.7 and Corollary 1.8

We begin by establishing the following two Lemmas.
Lemma 4.2. Assume that $h \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ does not vanish identically when restricted to $V=G . v$. Then there is $\delta=\delta(h)>0$ such that

$$
|\{\gamma \in \Gamma:\|\gamma\| \leq T, h(\gamma v)=0\}| \ll T^{a-\delta} .
$$

Proof. We may assume that h is not constant on V and hence there is a finite extension E of \mathbb{Q} over which h factors into $h=h_{1} h_{2} \ldots h_{\nu}$ where each h_{j} is absolutely irreducible in $E[V]$. Hence for p large enough and \mathcal{P} a prime ideal in the ring of integers \mathcal{I}_{E} of E with $\mathcal{P} \mid(p)$ we have

$$
\begin{equation*}
\#\left\{x \in V\left(\mathcal{I}_{E} / \mathcal{P}\right): h_{j}(x)=0\right\} \ll N(\mathcal{P})^{\operatorname{dim} V-1} . \tag{4.34}
\end{equation*}
$$

The implied constant depending on h.
Assume further that p splits completely in E so that $\mathcal{I}_{E} / \mathcal{P} \cong \mathbb{Z} / p \mathbb{Z}$. Then

$$
\begin{equation*}
\#\{x \in V(\mathbb{Z} / p \mathbb{Z}): h(x) \equiv 0(p)\} \ll p^{\operatorname{dim} V-1} \tag{4.35}
\end{equation*}
$$

Let T be the large parameter in the Lemma and choose p as above with $T^{\alpha} / 2 \leq p \leq 2 T^{\alpha}$ for $\alpha>0$ small and to be chosen momentarily. Such a p exists by Chebotarev's density theorem [Che]. With this choice we have that

$$
\begin{align*}
& |\{\gamma \in \Gamma:\|\gamma\| \leq T, h(\gamma v)=0\}| \\
& \leq|\{\gamma \in \Gamma:\|\gamma\| \leq T, h(\gamma v) \equiv 0(p)\}| \tag{4.36}\\
& =\frac{\left|\mathcal{O}_{p}^{h}\right|}{\left|\mathcal{O}_{p}\right|} X+O_{\epsilon}\left(T^{a-\frac{\theta}{1+\operatorname{dim} G}+\epsilon} p^{\operatorname{dim} G}\right)
\end{align*}
$$

on using (4.25).

Prime and Almost Prime Integral Points on Principal Homogeneous Spaces 23

Coupled with (4.35) this gives

$$
\begin{align*}
& |\{\gamma \in \Gamma:\|\gamma\| \leq T, h(\gamma v)=0\}| \\
& \underset{\epsilon}{\ll} \frac{T^{a+\epsilon}}{p}+T^{a-\frac{\theta}{1+\operatorname{dim} G}+\epsilon} p^{\operatorname{dim} G} \tag{4.37}\\
& \ll T^{a-\alpha}, \text { where we choose } \alpha=\frac{\theta}{(1+\operatorname{dim} G)^{2}} .
\end{align*}
$$

Lemma 4.3. Let $f=f_{1} f_{2} \ldots f_{t}$, with $f_{j} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ irreducible as in Theorem 1.6, $1 \leq j \leq t(f)$. Then there is $\delta_{1}>0$ such that for any $m \in \mathbb{Z}$ and any $1 \leq j \leq t(f)$,

$$
\left|\left\{\gamma \in \Gamma:\|\gamma\| \leq T, f_{j}(\gamma v)=m\right\}\right| \ll T^{a-\delta_{1}}
$$

the implied constant depending only on f and Γ.

Proof. By assumption f_{j} is not constant when restricted to V. Hence by Lemma 4.2 with $g=f_{j}-m$ we get Lemma 4.3 but potentially the implied constant depends on m. The only place where this dependence may enter is in 4.34 and for m outside a finite set $f_{j}-m$ is irreducible over $\overline{\mathbb{Q}}$. The equations defining $f_{j}-m=0$ and V will be irreducible over $\overline{\mathbb{F}}_{p}$ for p outside a fixed finite set and they are of a fixed degree in the variables $\left(x_{1}, \ldots, x_{n}\right)$. Hence by a Lemma of Lang-Weil [L-W] the upper bound in (4.34) with $h=f_{j}-m$ is uniform in m.

Proof of Theorem 1.6:
We choose $\epsilon_{1}>0$ small (but fixed) so that firstly $\epsilon_{1}<\delta_{1}$ where δ_{1} is determined by Lemma 4.3. For $1 \leq j \leq t(f)$ and T large we have from Lemma 4.3 that

$$
\begin{equation*}
\#\left\{\gamma \in \Gamma:\|\gamma\| \leq T,\left|f_{j}(\gamma v)\right| \leq T^{\epsilon_{1}}\right\} \ll T^{a-\delta_{1}+\epsilon_{1}} \tag{4.38}
\end{equation*}
$$

Now

$$
\begin{align*}
& \left\{\gamma \in \Gamma:\|\gamma\| \leq T, f_{j}(\gamma v) \text { is prime }\right\} \subset \bigcup_{j=1}^{t(f)}\left\{\gamma \in \Gamma:\|\gamma\| \leq T,\left|f_{j}(\gamma v)\right| \leq T^{\epsilon_{1}}\right\} \cup \\
& \left\{\gamma \in \Gamma:\|\gamma\| \leq T,\left|f_{j}(\gamma v)\right| \geq T^{\epsilon_{1}} \quad \text { for each } j, \text { and } f_{j}(\gamma v) \text { is prime }\right\} . \tag{4.39}
\end{align*}
$$

By (4.38) the cardinality of the union of the first $t(f)$ sets above is at most $O\left(T^{a-\delta_{1}+\epsilon_{1}}\right)$. The last set on the right hand side of (4.39) is contained in

$$
\left\{\gamma \in \Gamma:\|\gamma\| \leq T,\left(f(\gamma v), P_{z}\right)=1\right\}
$$

where

$$
\begin{equation*}
P_{z}=\prod_{p \leq z} z=T^{\epsilon_{1}} \tag{4.40}
\end{equation*}
$$

The cardinality of the last set is $S\left(\mathcal{A}, P_{z}\right)$ and if $\epsilon_{1}<\alpha$ where α is the level distribution in (4.32) then we may apply (4.33) to conclude that

$$
\begin{aligned}
& \left\{\gamma \in \Gamma:\|\gamma\| \leq T, f_{j}(\gamma v) \text { is prime }\right\} \\
& \ll T^{a-\delta_{1}+\epsilon_{1}}+\frac{X}{(\log X)^{t(f)}} \ll \frac{X}{(\log X)^{t(f)}} .
\end{aligned}
$$

This completes the proof of Theorem 1.6.
Proof of Theorem 1.7:
Taking α as in (4.32) and $z=X^{\alpha}$, we have that

$$
\begin{equation*}
\sum_{\substack{\|\gamma\| \leq T \\\left(f(\gamma v), P_{z}\right)=1}} 1 \gg \frac{X}{(\log X)^{t(f)}} \tag{4.41}
\end{equation*}
$$

where $P_{z}=\prod_{p \leq z} p$.
Now any point $\gamma v \in \mathcal{O}$ which occurs in the sum in (4.41) has $|\gamma v| \ll T$ (where $|\mid$ is the usual Euclidean norm on \mathbb{R}^{n}) and hence $|f(\gamma v)| \ll T^{\operatorname{deg} f}$. On the other hand for such a point $\gamma v \in \mathcal{O}$ in the sum, $f(\gamma v)$ has all its prime factors at least $z \gg T^{a \alpha}=X^{\alpha}$. It follows that for such a point $\gamma v, f(\gamma v)$ has at most

$$
r=\frac{\operatorname{deg} f}{a \alpha}=\frac{9 t(f)(1+\operatorname{dim} G)^{2} \cdot 2 n_{e}(\Gamma) \operatorname{deg} f}{a}
$$

prime factors.

Proof of Corollary 1.8:

Suppose by way of contradiction that the points γv that we produced in the previous paragraph are not Zariski dense in V. Since V is connected it follows that there is a $h \in$ $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ which does not vanish identically on V and such that all our points lie in $V \cap\{x: h(x)=0\}$. But by Lemma 4.2 the total number of points in this intersection with $\|\gamma\| \leq T$ is $O\left(T^{a-\delta}\right)$ with $\delta=\delta(h)>0$. This contradicts the lower bound of $c X /(\log X)^{t(f)}$ (with $c>0$ fixed) for the number of points with at most r prime factors that was produced in Theorem 1.7.

Finally we apply the Theorems 1.6 and 1.7 to the case of $n \times n$ integral matrices of determinant m as in the introduction. Let $G=S L_{n}, \Gamma=S L_{n}(\mathbb{Z})$ and $v \in \operatorname{Mat}_{n}(\mathbb{Z})$ with $\operatorname{det} v=m \neq 0$. We identify Mat_{n} with affine space $A^{M}\left(M=n^{2}\right)$, with G acting by $x \rightarrow g x$. We have $V_{m, n}=G . v$ and $V_{m, n}(\mathbb{Z})$ consists of a finite number of Γ-orbits. Note that if $\|$ is a
norm on $\operatorname{Mat}_{n \times n}(\mathbb{R})$ then for a fixed invertible v as above $|g v|$ defines a (vector space) norm on $M_{M}(\mathbb{R})$ and we may apply Theorems 1.6 and 1.7 to this setting, namely to the individual orbits $\mathcal{O}=\Gamma . v$ with v fixed as above. In this case $\operatorname{dim} G+1=n^{2}$ and $a=n^{2}-n$ for any choice of norm as above [D-R-S] [G-W][Ma]. Furthermore $p(\Gamma)=2(n-1)$ (see [D-R-S]) and so $n_{e}=(n-1)$ if n is odd, and $n_{e}=n$ if $n \geq 4$ is even. For $n=2$ we can take $n_{e}=2$ by [K-S], see (6.17). Thus Theorem 1.7 yields that for n odd r need only satisfy

$$
\begin{equation*}
r>\frac{9 \cdot t(f) \cdot n^{4} \cdot 2(n-1) \operatorname{deg}(f)}{n(n-1)}=18 \cdot t(f) \cdot n^{3} \cdot \operatorname{deg}(f) \tag{4.42}
\end{equation*}
$$

and for n even the previous expression is multiplied by $n /(n-1)$.
Thus for $\mathcal{O}=\Gamma . v$ and f primitive on \mathcal{O}

$$
\begin{align*}
& \mid\{x \in \mathcal{O}:|x| \leq T, f(x) \text { has a most } r \text { prime factors }\} \mid \\
& \gg T^{n^{2}-n} /(\log T)^{t(f)} \tag{4.43}
\end{align*}
$$

This proves the Γ-orbit version of Theorem 1.2 and Corollary 1.3.
Now for $m \neq 0$ fixed $V_{m, n}(\mathbb{Z})$ consists of a finite number of such Γ-orbits, and Theorem 1.1 follows from the Γ-orbit version. In order to establish Theorem 1.2 and Corollary 1.3 for $V_{m, n}(\mathbb{Z})$ we need to show that if f is $V_{m, n}(\mathbb{Z})$ weakly primitive then there is a $v \in V_{m, n}(\mathbb{Z})$ such that if $\mathcal{O}=\Gamma . v$ then f is \mathcal{O}-weakly-primitive.

As in the theory of Hecke correspondences on n-dimensional lattices (see [Te$]$) we decompose $V_{m, n}$ into Γ-orbits

$$
\begin{equation*}
V_{m, n}(\mathbb{Z})=\coprod_{j=1}^{k(m)} \mathcal{O}^{(j)} \tag{4.44}
\end{equation*}
$$

with $\mathcal{O}^{(j)}=\Gamma v_{j}, v_{j}$ in $V_{m, n}(\mathbb{Z})$.
Denote by W the union of the $k(m)$ global Γ-orbits and for $d \geq 1$ let $\mathcal{O}_{d}^{(j)}$ denote the reduction of $\mathcal{O}^{(j)} \bmod d$ which defines a point in the orbit space $\left.S L_{n}(\mathbb{Z} / d \mathbb{Z}) \backslash \operatorname{Mat}_{n}(\mathbb{Z} / d \mathbb{Z})\right)$ where, Mat_{n} is the space of $n \times n$ matrices. Let W_{d} denote the reduction of W into this space. Note that for $d=p$ with p a prime that does not divide m, W_{p} consists of a single point, that is to say the orbits $\mathcal{O}^{(j)}$ all reduce to the same $S L_{n}(\mathbb{Z} / d \mathbb{Z})$-orbit modulo p. The key property that we need for these reductions is that if $\left(d_{1}, d_{2}\right)=1$ then the diagonal embedding

$$
\begin{equation*}
W \longrightarrow\left(S L_{n}\left(\mathbb{Z} / d_{1} \mathbb{Z}\right) \backslash \operatorname{Mat}_{n}\left(\mathbb{Z} / d_{1} \mathbb{Z}\right)\right) \times\left(S L_{n}\left(\mathbb{Z} / d_{2} \mathbb{Z}\right) \backslash \operatorname{Mat}_{n}\left(\mathbb{Z} / d_{2} \mathbb{Z}\right)\right) \tag{4.45}
\end{equation*}
$$

is onto $W_{d_{1}} \times W_{d_{2}}$.
With (4.45), the weak primitivity property that we need is established as follows. Let f be weakly primitive on $V_{m, n}(\mathbb{Z})$ and for simplicity of notation assume that $N=1$ in Section
1.A and that m is square free. So $f \in \mathbb{Z}\left[x_{i j}\right]$ and for each prime $p \geq 2$ there is an $x \in V_{m, n}(\mathbb{Z})$ such that $f(x) \neq 0(\bmod p)$. We claim that there is a $J \in\{1, \ldots, k(m)\}$ such that f is weakly primitive for $\mathcal{O}^{(J)}$. That is for every prime $p \geq 2$ there is $x \in \mathcal{O}^{(J)}$ with $f(x) \neq 0(p)$.

Call a prime $p \geq 2$ good for $\mathcal{O}^{(j)}$ if such an x exists for p. This property is determined locally at p. That is by strong approximation for $S L_{n}, p$ is good for $\mathcal{O}^{(j)}$ iff the local orbit $S L_{n}(\mathbb{Z} / p \mathbb{Z}) v_{j}$ in $\operatorname{Mat}_{n}(\mathbb{Z} / p \mathbb{Z})$ contains an x such that $f(x) \not \equiv 0(p)$. So the condition is one on $\mathcal{O}_{p}^{(j)}$. Every prime p that does not divide m is good for any $\mathcal{O}^{(j)}, j=1, \ldots, k(m)$ since $V_{m, n}(\mathbb{Z})$ is good at p and all global orbits reduce to the same local orbit at such a p. Now write $m=p_{1} p_{2} \ldots p_{\ell}$, and then

$$
\begin{equation*}
W \longrightarrow W_{p_{1}} \times W_{p_{2}} \times \ldots \times W_{p_{\ell}} \tag{4.46}
\end{equation*}
$$

is onto.
Moreover by our assumption on f, for each $p_{i}, i=1, \ldots, \ell$, there is $j_{p_{i}}$ s.t. $\mathcal{O}_{p_{i}}^{\left(j_{i}\right)}$ is good at p_{i}. Hence by (4.46) there is a $J \in\{1,2, \ldots, k(m)\}$ such that $\mathcal{O}_{p_{i}}^{(J)}$ is good for each $i=1,2, \ldots, \ell$. Hence f is weakly primitive for $\mathcal{O}^{(J)}=\Gamma v_{J}$.

§5. Zariski Density of Prime Matrices

Fix $n \geq 3$. We say that an $n \times n$ integral matrix is "prime" if all of its coordinates are prime numbers. For m an integer $V_{m, n}$ denotes the affine variety given by $\left\{x \in M a t_{n}(\mathbb{R} ; \operatorname{det} x=m\}\right.$. We are interested in the set of prime matrices being Zariski dense in $V_{m, n}$. For this to happen we must clearly allow x to have all its coordinates $\left(x_{i j}\right)$ to be odd numbers. Such a matrix x satisfies det $x \equiv 0\left(2^{n-1}\right)$. It turns out that this is the only obstruction to producing many primes in $V_{m, n}(\mathbb{Z})$. As an application of Vinogradov's methods for analyzing linear equations in primes with three or more variables, we show
Theorem 5.1. Fix $n \geq 3$. Then the set of prime matrices x in $V_{m, n}(\mathbb{Z})$ is Zariski dense in $V_{m, n}$ iff $m \equiv 0\left(2^{n-1}\right)$.

The proof of Theorem 5.1 can be extended to prove a special case of the general local to global conjectures for primes in orbits of actions of certain groups [B-G-S2].

To state the result, let Λ be a finite index subgroup of $S L_{n}(\mathbb{Z}), n \geq 3$. For A an $n \times n$ integral matrix with $\operatorname{det} A=m \neq 0$, let \mathcal{O}_{A} denote the Λ-orbit Λ. A. Thus \mathcal{O}_{A} is contained in $V_{m, n}(\mathbb{Z})$ and is Zariski-dense in $V_{m, n}$.
Theorem 5.2. The set of prime matrices x in \mathcal{O}_{A} is Zariski dense in $V_{m, n}$ iff there are no local congruence obstructions.

Remark 5.3.

(A) We are using here that for $n \geq 3$ every finite index subgroup of $S L_{n}(\mathbb{Z})$ is a congruence subgroup ([Me], [B-M-S]).
(B) The general orbit conjecture for this action asserts that Theorem 5.3 holds for Λ a subgroup of $S L_{n}(\mathbb{Z})$ which is Zariski dense in $S L_{n}$ and with the coordinate functions $x_{i j}, i=1, \ldots, n, j=1, \ldots, n$ replaced by any set f_{1}, \ldots, f_{t} of primes in the coordinate ring $\mathbb{Q}\left[x_{i j}\right] /\left(\operatorname{det} x_{i j}-m\right)$. In this setting the local congruence obstructions that need to be passed are that for any $q \geq 2$ there is an x in $\mathcal{O}_{A}(\bmod q)$, the reduction of \mathcal{O}_{A} modulo q, such that $f_{1}(x) f_{2}(x) \ldots f_{t}(x) \in(\mathbb{Z} / q \mathbb{Z})^{*}$.

An example of an orbit in Theorem 5.2 for which there are no local obstructions for any Γ is

$$
\mathcal{O}=\Gamma\left[\begin{array}{rrrrrr}
1 & 1 & & \cdots & 1 & 1 \\
-1 & 1 & & \cdots & 1 & 1 \\
-1 & -1 & 1 & \cdots & 1 & 1 \\
-1 & -1 & & \cdots & -1 & 1
\end{array}\right] \subset V_{2^{n-1}, n}
$$

This is similar to $a=1$ (or -1) in Dirichlet's theorem, i.e., there are infinitely many $p \equiv 1$ ($\bmod q$) for any q.

Proof of necessity of the congruence condition in Theorem 5.1: If the set of matrices with prime entries is Zariski dense, then of course the set of matrices with odd entries is Zariski dense. But then if x is $n \times n$ integral and has odd entries then writing the columns of x as a_{1}, \ldots, a_{n}, we have: $\operatorname{det} x=\operatorname{det}\left[a_{1}, \ldots, a_{n}\right]=\operatorname{det}\left[a_{1}, a_{2}-a_{1}, a_{3}-a_{1}, \ldots, a_{n}-a_{1}\right]=$ $\operatorname{det}\left[a_{1}, 2 b_{2}, \ldots, 2 b_{n}\right]$, with b_{j} integral. Hence $\operatorname{det} x=2^{n-1} \operatorname{det}\left[a_{1}, b_{2}, \ldots, b_{n}\right] \equiv 0\left(2^{n-1}\right)$.

To demonstrate the sufficiency of the congruence condition in Theorem 5.1, we will consider the simplest case when $m=2^{n-1}$. In general one needs to impose further congruence conditions in the construction below.

Lemma 5.4. For $n \geq 2$ let

$$
\mathcal{Y}=\left\{\left[\begin{array}{lll}
x_{21} x_{22} & \cdots & x_{2 n} \\
x_{31} & \cdots & x_{3 n} \\
\vdots & & \\
x_{n 1} & \cdots & x_{n n}
\end{array}\right]\right\}
$$

which we identify with affine $A^{(n-1) \cdot n}$ space. We denote by $A_{j}(y)$ the $(n-1) \times(n-1)$ minor of y gotten by striking the j-th column. Let \mathcal{G} be the set of $y \in \mathcal{Y}$ for which

$$
\begin{gather*}
\left(A_{1}(y), A_{2}(y), \ldots, A_{n}(y)\right)=2^{n-2} \tag{i}\\
A_{1}(y) A_{2}(y) \ldots A_{n}(y) \neq 0 \tag{ii}\\
A_{1}(y)+A_{2}(y)+\cdots+A_{n}(y) \equiv 0\left(2^{n-1}\right) \tag{iii}
\end{gather*}
$$

and the $x_{i j}\left(\right.$ where $\left.\left(x_{i j}\right)=y\right)$ are all prime. Then \mathcal{G} is Zariski dense in \mathcal{Y}.
Proof. We use Dirichlet's theorem repeatedly and proceed by induction on n.

For $n=2, y=\left[x_{21}, x_{22}\right]$ and we seek $\left(x_{21}, x_{22}\right)=1, x_{21}+x_{22} \equiv 0(2)$ and x_{21}, x_{22} both prime. Clearly the set \mathcal{G} of such is Zariski dense in A^{2}.

For $n \geq 3$ we assume the Lemma for $n-1$ and construct the $y \in \mathcal{G}$ as follows:
For $z=\left[\begin{array}{c}z_{2} \\ \vdots \\ z_{n}\end{array}\right], \xi=\left[\begin{array}{c}\xi_{2} \\ \vdots \\ \xi_{n}\end{array}\right]$, and w an $(n-1) \times(n-2)$ matrix we write

$$
y=[z \xi w]
$$

By induction, the set of w 's in the space \mathcal{W} of such $(n-1) \times(n-2)$ matrices for which $w_{i j}$ are all prime and such that

$$
\begin{equation*}
C_{2}(w)+C_{3}(w) \cdots+C_{n}(w) \equiv 0\left(2^{n-2}\right) \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(C_{2}(w), \ldots, C_{n}(w)\right)=2^{n-3} \tag{5.2}
\end{equation*}
$$

is Zariski dense in \mathcal{W}. Here $C_{i}(w)$ is the $(n-2)$ minor of w obtained by striking the i-th row of w. For such a w we seek ξ satisfying

$$
\begin{equation*}
A_{1}=\xi_{2} C_{2}-\xi_{3} C_{3} \cdots+(-1)^{n} \xi_{n} C_{n} \equiv 2^{n-2}\left(2^{n-1}\right) \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\xi_{j}, 2\right)=1 \tag{5.4}
\end{equation*}
$$

In view of (5.1) and (5.2), this amounts to

$$
\begin{equation*}
\xi_{2} C_{2}^{\prime}-\xi_{3} C_{3}^{\prime} \cdots+(-1)^{n} \xi_{n} C_{n}^{\prime} \equiv 2(\bmod 4) \tag{5.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(C_{2}^{\prime}, \ldots, C_{n}^{\prime}\right)=1 \quad \text { and } \quad C_{2}^{\prime}+\cdots C_{j}^{\prime}+\cdots C_{n}^{\prime} \equiv 0(2) \tag{5.6}
\end{equation*}
$$

According to (5.6) the number ℓ of $C_{j}^{\prime \prime}$ s which are $\equiv \pm 1(4)$ is even and positive. Collecting these C_{j}^{\prime} 's on the left, renumbering the indices and replacing ξ_{j} by $-\xi_{j}$ suitably, leads to solving

$$
\begin{equation*}
\xi_{2}+\xi_{3}+\cdots \xi_{\ell+1} \equiv b(\bmod 4) \tag{5.7}
\end{equation*}
$$

where b is either 0 or $2 \bmod 4$. If $b \equiv 0(4)$ choose $\xi_{j}=(-1)^{j}, 2 \leq j \leq \ell+1$ while if $b \equiv 2(4)$ choose $\xi_{2}=\xi_{3}=1$ and $\xi_{j}=(-1)^{j}$ for $4 \leq j \leq \ell+1$. Since ℓ is even these choices solve (5.5).

Having found such a $\xi\left(\bmod 2^{n-1}\right)$ satisfying (5.3) and (5.4) we choose ξ integral satisfying this congruence and for which ξ_{j} are all prime. This is possible by Dirichlet's theorem and their choice is Zariski dense in ξ space.

For each choice of w and ξ above we choose z as follows, First, we have

$$
\begin{equation*}
A_{1} \equiv 2^{n-2}\left(\bmod 2^{n-1}\right) \tag{5.8}
\end{equation*}
$$

and hence $A_{1} \neq 0$. For each odd prime p dividing A_{1}, let $t^{(p)}=\left[\begin{array}{c}t_{2}^{(p)} \\ \vdots \\ t_{n}^{(p)}\end{array}\right]$ be chosen with $t_{j}^{(p)} \in(\mathbb{Z} / p \mathbb{Z})^{*}$ and satisfying

$$
\begin{equation*}
A_{2}:=t_{2}^{(p)} C_{2}-t_{3}^{(p)} C_{3} \cdots+(-1)^{n} t_{n}^{(p)} C_{n} \not \equiv 0(p) \tag{5.9}
\end{equation*}
$$

It is clear that such a $t^{(p)}$ can be found since $\left(C_{2}, \ldots, C_{n}\right)=2^{n-3}$ and $p \geq 3$.
Next let q_{3}, \ldots, q_{n} be distinct primes different from 2 and any prime divisor of A_{1} and of any entry of w. We chose z to satisfy the following congruences:

$$
\begin{align*}
& {\left[\begin{array}{c}
z_{2} \\
\vdots \\
z_{n}
\end{array}\right] \equiv\left[\begin{array}{c}
w_{2 j} \\
\vdots \\
w_{n j}
\end{array}\right]\left(\bmod q_{j}\right), \text { for } 3 \leq j \leq n} \tag{5.10}\\
& {\left[\begin{array}{c}
z_{2} \\
\vdots \\
z_{n}
\end{array}\right] \equiv\left[\begin{array}{c}
t_{2}^{(p)} \\
\vdots \\
t_{n}^{(p)}
\end{array}\right](\bmod p) \text { for } p \mid A_{1}, p \text { odd }} \tag{5.11}\\
& {\left[\begin{array}{c}
z_{2} \\
\vdots \\
z_{n}
\end{array}\right] \equiv\left[\begin{array}{c}
\xi_{2} \\
\vdots \\
\xi_{n}
\end{array}\right]\left(\bmod 2^{n-1}\right)} \tag{5.12}
\end{align*}
$$

The conditions (5.10), (5.11), (5.12) involve distinct prime moduli and the numbers on the right are all prime to their moduli, hence by Dirichlet's theorem we can choose z_{j} to be prime and to satisfy the congruences (5.10), (5.11), (5.12). Moreover, the set of choices for these z 's is Zariski dense in the space of z 's. This produces matrices $y=[z \xi w]$ which we check satisfy the requirement of the lemma. Indeed by (5.8)

$$
\begin{equation*}
A_{1}(y) \equiv 2^{n-2}\left(\bmod 2^{n-1}\right) \tag{5.13}
\end{equation*}
$$

By (5.9) $A_{1}(y)$ and $A_{2}(y)$ have no odd prime common factor. Also by (5.12)

$$
\begin{equation*}
A_{2}(y) \equiv A_{1}(y)\left(\bmod 2^{n-2}\right) \tag{5.14}
\end{equation*}
$$

so we conclude that

$$
\begin{equation*}
\left(A_{1}(y), A_{2}(y)\right)=2^{n-2} \tag{5.15}
\end{equation*}
$$

Note that for $3 \leq j \leq n, A_{j}(y) \equiv 0\left(2^{n-2}\right)$ since A_{j} is the determinant of an $(n-1) \times(n-1)$ matrix with odd entries. Hence

$$
\begin{equation*}
A_{1}(y)+A_{2}(y)+\cdots+A_{n}(y) \equiv 0\left(\bmod 2^{n-1}\right) \tag{5.16}
\end{equation*}
$$

Thus together with (5.13) we deduce that

$$
\begin{equation*}
\left(A_{1}(y), \ldots, A_{n}(y)\right)=2^{n-2} \tag{5.17}
\end{equation*}
$$

From (5.13) and (5.14) we conclude that $A_{1}(y) A_{2}(y) \neq 0$, while from (5.10) we have that $A_{j}(y) \equiv \pm A_{1}(y)\left(\bmod q_{j}\right)$ for $3 \leq j \leq n$ and hence $A_{3}(y) \ldots A_{n}(y) \neq 0$. All this, coupled with the fact that the entries of y are prime and that the y 's can be chosen to be Zariski dense in \mathcal{Y}, completes the proof of Lemma 5.4.

We now appeal to Vinogradov's methods [Vi] for studying the solvability of

$$
\begin{equation*}
H_{A_{0}, \ldots, A_{n}}: A_{1} s_{1}-A_{2} s_{2} \cdots+(-1)^{n+1} A_{n} s_{n}-A_{0}=0 \tag{5.18}
\end{equation*}
$$

with s_{j} prime (i.e., $\left(s_{j}\right)$ a prime ideal in \mathbb{Z}). The treatment in Vaughan [V], pp. 37 shows that if $n \geq 3$ and $A_{1} A_{2} \ldots A_{n} \neq 0$, then the number of solutions to (5.18) with $\left|s_{j}\right| \leq T$ and s_{j} prime satisfies

$$
\begin{equation*}
R(T) \gg C \frac{T^{n-1}}{(\log T)^{n}}+O_{\nu}\left(\frac{T^{n-1}}{(\log T)^{\nu}}\right) \tag{5.19}
\end{equation*}
$$

for any fixed (large) ν. Moreover, the critical number C given by the singular series is nonzero iff the following local conditions are satisfied

$$
\begin{align*}
\left(A_{0}, A_{1}, \ldots, A_{n-1}\right) & =\left(A_{0}, A_{1}, \ldots, A_{n-2}, A_{n}\right) \\
& =\left(A_{1}, A_{2}, \ldots, A_{n}\right)=\left(A_{0}, A_{1}, \ldots, A_{n}\right) \tag{5.20}
\end{align*}
$$

and

$$
\begin{equation*}
A_{0}+A_{1}+\cdots+A_{n} \equiv 0\left(\bmod 2\left(A_{0}, A_{1}, \ldots, A_{n}\right)\right) \tag{5.21}
\end{equation*}
$$

If any of these conditions fail, for example if there is a prime p and an $e \geq 1$ with $p^{e} \mid A_{j}$ for $j=0, \ldots, n-1$ but $p^{e} \nmid A_{n}$, then any solution to (5.18) must have $p \mid s_{n}$. Hence the set of solutions to (5.18) with s_{n} prime is not Zariski dense in $H_{A_{0}, \ldots, A_{n}}$. Thus the conditions (5.20), (5.21) are necessary for the Zariski density of $\left(s_{1}, \ldots, s_{n}\right), s_{j}$ prime in $H_{A_{0}, \ldots, A_{n}}$. These conditions are also sufficient. Indeed $H_{A_{0}, \ldots, A_{n}}$ is connected and hence if these points are not Zariski dense then there is a polynomial $f\left(s_{1}, \ldots, s_{n}\right)$ which is nonconstant on $H_{A_{0}, \ldots, A_{n}}$ such that all the s 's lie in $H_{A_{0}, \ldots, A_{n}} \cap\{s: f(s)=0\}$. It is elementary that the number of integer points in this intersection and for which $\left|s_{j}\right| \leq T$ is $O\left(T^{n-2}\right)$. Hence if $C \neq 0$ then (5.19) gives a contradiction to the points all lying in $\{s: f(s)=0\} \cap H_{A}$. We conclude that

$$
\begin{equation*}
\left\{\left(s_{1}, \ldots, s_{n}\right): s_{j} \text { is prime, } \quad s \in H_{A_{0}, \ldots, A_{n}}\right\} \tag{5.22}
\end{equation*}
$$

is Zariski dense in $H_{A_{0}, \ldots, A_{n}}$ iff (5.20) and (5.21) hold.

Let \mathcal{Y} be the space in Lemma 5.4 and \mathcal{G} the set of y 's constructed in that Lemma. Set $A_{0}=2^{n-1}$. Then for $y \in \mathcal{G}$

$$
\left(A_{1}(y), \ldots, A_{n}(y)\right)=2^{n-2}
$$

and

$$
A_{1}(y)+\cdots+A_{n}(y) \equiv 0\left(2^{n-1}\right)
$$

and $A_{1}(y) \ldots A_{n}(y) \neq 0$. Hence $\left(A_{0}, A_{1}(y), \ldots, A_{n}(y)\right)=2^{n-2}$ and the number of $1 \leq j \leq n$ for which $2^{n-2} \mid A_{j}(y)$ is even and positive. It follows that

$$
\begin{gathered}
\left(A_{0}, A_{1}(y), \ldots, A_{n-1}(y)\right)=\left(A_{0}, A_{1}(y), \ldots, A_{n-2}(y), A_{n}(y)\right)= \\
=\left(A_{1}(y), \ldots, A_{n}(y)\right)=2^{n-2} \quad \text { and } \\
A_{0}+A_{1}(y) \cdots+A_{n}(y) \equiv 0 \bmod \left(2\left(A_{0}, \ldots, A_{n}(y)\right)\right) .
\end{gathered}
$$

Thus (5.20) and (5.21) are satisfied and hence by (5.22) it follows that for any $y \in \mathcal{G}$ the set of $s \in H_{A_{0}, \ldots, A_{n}(y)}$ for which all s_{j} are prime is Zariski dense in $H_{A_{0}, \ldots, A_{n}(y)}$. For each such y and s the matrix x

$$
\left[\begin{array}{ccc}
s_{1} & \cdots & s_{n} \\
& y &
\end{array}\right]=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n} \\
z_{2} & \xi_{2} & & \\
\vdots & \vdots & w & \\
z_{n} & \xi_{n} & &
\end{array}\right], \quad \text { is a prime matrix in } V_{2^{n-1}, n}
$$

To complete the proof of Theorem 5.1 with $m=2^{n-1}$, we must show that set of x 's constructed above is dense in $V_{2^{n-1}, n}$. Let $\mathcal{Y}^{0}=\left\{y \in \mathcal{Y}: A_{j}(y) \neq 0\right.$ for some $\left.1 \leq j \leq n\right\}$. \mathcal{Y}^{0} is an open irreducible subset of $A^{(n-1) \times n}$ and is quasi-affine. Let $\Upsilon: V_{m, n} \rightarrow \mathcal{Y}^{0}$ be the surjective morphism

$$
x \longrightarrow\left(\begin{array}{lll}
x_{21} & \cdots & x_{2 n} \tag{5.23}\\
\vdots & & \\
x_{n 1} & \cdots & x_{n m}
\end{array}\right)
$$

If U is a nonempty open subset of $V_{m, n}$ then since $V_{m, n}$ is connected, U is dense and hence $\Upsilon(U)$ is dense in $\Upsilon\left(V_{m, n}\right)=\mathcal{Y}^{0}$. Also $\Upsilon(U)$ is constructible and contains an open dense subset of \mathcal{Y}^{0}. According to Lemma 5.4 there is a $y \in \mathcal{G} \cap \Upsilon(U)$. Now $U \cap \Upsilon^{-1}(y)$ is a nonempty open subset of $H_{2^{n-1}, A_{1}(y), \ldots, A_{n}(y)}$. According to the analysis above it contains a point $\left(p_{1}, \ldots, p_{n}\right)$ all of whose coordinates are prime. Hence $x=\left[\begin{array}{l}p \\ y\end{array}\right]$ is a prime matrix and it is in U. This proves Theorem 5.1.

Section 6. Spectral estimates for uniform lattices

We now turn to explain an alternative approach to estimating the level of distribution. Indeed, rather than giving an error term for the number of lattice points in a ball, it suffices to estimate the deviation of a positive weighted sum over the lattice points. This allows one
to take a smooth weight and to estimate its Fourier transform directly via a convergent eigenfunction expansion of the corresponding automorphic kernel. This method gives a sharper result for the level of distribution and the improvement is most significant when the lattice is co-compact. Since the latter assumption also allows us to avoid the analysis of Eisenstein series necessary for the estimates of eigenfunction expansions, we will present the method only for co-compact lattices. In this case it can be naturally viewed as providing the error estimate in the non-Euclidean version of a Poisson summation formula for compact locally symmetric spaces. To simplify matters further, we will assume that the weight functions are radial, allowing us to reduce matters to spectral estimates associated with spherical functions. We note that the estimate of the deviation we give below is in fact sharp: it gives the best possible result for a smooth weighted sum.

We retain the notation of $\S \S 3.1-3.3$, and again let G be a connected semisimple Lie group with finite center and no compact factors. \mathcal{S} denotes the symmetric space $\mathcal{S}=G / K$ where K is a maximal compact subgroup. We take the Riemannian structure on \mathcal{S} induced by the Cartan-Killing form on G and let d denote the associated G-invariant distance. Consider the family of kernels on $\mathcal{S} \times \mathcal{S}$ given by:

$$
L_{t}(z, w)=\chi_{[0, t]}(d(z, w))
$$

where $\chi_{[0, t]}$ is the characteristic function of an interval. Fix a smooth function $b(w)$ on \mathcal{S} which is non-negative, positive definite, supported in a ball of radius t_{0} with center w_{0}, invariant under $K_{w_{0}}$ and with integral 1. Define the following smooth function, which is supported on the set of points whose distance from w_{0} is at most $t+t_{0}$:

$$
\begin{equation*}
W_{t}(z)=\int_{\mathcal{S}} L_{t}(z, w) b(w) d \operatorname{vol}(w) \tag{6.0}
\end{equation*}
$$

Let Γ be any uniform lattice in G which satisfies that for any z $|\{\gamma \in \Gamma: d(\gamma z, z) \leq 1\}| \leq c$ with c fixed. Our version of the error estimate in the Poisson summation formula is as follows.

Theorem 6.1. Poisson summation formula. Let Γ be a uniform irreducible lattice in G as above. Then for $\eta>0$ fixed,

$$
\sum_{\gamma \in \Gamma} W_{t}(\gamma z)=\frac{\operatorname{vol} \mathrm{B}_{\mathrm{t}}}{\operatorname{vol}(\Gamma \backslash G)}+O_{\eta}\left(\left(\operatorname{vol} B_{t}\right)^{1-\frac{1}{p}+\eta}\right)
$$

where

1. The result holds uniformly for arbitrary z and w_{0}.
2. $p=p(G, \Gamma)$ is the integrability parameter of the representation in $L_{0}^{2}(\Gamma \backslash G)$ as in Theorem 3.3. In particular $1-\frac{1}{p}=\frac{1}{2}$ if and only if all representations weakly contained in $L_{0}^{2}(\Gamma \backslash G)$ are tempered.

Let us note that it is indeed the case that $p(G, \Gamma)<\infty$ for every irreducible lattice and refer to $[\mathrm{Ke}-\mathrm{Sa}]$ for discussion and references.

The proof is based on establishing uniform control on the pointwise spectral expansion of the smooth function W_{t}. We will use the spectral expansion associated with the commutative algebra \mathcal{D} of G-invariant differential operators on the symmetric space (recall that the Laplacian generates this algebra if and only if the real rank of G is one). Being G-invariant, these differential operators descend to operators on $M=\Gamma \backslash \mathcal{S}$, and admit a joint spectral resolution. The eigenvalues are given by (infinitesimal) characters $\omega_{\lambda}: \mathcal{D} \rightarrow \mathbb{C}$, parametrized by $\lambda \in \Sigma \subset \operatorname{Hom}(\mathfrak{a}, \mathbb{C}) / \mathcal{W}$. Here $G=N A K$ is an Iwasawa decomposition, \mathfrak{a} is the Lie algebra of A, \mathcal{W} is the Weyl group of $(\mathfrak{g}, \mathfrak{a})$, and Σ parametrizes the positive-definite spherical functions $\Psi_{\lambda}: G \rightarrow \mathbb{C}$. We let $\|\cdot\|$ denote the Euclidean norm associated with the inner product on \mathfrak{a} given by the restriction of the Killing form. Finally recall that every (normalized) joint eigenfunction ϕ on $\Gamma \backslash \mathcal{S}$ of the algebra \mathcal{D} is also a joint eigenfunction of the commutative convolution algebra $L^{1}(K \backslash G / K)$ of bi- K-invariant kernels on G. The eigenvalue constitutes a complex homomorphism $\tilde{\omega}_{\lambda}$ of this algebra, which corresponds uniquely to a spherical function Ψ_{λ}. Thus if F is bi- K-invariant

$$
\pi_{\Gamma \backslash G}(F)(\phi)=\tilde{\omega}_{\lambda}(F) \phi, \text { where } \tilde{\omega}_{\lambda}(F)=\int_{G} F(g) \Psi_{\lambda}(g) d m_{G}(g)
$$

We begin with the following result:
Proposition 6.2. The average size of eigenfunctions. Let Γ be any uniform lattice in G, satisfying the condition preceding Theorem 6.1, and let $\phi_{j}, j \in \mathbb{N}$ be an orthonormal basis for $L^{2}(M)$ consisting of joint eigenfunctions of the ring \mathcal{D} of G-invariant differential operators on M. Denote by $\Psi_{\lambda_{j}}$ the spherical function associated with ϕ_{j}. Then there exists a constant $C(\mathcal{S})$ depending only on \mathcal{S} and independent of Γ, such that

$$
\max _{z \in M} \sum_{\left\|\lambda_{j}\right\| \leq\|\lambda\|}\left|\phi_{j}(z)\right|^{2} \leq C(\mathcal{S})(1+\|\lambda\|)^{\operatorname{dim}(\mathcal{S})}
$$

Proof. Let $\ell_{\epsilon}(z, w)$ be a smooth non-negative positive-definite kernel on $\mathcal{S} \times \mathcal{S}$, depending only on $d(z, w)$ and supported in $d(z, w) \leq \epsilon$ with unit integral. The automorphic kernel $A_{\epsilon}(\Gamma z, \Gamma w)=\sum_{\gamma \in \Gamma} \ell_{\epsilon}(\gamma z, w)$ on $M \times M$ can be expanded in terms of the joint eigenfunctions ϕ_{j} of \mathcal{D} or $L^{1}(K \backslash G / K)$ as

$$
A_{\epsilon}(\Gamma z, \Gamma w)=\sum_{j=1}^{\infty} h_{A_{\epsilon}}\left(\lambda_{j}\right) \phi_{j}(\Gamma z) \overline{\phi_{j}(\Gamma w)}
$$

where $h_{A_{\epsilon}}\left(\lambda_{j}\right)$ are the eigenvalues of the operator defined on $L^{2}(M)$ by the automorphic kernel A_{ϵ}. As noted above, these eigenvalues are given by the Selberg-Harish Chandra spherical transform (normalized at $w=w_{0}$)

$$
h_{A_{\epsilon}}\left(\lambda_{j}\right)=\int_{\mathcal{S}} \ell_{\epsilon}\left(z, w_{0}\right) \Psi_{\lambda_{j}}(z) d \operatorname{vol}(z)
$$

where $\Psi_{\lambda_{j}}$ is the spherical function associated with $\phi_{\lambda_{j}}$, normalized by $\Psi_{\lambda}(e)=1$, and viewed as a function on \mathcal{S}.

We claim that

$$
\left|h_{A_{\epsilon}}(\lambda)-1\right| \leq\left|\int_{z \in B_{\epsilon}\left(w_{0}\right)} \ell_{\epsilon}\left(z, w_{0}\right)\right| \Psi_{\lambda}(z)-1|d \operatorname{vol}(z)| \leq C_{1}(\mathcal{S})(1+\|\lambda\|) \epsilon
$$

Clearly, this estimate follows from the fact that for all H in the unit sphere in \mathfrak{a} and $|t| \leq 1$ (say), the first derivative of the normalized positive definite spherical functions Ψ_{λ} satisfy :

$$
\left\lvert\, \frac{d}{d t} \Psi_{\lambda}\left(\exp (t H) \mid \leq C_{1}(\mathcal{S})(1+\|\lambda\|)\right.\right.
$$

This estimate is a consequence of the Harish Chandra power series expansion for the spherical functions, together with the fact that normalized positive definite spherical functions are all bounded by 1. The estimate follows from e.g. [G-V, Prop. 4.6.2].

We conclude that if $(1+\|\lambda\|) \epsilon<\frac{1}{2} C_{1}(\mathcal{S})$ then $h_{A_{\epsilon}}(\lambda) \geq \frac{1}{2}$, and therefore we obtain the following upper bound on the average size of the eigenfunctions

$$
\sum_{\gamma \in \Gamma} \ell_{\epsilon}(\gamma z, z)=\sum_{j=1}^{\infty} h_{A_{\epsilon}}\left(\lambda_{j}\right)\left|\phi_{j}(z)\right|^{2} \geq \frac{1}{2} \sum_{\left\|\lambda_{j}\right\|<C_{2}(\mathcal{S}) / \epsilon}\left|\phi_{j}(z)\right|^{2} .
$$

On the other hand, we can clearly obtain a pointwise upper bound of the form

$$
\sum_{\gamma \in \Gamma} \ell_{\epsilon}(\gamma z, z) \leq C_{3}(\mathcal{S}) \epsilon^{-\operatorname{dim} \mathcal{S}}
$$

Indeed, this follows when the kernel is defined by a bump function which satisfies the obvious upper bound of being $\ll \epsilon^{-\operatorname{dim} \mathcal{S}}$, and taking also into account the fact that there are at most c lattice points in a ball radius $\epsilon \leq 1$, this coming from our assumption on Γ. Combining the two estimates we can conclude that

$$
\sum_{\lambda_{j}<\lambda=C_{2}(\mathcal{S}) / \epsilon}\left|\phi_{j}(z)\right|^{2} \leq C_{3}(\mathcal{S}) \epsilon^{-\operatorname{dim} \mathcal{S}} \leq C(\mathcal{S})(1+\|\lambda\|)^{\operatorname{dim} \mathcal{S}} .
$$

The proof of Proposition 6.2 is now complete.

Proof of Theorem 6.1. Consider the identity

$$
\begin{equation*}
\sum_{\gamma \in \Gamma} \int_{\mathcal{S}} L_{t}(\gamma z, w) b(w) d w=\sum_{\gamma \in \Gamma} W_{t}(\gamma z)=\sum_{j=0}^{\infty} h_{L_{t}}\left(\lambda_{j}\right) \phi_{j}(z) \int_{\mathcal{S}} \overline{\Psi_{\lambda_{j}}(w)} b(w) d w \tag{6.1}
\end{equation*}
$$

The eigenvalue $\lambda_{0}=0$ associated with the constant function $\phi_{0}=1 / \operatorname{vol}(M)$ (the unique Δ-eigenfunction with this eigenvalue) gives the main contribution to the infinite sum, which is $\frac{\operatorname{vol} B_{t}}{\operatorname{vol} M}=h_{L_{t}}(0)$. We must therefore estimate the contribution of all other terms.

Now note that since the bump function $b(w)$ is a fixed smooth function, and ϕ_{j} is an eigenfunction of the Laplacian Δ with eigenvalue $\omega_{\lambda_{j}}(\Delta), m$ integrations by parts give, for any fixed m and all $j \in \mathbb{N}$

$$
\int_{\mathcal{S}} b(w) \overline{\Psi_{\lambda_{j}}(w)} d w \leq C_{m}\left(1+\left\|\lambda_{j}\right\|\right)^{-m}
$$

Let us denote $\hat{b}\left(\lambda_{j}\right)=\int_{\mathcal{S}} b(w) \overline{\Psi_{\lambda_{j}}(w)} d w$. Recall that $\lambda_{j}, j \neq 0$ is a discrete set, and thus have a fixed positive distance from 0 , due to our spectral gap assumption. As a consequence, the spherical functions $\Psi_{\lambda_{j}}$, all have a fixed rate of decay, which can be expressed as a negative power of the volume of B_{t}.

Now

$$
h_{L_{t}}(\lambda)=\int_{\mathcal{S}} L_{t}\left(z, w_{0}\right) \overline{\Psi_{\lambda}(z)} d z
$$

is the averages of the spherical function on a ball of radius t and center w_{0}, which by Hölder's inequality is estimated by vol $B_{t}^{\delta}, \delta=1-\frac{1}{p}+\eta$.

Therefore using (6.1) we can write

$$
\left|\sum_{\gamma \in \Gamma} W_{t}(\gamma z)-\frac{\operatorname{vol} B_{t}}{\operatorname{vol} M}\right| \leq\left(\operatorname{vol} B_{t}\right)^{\delta} \sum_{j \neq 0}\left|\phi_{j}(z)\right|\left|\hat{b}\left(\lambda_{j}\right)\right| .
$$

Now $\left|\hat{b}\left(\lambda_{j}\right)\right| \leq C_{m}\left(1+\left\|\lambda_{j}\right\|\right)^{-m}$, and by Lemma $6.2 \sum_{\lambda_{j} \leq \lambda}\left|\phi_{j}(z)\right|^{2} \leq C(\mathcal{S})(1+\|\lambda\|)^{\operatorname{dim} \mathcal{S}}$, so that upon choosing k large enough

$$
\sum_{j \neq 0}\left|\phi_{j}(z)\right|\left|\hat{b}\left(\lambda_{j}\right)\right| \leq\left(\sum_{j \neq 0}\left(1+\left\|\lambda_{j}\right\|\right)^{-2 k}\left|\phi_{j}(z)\right|^{2}\right)^{1 / 2}\left(\sum_{j \neq 0}\left(1+\left\|\lambda_{j}\right\|\right)^{2 k}\left|\hat{b}\left(\lambda_{j}\right)\right|^{2}\right)^{1 / 2}<\infty
$$

This concludes the proof of Theorem 6.1.
Remark 6.4. The error estimate in the Poisson summation formula can be similarly established when Γ is non-uniform, using the foregoing arguments and the theory of Eisenstein series.

Next we apply Theorem 6.1 in the context of sieving as in Sections 2,3 and 4. For the purpose of the lower bound sieve we can use the nonnegative weight function W_{t} in (6.0). Using our previous setup and notations, let us work with the distance parameter $T=e^{t}$, where t denotes the distance is the symmetric space \mathcal{S}. But notice that since we are now
working with symmetric space distance and not with a norm, in general the exponent of volume growth is now $2\left\|\rho_{G}\right\|$, namely the rate of volume growth for Riemannian balls in \mathcal{S}. Recall also that $t(f)$ denotes the number of irreducible factors of the polynomial f. Now consider

$$
\begin{equation*}
S_{W_{T}}(\mathcal{A}, P):=\sum_{\substack{\gamma \in \Gamma \\(f(\gamma v), P)=1}} W_{T}(\gamma) . \tag{6.2}
\end{equation*}
$$

where $W_{T}(\gamma):=W_{T}\left(\gamma z_{0}\right)$ for a fixed $z_{0} \in \Gamma \backslash G / K$.
We have

$$
0 \leq W_{T}(\gamma) \leq 1
$$

and for T large

$$
W_{T}(\gamma)=\left\{\begin{array}{lll}
1 & \text { if } & \|\gamma\| \leq \frac{T}{2} \tag{6.3}\\
0 & \text { for } & \|\gamma\| \geq 2 T
\end{array}\right.
$$

where $\|\|$ is a bi- K-invariant norm on G.
Theorem 6.1 (assuming as we do from now on that Γ is co-compact) gives the conclusion that uniformly for $y \in \Gamma$

$$
\begin{equation*}
\frac{1}{\operatorname{vol}\left(B_{T}\right)} \sum_{\gamma \in \Gamma(q)} W_{T}(\gamma y)=\frac{1}{[\Gamma: \Gamma(q)]}+O_{\epsilon}\left(T^{-\frac{a}{p}+\epsilon}\right) . \tag{6.4}
\end{equation*}
$$

This corresponds to Theorem 3.2 with $\theta /(1+\operatorname{dim} G)=a / 2 n_{e}(1+\operatorname{dim} G)$ replaced by a / p, where $p=p(G \cdot \Gamma)$. Running the rest of the sieving analysis with this positive smooth weight W_{T} to the end of Section 4 yields an improvement in Theorem 1.7 and Corollary 1.8 with the condition on r replaced by

$$
\begin{equation*}
r>\frac{9 \cdot t(f) \cdot p(G, \Gamma) \cdot(\operatorname{dim} G) \cdot \operatorname{deg} f}{a} \tag{6.5}
\end{equation*}
$$

Note that we have incorporated the small improvement (4.26) of (4.25) as well.
To further improve this value of r we use the weighted sieve ([H-R] Chapter 10) in place of the elementary sieve in Section 2. The form which is convenient for us is as follows:

Let $a_{k} \geq 0$ be a finite sequence and assume that for $d \geq 1$

$$
\begin{equation*}
\sum_{k \equiv 0(d)} a_{k}=\frac{\rho(d)}{d} X+R(\mathcal{A}, d) \tag{6.6}
\end{equation*}
$$

with $R(\mathcal{A}, 1)=0, \rho(1)=1$ and ρ multiplicative and that $\rho(p)$ satisfies 2.5 for all $p \geq 2$. Concerning the sieve dimension t assume that for $2 \leq z_{1} \leq z$ we have

$$
\begin{equation*}
\prod_{z_{1} \leq p<z}\left(1-\frac{\rho(p)}{p}\right)^{-1} \leq\left(\frac{\log z}{\log z_{1}}\right)^{t}\left(1+\frac{A}{\log z_{1}}\right) \tag{6.7}
\end{equation*}
$$

for some fixed constant A.
Assume that we have a level distribution τ, that is for $\epsilon>0$

$$
\begin{equation*}
\sum_{d \leq X^{\tau}}|R(\mathcal{A}, d)| \underset{\epsilon}{\ll} X^{1-\epsilon} . \tag{6.8}
\end{equation*}
$$

Define μ by

$$
\begin{equation*}
\max _{a_{n} \in \mathcal{A}} n \leq X^{\tau \mu} . \tag{6.9}
\end{equation*}
$$

Let P_{r} denotes the set of positive integers with at most r-prime factors. Then for any $0<$ $\rho<\nu_{t}$ and

$$
\begin{equation*}
r>\left(1+\rho-\frac{\rho}{\nu_{t}}\right) \mu-1+(t+\rho) \log \frac{\nu_{t}}{\rho}-t+\frac{\rho t}{\nu_{t}}, \tag{6.10}
\end{equation*}
$$

there is $\delta=\delta(t, \mu, r, \rho)>0$ such that

$$
\begin{equation*}
\sum_{k \in P_{r}} a_{k} \geq \delta \frac{X}{(\log X)^{t}} \tag{6.11}
\end{equation*}
$$

Here ν_{t} is the sieve limit in dimension t, see $[\mathrm{H}-\mathrm{R}]$ for a table and for the fact that $\nu_{t} \leq 4 t$ which is what we will use.

We apply this to our sequence

$$
\begin{equation*}
a_{k}(T)=\sum_{|f(\gamma v)|=k} W_{T}(\gamma) . \tag{6.12}
\end{equation*}
$$

By (6.4) and the analysis in Section 4 we have

$$
\begin{gather*}
\tau=\frac{1}{p \operatorname{dim} G} \tag{6.13}\\
\mu=\frac{p(\operatorname{dim} G) \operatorname{deg}(f)}{a} . \tag{6.14}
\end{gather*}
$$

Taking $\zeta=1$ in (6.10) for simplicity leads to 6.11 holding for

$$
\begin{equation*}
r>\frac{2 p(\operatorname{dim} G) \operatorname{deg}(f)}{a}-1+(t(f)+1) \log (4 t(f))-t+\frac{1}{4} \tag{6.15}
\end{equation*}
$$

In particular Theorems 1.7 and Corollary 1.8 are valid for such r.
As noted in Remark 1 of 6.3 , these considerations also apply to the case G / Γ non-compact. In particular to $\Gamma=S L_{n}(\mathbb{Z})$ and to $V_{n, m}(\mathbb{Z})$. In this case $p=2(n-1)$ for $n \geq 3$ and it is estimated in (6.17) for $n=2$, and $a=n(n-1)$, so that Theorem 1.2 and Corollary 1.3 are valid with

$$
\begin{equation*}
r>4 n \operatorname{deg}(f)-1+(t(f)+1) \log (4 t(f))-t(f)+\frac{1}{4} \tag{6.16}
\end{equation*}
$$

for $n>2$.
Our final improvement comes in the cases where much stronger bounds towards the Ramanujan Conjectures are valid especially with n large. Let D / \mathbb{Q} be a division algebra of degree n which for the reasons below, we assume is itself prime. Assume that $D \otimes \mathbb{R} \cong \operatorname{Mat}_{n \times n}(\mathbb{R})$ and let N_{r} denote the reduced norm on D. Let $V_{m, D}=\left\{x \in D(\mathbb{Z}): N_{r}(x)=m\right\}$ with $m \neq 0$. Here the \mathbb{Z} structure is given by the defining equations of D / \mathbb{Q} in $A^{N}, N=n^{2}$, $G=\left\{x: N_{r}(x)=1\right\}$ and Γ the integral elements of reduced norm equal to 1 . These act on $V_{D, m}$ making it into a principal homogeneous space. Let $f \in \mathbb{Q}\left[x_{i j}\right]$ which is primitive on $V_{D, m}(\mathbb{Z})$. The discussion of this section applies to the question of the saturation number $r_{0}\left(V_{D, m}(\mathbb{Z}), f\right)$. What is pleasant about such compact quotients $G(\mathbb{R}) / \Gamma(q)$ coming from these division algebras is that we have very good upper bounds for their corresponding p 's. Specifically any representation π occuring in $L_{0}^{2}(G(\mathbb{R}) / \Gamma(q))$ corresponds to an automorphic representation occuring in $L^{2}(D(\mathbb{A}) / D(\mathbb{Q}))$ which in turn via the Jacquet-Langlands correspondence [J-L] if $n=2$ and Arthur-Clozel [A-C] if $n>2$, lifts to an automorphic cuspidal representation π of $G L_{n}(\mathbb{A}) / G L_{n}(\mathbb{Q})$ (it is here that we assume that n is prime so that π is not a residual Eisenstein series $[\mathrm{M}-\mathrm{W}])$. Applying the best known bounds towards the Remanujan Conjectures "at infinity" (see [Sa1] for a survey) for such π, we conclude that

$$
\begin{array}{ll}
p(K \backslash G(\mathbb{R}) / \Gamma(q)) \leq \frac{64}{25} & \text { if } n=2 \\
p(K \backslash G(\mathbb{R}) / \Gamma(q)) \leq \frac{28}{9} & \text { if } n=3 \\
p(K \backslash G(\mathbb{R}) / \Gamma(q)) \leq \frac{2 n}{n-2} & \text { if } n \geq 4 \text { is even } \tag{6.17}\\
p(K \backslash G(\mathbb{R}) / \Gamma(q)) \leq \frac{2(n+1)}{n-1} & \text { if } n \geq 5 \text { is odd }
\end{array}
$$

These follow from (24) (22) and (13) in [Sa1] by computing p using Theorem 8.48 in [Kn]. For $V_{D, m}(\mathbb{Z})$ as with $V_{n, m}, a=n^{2}-n$ and $\operatorname{dim} G=n^{2}-1$ hence, 6.15 leads to

Theorem 6.3. Let $V_{D, m}(\mathbb{Z}) \subset A^{N}$ be the set of integral points of norm m in D, which we assume is nonempty. Let $f \in \mathbb{Q}\left[x_{i j}\right]$ be of degree d and assume that f factors into t irreducible factors in the coordinate ring $\overline{\mathbb{Q}}\left[V_{D, m}\right]$ and that f is $V_{D, m}(\mathbb{Z})$-weakly-primitive. Then

$$
r_{0}\left(V_{D, m}(\mathbb{Z}), f\right) \leq 2 p_{n} \frac{n+1}{n} d+(t+1) \log (4 t)-t
$$

where p_{n} are given in 6.17.

References

[A-C] J. Arthur and L. Clozel, Simple algebras, base change, and the advanced theory of the trace formula. Annals of Math. Studies 120, Princeton University Press (1989).
[B-M-S] H. Bass, J. Milnor and J-P. Serre, Solution of the congruence subgroup problem for $S L_{n}$ (n greater or equal to 3) and $S p_{2 n}$ (n greater or equal to 2), Publ. Math. IHES , 33 (1967), 59-137.
[Bo] A. Borel, Density properties for certain subgroups of semi-simple groups without compact components. Ann. Math. 72 (1960), 179-188.
[B-HC] A. Borel and Harish Chandra, Arithmetic subgroups of algebraic groups. Ann. Math. 75 (1962), 485-535.
[B-G-S1] J. Bourgain, A. Gamburd and P. Sarnak, Sieving and expanders. C.R. Math. Acad. Sci. 343 (2006), 155-159.
[B-G-S2] J. Bourgain, A. Gamburd and P. Sarnak, Affine sieve, expanders and sum product, in preparation.
[B-S] M. Burger and P. Sarnak, Ramanujan duals II. Invent. Math. 106 (1991) 1-11.
[Che] N.G. Chebotarev, Izv. Ross Akad. Nauk 17 (1923), 205-250.
[Cl] L. Clozel, Démonstation de la conjecture τ. Invent. Math. 151 (2003), 297328.
[Cl1] L. Clozel, Spectral Theory of Automorphic Forms, in "Automorphic Forms and Applications" IAS/Park City Math Ser. 12, AMS (2007), 43-93.
[D-H] H. Diamond and H. Halberstam, A Higher-dimensional sieve method, Cambridge University Press 177 (2008).
[G-V] R. Gangolli and V. S. Varadarajan, Harmonic analysis of spherical functions on real reductive groups. A Series of Modern Surveys in Mathematics, 101, Springer Verlag, 1988.
[GN1] A. Gorodnik and A. Nevo, The ergodic theory of lattice subgroups. To appear.
[GN2] A. Gorodnik and A. Nevo, Counting lattice points. Preprint.
[G-W] A. Gorodnik and B. Weiss, Distribution of lattice orbits in homogeneous varieties. Geom. Funct. Anal. 17 (2007), 58-115.
[G-G-P-Y] D. Goldston, S. Graham, J. Pintz and C. Yildrim, Small gaps between products of two primes. preprint (2006).
[H-R] H. Halberstam and H. Richert, Sieve methods, A.P. (1974), 167-242.
[I-K] H. Iwaniec and E. Kowalski, Analytic Number Theory, Colloq. Series of the AMS 53 (2004).
[J-L] H. Jacquet and R. Langlands, Automorphic forms on GL(2). LNM 114 (1970) Springer Verlag.
[Ke-Sa] D. Kelmer and P. Sarnak, Spectral gap for products of $\operatorname{PSL}(2, \mathbb{R})$. ArXiv Math. 0808.2368.
[K-S] H. Kim and P. Sarnak, Refined estimates towards the Ramanujan Selberg Conjectures, J. Amer. Math. Soc. 16 (2003), 175-181.
[Kn] A. W. Knapp, Representation theory of semisimple groups : an overview based on examples. Princeton Math. Series 36, Princeton University Press (1986).
[La] S. Lang, Algebraic groups over finite fields. Amer. J. Math. 78, (1956), 555563.
[L-W] S. Lang and A. Weil, Number of points of varieties in finite fields. Amer. J. Math. 76 (1954), 819-827.
[L-S] J. Liu and P. Sarnak, "Integral points on quadrics in three variables whose coordinates have few prime factors," see www.math.princeton.edu/sarnak.
[Lo-S] H.Y. Loke and G. Savin, Rank and matrix coefficients for simply laced groups. J. Keine Agnew. Math. 599, (2006), 201-216.
[M-V-W] C. Matthews, L. Vaserstein and B. Weisfeiler, Congruence properties of Zariski-dense subgroups I. Proc. London Math. Soc. 45 (1984), 514-532.
[Ma] F. Maucourant, Homogeneous asymptotic limits of Haar measures of semisimple linear groups and their lattices. Duke J. Math. 136 (2007) 357-399.
[Me] J. L. Mennicke, Finite factor groups of the unimodular group, Ann. Math. $\mathbf{8 1}$ (1965), 31-37.
[M-W] C. Moeglin and J-L. Waldspurger, Le spectre résiduel de $G L(n)$. Ann. Sci. ENS 22 (1989) 605-674.
[N1] A. Nevo, Spectral transfer and pointwise ergodic theorems for semisimple Kazhdan groups. Math. Res. Lett. 5 (1998), 305-325.
[No] E. Noether, Ein algebraisches Kriterium fur absolute Irreduzibilitat. Mat. Annalen, 85, (1922), 26-40.
[Oh] H. Oh, Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants. Duke Math. J. 113, (2002), 133-192.
[P-R] V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory. Academic Press (1991).
[Sa-Sa] A. Salehi and P. Sarnak, in preparation.
[San] J.J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres. J. Reine Angew. Math. 327 (1981), 12-80.
[Sa1] P. Sarnak, Notes on the generalized Ramanujan conjectures. Clay Math. Proceedings 4 (2005), 659-685.
[S-X] P. Sarnak and X. Xue, Bounds for multiplicities of automorphic representations. Duke Math. J. 64 (1991), 207-227.
[Sch] W. Schmidt, Equations over finite fields : an elementary approach, LNM 536 (1976) Springer Verlag.
[Te] A. Terras, Harmonic Analysis and Symmetric Spaces and Application II. Springer Verlag (1988).
[Va] R. Vaughan, The Hardy Littlewood Method. Cambridge University Press 80 (1981).
[Vi] I. M. Vinogradov, Representations of an odd number as a sum of three primes. Dokl. Akad. Nauk SSSR 15 (1937) pp. 291-294

November 4, 2008:gpp

