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ABSTRACT, The prime computable (respectively, search computable) rela-
tions of an arbitrary mathematical structure are shown to be those relations R
such that both R and its complement are definable by disjunctions of recursively
enumerable sets of quantifier free (respectively, existential) formulas of the
first order language for the structure, The prime and search computable func-
tions are also characterized in terms of recursive sequences of tems and formu-
las of this language.

L, Preliminaries. Let & =(A, Ry, +++, R, f1, +++, f, ) be a structure with
each R; an a; place relation on A and each f, a b, place function from A to
A. Let O be an object not in A, let A® = A U{0} and let A* be the closure of
A® under ordered pair formation. For each i=1, ..., a define g’; on A* by:

0 if {ul,--., uai}CA and Ri(ul’ ceey uai),

g:(up sty U ) =
a; (0, 0) otherwise,

Foreach i =1, ..., b define ff on A* by

N flug eees uy) if {ugy oo, u, JCA,
/,(ul,.-., ub)= i i

: i (0, 0) otherwise.

The extension of A to A* is essential to the definitions of the classes of prime
and search computable functions (cf. [3]). As in[3], we let 7 and & be respec-
tively the left and right predecessor functions, corresponding to the ordered pair
function Axy(x, y). The natural numbers are identified with elements of A* via
the correspondence: 0 =0, n + 1 = (n, 0). The set of natural numbers will be
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392 C. E. GORDON

denoted by N. Note that NN A = . Given any set C, let C®) denote the
cartesian product of C with itself k& times. We will be particularly interested in
partial functions from sets of the form N®) x A9 into N or into A. Such func-
tions which are restrictions to N?) x A{@ of functions on A* which are absolutely
prime or search computable in g’;, cee, g:, /T, ceny /Z will be called respectively
U-prime-computable or U-search-computable. The domain of an U-prime-computable
or U-search-computable function will be called respectively a semi-U-prime-comput -
able or semi-U-search-computable relation. Among other results, it will be shown
that a relation on A is semi-U-prime-computable if and only if it is definable by

an infinite disjunctionof a recursively enumerable set of quantifier free, finite
formulas of the language of ¥, It will also be shown that a relation on A is
semi-U-search-computable if and only if it is definable by an infinite disjunction

of a recursively enumerable set of existential, finite formulas of the language of ¥,

2, The languages QF and QF* Let U* be the structure
(A%, A% Ay, 3), 1, 8, 0, Ry ooey R, [T, [})

OF and QF* will be the quantifier free, finite languages for % and °* respec-
tively. We will not distinguish between the elements of these languages and
their *‘gédel numbers’’. Given natural numbers ng, «-«, n,_;, let (ng, «oc,m, 1)
denote the product I]K,e '.‘i, where Po =2 and, for i >0, P:‘ is the ith odd
prime, If x = (no, cera p then x will be called a sequence number of length
k and we write lh{x) = £ and (x)i =n, (i=0,...,k-1). Incase k=0, x=1,
If y € N is not a sequence number of length greater than i, let (y)i =0,

OF is defined as follows.

(1) Variables. For each natural number m, {0, m) is a variable (denoted by Vm).

(2) Terms. The set of terms of QF is defined inductively by:

(i) Variables are terms.

(i) f 1<i<b andif £, -, t, are terms then (1,4, ¢, --+, tbi> is a term
(denoted by f(¢,, -- ))

(3) Formulas. The set of formulas of QF is defined mductxvely by:

(i) (2) is a formula (denoted by T and representing "‘true’’).

(i) If 1<i<a andif tl, e++yt, are terms then (3,7, ¢), -+, tai) is a
formula (denoted by R (¢, ..., ¢, ))

(iii) If ¢ and ¢ are formulas “then so are (4, ¢, ) (denoted by ¢ A ),
(5, ¢, ) (denoted by ¢ V ) and (6, ¢) (denoted by 71 ¢).

QF is extended to QF* as follows.

To the inductive definition of "‘term’’, add the clauses:

(iii) 0 is a term (denoted by 0).

(iv) If s and ¢ are terms then so is (7, s, t) (denoted by p(s, #) and repre-
senting the ordered pair of s and ¢).
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PRIME AND SEARCH COMPUTABILITY 393

(v) If ¢ is a term then so are (8, ¢) and (9, t) (denoted by mt and 8t
respectively).

To the inductive definition of **formula’’, add the clause:

(iv) If ¢ is a term then (10, t) is a formula (denoted by A%(¢) and representing
“re A%,

Satisfaction of formulas of OF in the structure ¥ and of formulas of OF* in
the structure 4* is defined in the natural way, in light of the denotations used.

In particular, the formula T is true under all interpretations of variables. If ¢ is
a term of QF (or QF™) with variables from Vi ooy Vq and if x,, «-., x, is a
sequence of elements of A (or A*) then t[xl, ces, xq] will be used to denote

the interpretation of ¢ determined by the interpretation of each V, as x,. If ¢

is a formula of QF (or QF*) and if x, -+, X, is a sequence of elements of

A (or A™), then qS[xl, ceny xq] will mean ‘‘the variables of ¢ are from V, --., Vq
and ¢ is satisfied in ¥ (or U*) by the interpretations of each V,as x.

Notice that if ¢ is a term and ¢ is a formula of QF and x,, ---, X, is a
sequence of elements of A then flxy, ..., xq] and ¢[x1, ooy xq] have the same
meanings with respect to %* as they have with respect to . If y is a term or formula of
QF* and tyy +++s t, are terms of OF%, let ylts +++, 2, | be the term or formula
resulting from simultaneous substitution of SPRTERN for all occurences of
Vi e-+, V, respectively in y. As afunction of y, £}, coey tys ¥ty -eey |
is the restriction of a primitive recursive function to a primitive recursive domain.

3. The main lemma. It will be shown (1) that prime and search computable
relations and functions are definable by certain forms and (2) that relations and
functions definable by those forms are prime or search computable. The latter (2)
will probably be immediate to anyone conversant with the notions of prime and
search computability, The former (1) is apparently somewhat surprising. The
most difficult part of the proof is the proof of the main lemma (Lemma 1).

Lemma 1. For every q place function { on A* into A* which is absolutely
primitive computable in g’;, cee, gz, /"1‘, ooy /z, there are total recursive functions
F and G such that, for each k € N, F(k) and G(k) are respectively a formula
and a term of QF* with variables from Viseeos Vq and such that, for any
Xpseees X, € A*,

(i) there is a unique k such that F(k)x, -, xq] and,

(i1) #f F(k)[xl, s, xq] then [(xl, ceey xq) = G(k)[xl’ cee, xq].

The proof is by induction on the length of a primitive computable definition
of f." The designations COy, -+, C0a+b’ C2, ..., C7 refer to clauses of the
inductive definition of the class of primitive computable functions. If /, G and F
are as above then we say that (F, G) defermines f. In most cases we indicate a
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394 C. E. GORDON

function [ and define functions F and G, leaving it to the reader to verify that
F and G are recursive and that (F, G) determines f.

. *
Col(l Slsa)y /(Zly ceey tain Xps oo x,)=gi(t1, ey tai)-

FO =RV, oo, V,), FD =RV, eer, V), Fh+2) =TT

1

G0)=0, G(&+ 1)=p(0, 0).
COGrfl SEKB), fltgs voes by 2y mms %) = 1ty nns t).

FO=T, Fk+1)=TT. G&)=fV,--, Vbz_).

C2, fly, x5 veey xr) =9.

FlO)=T, Fe+1)=1T. Gk)=V,
C3, fls, 8, xy5 +eny )= (s, 1),

FlO) =T, Flk+1)=TT. Gk =pV, V).

Cdy, fs %y ey x) = my.

FO) =T, Fk+D=TT. GB=aV,
Chy, [, %1 ooer %) = By

FO =T, Rk+1)=7T. Gk)=25V,

CS5, flxyseeey xr) =glblxy, «o v, %)y Xy ooy x ). Assume, by the induction
hypothesis, that there are functions F,, G}, F, and G, such that (F,, G,)
determines g and (F,, G,) determines b.

Letting ki = (k)i,

Fkg) A (FRDIG ko), V iy eeny V) if k= (kg &),

k =
FB {"IT if % is not a sequence number of length 2.
G(k) = Gl(k1)|62(k0)’ vl’ M } Vr"

C7, flxyseee, x)=glx
similarly,

LZTRTLTE P PP xr). C7 and C5 are handled

i+l j+2?

This completes all cases but C6 (C2 can be omitted when considering

“‘absolute”” computability).

C6, fly, %15+~ %) =gy, x5 000,y x)ifye A% (s, 1), Xiyoney %)=
B(f(s, x50, %), f(4, X000ty %), S 4 %y =y ). Assume, by the induction
hypothesis, that there are recursive functions F p Gy Fy and G , such that
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PRIME AND SEARCH COMPUTABILITY 395

(F s GZ) determines g and (F,, G,) determines h. Before proceeding with the
definitions of F and G, some development is required.

By a definition or proof by A™induction we will mean a definition or proof by
induction with respect to the well-founded partial ordering on A* defined by:

(i) x<(x, y) and y <(x, y);
(ii) if x<y and y <z then x <z;

(iii) x <y only as required by (i) and (ii).
This ordering will not be referred to again.

Given a sequence number w =(%xy, +++, xj), let wk = (Xg9 00es k) and
Fw=Ak %5+, x,). By a 0-1-sequence is meant a sequence number w such
that (), € {0, 1} for all i < Ih(w). By a bush is meant a finite, nonempty set
B of 0-1-sequences such that, for any w,

(i) w0 ¢ B ifand only if w 1 € B, and

(ii) if w 0 € B then w € B.

Notice that 1 is a member of every bush. An element w of a bush B will be
called an endnode of B if w 0 ¢ B. If B is a bush, then a definition or proof
B-induction is a definition or proof with respect to the well-founded (in fact finite)
partial ordering < on B defined by:

(i) w 0<wand w 1 <w if w 0 € B;

(i) if x <y and y <z then x <z;

(iif) x <y only as required by (i) and (ii).

This ordering will not be referred to again, If B is a function whose domain is a
bush B then B-induction will mean B-induction.

We associate with each 0-l-sequence w, a term (w) of QF*. The definition
of #(w) is by induction on Ih(w).

(3.1) (1) =V, Hw™0) = atw), Hw” 1) =8t(w).

It is easy to show that, for each 0-1-sequence w,

(3.2) A0w) = dw)|aV |,  {17w) = )8V,

Given a function 3 from a bush B into N, we assign to each w € B a term f(w)
and a formula ¢(w). The functions r and ¢ are defined simultaneously by
B-induction, Write B and qS'B to indicate the dependence upon . Recall that
(F P Gl) determines g and (Fz, Gz) determines h. If w is an endnode of B,

Hw) = A%Kw) A F (Bw)|dw)| and #w) = G (B(w)|dw}|.
If w is an element of, but not an endnode of B,
Bw) = $lw™0) A glw”1) A WAXw)
A F(Buwh|dw”0), dw"1), " 0), dw 1), V,y -oe, V||
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396 C. E. GORDON

and

7(w) = GZ(,B(W))V(wAO)v 7(wA1)y t(wao)v t(wAl)y VZ’ **ty vr+ ll'

Lemma 1.1, For i =0, 1, 2, let B; be a function from a bush B, into N.
Let ¢, = ¢Bi and 1, =1 i Assume that B,={1} v 0w we Boi ulilMuw:we Bl”
B07w) = By(w) and B,(17w) = B (w). Then:

(a) for each w € By, $,007w) = ¢ (wlaV,| and r,(07w) = ro(w)|aV |, and

(b) for each w € B, ¢,(1"w) = ¢(w)|8V | and r,(17) = r,(w)|8V,|.

Proof of (a) by B, induction. If w is an endnode of B, then 0"w is an
endnode of B, and ¢,(w) = A% () A F (B, |tlw)]. Therefore, b7V | =
Ao(t(w)lrerD AF (B (wMe(w)|nV | |. So, by (3.2),

oV 1| = AALGTN A F (8 (w46 )

Since Bylw) = B07W), ¢ w7V, = ¢,(07w). Similarly, r,(w)|aV,| = r(0Tw).
If w is an element of but not an endnode of B, then w 0 and w 1 are elements
of B, and, by the B -induction hypothesis, ¢>0(w“z’)|1rV1| = qSZ(OAwAi) and
ro(whi)|rrV1| = rz(O’NwAi), for i = 1, 2, By (3.2), t(wﬂz’)lnvl| = 107w i) and
t@iaV,| = (0"w). Herce

BV | = $,(0270) A (0w 1) AAAL0 w)
A EBaN|r (0% 0), 700D, #6270, 0wD), V., -+, v

Since B,(w) = B,(07w), ¢, w)jaV | = $,(07w). Similarly, ryw)|aV,| = r,(07w).
This completes the proof of part (a). The proof of part (b) is similar. Now let

K be any effective one-one enumeration of functions 8 into N whose domains are
bushes and define functions F and G by: F(k) = qSK(k)(l), G(k) = <)1), By
Church’s thesis, F and G are recursive.

Lemma 1.2, Let x=1x,---, x, be a sequence of elements of A% Then
(a) for each y € A™ there is a unique number k such that F(k)y, x] and (b) if
F(k)y, x] then G(&)y, x] = f(y, x).

Proof by A™inductionon y. If y € A? choose % such that (k) is that
unique function B with domain {1} such that F,(8(1))ly, x}. Then F(k) =
$A1) = A%V D AF(B(1)) and G(k) = A1) - G,(B(1). Therefore F(k)y, x] and
G(&)y, x] = gly, x) = fly, x). Suppose F(k')My, x]. Let «(k') = B’ so F(&') =
qSﬁ'(l). If 1 is not an endnode of 8' then ¢'B'(1)[y, x] implies that TJA%(V l)[y, x],
which implies that y £ A0, Therefore 1 is an endnode of domain (8'),(i.e.,
domain (8') = {1}) and ¢B'(1)[y, x] = F1(B'(l))[)" x]. This uniquely deter-
mines B'(1) so B=R'. Now assume y =(s, 6} Let k; and k, be the unique
numbers such that F(k,)ls, x] and F(k Mz, x] and assume, by the induction
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PRIME AND SEARCH COMPUTABILITY 397

hypothesis that Glk)ls, xJ = f(s, x) =« and Gk, x] = f(t, ) = v. Let j be
that unique number such that F (j)u, v, s, £, x]. Let «(k)) = By, «(k;) = B; and
let B, be that function such that 8,(1) = and B, 8, and B, are related as in
Lemma 1.1, Choose k such that (k) = B,. Letting b, =¢.'3i and 7, = r'Bi
(i=0,1,2), we have

F(R) = ¢,(1) = ¢,((0) A ¢, ((1) A NAXV )
A Fz(])l72(<0)), 72((1))’ ”vla avp v21 AR ] v'+l|

= ¢oDlaV | A ¢ (D[8V | A TA%V)
A F(MrDlaV |, 7 (DISV |, nV , 8V , V,, eet, V

r+l|'

Similarly G(k) = G ()7 (1)|aV,]|, 7 (1)|8V |, nV |, 8V, V,, ..., V. ,1l- Nowitis
easy to verify that

(a) F(k)ly, x] if and only if Flk s, x], Flk )z, x], y ¢ A® and
F(Mu, v, s, t, x], and that

(b) Gy, x1 = G,(Mu, v, s, t, x] = by, v, s, 1, x) = f(y, x).
To show the uniqueness of such &, assume that F(k)ly, x]. Let «(&')=pg'. If 1
is an endnode of domain(B'), then F(k')y, x] implies that ##'(Dly, x] which
implies that y € A%, Hence 1 is not an endnode. Let B, (w) = B'(0"w) and
B, w) = B'(1"W), for all w in the appropriate domains. Then By» B, and B’ are
related as in Lemma 1.1, Choose k; and k; such that k(k)) = B and «(k}) = ]
From the assumption that F(k )y, x], it can be concluded that F(ké s, x1,
F(k)t, x] and F(B'(1u, v, s, t, x] and hence that ky = kg ki =k, and
B'(1) = B(1). Therefore B = B’. This completes the proof of Lemma 1.2 and
hence the proof of Lemma 1.

4, Embedding QF in QF*, Let Tm™ be the smallest set of terms of QF*
containing all the terms of QF, the term 0 and containing p(s. t) whenever it

. * . .
contains s and ¢, Tm" contains a numeral m for each natural number m, i.e.,

0-0, m+l=p(m,0).

Lemma 2. There is a total recursive function n such that if t is a term and
¢ is a formula of QF* with variables from Voo Vidandif xpy 000, %, isa
sequence of elements of A then

(D) 7(¢) is a term of Tm™ with variables [rom {Vl, e, V

(i) (o) € QF if and only if tlx, ..., x,1 € 4,

(iii) for m € N, 7t) = m if and only if t[xl, ceey xk] =m,

(v) tlx s o e ey xk] = n()x,, oo, xk],

() (@) is a formula of QF with variables from {V, .-,V } and

(vi) ¢[xl, ceey xk] if and only if 7](¢)[xl, cee, xk]'

s
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398 C. E. GORDON

Proof. If z is neither a term nor a formula of QF%, let 7(z) = 0. Define ]
on the terms of QF* by recursion and the following cases:

Tl' 7](0) = 0.

T,. (V) =YV, for each variable V, .

0 if 5() =0,
1 if 7(d) € QF,
T 1020 it a0 = plas o)
| 0 otherwise. (This case never occurs.)
0 if 7(d =0,
if 7(9) € Qf,
T, 7=y
v if 7(9) = p(z, v),
0 otherwise. (This case never occurs.)

T,. nlpls, ) = p(n(s), n().

£nle )y eeeymle, ) if 7)), <o +5 1ty ) € QF,

1 1
T.. pffty,eee, 8, N=
6 77( z( 1 b; 1 otherwise.

Define 7 on the formulas of QF * by recursion and the following cases:

T .f (l)=0 () F’
F, n(A°(t))= if 7 or n\t) € 0

T otherwise.
Rl‘(n(tl)’."’."(ta.)) if ﬂ(tl),"', n(ta) € QF,
F,. Rt eyt )= ’ ’
2 &l % AT otherwise.

F,. f(D=T.
F,o 100¢) =n(g), nld A ¢) =) A n()) and 1 V) = 9l V ).

That 7 is recursive follows from the recursive definitions of QF and QF*. Parts

(i) and (v) of Lemma 2 are immediate by induction overthe definitions of term
and formula respectively,

Lemma 2.1. If ¢ is a term of Tm", X1s e+, X, is a sequence of elements of
A and x, ..., x,) € A then t € QF.
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PRIME AND SEARCH COMPUTABILITY 399

Proof. If t € Tm™ and ¢t ¢ QF then either t =0 or ¢ is of the form pla, v).
In either case f[x, - .-, xk] € A.

Lemma 2.2, If ¢ is a term of Tm", X1y +es, X, is a sequence of elements of
A, meN and dx, ..., xk]=m. then t =m.

The proof is easy by induction over the inductive definition of Tm™

Now part (iv) of Lemma 2 can be proved by induction over the definition of
7 The proof is straightforward except that, in case T (¢ = fi(tl, sen, tbi)),
Lemma 2.1 is needed. Parts (ii) and (iii) follow immediately from parts (i) and (iv)
and Lemmas 2.1 and 2.2. Part (vi) can be proved by induction over the definition
of 7. Incases F, and F,, Lemmas 2.1 and 2.2 are needed.

5. Prime computable functions. Let p be the minimalization operator.

Theorem 1(a). If f is an U-prime-computable function from N®) x A9 into
A then there are total recursive functions F and G from N®*1 into the sets of
formulas and terms respectively of QF such that, for any - My Xpyoeey xq)
e N®O , 4@

/(”1:”" np: Xty xq)

= G(F-kF(kp 771, caey, np)[xl’ sy xq]a nls cYy ”p)[xl’ M) xq]‘

(b) If [ is an U-prime-computable function from N® x AD inso N then
there is a total recursive function F from N®*1) into the set of formulas of QF

and a total recursive function H from N®*1) into N such that, for (n

1P°" 2
xl, ...,xq) eN(P) x A(q)’

p’

flrg, e, My Ky weey xq) = HpkF(k, n}, -, np)[xl, ces, xq], e, np).

Proof. Let / be an U-prime-computable function from N® x A? into A or
into N. By Remark 10 of [3], there is a function U and a relation T, each

absolutely primitive computable in gT, con, g:, f’;, ceey /Z, such that, for any

Bpseens By Xpyees X 0 2, [(n,, ceea s X ...,xq):z if and only if there is

some m € N such that T(m, 7y, «ovy 7y, %4y o2, x ) and Ulm, ny, «ee, 7,
LTI xq) = %. Furthermore, there is such a relation T with the property that,
for each ny, ..., R STERITE R there is at most one m such that

T(m, OTRREPE R JUET xq). Let (FT, GT) and (FU, GU) determine the
representing function of T and the function U respectively as in Lemma 1. Now

T(m, (TR R VI SUREER xq) if and only if, for some &, €N,

FT(kl)[m' nly"" np’ xla"'! xq] and GT(kl)[ml 7111"'1 npv xla"'ixq]=o.
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400 C. E. GORDON

Also Ulm, n, ..., Moy Xpsoeey X ) = z if and only if, for some k, € N,
FykMm, nyyoen, Mys Xppoens xq] and G, (k,)m, nyy -.v, Ry Xy eee xq] = z.
Let Z be the formula A%(V,) A A%V ). If z € A* then Z[z] if and only if

z = 0. Now define recursive functions F and G, on N+3) by:

Folm, ks kyumyyeeeyn )= [Fk) A ZIGp(R ) A Fylky)]

‘ Im, nls ccvy npy vla"'! vqu

Go(m, kl, kz, 711, ceay, np) = GU(kZ)Im’ nly reey N vl’ ctey vql’

‘P’
Now fln;, ---, OV STERRE xq) = z if and only if there are natural numbers
m, k, and k, such that Fo(m, k., ky mysoeesn )lxpsoveyx ] and
Go(m; kl’ kzo "1’ sy np)[xl’ ceey xq] = z. Let F(k, ”1’ seey np)=
W(Fo((k)o’ (k)l’ (k)zv nly M ] np))- If T](GO((k)O’ (k)19 (k)zv n1’ MR np)) iS
a term of QF, let G(k, n, ---, np) = (G (k) y, (R), (R)y 7yyeee,y np)). Othet-
wise, let Gk, 7y, -+, np) =V,. Let 6 be some total recursive function such
that, for any m € N, 6(m) = m and let

H(k» "1 LI | "p) = O(TI(GO((k)O’ (k)ly (k)zy "19 M ] ”p)))-
Notice that F, G and H are recursive and that, for all &, LSURRERR
Flk, -, np) and Gk, n,**+, n,) ate respectively a formula and a term
of QF. Let (n,.--, My Xpp oo xq) e NO x AD_ ¥ fln), ..., My Xpp eees xq):z
then there dre unique m, k; and k, such that Fo(m. ki ko mysenes np)[xl, ceny xq]
and, for those m, k, and k,, Go(m, kyy by gy eee, "p)[xl’ ceey xq] =2z, By
Lemma 2, using the fact that each x; is an element of A, 1kF o(m, ko ky myyeeey np))
. [xl,"-, xq]. In fact, lettingk = (m: kl' kz)y k = IlkF(k: "17 ccty nP)[xl’ . ": Py xq]-
If { is into A then z € A so, by Lemma 2, n(Go(m, ko, LI STRRED "p”
is a term of QF and (Go(m, ks ko nyyoee,y np))[xl, cen, xq] =z, i.e.,
Gk, Nysoeesn )[xl, cee, xq] = 2. To summarize, if (”1’ vee,m

e N o A(q+1p) and if /(,,1, SETEOVESY

p’ xly"" xq. Z)

.--,xq)=z then
G(ukF(k, npyeeey np)[xl, cee, xq], npy e, np)[xl, cee, xq] = z.
Now suppose that [ is into N. Then z € N so, by Lemma 2,
WGolm ks kyymyy oo, np))= Ze

Therefore, H(k, mysee '”p) = z. To summarize, if (2, sttty Ny xp“’,xq)
€ N(p+l)>( A(Q)and /(711,"', np: xp"" xq)= z then

H(pkF(k, ny <, rzp)[xl, ceey xq], Ry ceeyn) =2

|4

Now if [ is into A and G(ukF(k, n,, """p)[xl’ “"xq]’"l’ """p)[xl’ ...,xq]=z,
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then there is some & such that F(k, 7, .-+, np)[xl, cees xq]. It follows that,
letting m = (k)g, T(m, ny5 -+, n,, »?
Kysrees xq) is defined and equal so some z,. But, as has just been shown, it

Xpynens xq) and hence that f(n, .., n

follows that

G(#kF(k. 7, sedy "p)[xl’ R xq]9 LIURARE' np)[xl’ cvy xq] =2

-Hence 2z = 2z,. This concludes the proof of part (a) of the theotem. Similarly, if / is into A
and H{pkF(k, n,, “"”p)[xl’”" xq], nyy ey np)=z thea fln,, .-+, n, X ---,xq)
is defined and must equal z. This concludes the proof of part (b) of the theorem.

The converse to Theorem 1 will be proved in $7. It follows from the prime
computability of (i) all recursive functions and (ii) the satisfaction relation for
formulas of QF.

6. Search computable functions. Given a term ¢ of QF* with variables from
V“l, vees ¥ g+k 2nd given elements x;, -+, x, of A% let flx ), o vy x ] be

that element of A* which the term ¢ represents when \) FRTRELE \J are

q +k
interpreted as Xy evey Xp respectively,

Lemma 3. There are total recursive functions a and B such that, for
natural numbers q and n, alg, n) is a term of Tm™* with variables from
Vq+l,. ooy Vq+ﬂ( ) (or alg, n) =0 if B(n) = 0) and such that, given any w € A*,
there is some n € N and some %, +-., %800y € A such that, for any q € N,
alg, mlxp, ovy g, We=w

Proof. Define a and 8 as follows:

\% if n= k

q+k+1 ’
alg, ») = { plalq, u), alg + Bx), v)) if n=(u v),

0 if n is not a sequence number of length 1 or 2,

ke 1 if n=(k),
B(n) = { B(w) + B(v) if n={(u v),

0 if n is not a sequence number of length 1 or 2.

The functions a and B are clearly recursive, in fact, both a and B are primi-

tive recursive. By induction on 7, it is immediate that alg, 7) is a term of Tm™
. . * . .

with variables from Vq+l, coey Vq +B(n)+ Ve show by A’-induction that, for
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w € A*; for any q € N there is some 7n ¢ N and some x,,-.+, Xy € A such
that alg, n)lx, ««o, xﬁ(n)]q =w. fweA leen=(0)soalgm=V_,,

Bn) =1 and alg, n)lw] =W Hw=0let n=0s0 alg, 7) =0 and B(n) =0,
Suppose w = (s, ¢} and the induction hypothesis holds for s and &. Let g be
fixed, Choose #, x5 +«¢, ) such that alg, u)[xl, ceey xﬁ(u)]q = s and choose
U, Y15 ++*s ¥ gy Such that alg + Blu), My s -+ yﬁ(v)]q+/3(u) =y. Let n=(4 o).

Now
alg, Mlxys ooy Xyttt y,B(u)]q =(s', t"
where
s'= alg, Wlxps oovs gy Vi oo ts Yy
and

t'= olg + B(u), U)[xl, *ey xﬁ(u), Yp ooy y,B(v)]q'

But the variables of alg, ) are from V gel? =" \ ) and the variables of

a+
alg + ﬁ(u), v) are from V450140 ""vq+ﬂu)+,3( ysos =alg, Wlxps oers xgylo =
and t' = alg + B@), vy -+ - yﬂ(y)]q+/3(u) = 1. Therefore (s’, t') = w. This

concludes the proof of Lemma 3.

Theorem 2. There is a recursive function y such that: (a) if f is an
U-search-computable function from N® « AD into A, then there are total
recursive p + 1 place functions F and G such that, for any (k, n,eee,m Ye
N+ F(g, My ooy np) and Gk, nys «+esm ) are respectively a formula and
a term of QF with variables from V|, ..., +y () @ such that, for any
(g5 eee, Moy Xpseety X z) € N(®) A(q*’l? flagseeey Mys Xps eoes X )__z if
and only if there is some natural number k and some sequence Vs oves y,y(k)
of elements of A such that

F(k: LTI ”p)[xl’ c1y xq: Yy }'y(k)]
and
G(k, ﬂl, cee, np)[xl’ seay, xq, yl, sae, y'y(k)] = Z.

(b) if { is an Wesearch-computable function from N® « AD into N then there
are total recursive functions F and H such that, for any (k, )5 ++-, np) €
N F(k, Byseeesmy ) is a formula of QF with variables from V{5 +++,
vq+'y(k) and such that, for any (z, ny -0, My Xygeeey X ) € N®¥D 5 4(2),
fagyeee, OV STRERPR ) =z if and only if there is some natuml number k and
some sequence yy; «++, y,},(k) of elements of A such that Flk, nys ++., n, ).

[xl,...,xq yl””’y'y(k)] and H(k, ”1"“’”) z
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Proof. Let 7 be as in Lemma 2. Let a and 8 be as in Lemma 3, Let 0
be a total recursive function such that, for each z € N, Hz) = z. Let (k) =
B((&),). ¥ [ is any U-search-computable function into A or into N, then, by
the normal form theorem for search computable functions, there is a relation T

and a function U, each absolutely primitive computable in g’;, ceey g:, /;'1‘, seey /:,
such that, for all n,, ..., By Xys vees X 2, /("1""' My Kpseees "q) =z if

and only if there is some w € A* such that T(nys eee, OVE STRERFE w) and

Ulny, -y My Ko vees X, w) =z Let (Fy, Gp) and (Fj;, G;) determine the
representing function of T and the function U respectively as in Lemma 1. Define
functions F\; and G on N@+3) py:

Folm, kyy by myy eenyn)) = (Frlk)) A ZIG (k)| A Fiifk,))
.!nl,cco, np, vl,on!, Vq, a(q, m)l,
Go(ml kl' kzl nlr tEy np) = Gu(kz)lnl’ cty n v cry vq, a‘(q: m)

p’ 1’
Now if

Fo(m, kl' kZ’ 711, v, ”p)[xl’ seey, xq’ y’_’ cey yﬁ(,,,)]
and

Go(m, kl' kZ' 111, sav, np)[xl, vaey, xq, yl’ cea, yB(m)] =z

then, letting w = alg, m)ly s -+, yﬁ(m)],q,

FT(kl)[nl, ety My Xy e, xq, wl], GT(kl)[nl’ Tt By Ky e, X w] = 0,

FU(kZ)[ﬂl, ety np, xl’ M) xqa w], Gu(kz)[ﬂl, tan, nl)’ xl, seay, xq, w] = Z,

Therefore, T(n, Cees My Ky eens X w) and Uln |, sees M, Kps eees X, wy=2z

q
so f(ny,ees, ny %ps .--,xq)=z. On the other hand, if /(nl,---,n , xl,-.-,xq)=z

then there is some w € A™ and some natural numbers k; and kzpsuch that
FT(kl)[nl, e My Kpy ey X, wl, GT(kl)[nl’ R R w] =0,

F (k)Mny, e, OVE STRELE 20 w] and Gk lnyy oo, My Hpseoes X, w) = 2.
Pick some m € N and some sequence ys ««., Y Blm) of members of A such that
alg, m)[yl’ cee, yﬁ(m)]q =w, then

FO(m’ kl' k.zr "l""’”p)[xl'”'» xqr yls""yﬂ(m)]
and

Go(m, kl' kZ’ nl,...,np)[xl,...,xq, Y10 Y gy} = 2
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Now let

F(k, 771, see, ﬂp) ='7](F0((k)01 (k)l’ (k)29 nla *e %y np))
and

G(k, 721, sy, ”P) = U(GO((k)O’ (k) 1 (k)Z, "1’ cey np))'

For each (k, 7y, -, np) e N®+D  F(g, myyeeeym ) is a formula of OF with

variables from V, ..., Vq (k) Incase [ isa functxon into A then, for each
(B, 7y oees ﬂp) € N(p*'l) G(k OTREEREN } is a term of QF with variables from
Viseees Vq+’>'(k)’ Furthermore, for each (”1’ creym
A(q+l) /(n yeeeam,

some SeqUENCe ¥ys +++s Yo ) of elements of A such that

)
WESURTEIE z) e N

ESTRAREEN ) = z if and only if there is some k& € N and

F(kr nl’ MR | np)[xl’ ""sxq; yp"" y»y(k)]

and

G(&, Ny ooy np)[xl, T K Yttt y'y(k)] = z.

In case [ is a function into N then, for each (&, n,, -+, n, ) e Np+D),
G(k, ny, +++,n ) is a numeral of Tm* Furthermore, for each (z, nys vy m
Xy envs xq) e N#+D  AlD), /("1’ ey

is some k£ € N and some sequence y, ---, Yy x) of elements of A such that

p’
N YRR xq) = z if and only if there

Fk, nyseeesn s evesxy ypsooes vyl and Gk, nys ooy n,) =z Letting
Hk, ny5ene, np) =0Gk, ny, ..ty np)) and leaving the reader to verify that F, G
and H are recursive, the theorem is proved.
Define the language Ex as follows:
(1) The terms of Ex are just the terms of QF.
(2) The formulas of Ex are defined inductively by:
(i) Every formula of QF is a formula of Ex.
(ii) If ¢ is a forumla of Ex and x is a variable then (11, x, ¢) is a

formula of Ex (denoted by 3x¢ and having the corresponding interpretation).

Corollary to Theorem 2. If { is an U-search-computable function from
N® x AD into N then there are total recursive functions F and H such that,
forany (k, nyyeee, n, ) e NV, F(k, SURTIPRN ) is a formula of Ex and, for
any (n,, TP VS SPREEE xq) e NP 4D, /("1’ e M, Xy ey X )—
H(pkF(k, nl,...,n)[xl,...,x] nl,...,n) .

7. The converses to Theorems 1 and 2. Putting aside our use of
"(xo, cees Xy " to denote II. <kP i
that element of A* which codes * (xo, ey X, 1)” as in [3]. If x=(Xgserea %

we now let ‘(xg, .-, x,_1)"" denote

_—y
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let Jh(x)= & and (x),=x, (i=0, ..., k- 1). Let Val be the partial function on
A* defined by

fxp, oo xq] if t is a term of QF and x = (xpsvee, %)
Val(s, x) = where each x_ is an element of 4,

undefined otherwise.

Let Sat be the relation on A™ defined by: Sat(¢, x) if and only if ¢ is a formula
of OF, x is of the form (x;, -+, x_), with each x, € 4, and ¢lx}, .., xq]-
It is a consequence of the recursion theorem for prime computable functions that
Val and Sat are absolutely prime computable (cf. [3]). Every recursive function
is prime computable (cf. [3]), and the set of prime computable functions is closed
under the minimalization operator. This is sufficient to give us

Theorem 3. (a) If F and G are p + 1 place total recursive functions and if,
for any (k, ny,s - .., np) e NO+D  p(p, Ry eees np) and Gk, ny, --., np) are
respectively a formula and a term of QF with variables from V, ..., Vq, then

the function [ from N® o AD o A defined by

/(nl, vee, np' Xpperey xq)
= G(#kF(k: nly cey "p)[xl""’ xq]a 72‘, *tty np)[xp tty xq]

is Weprime-computable.

(b) If F and H are p + 1 place total recursive functions and, for every
(%, Nyyene, np) e N®+D E(p, TPRTRN np) is a formula of QF with variables
from Vi, oo, Vq, then the function [ from N® A9 jnto N defined by
/("l’ XXPE VR ST xq) = H(pkF(k, 5 - oo, np)[xl, e, xq], My eens np) is

U.prime-computable.

Theorem 4. (a) If F and G are p + 1 place total recursive functions and
Y is a total recursive function and if, for any (k, My eees "p) € N(P+1)’

Fk, nyyeer, np) and Gk, nyy oo, np) are respectively a formula and a term of

OF with variables from Vi eeo, Vq+7(k) s then the (partial, multiple valued)
function [ from N® x AD into A defined by:

/(nl, Sy By, Kpyeee, xq) ='z if and only if, for some k € N and some
Y oros y'}’(k) € A, F(k, My oeey np)[xl, cou, xq, Yty y’)’(k)] and
Gk mgy eeey m)lxgy wees % vy oves vl = 2

is U.search-computable. (b) If F and H are p + 1 place total recursive functions,
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and y is a total recursive function, and if, for any (k, n), <++,n) € N(f”l),
F(k, nys evesn ) is a formula of OF with variables /rom Viseees vq+'y(k.)’ then
the function f/rom N® « A jngo N defined by:

gy eenyn, x5 een, xq) = z if and only if there is some k € N and

4
some yi, +1v, ¥, € A such that Fk, nyy e, ”p)[xl’ X Yp ot yy(k)]
and H(k, Myysee, np) =z

is Ql-searcb-computable.

Proof. Let v be the search operator of [3]. Let f be defined from F and
G as in part (a). Define y = y(n, «+., My Xy veey X ) = vu(sequence (w) &
W)y € N & (Vi < Ih(w) - (W), € A & Ih(w)=y(w)g) +1 x Fw) ;s 7y +ee
S ITREEPE Y ) PPN (W)'Y((w)o)])' Now y is U-search-computable and

o)

[lrysees

p,x l'l,x)

= G gy myp wes m gy ooy s O vees Oy

Hence [ is Y-search-computable. Now suppose [ is defined from F and H as
in part (b). Let y be as above. Then /(711, SEPE VR STREE xq) =
H((y)o, By eesy np) so [ is Y-search-computable,

8. Computability and the constructible L, o The infinitary language
"*constructible Lwl,w” (cf. [4]) has finitary quantification and infinitary disjunc-
tions W of nonempty, recursively enumerable sets Q of formulas. We consid-
er certain sublanguages of constructible LwI o An existential formula is a
formula of the language Ex of $6. An W-formula is a formula of the form W,
where Q is a recursively enumerable set of formulas of QF all of the variables
of which lie in some finite set. An W3-formula is a formula of the form W Q,
where {} is a recursively enumerable set of existential formulas all of the free
variables of which lie in some finite set.

Recall that a relation is called semi-U-prime-computable (semi-Y-search-
computable) if it is the domain of an U-prime-computable (¥-search-computable)
function, By Theorems 1 and 3 (2 and 4),a g place relation R on A is semi-
Ueprime-computable (semi-U-search-compuable) if and only if there is a total
recursive function F into the fomulas of QF (Ex) such that, for any
(eysees ,xq) € A, Rlxyy oo, xq) if and only if, for some &, F(k)lxs «-., xq].
An immediate consequence is the next theorem.

Theorem 5. (a) A relation on A is definable in U by an \{/-formula if and only
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if it is semi-U-prime-computable. (b) A relation on A is definable in A by
an \W3-formula if and only if it is semi-U-search-computable.(1)

Remark. There are many *‘pathological’’ cases that might be considered.
For example, if & has no ‘‘given’ relations, then, writing n for 75 +++, 7
and x for %y, --+, x_, (a) the %-prime-computable functions f: N®) x A(@ —N
are those of the form f(n, x) = g(n), for some partial recursive g, and (b) the
%-prime-computable functions f: N ®) x A{?) — A are those of the form
f(n, x) = gn){x], for some partial recursive function g into the terms of QF.
Hence an U-prime-computable function f: AD — N is nowhere defined or con-
stant and an Y-prime-computable function f: A2 — A is nowhere defined or is
a composition of “‘given’’ functions. If, on the other hahd, ¥ has no ‘‘given’’
functions, then (a) the Y-prime-computable functions f: A‘? — A are those
which can be defined by cases:

x, if ¢,[x],

fx)=1¢.

.

xif d>q[x];

a
where &, <, ¢ are formulas of QF and if i <j then "¢ = ¢, is valid

and (b) the u-pmme-computable relations R C A'? are those defmable by for-

mulas of QF. Other such special cases are left for the amusement of the reader.
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(1) For the case that ¥ is a relational structure with equality, Theorem 5(b) is
closely related to results of Daniel Lacombe and Yiannis Moschovakis. Lacombe asserts
in [1] that a relation is “recursive in R CREE) Ra" in a sense defined by Fralsse, if and
only if both it and its complement areW] definable from Ry, ..+, R , =, Moschovakis
shows in [2] that a relation is Fraisse recursive in Rl’ seny R if and only if it is search
computable in Rl’ ey R 2 =
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