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Abstract

In this paper we shall introduce the concept of prime and semiprime
bi-ideals of ordered semigroups and we give characterizations of prime
bi-ideal and regular of ordered semigroups.
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1 Introduction

The concept of prime and semiprime bi-ideals of associative rings with unity
was introduced by A. P. J. van der Walt [7]. In [6] H J le Roux have constructed
a number of results by using prime and semiprime bi-ideals of associative rings
without unity. In this paper, we define a prime and semiprime bi-ideals of
ordered semigroups. Further we shall extend the results of H J le Roux [6]
to an ordered semigroups. It is shown that a bi-ideal B of a po-semigroup
S is prime if and only if RL ⊆ B, with R a right ideal of S, L a left ideal
of S, implies R ⊆ B or L ⊆ B. Moreover, let B be a prime bi-ideal of a
po-semigroup S, then H(B) is a prime ideal of S.
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2 Preliminary Notes

In this section, we recall some basic definitions and results that are relevant
for this paper.

Definition 2.1 A po-semigroup (:ordered semigroup) is an ordered set (S, ≤)
at the same time a semigroup such that:

a ≤ b ⇒ ca ≤ cb and ac ≤ bc ∀ c ∈ S [1].

The following definitions and results were due to N. Kehayopulu.

Definition 2.2 Let S be a po-semigroup and φ �= A ⊆ S. A is called a
right (resp. left) ideal of S [2, 3, 4, 5] if

1) AS ⊆ A (resp. SA ⊆ A).
2) a ∈ A, S 	 b ≤ a ⇒ b ∈ A.
A is called an ideal of S if it both a right and a left ideal of S.

Definition 2.3 Let S be a po-semigroup and T ⊆ S. T is called prime if
A, B ⊆ S, AB ⊆ T ⇒ A ⊆ T or B ⊆ T [5].
Equivalently, a, b ∈ S, ab ∈ T ⇒ a ∈ T or b ∈ T .

Definition 2.4 Let S be a po-semigroup and T ⊆ S. T is called weakly
prime if

For all ideals A, B of S such that AB ⊆ T , we have A ⊆ T or B ⊆ T
[2, 5].

Definition 2.5 Let S be a po-semigroup and T ⊆ S. T is called semiprime
if

A ⊆ S, A2 ⊆ T ⇒ A ⊆ T [5].
Equivalently, a ∈ S, a2 ∈ T ⇒ a ∈ T .

Definition 2.6 Let S be a po-semigroup and φ �= Q ⊆ S. Q is called a
quasi ideal of S [4] if

1) QS
⋂

SQ ⊆ Q.
2) a ∈ Q, S 	 b ≤ a ⇒ b ∈ Q.

Definition 2.7 Let S be a po-semigroup and φ �= B ⊆ S. B is called a
bi-ideal of S [4] if

1) BSB ⊆ B.
2) a ∈ B, S 	 b ≤ a ⇒ b ∈ B.

Notation
For H ⊆ S, (H ]={t ∈ S/t ≤ h forsome h ∈ H}.
We denote by I (a) (resp. L (a) , R (a)) the ideal (resp. left ideal, right ideal)

of S generated by a. One can easily prove that:
I (a) = (a ∪ Sa ∪ aS ∪ SaS], L (a) = (a ∪ Sa], R (a) = (a ∪ aS].
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Definition 2.8 Let S be a po-semigroup. S is called left (resp. right ideal)
regular if

∀ a ∈ S ∃ x ∈ S : a ≤ xa2 (resp. a ≤ a2x) [4, 5].
Equivalently,
1) a ∈ (Sa2] (resp. a ∈ (a2S]) ∀ a ∈ S.
2) A ⊆ (SA2] (resp. A ⊆ (A2S]) ∀ A ⊆ S.

Definition 2.9 Let S be a po-semigroup. S is called regular if
∀ a ∈ S ∃ x ∈ S : a ≤ axa [5].
Equivalently,
1) a ∈ (aSa] ∀ a ∈ S.
2) A ⊆ (ASA] ∀ A ⊆ S.

We note the following Lemma.

Lemma 2.10 For an ordered semigroup S, we have
1)A ⊆ (A] ∀ A ⊆ S.
2) If A ⊆ B ⊆ S, then (A] ⊆ (B].
3)(A] (B] ⊆ (AB] ∀ A, B ⊆ S.
4)((A]] = (A] ∀ A ⊆ S.
5) For every left (resp. right) ideal or bi-ideal T of S, we have (T ] = T .
6)((A] (B]] = (AB] ∀ A, B ⊆ S (cf.[2, the Lemma]).

The following results were due to N. Kehayopulu.

Result 2.11 Let S be a po-semigroup and T be an ideal of S. The following
are equivalent:

1) T is weakly prime.
2) If a, b ∈ S such that (aSb] ⊆ T , then a ∈ T or b ∈ T .
3) If a, b ∈ S such that I (a) I (b) ⊆ T , then a ∈ T or b ∈ T .
4) If A, B are right ideals of S such that AB ⊆ T , then A ⊆ T or B ⊆ T .
5) If A, B are left ideals of S such that AB ⊆ T , then A ⊆ T or B ⊆ T .
6) If A a right ideal, B a left ideal of S such that AB ⊆ T , then A ⊆ T or

B ⊆ T [2].

Result 2.12 An ideal T of a po-semigroup S is weakly semiprime if and
only if one of the following four equivalent conditions holds in S:

1) For every a ∈ S such that (aSa] ⊆ T , we have a ∈ T .
2) For every a ∈ S such that (I (a))2 ⊆ T , we have a ∈ T .
3) For every right ideal A of S such that A2 ⊆ T , we have A ⊆ T .
4) For every left ideal B of S such that B2 ⊆ T , we have B ⊆ T [2].

Result 2.13 An ideal of a po-semigroup is prime if and only if it is both
semiprime and weakly prime. In commutative po-semigroups the prime and
weakly prime ideals coincide.
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3 Main Results

In this section, we introduce prime and semiprime bi-ideals of ordered semi-
groups and obtain some properties of it.

Definition 3.1 Let S be a po-semigroup. A bi-ideal B of S is called prime
if

xSy ⊆ B ⇒ x ∈ B or y ∈ B.
Equivalently,
the subsets C, D ⊆ S, CSD ⊆ B ⇒ C ⊆ B or D ⊆ B.

Definition 3.2 Let S be a po-semigroup. A bi-ideal B of S is called semiprime
if

xSx ⊆ B ⇒ x ∈ B .
Equivalently,
a subset C ⊆ S, CSC ⊆ B ⇒ C ⊆ B .

Now we shall generalize the results on associative ring without unity found
in [6] for an ordered semigroups.

Proposition 3.3 A bi-ideal B of a po-semigroup S is prime if and only if
RL ⊆ B, with R a right ideal of S, L a left ideal of S, implies R ⊆ B or
L ⊆ B.

Proof. Let B be a prime bi-ideal of a po-semigroup S and RL ⊆ B.
Suppose R � B. For all x ∈ L and r ∈ R\B, we have rSx ⊆ RL ⊆ B.

Since B is prime and r /∈ B, we have x ∈ B for all x ∈ L, so L ⊆ B.
Conversely, suppose RL ⊆ B implies R ⊆ B or L ⊆ B for any right ideal

R of S and any left ideal L of S. Let x, y ∈ S such that xSy ⊆ B. Then
(xS] (Sy] ⊆ (xS2y] ⊆ (xSy] ⊆ (B] = B.

Since (xS] is a right ideal of S and (Sy] a left ideal of S, we have (xS] ⊆ B
or (Sy] ⊆ B. Suppose (xS] ⊆ B. Then x2 ∈ B.

Consider R (x) and L (x), the right ideal of S and left ideal of S
generated by x in S, respectively. Now R (x) L (x) = (x ∪ xS] (x ∪ Sx]
⊆ ((x ∪ xS) (x ∪ Sx)] = (x2 ∪ xSx ∪ xSx ∪ xSSx] ⊆ (x2 ∪ xSx]. Let z be any
element of the product R (x) L (x). Then z ∈ (x2 ∪ xSx]. So z ≤ t for some
t ∈ x2 ∪ xSx. If t = x2, then z ≤ x2 ∈ B i.e. z ∈ B, since B is a bi-ideal of S.
If t = xyx forsome y ∈ S, then z ≤ xyx ∈ xSx ⊆ xS ⊆ (xS] ⊆ B i.e. z ∈ B,
since B is a bi-ideal of S. Hence R (x) L (x) ⊆ B.

From our assumption it follows that R (x) ⊆ B or L (x) ⊆ B and hence
x ∈ B. Similarly, if (Sy] ⊆ B, then y ∈ B. Hence B is a prime ideal of S.

Proposition 3.4 A prime bi-ideal of a po-semigroup S is prime one-sided
ideal of S.
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Proof. Let B be a prime bi-ideal of a po-semigroup S. It is only necessary
to show that B is a one-sided ideal of S.

Clearly, (BS] (SB] ⊆ (BS2B] ⊆ (BSB] ⊆ (B] = B.
Since (BS] is a right and (SB] a left ideal of S, we have, from proposition

3.3, that (BS] ⊆ B or (SB] ⊆ B i.e. BS ⊆ B or SB ⊆ B, since BS ⊆ (BS],
SB ⊆ (SB]. Assume x ∈ B, S 	 y ≤ x. Then y ∈ B, since B is a bi-ideal of
S. Hence B is a one-sided ideal of S.

Remark
Let B be any bi-ideal of a po-semigroup S and let L (B) = {x ∈ B/Sx ⊆ B}

and H (B) = {y ∈ L (B) /yS ⊆ L (B)}.
Lemma 3.5 For any bi-ideal B of a po-semigroup S the set
L (B) = {x ∈ B/Sx ⊆ B} is a left ideal of S.

Proof. If x ∈ L (B) and z ∈ S, then zx ∈ Sx ⊆ B and Szx ⊆ SSx ⊆ Sx ⊆
B.

Choose x ∈ L (B) such that S 	 y ≤ x. Then y ∈ B, since L (B) ⊆ B
and B is a bi-ideal of S. Since y ≤ x and S is a po-semigroup, we have
zy ≤ zx ∀ z ∈ S. So zy ≤ zx ∈ Sx ⊆ B i.e. zy ∈ B ∀ z ∈ S, since B is a
bi-ideal of S. Thus Sy ⊆ B implies y ∈ L (B). Hence L (B) is a left ideal of
S.

Proposition 3.6 If B is any bi-ideal of a po-semigroup S, then H (B) is
the (unique) largest two-sided ideal of S contained in B.

Proof. As in the lines of [6], we prove xy, yx ∈ H (B).
Since L (B) ⊆ B and H (B) ⊆ L (B), we have that H (B) ⊆ B. We now

show that H (B) is a two-sided ideal of S.
Let x ∈ H (B) and y ∈ S. Then x ∈ B and x is also an element of L (B),

we have that Sx ⊆ B and xS ⊆ L (B).
Then yx ∈ Sx ⊆ B. So yx ∈ B. Furthermore Syx ⊆ Sx ⊆ B. So

yx ∈ L (B). Also xy ∈ xS ⊆ L (B). Hence xy ∈ L (B).
Now we shall show that xy and yx ∈ H (B). xyS ⊆ xS ⊆ L (B). Hence

xy ∈ H (B). yxS ⊆ SxS ⊆ SL (B) ⊆ L (B), since L (B) is a left ideal of S.
Hence yx ∈ H (B).

Let x ∈ H (B), S 	 y ≤ x. Then y ∈ L (B), since H (B) ⊆ L (B) and
L (B) is a left ideal of S. Since y ≤ x and S is a po-semigroup, we have
yz ≤ xz ∀ z ∈ S. So yz ≤ xz ∈ xS ⊆ L (B) i.e. yz ∈ L (B) ∀ z ∈ S, since
L (B) is a left ideal of S. Thus yS ⊆ L (B) implies y ∈ H (B). Hence H (B)
is a two-sided ideal of S.

Let I be any ideal of S and I ⊆ B, and let u be an arbitrary element of I.
Then u ∈ B and Su ⊆ I ⊆ B. Hence I ⊆ L (B).

Furthermore u ∈ L (B) and uS ⊆ I ⊆ L (B). This implies that u ∈ H (B)
and hence I ⊆ H (B).
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Proposition 3.7 Let B be a prime bi-ideal of a po-semigroup S. Then
H (B) is a weakly prime ideal of S.

Proof. Let B be a prime bi-ideal of a po-semigroup S. Since B is a bi-ideal
of S, we have, from proposition 3.6, that H (B) is a two-sided ideal of S. We
now show that an ideal H (B) of S is weakly prime.

Let a, b ∈ S such that I (a) I (b) ⊆ H (B) for any two-sided ideals I (a)
and I (b) of S generated by a and b in S, respectively. From proposition 3.3
it follows that I (a) ⊆ B or I (b) ⊆ B, since I (a) I (b) ⊆ B. From proposition
3.6, we have, that H (B) is the largest ideal in B. Hence I (a) ⊆ H (B) or
I (b) ⊆ H (B). This implies that a ∈ H (B) or b ∈ H (B) and hence by
theorem 2.11 that H (B) is weakly prime.

Proposition 3.8 Let B be a semiprime bi-ideal of a po-semigroup S. Then
L2 ⊆ B (or R2 ⊆ B) implies L ⊆ B (or R ⊆ B) for any left ideal L (or right
ideal R) of S.

Proof. The proof is same as in the proposition 10 of [6].

Proposition 3.9 Let B be a semiprime bi-ideal of a po-semigroup S. Then
H (B) is a weakly semiprime ideal of S.

Proof. Let B be a semiprime bi-ideal of a po-semigroup S. Since B is a
bi-ideal of S, we have, from proposition 3.6, that H (B) is a two-sided ideal of
S. We now show that an ideal H (B) of S is weakly semiprime.

Let a ∈ S such that (I (a))2 ⊆ H (B) for any two-sided ideal I (a) of S
generated by a in S. From proposition 3.8 it follows that I (a) ⊆ B, since
(I (a))2 ⊆ B. From proposition 3.6, we have, that H (B) is the largest ideal in
B. Hence I (a) ⊆ H (B). This implies that a ∈ H (B) and hence by theorem
2.12 that H (B) is weakly semiprime.

Proposition 3.10 Let B be a semiprime bi-ideal of a po-semigroup S.
Then B is a quasi ideal of S.

Proof. Assume y ∈ BS ∩ SB. Then y ∈ BS and y ∈ SB. ySy ⊆
(BS)S(SB) ⊆ BSB ⊆ B. Since B is a semiprime bi-ideal of S, we have
y ∈ B. Hence BS ∩ SB ⊆ B.

Next, let x ∈ B, S 	 y ≤ x. Then y ∈ B, since B is a bi-ideal of S. Hence
B is a quasi-ideal of S.

Proposition 3.11 A po-semigroup S regular if and only if every bi-ideal
in S is semiprime.
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Proof. Let S be a regular po-semigroup and B be any bi-ideal of S. Suppose
aSa ⊆ B for a ∈ S. Then there exists x ∈ S such that a ≤ axa, since S is
regular. But axa ∈ aSa ⊆ B i.e. axa ∈ B. Since axa ∈ B, S 	 a ≤ axa and
B is a bi-ideal of S, we have a ∈ B and so B is semiprime.

Conversely, suppose that every bi-ideal of S is semiprime. Let a ∈ S. It is
clear that (aSa] is a bi-ideal of S. Hence (aSa] is semiprime for any a ∈ S.
Since aSa ⊆ (aSa] and (aSa] is semiprime, we have a ∈ (aSa]. This implies
that a ≤ axa for some x ∈ S and hence S is regular.

Proposition 3.12 A commutative po-semigroup S regular if and only if
every ideal of S is semiprime.

Proof. Let S be a regular commutative po-semigroup and I be an ideal of
S. Suppose a2 ∈ I for a ∈ S. Then there exists x ∈ S such that a ≤ axa,
since S is regular. But a ≤ axa = a(xa) = a(ax) = a2x ∈ IS ⊆ I.This implies
that a ∈ I, since I is an ideal of S. Hence I is semiprime.

Conversely, suppose that every ideal of S is semiprime. Let a ∈ S. It is
clear that (a2S] is an ideal of S. Hence (a2S] is semiprime for any a ∈ S.
Since a4 ∈ (a2S], (a2S] is semiprime, we have a2 ∈ (a2S] implies a ∈ (a2S] i.e.
a ≤ a2x for some x ∈ S. This implies that a ≤ aax = axa for some x ∈ S.
Hence S is regular.
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