
Prime Compilation of Non-Clausal Formulae

A. Previti

UCD CASL

Dublin, Ireland

alessandro.previti@ucdconnect.ie

A. Ignatiev

INESC-ID, IST

Lisbon, Portugal

aign@sat.inesc-id.pt

A. Morgado

INESC-ID, IST

Lisbon, Portugal

ajrmorgado@gmail.com

J. Marques-Silva

INESC-ID, IST, Lisbon, Portugal

UCD CASL Dublin, Ireland

jpms@tecnico.ulisboa.pt

Abstract

Formula compilation by generation of prime im-
plicates or implicants finds a wide range of appli-
cations in AI. Recent work on formula compila-
tion by prime implicate/implicant generation often
assumes a Conjunctive/Disjunctive Normal Form
(CNF/DNF) representation. However, in many
settings propositional formulae are naturally ex-
pressed in non-clausal form. Despite a large body
of work on compilation of non-clausal formulae, in
practice existing approaches can only be applied to
fairly small formulae, containing at most a few hun-
dred variables. This paper describes two novel ap-
proaches for the compilation of non-clausal formu-
lae either with prime implicants or implicates, that
is based on propositional Satisfiability (SAT) solv-
ing. These novel algorithms also find application
when computing all prime implicates of a CNF for-
mula. The proposed approach is shown to allow the
compilation of non-clausal formulae of size signif-
icantly larger than existing approaches.

1 Introduction

The compilation of the prime implicants and implicates
of propositional formulae can be traced to the work of
Blake [Blake, 1937], having been the subject of extensive
research over the years (e.g. [Marquis, 2000] for a compre-
hensive survey on this topic).

Prime implicants and implicates are fundamental in the
minimization of propositional formulae [Quine, 1952; 1959;
McCluskey, 1956], and find a number of relevant applica-
tions and extensions. These include, among others, knowl-
edge compilation [Darwiche and Marquis, 2002; Cadoli and
Donini, 1997], model-based diagnosis [de Kleer, 1992], de-
bugging of incoherent terminologies [Schlobach et al., 2007],
contingent planning [To et al., 2011], existential quantifi-
cation [Brauer et al., 2011], extraction of feature mod-
els from propositional formulae [Czarnecki and Wasowski,

2007], inductive generalization in model checking [Bradley
and Manna, 2007], and applications in modal logic [Bien-
venu, 2009]. Depending on the application, the goal is either
prime compilation, finding a prime cover of a formula, or ex-
tracting some prime implicants/implicates.

Most work on finding all prime implicants (or implicates)
of a propositional formula assumes the formula to be repre-
sented in Conjunctive (resp. Disjunctive) Normal Form (CNF,
resp. DNF). However, in practice most problem represen-
tations are not in normal form [Stuckey, 2013]. A simple
way to handle non-clausal1 formulae is to exploit Shannon’s
expansion [Shannon, 1949], but this approach is worst-case
exponential even before prime generation. As a result, a
number of alternative approaches have been proposed, which
work with non-CNF formulae [Coudert and Madre, 1992;
Ramesh et al., 1997; Matusiewicz et al., 2009; Simon and
del Val, 2001]. However, reported results indicate that these
approaches are unable to scale for formulae with large num-
bers of variables, being limited to formulae with at most a few
hundred variables.

This paper develops two novel approaches for prime gen-
eration of non-clausal formulae, that build on work for prime
implicant generation of CNF formulae using SAT [Palopoli
et al., 1999; Jabbour et al., 2014]. Whereas prime impli-
cant generation for CNF formulae starts from a CNF repre-
sentation that is given, and so the focus is solely on the com-
putation of the prime implicants, our approach proposes to
construct the CNF representation of a formula (i.e. a (prime)
implicate cover, represented with a set of prime implicates,
from which a CNF formula F ′ equivalent to the non-clausal
formula F can be obtained), while simultaneously finding and
blocking all the prime implicants. Observe that earlier works
based on SAT that start from CNF formulae cannot directly
compute all prime implicates, whereas the novel approaches
proposed in this paper can. Moreover, although similar in the
overall organization, the two novel approaches differ in key

1Throughout the paper, the term non-clausal is used to denote
propositional formulae not necessarily represented as sets of sets of
literals, i.e. either CNF or DNF.

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

1980

aspects that tend to favor the performance of the second.

Preliminary experimental results show that the proposed
approach scales significantly better than earlier work [Si-
mon and del Val, 2001; Ramesh et al., 1997; Matusiewicz
et al., 2009] for different classes of formulae, namely clas-
sification theorems for quasigroups [Meier and Sorge, 2005],
cryptographic benchmark formulae [Geffe, 1973; Otpuschen-
nikov et al., 2014] and specific crafted formulae [Bordeaux
and Marques-Silva, 2012; Beame et al., 2004] with fairly
large numbers of variables, but also without large numbers of
primes. (In contrast, (Z)BDD-based approaches [Simon and
del Val, 2001; Coudert and Madre, 1992] can compile for-
mulae having at most a couple of hundred variables but that
can have a very large number of primes.) The two novel ap-
proaches proposed in this paper can compile example formu-
lae with thousands of variables, and with hundreds of thou-
sands of primes, which is well beyond the capability of alter-
native approaches.

2 Related Work

This section briefly surveys related work on finding prime im-
plicant or implicate compilations (e.g. [Marquis, 2000] repre-
sents a comprehensive survey, covering work on prime com-
pilations until 2000).

A number of methods for computing all prime implicants
(or implicates) are based on iterated consensus (or resolution)
operations, with a number of improvements introduced over
the years [Quine, 1952; 1959; Tison, 1967; Kean and Tsiknis,
1990]. All these approaches start from a DNF (resp. CNF)
formula representation of a formula F and generate all prime
implicants (resp. implicates) of F .

Besides iterated consensus (or resolution), a number of al-
ternative approaches have been proposed over the years, also
for formulae represented in either DNF or CNF. These in-
clude, among others, the use of semantic resolution [Slagle et
al., 1970], the use of minimal hitting sets with SE-trees [Ry-
mon, 1994], the matrix method and extensions [Jackson,
1992], the unionist product [Castell, 1996], and the use of
problem reformulation [Jabbour et al., 2014], which is moti-
vated by a formulation based on ILP [Palopoli et al., 1999].
Some of this recent work starts from a clausal representa-
tion of a formula F and generates the prime implicants of
F [Castell, 1996; Palopoli et al., 1999; Jabbour et al., 2014].
Additional work also includes the use of improved data struc-
tures [de Kleer, 1992] and extensions for knowledge compi-
lation [Marquis, 1995]. Moreover, the minimal hitting set
duality between prime implicants and implicates has been
exploited in the use of SE-trees [Rymon, 1994] and can be
traced to the work of Reiter [Reiter, 1987].

Most past work on prime compilations require either DNF
or CNF representations of Boolean functions (and the above
references are evidence of this observation). Shannon’s ex-
pansion [Shannon, 1949] can be used for converting non-
clausal formulae to DNF (or CNF), but this in general does
not scale for large formulae. In our case, we are still able
to use the more succinct Tseitin encoding and make use of
modern CNF based SAT solvers [Eén and Sörensson, 2003].
Further details are provided in Section 4.

Nevertheless, a number of approaches have been con-
sidered for non-clausal formulae. One example is an al-
gorithm dedicated to formulae represented as the conjunc-
tion of DNF formulae [Ngair, 1993]. Additional exam-
ples include the use of BDDs [Coudert and Madre, 1992;
Simon and del Val, 2001], the use of NNF with path disso-
lution [Ramesh et al., 1997] and, more recently, the applica-
tion of different variants of tries [Matusiewicz et al., 2009].
ZRes [Simon and del Val, 2001] is a tool for the enumeration
of prime implicates. Although originally proposed in the con-
text of clausal theories, the tool is able to eliminate Tseitin
variables (if known), thus providing a way to return primes
for the original non-clausal formula. The tool builds on top
of Tison’s work and uses a ZBDD in order to compactly en-
code large clause sets. Finally a new multiresolution rule is
presented that is able to deal with this compact representation.

3 Preliminaries

Standard definitions on knowledge compilation and con-
sequence finding are assumed [Cadoli and Donini, 1997;
Marquis, 2000; Darwiche and Marquis, 2002]. Moreover,
definitions common in propositional satisfiability (SAT) solv-
ing are also assumed [Biere et al., 2009]. In what follows, F
denotes a propositional formula, that can be in non-clausal
form. var(F) denotes the set of variables of F . A model is
an assignment satisfying the formula. A model is said to be
maximal when it contains a maximal number of variables as-
signed to true. A term t is a conjunction of literals and a
clause c is a disjunction of literals.

Definition 1 A term In is called an implicant of F if In �F .

Definition 2 A clause Ie is called an implicate of F if F � Ie.

Definition 3 An implicant In of F is called prime if any sub-
set I ′n (In is not an implicant of F .

Definition 4 An implicate Ie of F is called prime if any sub-
set I ′e (Ie is not an implicate of F .

Given F , PIn(F) and PIe(F) denote, respectively, the sets
of all prime implicants and prime implicates of F .

Approaches based on problem reformulation can be traced
to original work on using ILP for computing prime implicants
of CNF formulae [Palopoli et al., 1999]. This paper follows
the basic reformulation [Jabbour et al., 2014] from a CNF
formula F to a CNF formula H, defined on a different set of
variables. This approach is summarized next.

Let F denote a CNF formula. Create a formula H = L ∪
C ∪ B as follows. For each v ∈ var(F), the pair of variables
{xv, x¬v} ∈ var(H) encodes the non-occurence, the negative
or the positive occurrence of v in a possible prime implicant
of F , respectively xv = x¬v = 0, xv = 0 ∧ x¬v = 1, and xv =
1 ∧ x¬v = 0. L = {(¬xv ∨ ¬x¬v) | v ∈ var(F)}. C is created
from the clauses of F such that each clause ci = (l1∨. . . , lk) ∈
F is transformed into a clause cHi = (lH1 ∨ . . . , l

H
k) ∈ C, where

each literal lHj = xv if lj = v, and lHj = x¬v if lj = ¬v. The
cost function of the ILP model is given by the sum of the
variables of H, var(H) = {xv, x¬v | v ∈ var(F)}, but it is not
used in our approach. Finally, initially B = ∅, and is used to
block any computed prime implicants.

1981

Observe that L disallows the assignment xv = x¬v = 1 for
each pair of variables {xv, x¬v}. Moreover, C encodes an im-
plicate cover of F , using the new set of variables. Translating
the clauses in C to the variables of F we get a formula that
is equivalent to F . (In this case, the resulting formula is F
itself.)

For non-clausal formulae, a number of algorithms have
been proposed for computing a prime implicate given an
implicate of a propositional formula [Bradley and Manna,
2007]. Among these, the one requiring the asymptotically
fewest calls to a SAT solver corresponds to the QuickXplain
algorithm [Junker, 2004; Bradley and Manna, 2007].

4 Non-Clausal Prime Compilation

The approach proposed in this paper is motivated by the refor-
mulation approach for computing the sets of prime implicants
of CNF formulae [Palopoli et al., 1999; Jabbour et al., 2014],
and outlined in the previous section. Recall that, starting from
F , the reformulation approach creates a CNF formula H con-
taining three components, H = L− ∪ Bn ∪ Ce, where L−

limits the number of assignments to 3n (with n = var(F)),
Ce encodes F , and so can be viewed as encoding an impli-
cate cover of F , and finally, Bn is built as the compilation
progresses and blocks already computed prime implicants.

For the case of non-clausal formulae, we propose to start
with Ce as the empty set, and iteratively refine both Bn and
Ce. The approach used in this paper works on two different
formulae, being similar to recent work on exploiting dualiza-
tion for solving Max-SAT, model-based diagnosis and find-
ing MUSes [Bailey and Stuckey, 2005; Davies and Bacchus,
2011; Stern et al., 2012; Previti and Marques-Silva, 2013;
Liffiton et al., 2015]. At each iteration, a maximal model
is extracted from a working formula H, which includes Bn,
Ce as well as L−. This model is used to extract either a
prime implicant or a prime implicate of F , which is then ei-
ther added to Bn, if a prime implicant was computed, or to
Ce, if instead a prime implicate was computed. An essen-
tial aspect for the correctness of the approach is that, while
clauses for blocking prime implicants use negated literals
(similar to earlier work [Palopoli et al., 1999; Jabbour et
al., 2014]), clauses for blocking prime implicates use posi-
tive literals (similar to the encoding of the original CNF for-
mula in earlier work [Palopoli et al., 1999; Jabbour et al.,
2014]). The algorithm iterates until it computes all prime im-
plicants and a (prime) implicate cover of F . Observe that
this prime implicate cover is essentially what C already rep-
resents when F is represented in CNF [Palopoli et al., 1999;
Jabbour et al., 2014].

It should be pointed out that prime implicants and impli-
cates must be extracted from F , which is a non-clausal for-
mula. Whereas extracting a prime implicant from a satisfy-
ing assigment is a polynomial time procedure for CNF for-
mulae [Schrag, 1996] (and similarly for extracting implicates
for DNF formulae), this is not the case for non-clausal for-
mulae. A non-clausal formula F can be converted into a CNF
FCNF by means of a Tseitin encoding and tested for satisfia-
bility. Unfortunately, a prime implicant (or implicate) for the
encoded FCNF is not a prime implicant (resp. implicate) for

F . In order to extract a prime implicant (or implicate) for the
original formula, we have to perform a sequence of queries
on FCNF . Each query checks for the necessity of a literal in
the computed model. For example, suppose that m is a model
for FCNF . So we have that m�FCNF and that m∧¬FCNF is
unsatisfiable. A prime implicant can be extracted from m by
testing one literal at a time. At each step i, a new assignment
m′ is created by removing a literal l ∈ mi (with m0 = m).
If m′ ∧ ¬FCNF is still unsatisfiable then l is not part of the
prime implicant under construction and mi+1 = m′. Other-
wise, it means that l is necessary and mi+1 = mi. In this
case, l is marked in order to avoid to test it again. However,
the extraction of a prime implicant from a satisfying assign-
ment can be achieved more efficiently using the QuickXplain
algorithm [Junker, 2004; Bradley and Manna, 2007]. The two
functions ReduceImplicant and ReduceImplicate,
used in our algorithms, hide the details of the procedure just
explained. As such, even if not mentioned explicitly, all the
SAT calls are performed on CNF encoded formulae. The
same applies to the call to the SAT oracle that is shown in
the two algorithms.

The next section formalizes the approach outlined above
and proves it correct for prime implicant (or implicate) com-
pilation.

4.1 Basic Algorithm

This section describes the first approach for non-clausal
prime compilation. As outlined in the previous section, dur-
ing the algorithm’s execution, H is organized in three compo-
nents:

H = L− ∪Bn ∪ Ce (1)

Observe that Bn denotes the set of clauses blocking prime
implicants (and the literals are pure and negative), and Ce de-
notes the set of clauses blocking prime implicates (and the
literals are pure and positive). Moreover, BA

n is the set of
blocking clauses for all prime implicants of F , CT

e is the set of
blocking clauses for a cover of F by prime implicates. Sim-
ilar definitions apply for all prime implicates and a cover by
prime implicants, respectively BA

e and CT
n . In addition, AF

represents an assignment on F and AH the corresponding as-
signment on H.

Algorithm 1 summarizes the main steps of the proposed
approach. At each step, a maximal model AH of H is com-
puted. The assignment AF of F associated with AH either
satisfies or falsifies F (see Lemma 2). If AF satisfies F , then
a prime implicant is extracted and blocked by adding a new
clause to Bn (see Theorem 1). Otherwise, if AF falsifies F ,
then a prime implicate is extracted and blocked by adding
a new clause to Ce (also see Theorem 1). Algorithm 1 ter-
minates when all prime implicants of F have been computed
and a prime implicate cover of F has also been computed (see
Theorem 2).

The startup phase of Algorithm 1 consists of initializing H
with L− = {(¬xv ∨¬x¬v) | v ∈ var(F)}. For each v ∈ var(F),
there exist two corresponding variables in H, xv represents
the literal v whereas x¬v represents the literal ¬v. The reason
for this translation is that now for each original variable v,
there are four possible assignments:

1982

input : Formula F
output: PIn(F) and prime implicate cover of F

1 H ← {(¬xv ∨ ¬x¬v) | v ∈ var(F)}
2 while true do

3 (st, AH)← MaxModel(H)
4 if not st then return

5 AF ← Map(AH)

6 st← SAT(AF ∪ ¬F)

7 if not st then # AF
�F ; i.e. AF is an implicant

8 In ← ReduceImplicant(AF , F)
9 PrintImplicant(In)

10 b← {¬xl | l ∈ In}

11 else # F �¬AF ; i.e. ¬AF is an implicate

12 Ie ← ReduceImplicate(AF , F)
13 PrintImplicate(Ie)
14 b← {xl | l ∈ Ie}
15 H ← H ∪ {b}

Algorithm 1: Basic prime compilation

Table 1: Example run of Algorithm 1

AH AF Entail. Bn/Ce

xax¬axbx¬bxcx¬c

100101 AF

1 = a,¬b,¬c F �¬AF

1 xc

100110 AF

2 = a,¬b, c AF

2 �F (¬xa ∨ ¬xc)

010110 AF

3 = ¬a,¬b, c F �¬AF

3 (xa ∨ xb)

011010 AF

4 = ¬a, b, c AF

4 �F (¬xb ∨ ¬xc)

1. (xv = 1 and x¬v = 0)⇒ v = 1

2. (xv = 0 and x¬v = 1)⇒ v = 0

3. (xv = 0 and x¬v = 0)⇒ v is a don’t care

4. (xv = 1 and x¬v = 1)⇒ forbidden by L−

This encoding is known as dual rail encoding [Bryant et al.,
1987; Roorda and Claessen, 2005] and is necessary for the
computation of the complete set of prime implicants. Without
this encoding, Algorithm 1 could return just a prime implicant
cover.

Example 1 Table 1 summarizes the execution of Algorithm 1
on F = (((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c). In the first it-
eration, a maximal model of H is for example AH

1 = {xa =
1, x¬a = 0, xb = 0, x¬b = 1, xc = 0, x¬c = 1}, which corre-
sponds to the assignment in F , AF

1 = {a = 1, b = 0, c = 0}.
By inspection, AF

1 falsifies F , and so F �¬AF
1 . As a re-

sult, the prime implicate (c) is extracted, and so the clause
(xc) is added to Ce. The second maximal model of H is
AH
2 = {xa = 1, x¬a = 0, xb = 0, x¬b = 1, xc = 1, x¬c = 0},

and so the corresponding AF
2 = {a = 1, b = 0, c = 1}. It is

immediate that AF
2 �F . As a result, the prime implicant a ∧ c

is extracted, and so the clause (¬xa ∨ ¬xc) is added to Bn.
In total, four maximal models are computed, resulting in two
prime implicants and two prime implicates.

Lemma 1 If ¬AF is an implicate on F , then AH satisfies all
the clauses in BA

n .

Proof. Suppose that PF = (p1 ∨ . . . ∨ pm) is a prime

implicate on F and AF the corresponding falsifying assign-
ment (¬p1 ∧ . . . ∧ ¬pm). Let AH = (x¬p1 ∧ . . . ∧ x¬pm)
be the corresponding assignment on H. Note that in
H the prime implicate PF is blocked with the clause
PH = (xp1 ∨ . . . ∨ xpm). Due to the duality between
the set of prime implicants and prime implicates [Rymon,
1994]2, at least one literal in the set {¬xp1 , . . . ,¬xpm}

is contained in every clause in BA
n . Since we have that

x¬p1 = 1, . . . , x¬pm = 1 (AH) and we also have the clauses
in L−, this implies that xp1 = 0, . . . , xpm = 0. Thus all the

clauses in BA
n are satisfied. To prove that the statement is

valid also when we extend PF to an implicate, notice that the
assignment for xp1 , . . . , xpm remains unchanged. ✷

Lemma 2 Every assignment AF induced by a maximal
model computed on H, either satisfies or falsifies F .

Proof. It is easy to see that if an assignment is complete, it
either satisfies or falsifies F . Suppose now that AF is a par-
tial assignment induced by a maximal model AH computed
on the formula H and suppose that: (i) AF does not satisfy
F ; and (ii) AF does not falsify F . We know that due to the
way we block the prime implicates (i.e. by using clauses with
positive literals), every induced assignment has to contain at
least one literal for each prime implicate already computed.
Suppose now to extend AF in such a way as to falsify F (it
is always possible, unless AF is already an implicant). Let us
call this assignment AF

e . Note that ¬AF
e is an implicate that

does not contain any previously computed prime implicates.
We now want to show that the corresponding assignment AH

e

is a model for H. In particular we want to prove that AH
e is a

model for L−, Bn and Ce, and so it is a model for H.

1. AH
e is a model for L− because AF

e does not contain
complementary literals.

2. AH
e is a model for Ce because AH already satisfies all

the clauses in Ce and we have not flipped any of its vari-
ables assigned value 1 when we extended it to AH

e .

3. Since AF
e is an implicate, by Lemma 1, all the clauses

in Bn are satisfied.

So we proved that AH
e is a model for H. But since the set of

’1’ contained in AH
e is a superset of those contained in AH ,

this contradicts our hypothesis that AH is a maximal model.
✷

A consequence of Lemma 2 is that if AF satisfies F , then
Algorithm 1 extracts a prime implicant. Otherwise, the algo-
rithm extracts a prime implicate.

Theorem 1 At each step of Algorithm 1, either a prime im-
plicant In ∈ PIn(F) is computed, or a prime implicate
Ie ∈ PIe(F) is computed.

Proof. Lemma 2 already proved that every induced as-
signment AF either satisfies or falsifies F . Note that AF

contains at least one literal from every prime implicate
already computed and differs in at least one literal from every
prime implicant already computed. This means that either a

2The minimal hitting set duality between prime implicants and
implicates is a simple consequence of [Rymon, 1994, Theorem 2.3],
but also from [Reiter, 1987].

1983

new prime implicate or a new prime implicant is extracted by
Algorithm 1. ✷

Theorem 2 Algorithm 1 computes PIn(F) and a prime im-
plicate cover of F .

Proof. By Theorem 1, we know that at each iteration, Algo-
rithm 1 computes a new In ∈ PIn(F) or a new Ie ∈ PIe(F).
We now want to prove that:

1. Algorithm 1 does not terminate before all the prime im-
plicants of F have been computed;

2. Algorithm 1 does not terminate before a prime impli-
cate cover of F has been computed;

3. Algorithm 1 terminates when all the prime implicants
of F and a prime implicate cover of F are computed.

Claims 1 and 2 state that when a prime implicant or a prime
implicate from a cover of F is missing, then H is satisfiable.
Claim 3 guarantees that when we have computed all the
In ∈ PIn(F) and a prime implicate cover of F , then H is
unsatisfiable. We start by proving Claim 1. Suppose now,
without loss of generality, that Algorithm 1 has already
computed a prime implicate cover C of F but is missing a
single prime implicant P1 = p1, . . . , pm. We want to show
that H must be satisfiable, by showing the existence of a
model m = p1, . . . , pm,¬pm+1 . . . ,¬pn that satisfies the
three parts of H (L−, Bn, Ce). Due to the duality between
PIn(F) and PIe(F), the set of literals of P1 is guaranteed to
hit all the prime implicates in the cover C (again, this follows
from [Rymon, 1994]). So all the clauses in Ce are satisfied.
Moreover, since for each literal in the original formula, we
have a corresponding variable on the reformulated formula,
this means that on H, every pair of prime implicants (Pi, Pj)
differs in at least one variable. This means that the set of
unassigned variables UV = var(H) \ {p1, . . . , pm} (all literals
are positive) contains at least one variable for each previously
computed prime implicant. Therefore, we can set these
variables to 0, thus satisfying all the clauses in Bn. We now
want to prove that the set of clauses L− is satisfied. This
means that for each variable v, (xv = 1)∧ (x¬v = 1) does not
hold. This is easy to see, because if xv ∈ {p1, . . . , pm} then
x¬v ∈ UV and we set all the variables in UV to 0.
We are now going to prove that Claim 3 also holds. This
means that when Bn = BA

n and Ce represents a prime
implicate cover of F , then H is unsatisfiable. In order to
prove this, we want to show that every model satisfying
L− ∪ Ce falsifies at least one clause in Bn. Note that
since set Ce encodes a prime implicate cover of F , it
corresponds to F ′, equivalent to F . So, the reformula-
tion encoding for F ′ (without blocked implicants) is the
formula L− ∪ Ce. (Observe that this corresponds to the
standard reformulation encoding [Palopoli et al., 1999;
Jabbour et al., 2014] for prime implicant compilation.) In
fact every minimal model on this formula corresponds to a
prime implicant. It is easy to see that every model corre-
sponds to an implicant. But being Bn the set of blocking
clauses for the set of all prime implicants of F , this means
that every model of L− ∪ Ce, falsifies at least one clause on
Bn.
Finally, the proof of Claim 2 is similar to the one of Claim 1

input : Formula F
output: PIn(F) and prime implicate cover of F

1 H ← {(¬xv ∨ ¬x¬v) | v ∈ var(F)}
2 while true do

3 (st, AH)← MinModel(H)
4 if not st then return

5 AF ← Map(AH)

6 (st,M¬F)← SAT(AF ∪ ¬F)

7 if st then # F �¬M¬F ; i.e. ¬M¬F is an implicate

8 Ie ← ReduceImplicate(M¬F , F)
9 PrintImplicate(Ie)

10 b← {xl | l ∈ Ie}

11 else # AF
�F ; i.e. AF is an implicant

12 In ← AF

13 PrintImplicant(In)
14 b← {¬xl | l ∈ In}
15 H ← H ∪ {b}

Algorithm 2: Alternative prime compilation

Table 2: Example run of Algorithm 2

AH AF ¬M¬F /¬st Bn/Ce

xax¬axbx¬bxcx¬c

000000 AF

1 = ∅ ¬a,¬b,¬c (xa ∨ xb)

001000 AF

2 = b ¬a, b,¬c xc

001010 AF

3 = b, c ¬st (¬xb ∨ ¬xc)

100010 AF

4 = a, c ¬st (¬xa ∨ ¬xc)

and is omitted due to lack of space. ✷

4.2 Alternative Algorithm

This section describes an alternative approach whose main
characteristic is to avoid the reduction of computed impli-
cants. Algorithm 2 summarizes this approach. (Observe that
this algorithm can be related with the original Dualize and
Advance algorithm [Bailey and Stuckey, 2005].) At each
step a partial assignment AF is returned. If AF satisfies the
formula, it is guaranteed to be a prime implicant. Otherwise,
AF is extended to a complete model M¬F on ¬F and then
reduced to a prime implicate. The key idea is to replace the
computation of a maximal model with the one of a mini-
mal model. In this way, AF is guaranteed to hit the set of
prime implicates computed so far using a minimal number of
literals. When we have a prime implicate cover, this obvi-
ously corresponds to a prime implicant [Palopoli et al., 1999;
Jabbour et al., 2014]. Otherwise it represents a subset of a
prime implicant, and as a consequence it does not necessar-
ily imply F . This means that the call SAT(AF ∪ ¬F) could
return a model M¬F on ¬F . As a result, ¬M¬F is an impli-
cate of F , that we can reduce to a prime implicate. If instead
(AF ∪¬F) is unsatisfiable, this means that AF

�F and, since
AF hits the set of prime implicates using a minimal number
of literals, AF has to be a prime implicant.

Example 2 Table 2 summarizes the execution of Algorithm 2
on F = (((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c). The first mini-

1984

mal model leaves AF fully unspecified. The SAT solver picks
an assignment, that falsifies F , from which a prime implicate
is extracted. The second minimal model operates similarly,
and another prime implicate is extracted. The third minimal
model cannot falsify F , and so represents a prime implicant
b∧c. The fourth minimal model also yields a prime implicant.
Afterwards, the formula becomes unsatisfiable.

A final observation is that the two algorithms proposed in
this paper can be adapted for computing PIe(F) and a prime
implicant cover of F , by exploiting duality.

5 Preliminary Results

This section evaluates the two algorithms proposed in this pa-
per. The experiments were performed on an Intel Xeon E5-
2630 2.60GHz, with 64GByte of memory, and running
Ubuntu Linux. The time limit was set to 3600s and the
memory limit to 10GByte. Algorithms 1 and 2 were imple-
mented on top of MiniSAT3 [Eén and Sörensson, 2003] in
a prototype called primer (PRIMe compilER). The versions
of primer corresponding to Algorithm 1 and Algorithm 2 are
referred to as primer-a and primer-b, respectively. Their per-
formance was compared to the state-of-the-art approach to
formula compilation, which is based on the well-known Ti-
son method for prime implicate enumeration but using ZB-
DDs [Simon and del Val, 2001]. In the performed experi-
mental evaluation the corresponding software tool is referred
to as ZRes-tison. Other alternatives [Ramesh et al., 1997;
Matusiewicz et al., 2009] are known not to scale for formula
sizes considered in this section. Note that although ZRes-
tison requires input formulae in CNF, it is able to get rid
of all auxiliary variables (introduced by translation to CNF)
once they are specified explicitly. In the performed evalua-
tion, ZRes-tison was provided with CNF formulae containing
additional information about all such variables. In order to
assess the efficiency of the new algorithms, the following sets
of non-clausal instances were considered.

Quasigroup classification problems. This set of bench-
marks called QG6 was proposed in [Meier and Sorge, 2005]

when encoding classification theorems for quasigroups. Out
of 256 non-clausal formulae we chose 83 that are satisfiable.

Cryptanalysis of the Geffe stream generator. Originally
proposed in [Geffe, 1973], the Geffe stream generator is a
combination of 3 LFSRs (linear feedback shift register). One
of them controls which of the other 2 LFSRs is connected to
the output at each moment of time. For our experimental eval-
uation we constructed 3 Geffe generators of the total input
size (i.e. sum of the length of all LFSRs) 32, 64, and 96 bits,
respectively. The corresponding Boolean formulae were con-
structed with the use of the Transalg system4, which is able to
translate algorithms into Boolean formulae [Otpuschennikov
et al., 2014]. Given the constructed formulae and some fixed
output sequence of the generator, the problem is to find an
input sequence that produces the output. Note that depend-
ing on the output sequence’s length, there can be many input

3Available from https://github.com/niklasso/minisat.
4The source code of the Transalg system is available at

https://www.gitorious.org/transalg.

Table 3: Number of solved instances

QG6 Geffe gen. F+PHP F+GT Total

ZRes-tison 0 0 11 0 11

primer-a (PIn) 53 596 30 26 705

primer-a (PIe) 28 588 30 27 673

primer-b (PIn) 64 595 30 30 719

primer-b (PIe) 30 577 30 27 664

sequences producing the same output. For each input size
considered in the evaluation, 200 different output sequences
were generated (600 instances in total).

Crafted formulae. This set comprises crafted non-clausal
formulae with a manageable number of prime implicants and
implicates, which is a generalization of the construction pro-
posed in [Bordeaux and Marques-Silva, 2012]. Consider two
kinds of formula parameterized by m and n: Fm∨PHPn and
Fm ∨ GTn, where PHPn are well-known pigeon-hole prin-
ciple formulae, and GTn are based on the ordering principle
that any partial order on a finite set must have a maximal el-
ement [Beame et al., 2004]. Formulae Fm are of the form
(x1 ∨ y1) ∧ · · · ∧ (xm ∨ ym) and have 2m prime implicants
and m prime implicates. The experiments consider m rang-
ing from 10 to 20 while n ranges from 6 to 10 for PHPn, and
from 12 to 20 for GTn. In total, 30 instances were constructed
with the PHPn subformulae, and 30 instances with GTn.

Approaches similar to [Coudert and Madre, 1992] were not
tried, since these require building a BDD for a propositional
formula and, with the exception of Fm ∨ PHPn (which are
easy for CUDD5), CUDD is unable to construct a BDD for
any of the remaining formulae within 1 hour. Table 3 shows
the number of solved instances for each of the considered
approaches. Note that given a 1 hour timeout, ZRes-tison
cannot compile any formulae from almost all the considered
benchmark sets with an exception being crafted Fm ∨ PHPn

where it can solve 11 formulae. Thus, a more detailed com-
parison of ZRes-tison and primer-b (both set to compute all
the prime implicates PIe) is shown in Figure 1a. As can be
observed, Table 3 indicates that both primer-a and primer-b
can successfully deal with the considered benchmarks. Ob-
serve that formulae with hundreds of thousands of prime im-
plicants/implicates are not an obstacle for the new algorithms
(e.g. see the results for Fm ∨PHPn and Fm ∨GTn formulae,
where the number of prime implicants varies from 210 to 220).

As for the comparison between primer-a and primer-b and
according to Table 3, one can readily conclude that computing
all prime implicants PIn is generally more efficient for the
Geffe generator and QG6 benchmarks than computing PIe.
This can be explained by |PIn| being significantly smaller
than |PIe| for these benchmarks. However, this is not the
case for Fm ∨PHPn and Fm ∨GTn instances. Finally and as
shown in Figure 1b, primer-b set to compute PIn consistently
outperforms primer-a, thus being in general expected to find
more prime implicants/implicates within a given time limit.

5CUDD BDD-package can be downloaded from
http://vlsi.colorado.edu/ fabio/CUDD/.

1985

10−2 10−1 100 101 102 103 104

primer-b (PIe computation)

10−2

10−1

100

101

102

103

104

Z
R

es
-t

is
o

n

3600 sec. timeout

3
6

0
0

se
c.

ti
m

eo
u

t
(a) primer-b (PIe) vs. ZRes-tison

560 580 600 620 640 660 680 700 720

instances

0

500

1000

1500

2000

2500

3000

3500

C
P

U
ti

m
e

(s
)

primer-b (PIn)

primer-a (PIn)

primer-a (PIe)

primer-b (PIe)

(b) PIn and PIe computation with primer

Figure 1: Performance comparison

6 Conclusions

This paper proposes two novel approaches for prime compi-
lation of non-clausal formulae based on iterative SAT solv-
ing. Both approaches exploit the reformulation approach for
compiling the prime implicants of CNF formulae [Palopoli et
al., 1999; Jabbour et al., 2014], but integrate reformulation
with recent algorithms that exploit dualization [Bailey and
Stuckey, 2005; Davies and Bacchus, 2011; Stern et al., 2012;
Previti and Marques-Silva, 2013; Liffiton et al., 2015], in
our concrete case between prime implicants and prime impli-
cates [Rymon, 1994]. The experimental results indicate that
the new prime compilation approaches are more efficient and
scale better than alternative approaches for different classes
of formulae studied in the paper, namely classification the-
orems for quasigroups, cryptographic benchmark formulae
and specific crafted formulae providing an efficient alterna-
tive for formulae with a large number of variables, but with-
out large numbers of prime implicants and implicates. More-
over, the wide range of applications of prime implicants and
implicates motivates the practical deployment of this work,
allowing also a more comprehensive evaluation of the pro-
posed algorithms.

7 Acknowledgements

This work is partially supported by SFI PI grant BEA-
CON (09/IN.1/ I2618), FCT grant POLARIS (PTDC/EIA-
CCO/123051/2010) and national funds through Fundação
para a Ciência e a Tecnologia (FCT) with reference
UID/CEC/50021/2013.

References
[Bailey and Stuckey, 2005] James Bailey and Peter J.

Stuckey. Discovery of minimal unsatisfiable subsets of

constraints using hitting set dualization. In PADL, pages
174–186, 2005.

[Beame et al., 2004] Paul Beame, Henry A. Kautz, and
Ashish Sabharwal. Towards understanding and harnessing
the potential of clause learning. JAIR, 22:319–351, 2004.

[Bienvenu, 2009] Meghyn Bienvenu. Prime implicates and
prime implicants: From propositional to modal logic.
JAIR, 36:71–128, 2009.

[Biere et al., 2009] Armin Biere, Marijn Heule, Hans van
Maaren, and Toby Walsh, editors. Handbook of Satisfi-
ability, 2009.

[Blake, 1937] Archie Blake. Canonical expressions in
Boolean algebra. PhD thesis, Univ. Chicago, 1937.

[Bordeaux and Marques-Silva, 2012] Lucas Bordeaux and
João Marques-Silva. Knowledge compilation with em-
powerment. In SOFSEM, pages 612–624, 2012.

[Bradley and Manna, 2007] Aaron R. Bradley and Zohar
Manna. Checking safety by inductive generalization of
counterexamples to induction. In FMCAD, pages 173–
180, 2007.

[Brauer et al., 2011] Jörg Brauer, Andy King, and Jael
Kriener. Existential quantification as incremental SAT. In
CAV, pages 191–207, 2011.

[Bryant et al., 1987] Randal E. Bryant, Derek L. Beatty,
Karl S. Brace, K. Cho, and Thomas J. Sheffler. COSMOS:
A compiled simulator for MOS circuits. In DAC, pages
9–16, 1987.

[Cadoli and Donini, 1997] Marco Cadoli and Francesco M.
Donini. A survey on knowledge compilation. AI Com-
mun., 10(3-4):137–150, 1997.

[Castell, 1996] Thierry Castell. Computation of prime im-
plicates and prime implicants by a variant of the Davis and
Putnam procedure. In ICTAI, pages 428–429, 1996.

1986

[Coudert and Madre, 1992] Olivier Coudert and
Jean Christophe Madre. Implicit and incremental
computation of primes and essential primes of boolean
functions. In DAC, pages 36–39, 1992.

[Czarnecki and Wasowski, 2007] Krzysztof Czarnecki and
Andrzej Wasowski. Feature diagrams and logics: There
and back again. In SPLC, pages 23–34, 2007.

[Darwiche and Marquis, 2002] Adnan Darwiche and Pierre
Marquis. A knowledge compilation map. JAIR, 17:229–
264, 2002.

[Davies and Bacchus, 2011] Jessica Davies and Fahiem Bac-
chus. Solving MAXSAT by solving a sequence of simpler
SAT instances. In CP, pages 225–239, 2011.

[de Kleer, 1992] Johan de Kleer. An improved incremental
algorithm for generating prime implicates. In AAAI, pages
780–785, 1992.

[Eén and Sörensson, 2003] Niklas Eén and Niklas
Sörensson. An extensible SAT-solver. In SAT, pages
502–518, 2003.

[Geffe, 1973] P. Geffe. How to protect data with ciphers that
are really hard to break. Electronics, pages 99–101, Jan. 4
1973.

[Jabbour et al., 2014] S. Jabbour, J. Marques Silva, L. Sais,
and Y. Salhi. Enumerating prime implicants of proposi-
tional formulae in conjunctive normal form. In JELIA,
2014.

[Jackson, 1992] Peter Jackson. Computing prime implicates
incrementally. In CADE, pages 253–267, 1992.

[Junker, 2004] Ulrich Junker. QuickXplain: Preferred expla-
nations and relaxations for over-constrained problems. In
AAAI, pages 167–172, 2004.

[Kean and Tsiknis, 1990] Alex Kean and George K. Tsik-
nis. An incremental method for generating prime impli-
cants/impicates. J. Symb. Comput., 9(2):185–206, 1990.

[Liffiton et al., 2015] Mark H Liffiton, Alessandro Previti,
Ammar Malik, and Joao Marques-Silva. Fast, flexible mus
enumeration. Constraints, pages 1–28, 2015.

[Marquis, 1995] Pierre Marquis. Knowledge compilation us-
ing theory prime implicates. In IJCAI, pages 837–845,
1995.

[Marquis, 2000] Pierre Marquis. Consequence finding algo-
rithms. In Handbook of Defeasible Reasoning and Uncer-
tainty Management Systems, pages 41–145. 2000.

[Matusiewicz et al., 2009] Andrew Matusiewicz, Neil V.
Murray, and Erik Rosenthal. Prime implicate tries. In
Tableaux, pages 250–264, 2009.

[McCluskey, 1956] Edward J McCluskey. Minimization of
boolean functions. Bell Sys. Tech. J., 35(6):1417–1444,
1956.

[Meier and Sorge, 2005] Andreas Meier and Volker Sorge.
A new set of algebraic benchmark problems for SAT
solvers. In SAT, pages 459–466, 2005.

[Ngair, 1993] Teow-Hin Ngair. A new algorithm for incre-
mental prime implicate generation. In IJCAI, pages 46–51,
1993.

[Otpuschennikov et al., 2014] Ilya Otpuschennikov, Alexan-
der Semenov, and Stepan Kochemazov. Transalg: a tool
for translating procedural descriptions of discrete func-
tions to SAT (tool paper). CoRR, abs/1405.1544, 2014.

[Palopoli et al., 1999] Luigi Palopoli, Fiora Pirri, and Clara
Pizzuti. Algorithms for selective enumeration of prime im-
plicants. Artif. Intell., 111(1-2):41–72, 1999.

[Previti and Marques-Silva, 2013] Alessandro Previti and
Joao Marques-Silva. Partial MUS enumeration. In AAAI,
2013.

[Quine, 1952] Willard Quine. The problem of simplify-
ing truth functions. Amer. Math. Month., 59(8):521–531,
1952.

[Quine, 1959] Willard Quine. On cores and prime implicants
of truth functions. Amer. Math. Month., 66(9):755–760,
1959.

[Ramesh et al., 1997] Anavai Ramesh, George Becker, and
Neil V. Murray. CNF and DNF considered harmful for
computing prime implicants/implicates. J. Autom. Rea-
soning, 18(3):337–356, 1997.

[Reiter, 1987] Raymond Reiter. A theory of diagnosis from
first principles. Artif. Intell., 32(1):57–95, 1987.

[Roorda and Claessen, 2005] Jan-Willem Roorda and Koen
Claessen. A new sat-based algorithm for symbolic tra-
jectory evaluation. In CHARME’05, pages 238–253.
Springer, 2005.

[Rymon, 1994] Ron Rymon. An SE-tree-based prime impli-
cant generation algorithm. Ann. Math. Artif. Intell., 11(1-
4):351–366, 1994.

[Schlobach et al., 2007] Stefan Schlobach, Zhisheng Huang,
Ronald Cornet, and Frank van Harmelen. Debugging inco-
herent terminologies. J. Autom. Reason., 39(3):317–349,
2007.

[Schrag, 1996] Robert Schrag. Compilation for critically
constrained knowledge bases. In AAAI, pages 510–515,
1996.

[Shannon, 1949] Claude Shannon. The synthesis of two-
terminal switching circuits. Bell Sys. Tech. J., 28(1):59–98,
1949.

[Simon and del Val, 2001] Laurent Simon and Alvaro del
Val. Efficient consequence finding. In IJCAI, pages 359–
370, 2001.

[Slagle et al., 1970] James R Slagle, Chin-Liang Chang, and
Richard CT Lee. A new algorithm for generating prime
implicants. IEEE Trans. Computers, 100(4):304–310,
1970.

[Stern et al., 2012] Roni Tzvi Stern, Meir Kalech, Alexander
Feldman, and Gregory M. Provan. Exploring the duality in
conflict-directed model-based diagnosis. In AAAI, 2012.

[Stuckey, 2013] Peter J. Stuckey. There are no CNF prob-
lems. In SAT, pages 19–21, 2013.

[Tison, 1967] Pierre Tison. Generalization of consensus the-
ory and application to the minimization of boolean func-
tions. IEEE Trans. Elect. Computers, (4):446–456, 1967.

[To et al., 2011] Son Thanh To, Tran Cao Son, and Enrico
Pontelli. Conjunctive representations in contingent plan-
ning: Prime implicates versus minimal CNF formula. In
AAAI, 2011.

1987

