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PRIME IDEALS IN DIFFERENTIAL OPERATOR RINGS. CATENARITY

K. A. BROWN, K. R. GOODEARL AND T. H. LENAGAN

Abstract. Let R be a commutative algebra over the commutative ring k ,
and let A = {Sx,...,Sn} be a finite set of commuting £-linear derivations
from R to R . Let T = R[0x,...,6n;ôx,...,ôn] be the corresponding ring of
differential operators. We define and study an isomorphism of left ^-modules
between T and its associated graded ring R[xx,... ,xn],a polynomial ring over
R . This isomorphism is used to study the prime ideals of T, with emphasis
on the question of catenarity. We prove that T is catenary when R is a
commutative noetherian universally catenary k-algebra and one of the following
cases occurs: (A) k is a field of characteristic zero and A acts locally finitely;
(B) k is a field of positive characteristic; (C) k is the ring of integers, R is
affine over k , and A acts locally finitely.

Introduction

Let the ring R be an algebra over the commutative ring k, and let A =
{Sx, ... ,ôn} hea finite set of commuting Ä>linear derivations from R to itself.
Let

T = R[dx,...,9n;ôx,...,ôn]
be the corresponding ring of formal differential operators. (Thus the elements
of T may be written uniquely as left A-linear combinations of the ordered
monomials in 6X, ... ,6n. Multiplication in T is defined by extending the
multiplication from R according to the rules [0;, r] = Sfr), for r e R and
/ = 1, ... ,n, and [9i,6ß = 0, for i,j = I, ... ,n A)

Our purpose here is to study the prime ideal structure of rings of this type,
and, in particular, to investigate catenarity. (Recall that a ring U is catenary
if for any two prime ideals P ç Q in U, all saturated chains of prime ideals
between P and Q have the same length. The ring U is universally catenary
provided that all finite polynomial extensions U[xx, ... ,xn] are catenary. All
of the so-called excellent commutative noetherian rings are universally catenary
[13, (34.A)]; in particular, commutative algebras affine over a field or over Z
are universally catenary [13, Corollary 3, (14.H) and Theorem 33, (16.D)].) An
example constructed by Bell and Sigurdsson [2] shows that T need not be cate-
nary even when n = 1 and R is an affine Q-algebra. However, in this example

Received by the editors February 18, 1988 and, in revised form, June 16, 1988.
1980 Mathematics Subject Classification (1985 Revision). Primary 16A05, 16A66.
Key words and phrases. Differential operator ring, prime ideal, catenarity, height, derivation.

©1990 American Mathematical Society
0002-9947/90 $1.00+ $.25 per page

749
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



750 K. A. BROWN, K. R. GOODEARL AND T. H. LENAGAN

R contains an element r such that the smallest A-invariant Q-subspace of R
containing r has infinite dimension, and if such elements are forbidden, then
positive results can be obtained. Indeed, Bell and Sigurdsson prove that if k
is a field of characteristic zero, R is a commutative noetherian A;-algebra, Ô
acts locally finitely on R, and the polynomial ring R[x] is catenary, then T is
catenary [2].

We prove that T is (universally) catenary in each of the following cases:
(A) k is a field of characteristic zero, R is a universally catenary commuta-

tive noetherian k-algebra, and A acts locally finitely on R (Corollary 3.4);
(B) k is a field of positive characteristic, and R is a universally catenary

commutative noetherian fc-algebra (Corollary 4.7);
(C) k = 1, the ring R is an affine commutative fc-algebra, and A acts locally

finitely on R (Theorem 5.2).
In the affine case of case (B), and in case (C), we also prove that in each prime

factor ring T/P, all maximal ideals have the same height (Theorems 4.8 and
5.2). Finally, we show that, at least in characteristic zero, the obstructions to
catenarity in 7* reside in the set of A-prime ideals of R, in the following sense:
if R is a commutative noetherian Q-algebra and P ç Q are prime ideals of
T with P C\R = QC\R, then all saturated chains of prime ideals between P
and Q have the same length (Corollary 6.2). In particular, if R is a field of
characteristic zero then T is universally catenary (Theorem 6.1).

We proceed by defining an isomorphism <P of left i?-modules between T
and its associated graded ring S = R[xx, ... ,xn], a polynomial ring over R.
This technique is particularly useful when R is commutative. For in this case
S is commutative, and we show that there is a collection V of fc-linear en-
domorphisms of 5, containing A, such that <P defines a lattice isomorphism
between the lattice of ideals of T and the lattice of V'-invariants ideals of S
(Proposition 1.3).

To exploit this correspondence to study the prime ideals of 7*, one needs to
study the ideals ®(P) where P is a prime ideal of T ; these are the V-prime
ideals of S (Theorem 1.7). The nature of the V-prime ideals depends on the
characteristic. Thus, if T/P has characteristic zero, then <S>(P) is a prime ideal
of S (Theorem 2.3); but // T/P has positive characteristic, then <P(P) need
not be prime (Examples 4.2 and 4.3).

The method of proof of the catenarity results thus also depends on the char-
acteristic. In case (A), we prove that there are "many" V-invariant prime ideals
of S (Lemma 3.2), so that 5 is catenary with respect to this set of prime ideals,
whence the result follows. In case (B) we work instead with prime ideals of S
minimal over V-prime ideals, showing that there are "many" of these prime
ideals (Proposition 4.5); again, enough so that S is catenary with respect to
this set of prime ideals. In the special case of case (B) where R is an affine
fc-algebra, T is an affine Pi-algebra (Theorem 4.1), and the catenarity of such
rings was proved by Schelter [15]. It is not hard to splice these cases together
to handle case (C).
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PRIME IDEALS IN DIFFERENTIAL OPERATOR RINGS 751

The catenarity of T in case (A) when R is affine over k admits an alter-
native proof. First, one reduces to the case where K is algebraically closed
(see [18]). In this case T is a homomorphic image of an enveloping algebra
U(g) of a solvable Lie algebra g of finite dimension over k . The catenarity
of U(g) was proved by Gabber [6; 11, Corollary 9.8], and the catenarity of T
follows. We believe, however, that the proof presented here is of independent
interest, being much more elementary than the proof just outlined and being an
interesting application of the map O.

The definition and basic general properties of <P are given in § 1. The proof
that <P(/>) is prime when T/P has characteristic zero is developed in §2. The
applications to catenarity in cases (A), (B), and (C) are given in §§3, 4, and 5
respectively. In §6 we conclude with the partial catenarity results for pairs of
prime ideals of T with the same contraction to R.

This research was partially supported by a grant from the U.S. National Sci-
ence Foundation, and was carried out while the authors visited the University
of Washington in the summer of 1987. They thank these institutions for their
support and hospitality.

1. A CORRESPONDENCE BETWEEN DIFFERENTIAL OPERATOR IDEALS
AND POLYNOMIAL IDEALS

Let R be an algebra over a commutative ring k and let A = {ôx, ... ,Sn}
be a finite set of commuting k-linear derivations on R. The elements of the
formal differential operator ring

T = R[dx, ... ,dn;Sx, ... ,Sn] = R[Q;A]

may be written uniquely as left Ä-linear combinations of the monomials in
the 6 's. There is then an obvious left Ä-module isomorphism from T to the
ordinary polynomial ring

S = R[xx,...,xn] = R[X].

We intend to exploit this isomorphism in order to answer questions about the
ideal structure of T. The first problem is to identify the subsets of S that
correspond to ideals of 7*.

In order to simplify the presentation of the calculations we will employ the
following notation throughout this section.

Notation Nl(a).
R is an algebra over a commutative ring k .
Sx, ... ,Sn are commuting k -linear derivations on R.
A = {ôx,...,ôn}.
T = R[dx, ... ,6n;ôx, ... ,ôn] = R[e;A].
xx, ... ,xn are independent commuting indeterminates.
S = R[xx,...,xn] = R[X].
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We extend each ôi to derivations on T and S by setting ôfd) = 0 and
SfXj) = 0 for all i,j. (Then oft) = [6¡,t] for all t e TA) The following
multi-index notations are used: for I = (i(l), ... , i(n)) in (Z+)" we set

aI       /}'(')z,<(2)        /,/(«). / i'(l) „i'(2) /(it),       r'       tÜlltP) ci'CO
V   =VX    &2      ■t/n    ,    X   =XX    X2    ■■■Xn    ,    d   =dx    d2      ■dn    .

In this notation, T is a free left .R-module with basis {81} and S is a free
left A-module with basis {x } . Hence, there is a left .R-module isomorphism
0 = 0^:7^5 such that <P(07) = x' for all I. (We omit the subscripts
Ä,A as long as T is the only differential operator ring under discussion.)

Lemma 1.1. (i) <¡>(rt) = r<$(t) for all r e R and teT.
(ii) <P(i07) = ^(t)x1 for all teT and each multi-index I.
(iii) Q([dj, t]) = QSft) = Sp{t) for all i=l,...,n and teT.

Proof, (i) and (ii) are clear from the definition of O.
(iii) Since O is k-linear we need only check the result for t = rd where

r e R and I is some multi-index. Then

W,-. t]) = <W(.(0 = O(¿;(r)07) = ôfr)x' = ôfrx1) = <J.«D(í).   G

Part (iii) of Lemma 1.1 shows that bracketing by 6j on T corresponds to
the action of S¡ on 5. We next give a formal definition of the operator on S
that corresponds to the bracket [r,-] on T (for r e R) and then list some
properties. Except in computations with examples, an explicit description of
this operator is not needed, and so we concentrate on its formal properties.

Notation Nl(b). For r e R, define a A:-linear map dr: S —» S by the rule

dr(s) = 4>([r,<t>-\s)]).
Therefore, <P([r,r]) = dr&(t) for all r e R and teT. We give the following
lemma to illustrate some properties of dr, although the formal definition of dr
will suffice for our calculations.

Lemma 1.2. (i) dff) = [r, f] for all r,r eR.
(ii) dr(Xj) = -Sfr) for all r e R and i = 1, ... ,n.
(iii) dfr's) = [r, r']s + r dfs) for all r ,f e R and s eS.

Proof, (i) dfr') = dr<S>(f) = <P([r, /]) = [r, r'].
(ii)   dfxt) = dr<S>(et) = <P([r,cL]) = <b(-ôi(r)) = -Sfr).

(iii) Write 5 = <P(f), for some teT. Then r's = O(r'i) and

dfr's) = dr®(r't) = <D([r, r't]) = <D([r, r']t + r'[r, t])
= [r, r']«D(0 + r'<i>([r, t]) = [r, r']s + r dfs).   D

Notation Nl(c).
V = AU {dfr eR}.

Thus V is a set of A:-linear endomorphisms of S.
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Proposition 1.3. The map <P: T —► S induces a lattice isomorphism between the
lattice of ideals of T and the lattice of V-invariant left ideals of S.
Proof. Let A be an ideal of T. Then ®(A) is a left .R-submodule of S. Also,
if a e A then by Lemma 1.1 (ii), xfb(a) = <^(a)xi = <P(af9;) e <S>(A). Hence,
<DL4) is a left ideal of S. Next, if a e A then Sp(a) = $([0,,a]) e Q(A) by
Lemma 1.1 (iii), and, if r e R then dr<b(a) = <S>([r,a\) e ®(A). Thus <S>(A) is
a V-invariant left ideal of S.

Conversely, let B be a V-invariant left ideal of S. It is immediate that
0>~l(B) is closed under addition, left multiplication by elements of R, and
right multiplication by each 0.. If r e R and b eB, then

9~\b)r = r®~l(b) - [r,Q~\b)] = Q>~l(rb) - O"1 dfb) e <P~'(5).

In addition, by Lemma 1.1,

6i<t>~\b) = [0i,Q~\b)] + <l>~l(b)ei = Si<i>~\b) + <t>~l(bxi)

= <b~i(Si(b) + bxi)e<t>~1(B)

for i = I, ... ,n . Therefore <P_I(2?) is an ideal of 7.   D

When considering specific examples, the following lemma lessens the work
involved in checking whether a left ideal of S is invariant under V.

Lemma 1.4. Let B be a left ideal of S, and let G generate R as a k-algebra.
If dg(B) CB for all geG, then dr(B) ç B for all r e R.
Proof. Observe that <P_1(¿?) is a left .R-submodule of T. Since B is closed
under d for all g e G, it follows that <P~ (B) is closed under bracketing
with elements of G, whence <P~ (B) is closed under right multiplication by
elements of G. Since G generates R as a Ac-algebra, $>~l(B) must be a right
Ä-submodule of T. Thus <P~ (B) is closed under bracketing with elements of
R, and therefore B is closed under dr for all r e R.   D

For the rest of the section, we concentrate on the case where R is a commu-
tative ring. In this case S is a commutative ring and so Proposition 1.3 gives a
lattice isomorphism between the ideals of T and the V-invariant ideals of S.
We abbreviate the latter to V-ideals.

Given any set D of maps from a ring A to itself, the 7J>-invariant ideals of
A are called D-ideals. A D-prime ideal of A is any proper D-ideal P such
that whenever I ,J are 7J)-ideals of A satisfying IJ ç P then either I ç P or
J C P. (It is enough to check this for D-ideals 7, J that contain P A) Finally,
A is called a D-prime ring if 0 is a D-prime ideal of A .

We use this terminology in several different cases, with either D = V or
D = A.

The main aim of the rest of the section is to show that when R is commu-
tative the map <P induces a bijection between the prime ideals of 7* and the
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V-prime ideals of S. In the following section we are able to show, after de-
veloping some further machinery, that in case R is a commutative noetherian
Q-algebra the V-prime ideals of S are in fact prime ideals.

If 0   is any monomial in T and / = (i(l), ... , /(«)) then the total degree
of 0   is the nonnegative integer \I\ = i(l) -\-\- i(n). The total degree of an
element / = J2a¡9 in T, denoted deg(i), is the maximal total degree of the
monomials with nonzero coefficients a,. The same definition applies for the
total degree of elements of S. In both cases, we observe the convention that
deg(O) = -cc. Note that <P preserves total degree.

Lemma 1.5. Let R be commutative and r eR.
(i) deg([r, t]) < deg(t), for all nonzero teT.
(ii) deg^^s)) < deg(s), for all nonzero s e S.

Proof, (i) It is enough to check that deg([r,aO ]) < \I\, for any nonzero a e R
and any multi-index I. If 7 = 0 the result holds since R is commutative. If
7^0 choose an index j with i(j) ^ 0, and let J be the multi-index that is
the same as I except in the jth position, where the entry is reduced by one.
Then

[r, ad1] = a[r, QfiJ] = adfr, 6J] + a[r, 0j]0y .
The result now follows by induction on total degree since |/| < |7| and [r, 0 ] =
-ôfr)eR.

(ii) follows from (i) and the definition of dr, since the map O preserves
total degree.   D

Proposition 1.6. Let R be commutative, let A be an ideal of T, and set B =
<t>(A). Set

Cx = {c e T | [c, R] ç A} ,    C2 = {c e S | dfc) eB, for all r e R} .

(i) Cx/A is a subalgebra of T/A and C2/B is a subalgebra of S/B .
(ii) <P(C,) = C2.

(iii) <P(cf ) - <P(c)<P(i) eB.for all ceCx and teT.
(iv) «P induces a k-algebra isomorphism from Cx/A onto C2/B.

Proof, (i) Clearly, Cx/A is the centralizer in T/A of (R + A)/A, and so is a
subalgebra of T/A . That C2/B is a subalgebra of S/B will be clear once (ii)
and (iii) are proved.

(ii) If c e T and r eR then dr$>(c) = <P([r,c]) ; hence, dr<S>(c) e B if and
only if [r,c]eA. That is, <P(c) € C2 if and only if ceCx.

(iii) Let c eCx and teT, and write c = "f^cfl' and / = Y^h^ > wnere
Cj,tj e R and all but finitely many c¡, tj are zero. Working modulo A we see
that ctj = tjC for all J (because c eCx) and so

01 = ̂ 6'= J2hc0J = Y,hc/+J-
j j i,j
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Hence, working modulo B = Q>(A),

a>(ct)^^lj2h^'+J

(iv) is clear from (ii) and (iii).   G

Theorem 1.7. Let R be a commutative k-algebra, let A be an ideal of T, and
set B = O(A). Set

C, ={ceT\[c,R]CA},   C2 = {c e S\ dfc) e B, for all r e R}.
Then the following conditions are equivalent:

(i) A is a prime ideal of T.
(ii) Cx /A is a A-prime ring.

(iii) C2/B is a A-prime ring.
(iv) B is a V-prime ideal of S.

Proof. Let c eCx and r eR. Then

[ôfc),r] = [[0,.,c],r] = -[[c,r],0,] - [l>,0,],c]e[A,0,] + [R,c]QA.

Thus Cx is invariant under A. Since <P(C,) = C2 by Proposition 1.6(ii), and
since <P preserves the action of A by Lemma 1.1 (iii), it follows that C2 is
invariant under A. As A and B are invariant under A, the rings Cx /A and
C2/B inherit actions of A.

(ii) o (iii): By Proposition 1.6(iv), <P induces a ring isomorphism of Cx/A
onto C2/B, and <P preserves the action of A. Thus Cx/A is a A-prime ring
if and only if C2/B is a A-prime ring.

(i)=»(ii): Let E,F be A-ideals of Cx that properly contain A. Now
[E,R] ç A ç E and so RE = ER. Also, [0,,7i] ç E for i = I, ... ,n,
so that d¡E + E = Ed^E, and therefore TE = ET. Similarly, TF = FT.
Hence, TE and FT are ideals of T that properly contain A . Since A is a
prime ideal, TE FT <£ A , and so EF <£A.

(ii) =*• (i): Let E, F be ideals of 7" properly containing A . Set 77 - E n C,
and j£ = FnCp and note that 77 and K are A-ideals of C, . Choose
an element t e E - A with deg(/) as small as possible. By Lemma 1.5(i),
deg([r,i]) < deg(r) for all r e R; hence, [t,R] ç A. Thus t e H and 77
properly contains A. Similarly, K properly contains A ; hence, HK ^ A,
since A is a A-prime ideal of Cx . Therefore EF <t A .

(iii) =>• (iv) is similar to (ii)=>(i), using Lemma 1.5(ii) in place of Lemma
1.5(i).

(iv) => (iii): Let E be a A-ideal of C2 containing B. Set H = <P "(£*),
so that 77 is a A-ideal of C, containing A . As in the proof of (i) => (ii), it
follows that 777* = 7*77 is an ideal of T. Thus, by Proposition 1.3, <P(777*) is
a V-ideal of S. Now, since H CCX and B ç E, Proposition 1.6(iii) implies
that <D(777*) = ES. Hence, ES is a V-ideal of S.

= £ tjCjX
1+J = <P(c)<P(i).

I ,J
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Suppose that E, F are A-ideals of C2 properly containing B. Then, by
the preceding paragraph, ES and F S are V-ideals of S, and they properly
contain B. Thus, since B is a V-prime ideal of S, we obtain ES F S <t B
and so EF <£ B . Therefore C2/B is a A-prime ring.   G

In the next section we will show that when R is a commutative noetherian
Q-algebra the V-prime ideals of S are prime; hence, for any prime ideal P of
T the image 0(P) is a prime ideal of S.

Corollary 1.8. Let R be a commutative ring equipped with commuting deriva-
tions Sx, ... ,Sn, set T = R[6X, ... ,6n ;SX, ... ,Sn] and S = R[xx, ... ,xn],
and define A, V as in Notation Nl. Then the map 0R A induces a bijection be-
tween the set of prime ideals of T and the set of V-prime ideals of S ; moreover
0R A and its inverse both preserve inclusions.

Proof. Proposition 1.3 and Theorem 1.7.   G

If R is commutative and A is a prime ideal of T, then by Theroem 1.7
S/0(A) isa V-prime ring—the product of any two nonzero V-ideals of S/ 0(A)
is nonzero. Since it is not clear whether the annihilator of a V-ideal is itself a
V-ideal, it does not immediately follow that nonzero V-ideals in S/0(A) have
zero annihilator. However, this is true, as we now show.

Proposition 1.9. Let R be commutative and let B be a V-prime ideal of S.
Then any nonzero V-ideal of S/B has zero annihilator in S/B.

Proof. Set A = <P~ ' (B), which by Theorem 1.7 is a prime ideal of T. Let F be
a V-ideal of 5 properly containing B ; we must show that anns/B(F/B) = 0.

Now E = 0~X(F) is an ideal of T properly containing A. Let d be the
minimal degree for elements of E-A , and let C be the set of those elements of
E having degree d. If c e C and r e R, then [c,r] e E and deg([c,r]) < d
by Lemma 1.5(i), whence [c,r] e A. Thus [C,R] ç A. Moreover, [0,,-],
for i = I, ... ,n , cannot raise degree, from which we see that [di,C]czC\JA .
It follows that TC + A is an ideal of T. Since A is a prime ideal, the right
annihilator of C in T/A is thus zero.

If s e S and Fs ç B, then 0(C)s ç B. Since [C,R]Q A, Proposition
1.6(iii) shows that C0~\s) ç A , whence 0~l(s) e A and s e B . Therefore
anns/B(F/B) = 0, as desired,   a

Corollary 1.10. Let R be commutative noetherian. If Q is a prime ideal of T
and 77 is a prime ideal of S that is minimal over 0(Q), then 0(Q) is the
largest V-ideal of S that is contained in 77.
Proof. By Theorem 1.7, 0(Q) is a V-prime ideal of S. Since H/0(Q) is a
minimal prime ideal in the commutative noetherian ring S/0(Q), its annihila-
tor must be nonzero. Thus, by Proposition 1.9, H/0(Q) contains no nonzero
V-ideals of S/0(Q).   a
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2.   V-PRIME IDEALS IN CHARACTERISTIC ZERO

Our aim in this section is to complete the characterization of the V-prime
ideals appearing in the ^-correspondence (Theorem 1.7 and Corollary 1.8), in
the case that the coefficient ring R is a commutative noetherian Q-algebra. In
this case we show that the V-prime ideals in the polynomial ring S are precisely
the prime V-ideals of 5.

Throughout the section we continue to fix Notation Nl as in the previous
section. The first tool we develop is an analog of Proposition 1.6.

Proposition 2.1. Let R be commutative, let A be an ideal of T, and set B =
0(A). Set

Cx = {c e T | ôfc) eA,fori=l,...,n},
C2 = {c e S | ¿¡(c) eB,fori=l,...,n}.

(i) Cx/A is a subalgebra of T/A and C2/B is a subalgebra of S/B.
(ii) <P(C,) = C2.

(iii) 0(tc) - 0(t)0(c) eB, for all teT and ceCx.
(iv) 0 induces a k-algebra isomorphism from Cx/A onto C2/B.

Proof, (i) and (ii) are clear, and (iv) will follow from (ii) and (iii).
(iii) Let t e 7* and c e C, and write t = J^tjO1 and c = J2cj6J > where

tj,Cj e R and all but finitely many t¡,Cj are zero. Working modulo A, we
see that 8¡c = cdi for i = I, ... ,n (because c eCx) and so d'c = cd for all
7, whence

tc=£'/<* =£*,<*'=Ev-y
Hence, working modulo B = 0(A),

0(tc) = E tjCjX+J = 0(t)0(c).     G

In order to utilize Proposition 2.1 effectively, we need to be able to find
suitable elements c e S such that ôfc) e B for all i. Unlike our use of
Proposition 1.6 (in the proof of Theorem 1.7), it is not enough to look for
elements in S - B of minimal total degree, since the o¡ do not usually lower
total degree. Instead, we introduce a finer notion of degree, with respect to which
leading coefficients can be defined, and we shall be able to use Proposition 2.1
by finding elements in S - B whose new degree is minimal and which have
leading coefficient 1 ; then applying the <5( does lower the degree.

We now fix the following Dixmier ordering on our multi-indices in (Z+)".
Given any multi-indices I and /, we set I < J in the Dixmier ordering if
and only if either |7| < |7| or else |7| = |/| and I is lexicographically less
than J (that is, 7^7 and if m is the smallest index for which i(m) ^ j(m),
then i(m) < j(m)). Observe that (2+)n equipped with the Dixmier ordering is
well-ordered (in fact, it is order-isomorphic to I+). Hence, with respect to this

p+j
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ordering on the multi-indices, we may define degrees and leading coefficients for
polynomials in S and operators in T in the usual fashion.

Lemma 2.2. Let R0 be a noetherian ring, AQ a set of derivations acting on R0,
and P0 a A0-prime ideal of R0.

(i)  There is exactly one prime ideal in R0 minimal over P0.
(ii) If char(R0/P0) = 0, then P0 is a prime ideal.

Proof. Apply [5, Lemma 2 and Corollary] to the An-prime ring R0/P0 ■ (The
lemma in fact holds if R0 is only assumed to be right noetherian. For a proof
in the case where A0 consists of a single derivation, see [9, Lemma 2.1 and
Theorem 2.2] or [7, Proposition 1.5].)   a

Theorem 2.3. Let R be commutative noetherian. If P is a prime ideal of T
such that char(T/P) = 0, then 0(P) is a prime ideal of S.
Proof. Note that PnR is a A-prime ideal of R. There is a natural commutative
diagram as follows:

T/(Pf)R)T

•1
(R/(PnR))[Q;A]

where <P* is the map induced by 0R A. It is enough to show that the ideal
0*(P/(P n R)T) is a prime ideal of S/(P n R)S, and hence it is enough to
show that the map 0R/,PnR) A carries the image of P/(P n R)T to a prime
ideal of (R/(P n R))[X]. Thus, without loss of generality, P n R = 0.

Now R is a A-prime ring of characteristic zero and so R is a domain
(Lemma 2.2). Let K be the quotient field of R, and extend the action of
A to K via the quotient rule. The set R - {0} is an Ore set in T and in S,
and we may denote the corresponding localizations by KT and KS. By [3,
Satz 2.10], KP is a prime ideal of AT and KP n T = P; in particular, it
follows that T/P is torsionfree as a left Ä-module, and hence S/0RA(P) is
torsionfree as a left 7<-module. Consequently, K0RA(P) n S = 0RA(P), and
so it suffices to show that K0R A(P) is a prime ideal of KS.

If we identify KT with K[B;A] and KS with K [X], we find that K0RA(P)
= 0K A(KP), and so it is enough to show that the latter is a prime ideal of
K[X]. Thus we may, without loss of generality, assume that R is a field.

Since R is now in particular a commutative noetherian Q-algebra, [16,
Corollary 2.6] shows that every prime ideal of T is completely prime. Thus
T/P is a domain.

Set B = 0(P). In view of Lemma 2.2, it is enough to show that B is a
A-prime ideal of S. Hence, let E, F be any two A-ideals of S not contained
in B ; we need to show that E F <£ B .

■^^       S/(Pr\R)S

I«
OB/(fn"'-Ai (R/(Pr\R))[X]
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Let 7 be the minimal degree (with respect to the Dixmier ordering) for
elements of F - B, and choose f e F - B with degree 7. Since R is a field,
we may multiply / by the inverse of its leading coefficient; hence, there is no
loss of generality in assuming that the leading coefficient of / is 1. Now for
i = I, ... ,n we observe that off) has degree less than 7. As F is a A-ideal,
ôff) e F, and so ôff) e B by the minimality of 7.

If c = 0~\f), then ceT-P and ôfc) eP for i = 1,...,« . Choose an
element t in 0~l(E) - P. Since T/P is a domain, tc <£ P. Consequently,
by Proposition 2.1 (iii), 0(t)f ^ B, and therefore EF <£ B, as desired,   a

Corollary 2.4. Assume that R is a commutative noetherian ty-algebra.
(a) The V-prime ideals of S are precisely the prime V-ideals.
(b) 7/7 is a V-ideal of S and P is a prime ideal minimal over I, then P

is a V-ideal.
Proof, (a) Obviously any prime V-ideal of S is a V-prime ideal. Conversely,
if B is a V-prime ideal of S then 0~ (B) is a prime ideal of T by Theorem
1.7, and therefore B is a prime ideal of S by Theorem 2.3.

(b) Let Q be the largest V-ideal contained in P ; then I ç Q ç P. If
E, F are V-ideals such that EF C Q then EF C P, and so either E ç P
or F ç P. Thus either E or F is a V-ideal contained in P, whence either
E ç Q or F c Q. This shows that Q is a V-prime ideal, and hence Q is a
prime ideal, by (a). But P is minimal over 7, and so Q = P. Therefore P is
a V-ideal.   a

Combining Corollary 2.4 with Corollary 1.8 yields the best case of the 0-
correspondence, as follows.

Theorem 2.5. Let R be a commutative noetherian ty-algebra equipped with com-
muting derivations ôx, ... ,ôn, set T = R[6X, ... ,0n;ôx, ... ,ôn] and S =
R[xx, ... ,xn], and define A, V as in Notation Nl. Then the map 0R A in-
duces a bijection between the set of prime ideals of T and the set of prime
V-ideals of S ; moreover 0R A and its inverse both preserve inclusions.   G

3. Catenarity in characteristic zero
The aim in this section is to investigate catenarity for a differential operator

ring T as in Notation Nl. Assuming A; is a field of characteristic zero, jR is
a universally catenary commutative noetherian A:-algebra, and A acts locally
finitely on R, we shall prove that 7* is universally catenary. The necessity of
the locally finite hypothesis is shown by an example of Bell and Sigurdsson [2,
Example 2.10]. We consider catenarity results in positive and mixed character-
istics in later sections.

Our approach in the present case is to use the ^-correspondence of §§ 1 and
2 to transfer the problem to the polynomial ring S. Given prime ideals P ç Q
in T, we know that 0(P) ç 0(Q) are prime V-ideals of S (Theorem 2.3),
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and we shall show that any saturated chain of prime V-ideals between 0(P)
and 0(Q) is in fact a saturated chain of prime ideals. Once this is done the
catenarity of 7* follows from that of S. This approach owes something to
arguments of Lorenz [12].

In this section we fix the following notation.

Notation N2.
A: is a field.
R is a commutative A:-algebra.

In addition, Notation Nl will be in effect throughout the section, and we will
compute degrees in T and S relative to the Dixmier ordering introduced in
§2.

The set A of derivations is said to act locally finitely on R provided each
element of R is contained in a finite-dimensional A>subspace which is invariant
under A.

Lemma 3.1. Suppose that A acts locally finitely on R, and let A,B be V-ideals
of S with A<tB.

(i) If k is algebraically closed, there exists a e A - B such that ka + B is
invariant under A and dfa) e B for all r e R.

(ii) For any a e A as in (i), the set B + Sa is a V-ideal of S.
Proof, (i) After replacing B by B n A, we may assume that B is properly
contained in A. Let 7 be the minimal degree (with respect to the Dixmier
ordering) for elements of A - B, and choose c e A - B with degree 7 and
leading coefficient y . Define

A° = {0} U {leading coefficients of elements of A of degree 7},
B° = {0} U {leading coefficients of elements of B of degree 7}.

It is clear that B° ç A° and that these are A-ideals of R. Then y e A° by
definition of A°, and y $. B° since if there existed b e B with degree 7 and
leading coefficient y, then c - b would be an element of A - B with degree
less than I.

Since A acts locally finitely on R, there exists a finite-dimensional A-invar-
iant A>subspace VCR such that y e V. After replacing V by V nA°, -we
may assume that V ç A°. Since k is algebraically closed and A acts as a finite
set of commuting A-linear transformations on (V + B°)/B° , there must exist
a eV - B° such that the coset a + B° is a A-eigenvector. Hence, a e A° - B°
and there exist Xx, ... ,Xnek such that ôfa) - X¡a e B° for i = I, ... ,n .

Choose a e A with degree 7 and leading coefficient a. Then a £ B
because a £ B°. For i = I, ... ,n observe that

ôfa) - Xta = (ôfa) - X¡a)x  + [terms of lower degree].

Since ôfa) - X¡a e B° , there exists b¡ e B such that

bi = (ôfa) - X¡a)x + [terms of lower degree].
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Then ôfa) - X¡a - bi is an element of A with degree less than 7, whence
ôfa)-Xia -b¡e B, and hence ôfa)-Xia e B. As B is A-invariant, it follows
that the set ka + B is invariant under A.

For r e R, Lemma 1.5(ii) shows that dfa) has lower total degree than
a, whence dfa) has Dixmier degree less than I. Since A is V-invariant,
dfa) e A, and then dfa) e B by minimality of 7.

(ii) Set c = 0~l(a). Since ka + B is invariant under A, so is kc + 0~l(B),
and since dfa) e B for all r e R, we obtain [c,R] ç 0~l(B). Thus
kc + 0~l(B) is also invariant under [-,R].

It follows that cT + 0~\B) is an ideal of T. As [c,R] ç 0~l(B), we
conclude from Proposition 1.6(iii) that 0(cT + 0~l(B)) = aS + B. Therefore
aS + B is a V-ideal of S, by Proposition 1.3.   a

Given prime V-ideals P ç Q in S, the V-height of Q/P, denoted
V-ht(Q/P), is defined to be the supremum of the lengths of all chains of prime
V-ideals between P and Q.

Lemma 3.2. Let char(A:) = 0, let R be noetherian, and let A act locally finitely
on R. If P ç Q are prime V-ideals of S such that V-ht(Q/P) = 1, then
ht(Q/P) = 1.
Proof. Let k denote the algebraic closure of k, and set R# = R <s>k k# and
S = S®kk . View R and 5 as subalgebras of R and S* ; then in particular
S is an integral extension of 5. Now identify S with R*[xx,... ,xn] and
let V# denote the set Au{dr | r e R*} of A;#-linear operators on S* . For r e R
the operator dr on S is the natural A:*-linear extension of the operator dr on
S, and so we may identify V with a subset of V* ; then V# is the A:#-linear
span of V . Observe that PS* = Pk* and QS* = Qk* are V#-ideals of S* .

By integrality, there exist prime ideals P* ç Q* in S* with P* n 5 = P
and Q* n S = Q. Let P1 be the largest V*-ideal of S* contained in P*,
and note that PS* ç Pf. Then P+ n S = P and QS* n S = Q, whence
QS* <£ P]. By Lemma 3.1(i), there exists an element a e QS* - 7jt such that
k*a + 7>t is invariant under A and dfa) e P* for all r e R* . Then there are
Xx, ... ,Xn e k such that ôfa) - X¡a e P^ for i = I, ... ,n. In particular,
ôfa) -XtaeP* for i=l,...,n and dfa) e P* for all r e R* .

Choose a finite extension field k* of k inside A;* such that X,, ... ,X  ek*1 ' '     n
and a e Qk*.

Set R* = Rk* and S* = Sk* etc., as in the first paragraph of the proof. If
P* = P* n 5* and Q* = Q* n S*, then P* ç Q* are prime ideals of S* with
P* n S = P and Q* n 5 = Q. By integrality, P* is minimal over PS* = Pk*
and ß* is minimal over QS* = Qk* ; observe also that PS* and QS* are
V*-ideals of S*.   Since k*  is a finite field extension of k, the ring R*  is
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noetherian. Hence, we may apply Corollary 2.4 and conclude that P* and Q*
are V*-ideals of S*.

If there is a prime V*-ideal J of S* lying strictly between P* and Q*, then
J n S is a prime V-ideal of 5 lying strictly between P and Q, contradicting
the assumption that V-ht(Q/P) = 1 . Hence, V*-ht(Q*/P*) = 1.

Now a e Qk* Ç. Q*. On the other hand, since P* is a V*-ideal of S* we
see that P*S* is a V#-ideal of S* contained in P* , whence P*S* ç P1. Thus
a £ P*. We also have

ôfa) - Xta eP*f)S* = P*
for i = 1, ... ,n, and likewise dfa) e P* for all r e R*. Thus, by Lemma
3.1(h), the set P* +S*a is a V*-ideal of S*.

Let 7 be a prime ideal of S* contained in Q* and minimal over P* + S*a.
Then, by using Corollary 2.4 again, 7 is a V*-ideal. Since V*-ht(Q*/P*) = 1,
this forces 7 = Q*, so that Q* is a prime minimal over P* + S*a. Therefore
ht(Q*/P*) = 1, by the Principal Ideal Theorem.

Consequently, ht(Q/P) = 1, by integrality,   a

We shall say that a ring RQ equipped with a set A0 of derivations is A0-
catenary if for any two A0-prime ideals P ç Q in R0 , all saturated chains of
A0-prime ideals between P and Q have the same length.

Theorem 3.3. Let k be a field of characteristic zero, R a commutative noetherian
k-algebra, and A = {ôx, ... ,ôn) a finite set of commuting k-linear derivations
acting locally finitely on R. If the polynomial ring S = R[xx, ... ,xn] is ei-
ther catenary or A-catenary, then the differential operator ring T = 7<[0;A] is
catenary.
Proof. It is enough, by Theorem 2.5, to show that for any two prime V-ideals
P ç Q in S, all saturated chains of prime V-ideals between P and Q have
the same length. However, Lemma 3.2 shows that any saturated chain of prime
V-ideals between P and Q is in fact a saturated chain of prime ideals, and
hence also a saturated chain of A-prime ideals. (Recall from Lemma 2.2(h)
that all A-prime ideals of S are prime.) The result follows since S is either
catenary or A-catenary.   a

Bell and Sigurdsson [2, Example 2.10] have shown that if A: is a field of
characteristic zero and ô is the derivation 2yzd/dx + (x + y )d/dy acting
on the polynomial ring R = k[x,y,z], then T = R[6;ô] is not catenary.
Hence, some restriction such as local finiteness is necessary in Theorem 3.3.
The restriction that S be catenary or A-catenary is also necessary, since if
the derivations in A are all zero then T = S. Bell and Sigurdsson have also
obtained the above theorem in the case of a single locally finite derivation (see
[2, Corollary 2.3, Lemma 2.7, Theorem 2.8]).

Corollary 3.4. Let k be a field of characteristic zero. If R is a universally
catenary commutative noetherian k-algebra, and A is a finite set of commuting
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k-linear derivations acting locally finitely on R, then the differential operator
ring T = R[& ; A] is universally catenary.
Proof. Observe that any polynomial ring T[xn+X, ... ,x] is isomorphic to
R[8X, ... ,6 ;ôx, ... ,ô ] where ôn+x, ... ,ôq all equal the zero derivation on
R. Since R is assumed to be universally catenary, the polynomial ring
R[xx, ... ,x ] is catenary, and so Theorem 3.3 shows that T[xn+X, ... ,x ]
is catenary.   G

In the setting of Corollary 3.4, suppose that R is affine over k, and let d(A)
denote the Gelfand-Kirillov dimension of any A;-algebra A [11]. It can be
deduced from Theorem 2.5 and Lemma 3.2 that the generalization of Tauvel's
height formula discussed in [12] is valid in 7*. Namely, if P, Q are prime
ideals of T with P <z Q then

ht(Q/P) = d(T/P)-d(T/Q).
Of course, this also follows from Gabber's work [6], because when R is affine
and A acts locally finitely, T is a homomorphic image of the enveloping algebra
of a finite-dimensional solvable Lie algebra.

A similar result is valid in the positive characteristic context of Theorem 4.1,
inasmuch as T is in this case an affine Pl-algebra, and so Schelter's formula
[14, Theorem 4.4.27] applies.

4. Catenarity in characteristic p

We continue to study catenarity in a differential operator ring T = R[& ; A]
over a commutative noetherian ring R. Notation Nl will be assumed through-
out the section. A number of problems arise in the case of positive characteristic
that are not present in the characteristic zero case, but we can still proceed along
a route roughly parallel to that taken in the previous section. The case in which
R is affine over a field of characteristic p is quite easy, since then 7* is an
affine Pi-algebra and catenarity follows immediately. Hence, we begin with this
case since it does not require the more general manipulations used later.

Theorem 4.1. Let k be a field of characteristic p > 0 and suppose that R is
an affine commutative algebra over k. Let A = {ôx, ... ,ôn} be a finite set of
commuting k-linear derivations on R and set T = R[&;A]. Then 7* is an
affine Pi-algebra and hence is universally catenary.

Proof. Suppose that R = k[ax, ... ,am]. Set

C = {reR\ ôfr) = 0 for i = 1,..., n} ;

then C[0] is a commutative subalgebra of T. Now ôfap) = 0 for all i,j,
and hence k[apx , ... ,apn]ç C. Consequently, T is generated as a right C[6]-
module by the finite set

r   i(l)   i(2) sim) ,    ,,, /    \      r\ ,1W  a2    -""m    !*(!)> ...,s(m) = 0,...,p-l}.
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Hence, since T embeds in End(7*C[e]) via left multiplication, T is a homo-
morphic image of a C[0]-subalgebra of a matrix algebra M (C[®\). Therefore
T is an affine Pi-algebra over k, as are all finite polynomial extensions of T,
and the results follows [15, Theorem 4; 14, Theorem 4.4.27].   a

We now present two examples illustrating the misbehavior of the ^-corres-
pondence in characteristic p.

Example 4.2. Let A: be a field of characteristic 2 and t an indeterminate, set
R = k[t]/(t2), and let z denote the image of t in R. Since d(t2)/dt = 2t = 0,
the derivation d/dt on k[t] induces a A;-linear derivation ô on R such that
ô(z) = 1. Set T = R[6 ;ô]. We show that P = Td2 is a maximal ideal of T
and that 0(P) is not a ¿-prime ideal in S = R[x]. Thus, even when R is an
affine algebra, 0(P) need not be a prime ideal.

The element 0 is central in T because ô = 0 ; hence, P is an ideal of T.
If 7 is an ideal of T properly containing P, choose an element a + bd e I
where a,b e R, not both zero. In case b f- 0, observe that I contains the
element [a + bd ,z] = b. Now 7 contains a nonzero element of R, say a + ßz
with a,ß e k, not both zero. If ß # 0, observe that 7 contains the element
[8 ,a + ßz] = ß . Thus I contains a nonzero element of k, and so I = T.
Hence, P is a maximal ideal of T.

Now 0(P) = Sx . Since ô(x) = 0 the ideal Sx is a ¿-ideal of 5 such that
(Sx)2 ç 0(P), while Sx £ 0(P). Therefore 0(P) is not a ¿-prime ideal of
S (nor even a ¿-semiprime ideal),   a

In this example, dz = -d/dx, which makes it clear why Sx is not a V-ideal
of 5 (that of course being necessary since 0(P) must be a V-prime ideal).

In general, if a set A0 of derivations acts on a noetherian ring R0 , then the
(prime) radical of any A0-prime ideal of RQ is a prime ideal (Lemma 2.2(i)).
One might hope that the same would be true of V-prime ideals in S (and
indeed this holds in the previous example). The next example shows that this
is not true in general.

Example 4.3. Let / be a field of characteristic 2 and t, u independent inde-
terminates. Set k = l(t2) and R = l(t)[u]/(u2), and let z denote the im-
age of u in R. Then R is a four-dimensional A:-algebra, and the derivation
td/dt + td/du on l(t)[u] induces a A>linear derivation ô on R such that
ô(t) = ô(z) = t. Set 7* = R[d ;ô]. We show that P = 7*(02 + 6) is a maximal
ideal of T and that the radical of 0(P) is not a prime ideal in S = R[x].

Since ô +Ô = 0, the element 0 +0 is central in T, and so P is an ideal of
T. If I is an ideal of T properly containing P, choose an element a + bd el
where a,b e R, not both zero. In case b ^ 0, observe that 7 contains the
element [a + bd ,z] = bt. Now 7 contains a nonzero element of R, say a + ßz
with q , ß e l(t), not both zero. If a ^ 0 then a + ßz is invertible in R and
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I =T. If a = 0 then ß f= 0 and z el. In this case, t = [8,z]e I and again
7=7*. Thus P is a maximal ideal of T.

Now 0(P) = S(x2 +x). If J = S(x2 +x)+Sz, then J/0(P) is nilpotent•y
and S/J is isomorphic to l(t)[x]/(x + x). Thus J is the radical of 0(P),
and / is not a prime ideal of S.   a

Theorem 4.4. Let R be a commutative noetherian ring, let A be a finite set of
commuting derivations on R, and set T = R[Q ; A]. Let P be a prime ideal of
T such that char(T/P) = p > 0. Then any nonzero ideal of T/P contains a
central non-zero-divisor.
Proof. After replacing T by T/(P ni?)T, we may assume that PnR = 0.
Then R is a A-prime ring of characteristic p. By Lemma 2.2(i), there is a
unique minimal prime ideal in R, say N ; then N is the prime radical of R
and so is nilpotent. Now R - N is a right and left Ore set in 7* disjoint from
P. As T is noetherian it follows that R-NC <g(P) [3, Proof of Satz 2.10].

Let A be an ideal of T that properly contains P. Let 7 be the minimal
degree (with respect to the Dixmier ordering) for elements of A - P, and choose
a e A- P with degree 7 and leading coefficient a. Define

A° = {0} U {leading coefficients of elements of A of degree 7},
P° = {0} U {leading coefficients of elements of P of degree 7}.

It is clear that P° ç A° and that these are A-ideals of R. Then a e A° by
definition of A° , and a £ P° since if there existed b e P with degree 7 and
leading coefficient a, then a - b would be an element of A - P with degree
less than I.

Suppose that P° <£ N, say there exists ß e P° - N. Then there exists b e P
with degree 7 and leading coefficient ß. Now ßa - ab is an element of A
with degree less than 7, whence ßa - ab e P and so ßa e P. However, as
ß e R - N and a e T - P, this contradicts the fact that R - N Q W(P).
Thus P° ç N, and hence P is nilpotent. Since R is A-prime, it follows that
P° = 0.

On the other hand, A° is a nonzero A-ideal of R, whence A° is not nilpo-
tent, and as R is noetherian, A° cannot even be nil. Choose a nonnilpotent
element y e A°. Then yp ^ 0, and there exists u e A with degree 7 and
leading coefficient yp ; moreover, u £ P because P° = 0.

For i = 1, ... ,n , observe that ôfy") = 0 and so [0(,u] is an element of A
with degree less than I, whence [0(, u] e P. For r e R, Lemma 1.5(i) shows
that [r, u] has lower total degree than u, whence [r, u] has Dixmier degree
less than 7, and so [r ,u]e P. Therefore u + P is a nonzero central element
of T/P. Finally, since T/P is a prime ring, u + P must be a non-zero-divisor
T/P.   G

Theorem 4.4 is parallel to [1, Proposition 6.2] but does not follow from
it, since our coefficient ring R need not be A-hypercentral.   However, with
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an appropriately weaker version of A-hypercentrality, Theorem 4.4 could be
proved using an induction argument similar to the proof of [1, Proposition
6.2].

We shall use Theorem 4.4 as an analog of Lemma 3.1 in proving catenarity
in characteristic p . For the remainder of the section, we assume Notation N1.
The next step is an analog of Lemma 3.2, but since in characteristic p the
V-prime ideals of S are not always prime, we must work with prime ideals
minimal over V-prime ideals.

Proposition 4.5. Assume that k is a field of characteristic p > 0 and that R
is a commutative noetherian k-algebra. Let P ç Q be prime ideals of T such
that ht(Q/P) = 1, and let A ç B be prime ideals of S such that A is minimal
over 0(P) and B is minimal over 0(Q). Then ht(B/A) = 1.
Proof. By Theorem 4.4 there exists an element c e Q which is a central non-
zero-divisor modulo P. Set u = 0(c) and note that u e 0(Q) - 0(P). Now
[c,R] ç P and hence it follows from Proposition 1.6(iii) that « is a non-
zero-divisor modulo 0(P), and that 0(P + cT) = 0(P) + uS. Since u is
a non-zero-divisor modulo 0(P), we see that u £ A, and so B ^ A. Since
P + cT is an ideal of T and 0(P + cT) = 0(P) + uS, it follows that 0(P) + uS
is a V-ideal of S, contained in 0(Q) and properly containing 0(P).

We claim that B is minimal over A + uS. If not, there is a prime ideal 7
containing A + uS and strictly contained in B. Let E be the largest V-ideal
contained in 7 ; then E is a V-prime ideal. Since 0(P) + uS ç A + uS ç 7, we
have 0(P) + uS ç E, and so E properly contains 0(P). By Corollary 1.10,
0(Q) is the largest V-ideal contained in B, and so from E ç I c B we obtain
E ç 0(Q). If E = 0(Q) then <P(g) ç 7, contradicting the minimality of B .
Thus 0(Q) properly contains E.

Now by Corollary 1.8, 0~y(E) is a prime ideal of T lying strictly between
P and Q, but that contradicts the assumption that ht(Q/P) = 1. Hence, B is
minimal over A + uS, as claimed. Therefore, by the Principal Ideal Theorem,
ht(B/A) = 1 .    G

Theorem 4.6. Let k be afield of characteristic p > 0, let R be a commutative
noetherian k-algebra, and let A = {ôx, ... ,ôn} be a finite set of commuting k-
linear derivations on R. If the polynomial ring S = R[xx, ... ,xn] is catenary,
then the differential operator ring T = R[Q;A] is catenary.
Proof. Given prime ideals P ç Q in T, we need to show that all saturated
chains of prime ideals between P and Q have the same length. To prove this,
we may replace P by any minimal prime ideal contained in P, and so, without
loss of generality, we may assume that P is minimal. After factoring out Pf)R,
we may also assume that P n R = 0. Now R is a A-prime ring, and so T is a
prime ring. Hence, as P is a minimal prime, P = 0.

Since R is a noetherian A-prime ring, R has a unique minimal prime ideal,
say N, by Lemma 2.2(i). Then NS is the unique minimal prime ideal of 5.
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Choose a prime ideal Q0 in S minimal over 0(Q). Since S is assumed to
be catenary, all saturated chains of prime ideals between Q0 and NS have the
same length, namely ht(Q0). We shall prove that if

Q = P0>Px>->Pd = P = 0
is any saturated chain of prime ideals between Q and 7*, then d = ht(Qf).

Construct a chain of prime ideals in S as follows: Start with Q0, and, once
Q( has been chosen, let Qi+X be a prime ideal contained in ß, anc* minimal
over 0(Pi+x) ■ By Proposition 4.5,

ßo>ßi>      >Qd = NS
is a saturated chain of prime ideals in S, and therefore d = ht(ß0), as de-
sired.   G

Corollary 4.7. Let k be a field of characteristic p > 0. If R is a universally
catenary commutative noetherian k-algebra, and A is a finite set of commuting
k-linear derivations on R, then the differential operator ring T = i?[6;A] is
universally catenary.   G

In many cases where catenarity can be proved, such as for commutative affine
domains, one can also prove that all maximal ideals have the same height. We
shall prove this for prime factor rings of the differential operator ring T in the
affine case of our current hypotheses.

Theorem 4.8. Let k be a field of characteristic p > 0 and suppose that R is
an affine commutative algebra over k. Let A = {ôx, ... ,ôn} be a finite set of
commuting k-linear derivations on R and set T = R[S ; A]. If P is any prime
ideal of 7*, then all maximal ideals of T/P have the same height. In particular,
if R is a A-prime ring, then all maximal ideals of T have height K. dim(R) + n .
Proof. We show that all saturated chains of prime ideals from P to any maxi-
mal ideal have the same length. As in the proof of Theorem 4.6, we may assume
that R is a A-prime ring and P = 0. It remains to show that if M is any
maximal ideal of T and

M = P0> Px> ■■■> Pd = 0
is any saturated chain of prime ideals between M and 0, then d = K. dim(7<)-i-
n.

Since R is a noetherian A-prime ring, R has a unique minimal prime ideal,
say N, by Lemma 2.2(i). Then NS is the unique minimal prime ideal of S.
Construct a chain of prime ideals in 5 as follows: Let Q0 be a prime ideal
minimal over 0(PO), and, once Qi has been chosen, let Q. x be a prime ideal
contained in Qi and minimal over 0(Pi+x). By Proposition 4.5,

Q0>Ql>    >Qd = NS
is a saturated chain of prime ideals in 5". Since S is catenary [13, Corollary 3,
(14.H)], d = ht(Q0/NS).
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By Theorem 4.1, T/M is an affine Pi-algebra. As T/M is also simple, it
must be finite-dimensional over k, and since 0 is a A>linear isomorphism the
same is true for S/0(M). Thus S/Q0 is finite-dimensional, whence Q0 is a
maximal ideal of S. Now all maximal ideals of S/NS have the same height,
namely K.dim(i?) + n [13, Corollary 3, (14.H)]. Therefore

d = ht(Q0/NS) = K. dim(7?) + n.   a
Theorem 4.8 does not hold in characteristic zero, as the following example

(the enveloping algebra of the 3-dimensional Heisenberg algebra) shows. Note
that the derivation ô in this example is locally finite.

Example 4.9. Let A: be a field of characteristic zero and u,v independent
indeterminates, let R = k[u,v] and ô = vd/du, and set T = R[9;ô]. We
show that Mx = (v - 1)7* and M2 = uT + vT + 6T are maximal ideals of T
such that ht(Af,) = 1 while ht(M2) = 3 .

Since ô(v - 1) = 0, we see that Mx is an ideal of T and that

T/Mx ̂ k[u][d;d/du] = Afk).
Hence, T/Mx is a simple ring and Mx is a maximal ideal of T. On the other
hand, uT + vT is an ideal of T and T/(uT + vT) = k[6], whence M2 is a
maximal ideal of T.

If Px is a nonzero prime ideal contained in Mx, then PxnR is a nonzero
prime ideal of R (because Ô ̂  0 and char(Ar) = 0). Since Px n R ç Mx n R =
(v - l)R and (v - l)R has height 1, it follows that Px n R = (v - l)R and
PX=MX. Thus ht(M,) = 1.

Since M2 > uT + vT > vT > 0 is a chain of prime ideals of T, we have
ht(Af2) > 3. On the other hand, K.dim(7<) = 2 and so K.dim(7*) < 3.
Therefore ht(M2) = 3 .

Alternatively, since ô acts locally finitely on R, the heights of Mx and M2
can be obtained from Lemma 3.2 and the observation that 0(MX) = (v - l)S
while 0(M2) = uS + vS + Sx .   a

5. Affine Z-algebras

In this section we combine the results of §§3 and 4 to obtain a catenarity result
for differential operator rings over affine Z-algebras. Throughout the section,
we assume that R is a commutative ring finitely generated as an algebra over
1, and we assume Notation Nl.

In the present context, we say that A acts locally finitely provided each el-
ement of R is contained in a A-invariant additive subgroup of R of finite
torsionfree rank. (Recall that the torsionfree rank of an abelian group G is the
dimension of the Q-vector space Q ®z G.)

Proposition 5.1. Assume that A acts locally finitely on R. Let P e Q be prime
ideals of T such that ht(Q/P) = 1, and let A c B be prime ideals of S such that
A is minimal over 0(P) and B is minimal over 0(Q). Then ht(B/A) = 1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PRIME IDEALS IN DIFFERENTIAL OPERATOR RINGS 760

Proof. We consider three possible cases.

Case (i). Suppose that char(r/ß) = 0. Then ß n Z • 1 = 0 and 7i n Z • 1 = 0.
By localizing with respect to Z • 1 - {0} in R,S,7*, we may replace these rings
by Q®z7c, Q®ZS, Q®z7* respectively. Now R is a commutative noetherian
algebra over Q and A acts locally finitely in the sense of §3. The result now
follows from Corollary 2.4 and Lemma 3.2.
Case (ii). Suppose that char(T/P) = p > 0. Then pT ç P and pS ç A.
Replace R,S,T by R/pR, S/pS, T/pT respectively. Now R is a commu-
tative noetherian algebra over I/pI, and the result follows from Proposition
4.5.
Case (iii). Suppose that char(T/P) = 0 while char(7*/ß) = p > 0. Now the
element p • 1 in 7* is an element of Q which is a central non-zero-divisor
modulo P, and we may use the proof of Proposition 4.5, with the element c
replaced by p • 1.   G

Theorem 5.2. Let R be a commutative affine I-algebra, let A = {ôx, ... ,ôn}
be a finite set of commuting derivations acting locally finitely on R, and set
T = R[0 ; A].  Then T is universally catenary, and if P is any prime ideal of
T, all maximal ideals of T/P have the same height. In particular, if R is a
A-prime ring then all maximal ideals of T have height K. dim(7?) + n.

Proof. As in the proof of Corollary 3.4, a polynomial extension of T is iso-
morphic to a differential operator ring over a polynomial extension of R, and
so it is enough to prove catenarity in place of universal catenarity.

For the first two conclusions, it suffices to show that given a prime ideal P in
T, all saturated chains of prime ideals from P to any maximal ideal have the
same length. As in the proof of Theorem 4.6, it is enough to consider the case
where R is A-prime and P = 0. Thus the entire theorem will be proved if we
assume that R is A-prime and show that for any maximal ideal M of T, all
saturated chains of prime ideals between 0 and M have length K. dim(7?) + « .

We proceed as in the proof of Theroem 4.8, using Proposition 5.1 in place
of Proposition 4.5. We need to know that S is catenary, that ß0 is a maximal
ideal of S, and that all maximal ideals in S/NS have height K. dim(7<) + n .
The first and third statements follow from [13, Theorem 33, (16.D)] and [10,
Exercise 3, p. 114]. For the second, M nZ • 1 ̂  0, since M is a primitive ideal
[8, Theorem 2, p. 271]. Thus T/M is a simple Pi-algebra, affine over I/pI
for some p > 0, and so T/M is finite. Hence, S/0(M) and S/Q0 are finite,
and therefore Q0 is a maximal ideal of S.   a

6. Partial catenarity in characteristic zero
In this final section we return to a differential operator ring 7* over a com-

mutative noetherian Q-algebra R and study catenarity for pairs of prime ideals
in T which have the same contraction in R.
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Theorem 6.1. Let K be a division ring of characteristic zero, let A =
{ôx, ... ,ôn) be a finite set of commuting derivations on K, and set T =
/c[6;A].

(i) 7/7* is a prime ideal of T, there is a right and left Ore set W ç W(P)
such that TW~   is isomorphic to a polynomial ring over a division ring.

(ii) 7* is universally catenary.
Proof, (i) Certainly P n K = 0. Choose a subset 6' ç {0(, ... ,6n) maximal
with respect to the property that P n K[QÍ] = 0. After renumbering, we may
assume that 6' = {0,, ... , 0,} for some t. Then P n K[0,,...,01 = 0 and
P n K[dx, ... ,0t,6j]¿O for j = t+l, ... ,n. Observe that since

T = K[ex,...,6l;ôx,...,ôt][8l+x,...,dn;ôl+x,...,ôn],
the set f? = 7v[0j, ... ,0(] - {0} is a right and left Ore set in T. Moreover,
W is disjoint from P, and as T is noetherian it follows that W ç W(P) [3,
Proof of Satz 2.10]. We identify TW^1 with the differential operator ring

D[8l+X,... ,en;ôt+x, ... ,ôn],
where D is the quotient division ring of K[8X, ... ,6t] and ôl+x, ... ,ôn have
been extended to D via [3, Lemma 4.1].

For j e {t + 1, ...,n} we have P n D[6f\ í 0 and so PW~X n D[6f ± 0.
Hence, D[Q ;¿ ] is not a simple ring. Therefore ¿ must be an inner derivation
on D [3, Satz 4.7], and so there exists dj e D such that the element z = Q,-d.
commutes with D. Note that 7J>[0.] = D[zf].

For i,j e {t + I, ... ,n} we have

[z,., z,] = [0,. - dt, 0, - dj] = -ôfdj) + ôfd) + [d,, df] e D,
and so either [z., zf] = 0 or D[6i, 0y] = D[zi, z f] s AX(D). However, AfD)
is a simple ring, whereas D[8¡, Of] is not simple since Pif" n D[6¡, dß f 0 .
Hence, [z¡,zf] = 0. Therefore zt+x , ... ,zn are commuting indeterminates
over D, and

TW-l=D[6l+x,...,6n] = D[zl+x,...,zn]
is a polynomial ring over D .

[On the side, we note that it follows that P'W^ has a central set of gen-
erators in Tfö'1 , whence P^~x is localizable [17, Corollary 1, p. 45], and
consequently P is localizable. Alternatively, [1, Theorem 7.7] implies that P
is localizable.]

(ii) As in the proof of Corollary 3.4, it is enough to prove that T is catenary.
Let ß ç P be prime ideals of T. By (i), there is an Ore set & ç W(P) such

that TW~l is isomorphic to a polynomial ring D[xt+X, ... ,xn] over a division
ring D. Now

TW~l=D®cC[xt+x,...,xn],
where C is the center of D. Since D is a central simple C-algebra, extension
and contraction provide inverse bijections between the ideals of C[x   x, ... ,xn]
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and the ideals of T&~x [4, Theorem 2, p. 363], and hence extension and
contraction provide inverse bijections between the prime ideals of these two
rings. Since C[xl+X, ... ,xn] is catenary, it follows that TW~ is catenary. By
[3, Satz 2.10], contraction and extension provide inverse bijections between the
prime ideals of TW~X and those prime ideals of T disjoint from fê. Therefore
all saturated chains of prime ideals between ß and P have the same length,   a

Corollary 6.2. Let R be a commutative noetherian ty-algebra, let A be a finite
set of commuting derivations on R, and set T = R[Q ; A]. If P D Q are prime
ideals of T such that PnR = Qr\R, then all saturated chains of prime ideals
between P and Q have the same length.
Proof. The ideal Q n R is a A-prime ideal of R, and so by Lemma 2.2(h) it
is a prime ideal. Thus, by factoring out ß n R, we may assume that R is a
domain and that Pf)R = QnR = 0. Now the set W = R - {0} is a right and
left Ore set in T, and we may identify TW~ with 7C[0 ; A], where K is the
quotient field of R and the derivations in A have been extended to K via the
quotient rule. Since TW~ is catenary by Theorem 6.1, the result follows on
applying [3, Satz 2.10].   G

Corollary 6.2 shows that catenarity in T can only fail between pairs of prime
ideals with distinct contractions in R, and so it is bound up with properties of
A-prime ideals of R. This is easily seen in the Bell-Sigurdsson example, where
the prime ideals in the two saturated chains of differing lengths are all induced
primes. In light of this, we conclude with the following question. Suppose
that R is a commutative noetherian Q-algebra equipped with a finite set A of
commuting derivations, and T = R[Q;A]. If the corresponding polynomial
ring S = R[X] is both catenary and A-catenary, must T be catenary? (The
answer is positive in the case of a single derivation, by [2, Corollary 2.3].)
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