
Prime Implicant Computation Using Satisfiability Algorithms 

Vasco M. Manquinho, Paulo E Flores, Jo20 P. Marques Silva, Arlindo L. Oliveira 
Cadence European Laboratories 

IS TANES C 
1000 Lisboa, Portugal 

vmm@calvin.inesc.pt,{pff,jpms,aml}@inesc.pt 

Abstract 
The computation of prime implicants has several and 

significant applications in different areas, including Auto- 
mated Reasoning, Non-Monotonic Reasoning, Electronic 
Design Automation, among others. In this paper we 
describe a new model and algorithm for computing mini- 
mum-size prime implicants of propositional formulas. The 
proposed approach is based on creating an integer linear 
program (ILP) formulation for  computing the minimum- 
size prime implicant, which simplijes existing formula- 
tions. In addition, we introduce two new algorithms for  
solving ILPs, both of which are built on top of an algo- 
rithm for propositional satisjability (SAT). Given the 
organization of the proposed SAT algorithm, the resulting 
ILP procedures implement powerful search pruning tech- 
niques, including a non-chronological backtracking 
search strategy, clause recording procedures and iden@- 
cation of necessary assignments. Experimental results, 
obtained on several benchmark examples, indicate that the 
proposed model and algorithms are significantly more ef i -  
cient than other existing solutions. 

1 Introduction 

Given a propositional formula cp in Conjunctive Nor- 
mal Form (CNF), denoting a boolean functionf, the prob- 
lem of computing a minimum-size assignment (in the 
number of literals) that satisfies f is referred to as the mini- 
mum-size prime implicant problem. Minimum-size prime 
implicants find application in many areas including, 
among others, Automated Reasoning, Non-Monotonic 
Reasoning and Electronic Design Automation. Moreover, 
interest on computing minimum-size prime implicants of 
boolean functions has motivated extensive research work 
(see for example [8 ,9 ] ,  which include comprehensive bib- 
liographic references.). 

In this paper we describe an Integer Linear Program 
(ILP) formulation for computing minimum-size prime 
implicants of boolean functions described by Conjunctive 
Normal Form (CNF) formulas. The proposed ILP model, 
first introduced in [ 141, significantly simplifies the one 

originally described in [9]. Moreover, we propose two new 
algorithms for solving ILPs where the variables have bool- 
ean domains (01-ILPs). Both algorithms are based on 
propositional satisfiability (SAT). The first one generalizes 
the SAT-based ILP algorithm originally described in [2], 
whereas the second one describes a branch and bound ILP 
procedure built on top of a SAT solver. For both algo- 
rithms the GRASP SAT solver [12, 151 is used. Prelimi- 
nary results, obtained on several satisfiable instances of 
the DIMACS benchmarks [6], indicate that the proposed 
model and algorithms can be used for computing mini- 
mum-size prime implicants for several classes of boolean 
functions. Furthermore, we show that widely used ILP 
algorithms, most of which are based on linear-program- 
ming (LP) relaxations [7], may be inadequate for comput- 
ing minimum-size prime implicants. This result strongly 
suggests using dedicated ILP algorithms for solving the 
minimum-size prime implicant problem. Finally, we note 
that the proposed ILP algorithms, implement powerful 
search pruning techniques commonly used in SAT algo- 
rithms, which include a non-chronological backtracking 
search strategy, clause recording procedures and identifi- 
cation of necessary assignments. 

The paper is organized as follows. In Section 2 the 
notational framework used throughout the paper is intro- 
duced. Afterwards, we describe the ILP model for com- 
puting minimum-size prime implicants of boolean 
functions described with CNF formulas. This model is 
based on the one proposed in [9], but significantly reduces 
the number of variables as well as the size of their 
domains. Consequently, the worst-case size of the search 
space becomes drastically reduced, and hence a smaller 
search space is expected for most practical examples. In 
Section 4 we describe two new SAT-based ILP algorithms 
and illustrate how the identification of prime implicants 
can be iterated. The procedure proposed in this paper for 
iterating prime implicants by increasing size is provably 
more efficient than the one described in [9]. The different 
algorithms are experimentally evaluated in Section 5 .  
Finally, Section 6 concludes the paper suggesting potential 
improvements to the proposed model and algorithms. 
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2 Definitions follows: 

2n 

min C y j  
j =  1 

The paper follows the definitions introduced in [12, 
141, in particular for the organization of the GRASP SAT 
algorithm which is described in Section 4. In general, a 
propositional formula cp in CNF denotes a boolean func- 
tion f : ( 0 ,  1 } -+ { 0, 1 }, where each clause w is a sum 
of litcrals, and a literal I is cither a variablc xi  or its com- 
plement x i .  For a search-based algorithm for SAT, a con- 
flict i s  said to he identified when all literals of at least one 
clause are assigned value 0. The GRASP SAT [ 121 algo- 
rithm implements several techniques for pruning the 
amount of search based on the diagnosis of conflicts iden- 
tified during the search. 

A clause w = (11 + ... + Z k )  denotes a constraint 
which can also be viewed as a linear inequality, 
1, + . . . + I ,> 1 . We use this alternative representation 
when appropriate. Furthermore, since a literal 1 = xi' can 
also be defined by 1 = 1 - x i ,  we shall in general use this 
latter representation when viewing clauses as linear ine- 
qualities. 

3 Prime Implicant Computation Using Inte- 
ger Programming 

Given a description of a Boolean function in CNF, it 
is straightforward to formulate the computation of the 
minimum-size prime implicant as an integer linear pro- 
gram [9]. In this paper we show how to simplify the for- 
mulation proposed in [9], thus allowing for a significant 
reduction in the worst-case search space. This improved 
model was first described in 1141. 

Given a CNF formula cp, which is defined on a set of 
variables {xl,  . . ., xn}, with p clauses { w,, . . ., op}, and 
which denotes a Boolean function f :  (O,l}n+ (0 ,  l}, 
apply the following transformation. 

1. Create a new set of boolean variables {yl,  ...,y2,,}, 
where y2i  - is associated with literal x i ,  and yZ i  is 
associated with literal x; . 

2. For each clause o = ( I l  + ... + 1,) , replace each 
literal l j  with y 2 k - ,  if l j  = x k ,  or with y Z k  if 1. = n.' . 

3. For each pair of variables, y2 i -  and y2 i ,  require that 
at most one is set to one. Hence, y2i-  + y2i  I 1 . 

4. The set of inequalities obtained from steps 2. and 3. can 
be viewed as a single set of inequalities A . y  2 b .  
Furthermore, define the cost function to be, 

1 1  

2 n  

min C y j  ( 1 )  
j =  1 

5. The complete ILP formulation is thus defined as 

s.t. A . y 2 b  
It is clear that the solution of (2) denotes a minimum- 

size prime implicant of the original CNF formula cp, and 
from [9] we have, 

Proposition 1. Given a CNF formula cp and associated 
boolean function f, the solution of the optimization prob- 
lem (2) is a minimum-size prime implicant off. 

The proposed ILP model is based on the one 
described in [9]. However, the model proposed in [9] asso- 
ciates an integer variable Ai with each inequality created 
from each original clause wi  . As we showed above, such 
integer variables are unnecessary and only increase the 
worst-case search space. Indeed, for the ILP model of (2) ,  
the worst-case search space is, 

22n = 4" (3)  
whereas for the ILP model of [9], the worst-case search 
space is, 

4 n .  f I , w i ,  (4) 
i =  1 

where lwll denotes the number of literals of clause w, , 
and represents the least upper bound on the integer vari- 
able hi associated with clause mi and introduced in the 
ILP model of [9]. Consequently, the worst-case search 
space for the ILP model we propose in this paper is prov- 
ably less than for the model proposed in [Y]. We should 
note that for both models, and for a search-based ILP algo- 
rithm, a straightforward arrangement of the order of the 
decision variables leads to a worst-case search space of 3n 
(since only 3 assignments are possible for each of the n 
pairs of variables), but unfortunately this information can- 
not in general be made available to the ILP solver. 

The construction of the ILP model (2) will be illus- 
trated with the following CNF formula: 

( 5 )  

First, we start by creating a new set of variables 
{yl,  yZ, y3,  y4, Y ~ ,  y+, and associate yZi -  with each xi 
and y2i with each xi  . Consequently, from ( 5 )  the folloa- 
ing modified CNF formula cp' is obtained: 

cp = (xl  + X 2 + X 3 )  . (x1'+x2') . ( X l ' + X 3 ' )  

For each clause, simple algebraic manipulation yields 
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an equivalent inequality: 

Y,+Y,+Y521 

Y 2 + Y 4 2  1 (7) 

Y 2 + Y g 2 '  

The next step is to require that at most one variable of 
each pair of variables y2i-  , , y Z i  can be set to one, which 
yields: 

y , + y z < 1 , a - y 1 - y 2 > - 1  

y 3 + y 4 1  1 '%y3-y42-l  (8) 
y 5 + y 6 $  1 e % - y 5 - y g 2 - 1  

Thus allowing for a given variable xi not to be 
assigned. Equations (7) and (8) define the set of inequali- 
ties A . y 2 b . The next step is to identify the cost func- 
tion, which minimizes the number of variables assigned 
value one, i.e. the number of variables xi with an assigned 
value. Finally the resulting ILP model becomes: 

min Y 1 + Y 2 + Y 3 + Y 4 + Y 5 f Y 6  

s.t. A . y 2 b  
(9) 

One solution to the integer linear program (9) is, for 
example, x1 = 0 and x2 = 1 . 

4 Search Algorithms for Solving ILPs 

In [2] P. Barth described how to solve ILPs using a 
propositional satisfiability algorithm. However, the ILP 
algorithm described in [2] is based on the Davis-Putnam 
[5]  procedure, which has been shown to be particularly 
inefficient for a large number of instances of SAT [ 121. 

In this section we describe two different algorithms 
for solving ILPs associated with instances of the mini- 
mum-size prime implicant problem. Both are based on 
SAT algorithms. The first algorithm follows P. Barth's 
approach, whereas the second builds a branch and bound 
procedure on top of a SAT engine. The two algorithms use 
the GRASP SAT algorithm described in [12], which 
includes several powerful pruning techniques for reducing 
the amount of search associated with instances of SAT. 
Among the pruning techniques included in GRASP, the 
following have been shown to be particularly significant: 

GRASP implements a non-chronological backtracking 
search strategy'. This backtracking strategy potentially 
permits skipping over large portions of the decision tree 
for some instances of SAT. 

1.  Some variations of this strategy are also commonly 
referred to as dependency-directed backtracking and 
backjumping [lo]. 

GRASP utilizes selective clause recording techniques. 
During the search process, and as conflicts are 
diagnosed, new clauses are created from the causes of 
the conflicts. These clauses represent implicates of the 
boolean function associated with the CNF formula, and 
are often referred to as nogoods [ I l l .  Newly recorded 
clauses are then used for pruning the subsequent search. 
Moreover, bounds on the size of recorded clauses can be 
imposed, thus preventing an excessive growth of the 
resulting CNF formula. 
In most practical situations, instances of SAT can have 
highly structured CNF representations. The intrinsic 
structure of these representations can be exploited by 
GRASP, after diagnosing the causes of conflicts, by 
identifying necessary assignments required for 
preventing conflicts from being identified during the 
search. 
In addition, other pruning techniques can be 
straightforwardly applied to SAT algorithms. In 
particular, and as described in [13], several techniques 
commonly used in algorithms for different variations of 
the set covering problem [4]. 

4.1 SAT-Based Linear Search Algorithm 

The first ILP algorithm follows P. Barth's ILP algo- 
rithm [2] and was first described in [14]. Let us consider 
the cost function (1). The possible values assumed by the 
cost function for the different assignments to the variables 
in the set {y,, . . . , yZn}  range from 0, when all variables 
are assigned value 0, to 2 n ,  when all variables are 
assigned value 1. Note however, that for the minimum- 
size prime implicant problem a trivial upper bound is n , 
since for any pair of variables yZi- , yZi at most one can 
be assigned value 1. P. Barth's [2] approach consists of 
applying the following sequence of steps, starting from an 
upper bound of k = n on the value of the cost function: 

1. Create a new inequality x y j  I k .  This inequality 
basically requires that a computed solution must have 
no more than k literals assigned value 1. 

2. Solve the resulting instance of satisfiability. (Note that 
the resulting instance of satisfiability is defined on linear 
inequalities, but modifying most SAT algorithms for 
handling this generalization is straightforward.) 

3. If the instance of SAT is satisfiable decrement k (i.e. 
specify a new value for the cost function) and go back to 
step 1. Otherwise, report that the solution to the ILP is 
k + l .  

Note that this ILP algorithm allows for any SAT algo- 
rithm to be used as the underlying SAT testing engine, pro- 
vided the algorithm is modified to handle linear 
inequalities. The proposed ILP algorithm is illustrated in 

234 

Authorized licensed use limited to: UNIVERSIDADE TECNICA DE LISBOA. Downloaded on June 7, 2009 at 18:41 from IEEE Xplore.  Restrictions apply.



int m i n j r i m e  ('p) 

t 
k = n ;  
while ( k 2 0 )  { 

cp = cpu { 
status = solve-sat(q); 
cp = 9 -  { x l ; ' k }  ; 

if (status == SATISFIABLE) { 

Y . l k }  ; c ,  
k = X y j ;  
- - k  ; 

1 else { + + k ;  break; 1 
return k ; 

I 

Figure 1 : SAT-based linear search algorithm 

+-- 2 ::: 
(a) Bounding cannot be applied 

:"," :=OPT 
OPT 

(b) Bounding can be applied 

f YE3,=OPT+ LB, 

UB = OPT 

(c) UB cannot decrease 

Figure 2: Using bounding in the ILP algorithm 

Figure 1. For our particular case, the solve-sat function 
call invokes the GRASP SAT algorithm [12]. 

4.2 SAT-Based Branch and Bound Algorithm 

A different algorithmic organization consists of using 
a variation of the branch and bound procedure [7 ] ,  where 
upper bounds to the cost function (1) are identified and 
lower bounds to the current set of variable assignments are 
estimated. In our implementation, we have used the lower 
bound estimation procedures described in [4]. 

The operation of bounding for the proposed procedure 
is illustrated in Figure 2.  Let UB denote the lowest com- 

puted upper bound on the solution of (2), LB, denote an 
estimated lower bound on the solution of (2) and OPT 
denote the solution of (2). If the estimated lower bound is 
less than the already computed upper bound (as shown in 
Figure 2-(a)), then the search cannot be bound since it may 
still be possible to reduce the value of the upper bound. 
Clearly, the search can be bound whenever the estimated 
lower bound to the value of ( I )  is,larger than or equal to 
the existing upper bound to the value of (I) ,  as illustrated 
in Figure 2-(b). Finally, observe that Figure 2-(c) denotes 
the conditions after which the upper bound will no longer 
be updated during the search. 

Moreover, since the branch and bound procedure is 
embedded in the SAT algorithm, every pruning technique 
used by the SAT algorithm can also be used in solving the 
ILP. This is particularly useful whenever a constraint of 
(2) becomes unsatisfied. Consequently, the branch and 
bound procedure consists of the following steps: 

1. Initialize the upper bound to highest possible value. 
(Valid ILPs must correspond to instances of the 
minimum-size prime implicant problem.) 

2. If no decision can be made (i.e. a solution to the 
constraints has been identified), then compute an upper 
bound on the minimum value of the cost function of the 
ILP formulation. Update current upper bound and issue 
a conflict to guarantee that the search is bound. 
Otherwise, branch on a given decision variable (i.e. 
make decision assignment). 

3. Apply boolean constraint propagation [16]. If a conflict 
is reached, then diagnose conflict, record relevant 
clauses, and proceed with the search process or 
backtrack if required. 

4. Estimate lower bound. If this value is larger than or 
equal to the current upper bound, then issue a conflict, 
diagnose the conflict, backtrack, and continue the search 
from step 2. 

The pseudo-code for the algorithm is shown in Figure 
3. Observe that the proposed branch and bound SAT-based 
ILP algorithm has the following main differences with 
respect to the linear search ILP algorithm: 

No clauses involving the cost function are created. The 
exception occurs when the estimated lower bound is no 
less than the computed upper bound. In this situation a 
clause involving some of the literals in the cost function 
is temporarily created, thus causing the search 
procedure to backtrack. (See [I21 for details of the 
backtrack search SAT algorithm.) 
Lower bounding procedures are required. As mentioned 
earlier, the lower bounding procedures of 141 are used, 
but lower bounding procedures based on linear- 
programming relaxations or Lagrangian relaxations 
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tnt bsolo ( c p )  

UB = m ;  

while (TRUE) { 
if (Solution-found0 1 1  

Decide0 != DECISION) 
Update-UB ( ) ; 
Issue-UB-based-conflict(); 

1 
while (Deduce ( ) == CONFLICT) { 

if (Diagnose0 == CONFLICT) { 

return -UB; 
I 

I 
while (Estimate-LBO 2 -UB) { 

Issue-LB-based-conflict(); 
if (Diagnose0 == CONFLICT) { 

I 
return -UB; 

I 
1 

t 

Fiaure 3: SAT-based branch and bound alaorithm 

can also be used [3 ,  71. Clearly, the tightness of the 
lower bounding procedure is crucial for the efficiency of 
the branch and bound procedure. 

4.3 Extensions to the Basic ILP Algorithms 

One extension to the proposed ILP algorithms is the 
ability to incrementally enumerate prime implicants by 
increasing size [9]. The procedure proposed in [9] basi- 
cally recreates the search for each new prime implicant to 
be computed. Clearly, this solution can introduce signifi- 
cant and unnecessary computational overhead. One possi- 
ble improvement is based on the SAT-based linear search 
ILP algorithm of Figure 1, and is organized as follows: 

1.  Keep a stack of pairs of computed solutions and 
associated upper bound values k. 

2. Use the current top of the stack to find the next 
minimum-size prime implicant. 

3. For a given solution-upper bound pair k ,  apply the 
algorithm of Figure 1 until the next optimal solution is 
found. For this new optimal bound, enumerate all 
solution assignments. 

4. As soon as a given pair solution-upper bound yields no 
more solutions, pop the stack and go back to step 2. 
Repeat until stack of solution-upper bound pairs 
becomes empty. 

Since for each prime implicant size only part of the 
search space is visited, the above algorithm ensures abet-  

ter worst-case time complexity than the algorithm of [9]. 

5 Experimental Results 

In this section we include experimental results of two 
tools for computing minimum-size prime implicants, min- 
prime [14] and bsolo. min-prime is based on linear search 
through the possible values of the cost function as 
described in Section 4.1, whereas bsolo uses the SAT- 
based branch and bound algorithm as described in Section 
4.2. We also compare these two SAT-based ILP algorithms 
with other ILP solvers, lp-solve [3], opbdp [2], and the 
commercial optimization tool CPLEX. Moreover, the 
binate covering tool scherzo [4] is also evaluated, since 
minimum-size prime implicant computation can also be 
viewed as a restricted form of the binate covering prob- 
lem. For this purpose we selected a set of satisfiable 
instances of the DIMACS benchmarks [6], from most of 
the available classes of instances. The CPU times, 
obtained on a SUN 5/85 machine with 64 MByte of physi- 
cal memory, are shown in Table 1 and Table 2, where 
Table 2 includes the results for the SAT-based algorithms. 
For each benchmark and for each tool 3000 seconds of 
CPU time were allowed. Column min indicates the size of 
the minimum-size prime implicant, when this size is 
known. (Observe that for some of the benchmarks the 
minimum size prime implicant is still unknown.) Table 3 
and Table 4 include the upper bound on the minimum size 
prime implicant computed by each algorithm for each 
benchmark. When each tool terminates, it reports the min- 
imum size prime implicant if it was identified, otherwise 
the lowest computed upper bound is reported provided at 
least one upper bound was identified. For the results 
shown, whenever a tool quits earlier than 3000 sec, then 
the tool exceeded the available virtual memory (i.e. 64 
MB y te) . 

As can be concluded, general-purpose ILP solvers, 
such as CPLEX and lp-solve, may be inadequate for com- 
puting minimum-size prime implicants. Similarly, despite 
the very promising results as an algorithm for solving 
binate covering problems [4], scherzo performs particu- 
larly poorly when computing minimum-size prime impli- 
cants. The three SAT-based ILP solvers can handle a large 
number of benchmarks and, in general, min-prime and 
bsolo perform better and are more robust than opbdp, 
which is unable to find the solution on a larger number of 
instances. For the JNH benchmarks, opbdp performs bet- 
ter because the amount of search is similar and the over- 
head of the underlying GRASP SAT algorithm is larger. 
One key drawback of min-prime derives from using an 
ILP layer around the SAT algorithm which creates large 
additional clauses. For the minimum-size prime implicant 
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Benchmark min CPLEX lp-solve scherzo 

aim-50-2-0-yl-2 109.50 > 3,000 

aim-50-3-4-yl-3 50 62.90 377.10 0.57 

aim-50-6-0-yl-4 50 26.90 96.80 0.73 

aim-100-1-6-yl-2 100 

1 aim-100-6-0-y1-1 1 100) 294.30) >3,000\ 2.78) 

> 3,000 > 3,000 > 1,000 

aim-50-2-0-y1-2 0.64 0.02 

aim-50-6-0-yl-4 

aim-100-1-6-yl-2 

50 0.48 0.07 0.17 

100 > 3,000 0.09 0.22 

aim-100-2-0-yl-3 I !!i 1 4:::: I :::: 1 
aim- 100-3-4-y 1-4 

aim- 100-6-0-y 1 - 1 0.18 0.32 0.52 

aim-100-2-0-yl-3 

aim-100-3-4-yl-4 

100 > 3,000 > 3,000 691.57 

100 > 3,000 > 3,000 35.47 

aim-200-1-6-yl-3 

aim-200-2-0-y1-4 

1 aim-200-3-4-yl-I 1 200 I > 3,000 I > 3,000 I > 3,000 I 

200 > 3,000 > 3,000 > 345 

200 > 3,000 > 3,000 > 1,705 

1 aim-200-6-0-yl-2 1 200 1 > 3,000 I > 3,000 ) 619.38 1 

aim-200- 1-6-yl-3 

aim-200-2-0-yl-4 

aim-200-3-4-y1-I 1 4i:::I 

aim-200-6-0-y1-2 

ii8al 1.93 861.53 3.51 

200 > 3,000 0.22 0.76 

200 > 3,000 0.83 2.60 

ii8b2 

ii8c2 

- > 3,000 > 3,000 > 3,000 

- > 3,000 > 3,000 > 3,000 

jnh7 

ii8b2 

ii8c2 

- > 3,000 > 3,000 > 3,000 

> 3,000 > 3,000 > 3,000 - 

ii8d2 

ii8e2 

jnhl 

jnh7 

1 jnh121 941 0.121 0.581 ::l.:I 
jnhl7 0.30 2.53 

ssa7552-038 - > 3,000 > 1,205 > 500 

> 3,000 > 3,000 > 3,000 - 

3,000 > 3,000 > 3,000 - 

92 2.24 17.96 11.39 

9.06 2.88 89 0.45 

Table 1 : CPU times on selected benchmarks 

jnhl2 

jnhl7 

Table 2:  CPU times on selected benchmarks 

94 2,529 >3,000 3.07 

95 873.90 >3,000 17.28 

problem, these additional clauses involve all variables in 
the problem representation. Hence, conflicts involving this 
clause necessarily lead to chronological backtracking2, 
and so the most useful features of GRASP cannot be 
exploited. Finally, we note that bsolo tends to be a more 
efficient search algorithm than min-prime, as the experi- 
mental results suggest. 

From the obtained experimental results, it can also be 
concluded that the computation of the minimum-size 
prime implicant can be a particularly hard problem for 
specific sets of instances. This is the case, for example, 
with the ii8 and ssa7552 benchmarks. 

2. In such a situation, each conflict involves all variables 
and so backtracking is necessarily chronological, to the 
most recent decision assignment [12]. 

6 Conclusions 

In this paper we describe a new model and algorithms 
for computing minimum size prime implicants of boolean 
functions. The model is based on an ILP formulation and 
the proposed algorithms are built on top of existing SAT 
solvers. To our best knowledge min-prime and bsolo are 
the first SAT-based ILP algorithms that incorporate con- 
flict diagnosis techniques [ 121 in solving optimization 
problems. Both min-prime and bsolo incorporate several 
powerful search-pruning techniques which are known to 
be particularly useful for SAT algorithms, in particular the 
non-chronological backtracking strategy, clause (nogood) 
recording procedures, and identification of necessary 
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I Benchmark I min 1 CPLEX 1 Zp-solve I scherzo I 

aim-50-3-4-y1-3 

aim-50-6-0-yl-4 

Benchmark 1 min I opbdp 1 min-prime I bsolo I 

50 so 50 50 

SO 50 50 50 

1 aim-50-1-6-yl-1 1 501 501 - 1  501 

aim-50-6-0-yl-4 

aim- 100- 1-6-y 1-2 

aim-50-1-6-yl-1 1 S O /  501 501 501 

50 50 50 50 

100 - - - 

1 aim-50-2-0-yl-2 1 501 501 - 1  50 1 

aim- 100-3-4-y 1-4 

aim-100-6-0-y1-1 

100 100 100 100 

100 100 100 100 

aim-200-3-4-yl-1 

aim-200-6-0-y1-2 

200 200 200 200 

200 200 200 200 

ii8al 

ii8b2 

54 54 54 54 

- 388 474 - 

ii8al 

ii8b2 

54 54 54 54 

- - 379 379 

ii8d2 

ii8e2 

- - - 588 

- 653 - - 

ii8d2 

ii8e2 

- - 540 540 

- - 494 494 

jnhl 

jnh7 

92 92 92 92 

89 89 89 89 

jnhl7 

ssa7552-038 

95 95 95 95 

- 1452 1448 1448 ssa7552-038 - 1449 1450 - 

aim-100-1-6-yl-2/ 1001 1001 1001 1001 

aim-100-2-0-yl-3 I 1001 1001 1001 1001 

1 aim-100-6-0-yl-l/ 1001 1001 - 1  1001 

1 aim-200-1-6-yl-3 1 2001 - 1  - 1  - 1  aim-200-1-6-yl-3 1 2001 - 1  2001 2001 

aim-200-2-0-y l-4 1 200 1 - 1 2001 2001 

1 aim-200-6-0-yl-2 I 200 I - 1  - I 200 1 

I ii8c2/ - 1  6291 6681 - 1  

I jnh7/ 891 901 - 1  891 

assignments. 
As the results given in the previous section clearly 

show, the proposed algorithms, min-prime and bsolo, are 
by far the most competitive for the set of benchmarks con- 
sidered. Thus, for these classes of benchmarks either min- 
prime or bsolo would be the option of choice. Moreover, 
as the experimental results show, the branch and bound 
SAT-based ILP algorithm bsolo is in general more efficient 
than the SAT-based linear search ILP algorithm. 

Despite the promising results given in the previous 
section, more work needs to be done before an ILP algo- 
rithm can be used for solving instances of the minimum- 
size prime implicant problem which have a practical 
impact. Furthermore, observe that even though both the 
minimum size prime implicant problem and the binate 

covering problem have similar formulations, the algo- 
rithms for solving each problem should have different 
organizations, as the experimental results of min-prime 
[ 141, bsolo and scherzo [4] clearly suggest. 

As mentioned earlier, one key bottleneck of the pro- 
posed min-prime algorithmic solution is the ILP layer 
around GRASP. The repeated addition of large clauses to 
the CNF formula reduces the ability of GRASP for back- 
tracking non-chronologically and in several cases causes 
GRASP to always backtrack chronologically. In contrast, 
with bsolo, since no large clauses are created, non-chrono- 
logical backtracking can in general be exercised. 

One other improvement to the proposed algorithmic 
framework consists of iterating the computation of prime 
implicants by increasing size. This requires implementing 
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the procedure described in Section 4.3. Its usefulness 
depends on the target number of prime implicants. If all 
prime implicants are required, this approach clearly 
becomes impractical when the total number of prime 
implicants is exponential on the number of variables. 

Finally, other realizations of the SAT-based branch 
and bound ILP algorithm can be envisioned and used for 
computing minimum-size prime implicants. These other 
realizations utilize different bounding procedures. We are 
currently experimenting with bounding procedures based 
on LP-relaxations [ 3 ,  71 and on Lagrangian relaxations [ I ,  
71. 
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