
Prime Implicant Computation Using Satisfiability Algorithms

Vasco M. Manquinho, Paulo E Flores, Jo20 P. Marques Silva, Arlindo L. Oliveira
Cadence European Laboratories

IS TANES C
1000 Lisboa, Portugal

vmm@calvin.inesc.pt,{pff,jpms,aml}@inesc.pt

Abstract
The computation of prime implicants has several and

significant applications in different areas, including Auto-
mated Reasoning, Non-Monotonic Reasoning, Electronic
Design Automation, among others. In this paper we
describe a new model and algorithm for computing mini-
mum-size prime implicants of propositional formulas. The
proposed approach is based on creating an integer linear
program (ILP) formulation for computing the minimum-
size prime implicant, which simplijes existing formula-
tions. In addition, we introduce two new algorithms for
solving ILPs, both of which are built on top of an algo-
rithm for propositional satisjability (SAT). Given the
organization of the proposed SAT algorithm, the resulting
ILP procedures implement powerful search pruning tech-
niques, including a non-chronological backtracking
search strategy, clause recording procedures and iden@-
cation of necessary assignments. Experimental results,
obtained on several benchmark examples, indicate that the
proposed model and algorithms are significantly more ef i -
cient than other existing solutions.

1 Introduction

Given a propositional formula cp in Conjunctive Nor-
mal Form (CNF), denoting a boolean functionf, the prob-
lem of computing a minimum-size assignment (in the
number of literals) that satisfies f is referred to as the mini-
mum-size prime implicant problem. Minimum-size prime
implicants find application in many areas including,
among others, Automated Reasoning, Non-Monotonic
Reasoning and Electronic Design Automation. Moreover,
interest on computing minimum-size prime implicants of
boolean functions has motivated extensive research work
(see for example [8 ,9] , which include comprehensive bib-
liographic references.).

In this paper we describe an Integer Linear Program
(ILP) formulation for computing minimum-size prime
implicants of boolean functions described by Conjunctive
Normal Form (CNF) formulas. The proposed ILP model,
first introduced in [141, significantly simplifies the one

originally described in [9]. Moreover, we propose two new
algorithms for solving ILPs where the variables have bool-
ean domains (01-ILPs). Both algorithms are based on
propositional satisfiability (SAT). The first one generalizes
the SAT-based ILP algorithm originally described in [2],
whereas the second one describes a branch and bound ILP
procedure built on top of a SAT solver. For both algo-
rithms the GRASP SAT solver [12, 151 is used. Prelimi-
nary results, obtained on several satisfiable instances of
the DIMACS benchmarks [6], indicate that the proposed
model and algorithms can be used for computing mini-
mum-size prime implicants for several classes of boolean
functions. Furthermore, we show that widely used ILP
algorithms, most of which are based on linear-program-
ming (LP) relaxations [7], may be inadequate for comput-
ing minimum-size prime implicants. This result strongly
suggests using dedicated ILP algorithms for solving the
minimum-size prime implicant problem. Finally, we note
that the proposed ILP algorithms, implement powerful
search pruning techniques commonly used in SAT algo-
rithms, which include a non-chronological backtracking
search strategy, clause recording procedures and identifi-
cation of necessary assignments.

The paper is organized as follows. In Section 2 the
notational framework used throughout the paper is intro-
duced. Afterwards, we describe the ILP model for com-
puting minimum-size prime implicants of boolean
functions described with CNF formulas. This model is
based on the one proposed in [9], but significantly reduces
the number of variables as well as the size of their
domains. Consequently, the worst-case size of the search
space becomes drastically reduced, and hence a smaller
search space is expected for most practical examples. In
Section 4 we describe two new SAT-based ILP algorithms
and illustrate how the identification of prime implicants
can be iterated. The procedure proposed in this paper for
iterating prime implicants by increasing size is provably
more efficient than the one described in [9]. The different
algorithms are experimentally evaluated in Section 5 .
Finally, Section 6 concludes the paper suggesting potential
improvements to the proposed model and algorithms.

232
1082-3409197 $10.00 0 1997 IEEE

In Proc. of the IEEE Int. Conf. on Tools with Artificial Intelligence (ICTAI), pages 232-239, Nov. 1997.

2 Definitions follows:

2n

min C y j
j = 1

The paper follows the definitions introduced in [12,
141, in particular for the organization of the GRASP SAT
algorithm which is described in Section 4. In general, a
propositional formula cp in CNF denotes a boolean func-
tion f : (0 , 1 } -+ { 0, 1 }, where each clause w is a sum
of litcrals, and a literal I is cither a variablc xi or its com-
plement x i . For a search-based algorithm for SAT, a con-
flict i s said to he identified when all literals of at least one
clause are assigned value 0. The GRASP SAT [121 algo-
rithm implements several techniques for pruning the
amount of search based on the diagnosis of conflicts iden-
tified during the search.

A clause w = (11 + ... + Z k) denotes a constraint
which can also be viewed as a linear inequality,
1, + . . . + I ,> 1 . We use this alternative representation
when appropriate. Furthermore, since a literal 1 = xi' can
also be defined by 1 = 1 - x i , we shall in general use this
latter representation when viewing clauses as linear ine-
qualities.

3 Prime Implicant Computation Using Inte-
ger Programming

Given a description of a Boolean function in CNF, it
is straightforward to formulate the computation of the
minimum-size prime implicant as an integer linear pro-
gram [9]. In this paper we show how to simplify the for-
mulation proposed in [9], thus allowing for a significant
reduction in the worst-case search space. This improved
model was first described in 1141.

Given a CNF formula cp, which is defined on a set of
variables {xl, . . ., xn}, with p clauses { w,, . . ., op}, and
which denotes a Boolean function f : (O,l}n+ (0 , l},
apply the following transformation.

1. Create a new set of boolean variables {yl, ...,y2,,},
where y2i - is associated with literal x i , and yZ i is
associated with literal x; .

2. For each clause o = (I l + ... + 1,) , replace each
literal l j with y 2 k - , if l j = x k , or with y Z k if 1. = n.' .

3. For each pair of variables, y2 i - and y2 i , require that
at most one is set to one. Hence, y2i- + y2i I 1 .

4. The set of inequalities obtained from steps 2. and 3. can
be viewed as a single set of inequalities A . y 2 b .
Furthermore, define the cost function to be,

1 1

2 n

min C y j (1)
j = 1

5. The complete ILP formulation is thus defined as

s.t. A . y 2 b
It is clear that the solution of (2) denotes a minimum-

size prime implicant of the original CNF formula cp, and
from [9] we have,

Proposition 1. Given a CNF formula cp and associated
boolean function f, the solution of the optimization prob-
lem (2) is a minimum-size prime implicant off.

The proposed ILP model is based on the one
described in [9]. However, the model proposed in [9] asso-
ciates an integer variable Ai with each inequality created
from each original clause wi . As we showed above, such
integer variables are unnecessary and only increase the
worst-case search space. Indeed, for the ILP model of (2) ,
the worst-case search space is,

22n = 4" (3)
whereas for the ILP model of [9], the worst-case search
space is,

4 n . f I , w i , (4)
i = 1

where lwll denotes the number of literals of clause w, ,
and represents the least upper bound on the integer vari-
able hi associated with clause mi and introduced in the
ILP model of [9]. Consequently, the worst-case search
space for the ILP model we propose in this paper is prov-
ably less than for the model proposed in [Y]. We should
note that for both models, and for a search-based ILP algo-
rithm, a straightforward arrangement of the order of the
decision variables leads to a worst-case search space of 3n
(since only 3 assignments are possible for each of the n
pairs of variables), but unfortunately this information can-
not in general be made available to the ILP solver.

The construction of the ILP model (2) will be illus-
trated with the following CNF formula:

(5)

First, we start by creating a new set of variables
{yl, yZ, y3, y4, Y ~ , y+, and associate yZi - with each xi
and y2i with each xi . Consequently, from (5) the folloa-
ing modified CNF formula cp' is obtained:

cp = (xl + X 2 + X 3) . (x1'+x2') . (X l ' + X 3 ')

For each clause, simple algebraic manipulation yields

233

an equivalent inequality:

Y,+Y,+Y521

Y 2 + Y 4 2 1 (7)

Y 2 + Y g 2 '

The next step is to require that at most one variable of
each pair of variables y2i- , , y Z i can be set to one, which
yields:

y , + y z < 1 , a - y 1 - y 2 > - 1

y 3 + y 4 1 1 '%y3-y42-l (8)
y 5 + y 6 $ 1 e % - y 5 - y g 2 - 1

Thus allowing for a given variable xi not to be
assigned. Equations (7) and (8) define the set of inequali-
ties A . y 2 b . The next step is to identify the cost func-
tion, which minimizes the number of variables assigned
value one, i.e. the number of variables xi with an assigned
value. Finally the resulting ILP model becomes:

min Y 1 + Y 2 + Y 3 + Y 4 + Y 5 f Y 6

s.t. A . y 2 b
(9)

One solution to the integer linear program (9) is, for
example, x1 = 0 and x2 = 1 .

4 Search Algorithms for Solving ILPs

In [2] P. Barth described how to solve ILPs using a
propositional satisfiability algorithm. However, the ILP
algorithm described in [2] is based on the Davis-Putnam
[5] procedure, which has been shown to be particularly
inefficient for a large number of instances of SAT [121.

In this section we describe two different algorithms
for solving ILPs associated with instances of the mini-
mum-size prime implicant problem. Both are based on
SAT algorithms. The first algorithm follows P. Barth's
approach, whereas the second builds a branch and bound
procedure on top of a SAT engine. The two algorithms use
the GRASP SAT algorithm described in [12], which
includes several powerful pruning techniques for reducing
the amount of search associated with instances of SAT.
Among the pruning techniques included in GRASP, the
following have been shown to be particularly significant:

GRASP implements a non-chronological backtracking
search strategy'. This backtracking strategy potentially
permits skipping over large portions of the decision tree
for some instances of SAT.

1. Some variations of this strategy are also commonly
referred to as dependency-directed backtracking and
backjumping [lo].

GRASP utilizes selective clause recording techniques.
During the search process, and as conflicts are
diagnosed, new clauses are created from the causes of
the conflicts. These clauses represent implicates of the
boolean function associated with the CNF formula, and
are often referred to as nogoods [I l l . Newly recorded
clauses are then used for pruning the subsequent search.
Moreover, bounds on the size of recorded clauses can be
imposed, thus preventing an excessive growth of the
resulting CNF formula.
In most practical situations, instances of SAT can have
highly structured CNF representations. The intrinsic
structure of these representations can be exploited by
GRASP, after diagnosing the causes of conflicts, by
identifying necessary assignments required for
preventing conflicts from being identified during the
search.
In addition, other pruning techniques can be
straightforwardly applied to SAT algorithms. In
particular, and as described in [13], several techniques
commonly used in algorithms for different variations of
the set covering problem [4].

4.1 SAT-Based Linear Search Algorithm

The first ILP algorithm follows P. Barth's ILP algo-
rithm [2] and was first described in [14]. Let us consider
the cost function (1). The possible values assumed by the
cost function for the different assignments to the variables
in the set {y,, . . . , yZn} range from 0, when all variables
are assigned value 0, to 2 n , when all variables are
assigned value 1. Note however, that for the minimum-
size prime implicant problem a trivial upper bound is n ,
since for any pair of variables yZi- , yZi at most one can
be assigned value 1. P. Barth's [2] approach consists of
applying the following sequence of steps, starting from an
upper bound of k = n on the value of the cost function:

1. Create a new inequality x y j I k . This inequality
basically requires that a computed solution must have
no more than k literals assigned value 1.

2. Solve the resulting instance of satisfiability. (Note that
the resulting instance of satisfiability is defined on linear
inequalities, but modifying most SAT algorithms for
handling this generalization is straightforward.)

3. If the instance of SAT is satisfiable decrement k (i.e.
specify a new value for the cost function) and go back to
step 1. Otherwise, report that the solution to the ILP is
k + l .

Note that this ILP algorithm allows for any SAT algo-
rithm to be used as the underlying SAT testing engine, pro-
vided the algorithm is modified to handle linear
inequalities. The proposed ILP algorithm is illustrated in

234

Authorized licensed use limited to: UNIVERSIDADE TECNICA DE LISBOA. Downloaded on June 7, 2009 at 18:41 from IEEE Xplore. Restrictions apply.

int m i n j r i m e ('p)

t
k = n ;
while (k 2 0) {

cp = cpu {
status = solve-sat(q);
cp = 9 - { x l ; ' k } ;

if (status == SATISFIABLE) {

Y . l k } ; c ,
k = X y j ;
- - k ;

1 else { + + k ; break; 1
return k ;

I

Figure 1 : SAT-based linear search algorithm

+-- 2 :::
(a) Bounding cannot be applied

:"," :=OPT
OPT

(b) Bounding can be applied

f YE3,=OPT+ LB,

UB = OPT

(c) UB cannot decrease

Figure 2: Using bounding in the ILP algorithm

Figure 1. For our particular case, the solve-sat function
call invokes the GRASP SAT algorithm [12].

4.2 SAT-Based Branch and Bound Algorithm

A different algorithmic organization consists of using
a variation of the branch and bound procedure [7] , where
upper bounds to the cost function (1) are identified and
lower bounds to the current set of variable assignments are
estimated. In our implementation, we have used the lower
bound estimation procedures described in [4].

The operation of bounding for the proposed procedure
is illustrated in Figure 2. Let UB denote the lowest com-

puted upper bound on the solution of (2), LB, denote an
estimated lower bound on the solution of (2) and OPT
denote the solution of (2). If the estimated lower bound is
less than the already computed upper bound (as shown in
Figure 2-(a)), then the search cannot be bound since it may
still be possible to reduce the value of the upper bound.
Clearly, the search can be bound whenever the estimated
lower bound to the value of (I) is,larger than or equal to
the existing upper bound to the value of (I) , as illustrated
in Figure 2-(b). Finally, observe that Figure 2-(c) denotes
the conditions after which the upper bound will no longer
be updated during the search.

Moreover, since the branch and bound procedure is
embedded in the SAT algorithm, every pruning technique
used by the SAT algorithm can also be used in solving the
ILP. This is particularly useful whenever a constraint of
(2) becomes unsatisfied. Consequently, the branch and
bound procedure consists of the following steps:

1. Initialize the upper bound to highest possible value.
(Valid ILPs must correspond to instances of the
minimum-size prime implicant problem.)

2. If no decision can be made (i.e. a solution to the
constraints has been identified), then compute an upper
bound on the minimum value of the cost function of the
ILP formulation. Update current upper bound and issue
a conflict to guarantee that the search is bound.
Otherwise, branch on a given decision variable (i.e.
make decision assignment).

3. Apply boolean constraint propagation [16]. If a conflict
is reached, then diagnose conflict, record relevant
clauses, and proceed with the search process or
backtrack if required.

4. Estimate lower bound. If this value is larger than or
equal to the current upper bound, then issue a conflict,
diagnose the conflict, backtrack, and continue the search
from step 2.

The pseudo-code for the algorithm is shown in Figure
3. Observe that the proposed branch and bound SAT-based
ILP algorithm has the following main differences with
respect to the linear search ILP algorithm:

No clauses involving the cost function are created. The
exception occurs when the estimated lower bound is no
less than the computed upper bound. In this situation a
clause involving some of the literals in the cost function
is temporarily created, thus causing the search
procedure to backtrack. (See [I21 for details of the
backtrack search SAT algorithm.)
Lower bounding procedures are required. As mentioned
earlier, the lower bounding procedures of 141 are used,
but lower bounding procedures based on linear-
programming relaxations or Lagrangian relaxations

235

tnt bsolo (c p)

UB = m ;

while (TRUE) {
if (Solution-found0 1 1

Decide0 != DECISION)
Update-UB () ;
Issue-UB-based-conflict();

1
while (Deduce () == CONFLICT) {

if (Diagnose0 == CONFLICT) {

return -UB;
I

I
while (Estimate-LBO 2 -UB) {

Issue-LB-based-conflict();
if (Diagnose0 == CONFLICT) {

I
return -UB;

I
1

t

Fiaure 3: SAT-based branch and bound alaorithm

can also be used [3 , 71. Clearly, the tightness of the
lower bounding procedure is crucial for the efficiency of
the branch and bound procedure.

4.3 Extensions to the Basic ILP Algorithms

One extension to the proposed ILP algorithms is the
ability to incrementally enumerate prime implicants by
increasing size [9]. The procedure proposed in [9] basi-
cally recreates the search for each new prime implicant to
be computed. Clearly, this solution can introduce signifi-
cant and unnecessary computational overhead. One possi-
ble improvement is based on the SAT-based linear search
ILP algorithm of Figure 1, and is organized as follows:

1. Keep a stack of pairs of computed solutions and
associated upper bound values k.

2. Use the current top of the stack to find the next
minimum-size prime implicant.

3. For a given solution-upper bound pair k , apply the
algorithm of Figure 1 until the next optimal solution is
found. For this new optimal bound, enumerate all
solution assignments.

4. As soon as a given pair solution-upper bound yields no
more solutions, pop the stack and go back to step 2.
Repeat until stack of solution-upper bound pairs
becomes empty.

Since for each prime implicant size only part of the
search space is visited, the above algorithm ensures abet-

ter worst-case time complexity than the algorithm of [9].

5 Experimental Results

In this section we include experimental results of two
tools for computing minimum-size prime implicants, min-
prime [14] and bsolo. min-prime is based on linear search
through the possible values of the cost function as
described in Section 4.1, whereas bsolo uses the SAT-
based branch and bound algorithm as described in Section
4.2. We also compare these two SAT-based ILP algorithms
with other ILP solvers, lp-solve [3], opbdp [2], and the
commercial optimization tool CPLEX. Moreover, the
binate covering tool scherzo [4] is also evaluated, since
minimum-size prime implicant computation can also be
viewed as a restricted form of the binate covering prob-
lem. For this purpose we selected a set of satisfiable
instances of the DIMACS benchmarks [6], from most of
the available classes of instances. The CPU times,
obtained on a SUN 5/85 machine with 64 MByte of physi-
cal memory, are shown in Table 1 and Table 2, where
Table 2 includes the results for the SAT-based algorithms.
For each benchmark and for each tool 3000 seconds of
CPU time were allowed. Column min indicates the size of
the minimum-size prime implicant, when this size is
known. (Observe that for some of the benchmarks the
minimum size prime implicant is still unknown.) Table 3
and Table 4 include the upper bound on the minimum size
prime implicant computed by each algorithm for each
benchmark. When each tool terminates, it reports the min-
imum size prime implicant if it was identified, otherwise
the lowest computed upper bound is reported provided at
least one upper bound was identified. For the results
shown, whenever a tool quits earlier than 3000 sec, then
the tool exceeded the available virtual memory (i.e. 64
MB y te) .

As can be concluded, general-purpose ILP solvers,
such as CPLEX and lp-solve, may be inadequate for com-
puting minimum-size prime implicants. Similarly, despite
the very promising results as an algorithm for solving
binate covering problems [4], scherzo performs particu-
larly poorly when computing minimum-size prime impli-
cants. The three SAT-based ILP solvers can handle a large
number of benchmarks and, in general, min-prime and
bsolo perform better and are more robust than opbdp,
which is unable to find the solution on a larger number of
instances. For the JNH benchmarks, opbdp performs bet-
ter because the amount of search is similar and the over-
head of the underlying GRASP SAT algorithm is larger.
One key drawback of min-prime derives from using an
ILP layer around the SAT algorithm which creates large
additional clauses. For the minimum-size prime implicant

236

Benchmark min CPLEX lp-solve scherzo

aim-50-2-0-yl-2 109.50 > 3,000

aim-50-3-4-yl-3 50 62.90 377.10 0.57

aim-50-6-0-yl-4 50 26.90 96.80 0.73

aim-100-1-6-yl-2 100

1 aim-100-6-0-y1-1 1 100) 294.30) >3,000\ 2.78)

> 3,000 > 3,000 > 1,000

aim-50-2-0-y1-2 0.64 0.02

aim-50-6-0-yl-4

aim-100-1-6-yl-2

50 0.48 0.07 0.17

100 > 3,000 0.09 0.22

aim-100-2-0-yl-3 I !!i 1 4:::: I :::: 1
aim- 100-3-4-y 1-4

aim- 100-6-0-y 1 - 1 0.18 0.32 0.52

aim-100-2-0-yl-3

aim-100-3-4-yl-4

100 > 3,000 > 3,000 691.57

100 > 3,000 > 3,000 35.47

aim-200-1-6-yl-3

aim-200-2-0-y1-4

1 aim-200-3-4-yl-I 1 200 I > 3,000 I > 3,000 I > 3,000 I

200 > 3,000 > 3,000 > 345

200 > 3,000 > 3,000 > 1,705

1 aim-200-6-0-yl-2 1 200 1 > 3,000 I > 3,000) 619.38 1

aim-200- 1-6-yl-3

aim-200-2-0-yl-4

aim-200-3-4-y1-I 1 4i:::I

aim-200-6-0-y1-2

ii8al 1.93 861.53 3.51

200 > 3,000 0.22 0.76

200 > 3,000 0.83 2.60

ii8b2

ii8c2

- > 3,000 > 3,000 > 3,000

- > 3,000 > 3,000 > 3,000

jnh7

ii8b2

ii8c2

- > 3,000 > 3,000 > 3,000

> 3,000 > 3,000 > 3,000 -

ii8d2

ii8e2

jnhl

jnh7

1 jnh121 941 0.121 0.581 ::l.:I
jnhl7 0.30 2.53

ssa7552-038 - > 3,000 > 1,205 > 500

> 3,000 > 3,000 > 3,000 -

3,000 > 3,000 > 3,000 -

92 2.24 17.96 11.39

9.06 2.88 89 0.45

Table 1 : CPU times on selected benchmarks

jnhl2

jnhl7

Table 2: CPU times on selected benchmarks

94 2,529 >3,000 3.07

95 873.90 >3,000 17.28

problem, these additional clauses involve all variables in
the problem representation. Hence, conflicts involving this
clause necessarily lead to chronological backtracking2,
and so the most useful features of GRASP cannot be
exploited. Finally, we note that bsolo tends to be a more
efficient search algorithm than min-prime, as the experi-
mental results suggest.

From the obtained experimental results, it can also be
concluded that the computation of the minimum-size
prime implicant can be a particularly hard problem for
specific sets of instances. This is the case, for example,
with the ii8 and ssa7552 benchmarks.

2. In such a situation, each conflict involves all variables
and so backtracking is necessarily chronological, to the
most recent decision assignment [12].

6 Conclusions

In this paper we describe a new model and algorithms
for computing minimum size prime implicants of boolean
functions. The model is based on an ILP formulation and
the proposed algorithms are built on top of existing SAT
solvers. To our best knowledge min-prime and bsolo are
the first SAT-based ILP algorithms that incorporate con-
flict diagnosis techniques [121 in solving optimization
problems. Both min-prime and bsolo incorporate several
powerful search-pruning techniques which are known to
be particularly useful for SAT algorithms, in particular the
non-chronological backtracking strategy, clause (nogood)
recording procedures, and identification of necessary

237

I Benchmark I min 1 CPLEX 1 Zp-solve I scherzo I

aim-50-3-4-y1-3

aim-50-6-0-yl-4

Benchmark 1 min I opbdp 1 min-prime I bsolo I

50 so 50 50

SO 50 50 50

1 aim-50-1-6-yl-1 1 501 501 - 1 501

aim-50-6-0-yl-4

aim- 100- 1-6-y 1-2

aim-50-1-6-yl-1 1 S O / 501 501 501

50 50 50 50

100 - - -

1 aim-50-2-0-yl-2 1 501 501 - 1 50 1

aim- 100-3-4-y 1-4

aim-100-6-0-y1-1

100 100 100 100

100 100 100 100

aim-200-3-4-yl-1

aim-200-6-0-y1-2

200 200 200 200

200 200 200 200

ii8al

ii8b2

54 54 54 54

- 388 474 -

ii8al

ii8b2

54 54 54 54

- - 379 379

ii8d2

ii8e2

- - - 588

- 653 - -

ii8d2

ii8e2

- - 540 540

- - 494 494

jnhl

jnh7

92 92 92 92

89 89 89 89

jnhl7

ssa7552-038

95 95 95 95

- 1452 1448 1448 ssa7552-038 - 1449 1450 -

aim-100-1-6-yl-2/ 1001 1001 1001 1001

aim-100-2-0-yl-3 I 1001 1001 1001 1001

1 aim-100-6-0-yl-l/ 1001 1001 - 1 1001

1 aim-200-1-6-yl-3 1 2001 - 1 - 1 - 1 aim-200-1-6-yl-3 1 2001 - 1 2001 2001

aim-200-2-0-y l-4 1 200 1 - 1 2001 2001

1 aim-200-6-0-yl-2 I 200 I - 1 - I 200 1

I ii8c2/ - 1 6291 6681 - 1

I jnh7/ 891 901 - 1 891

assignments.
As the results given in the previous section clearly

show, the proposed algorithms, min-prime and bsolo, are
by far the most competitive for the set of benchmarks con-
sidered. Thus, for these classes of benchmarks either min-
prime or bsolo would be the option of choice. Moreover,
as the experimental results show, the branch and bound
SAT-based ILP algorithm bsolo is in general more efficient
than the SAT-based linear search ILP algorithm.

Despite the promising results given in the previous
section, more work needs to be done before an ILP algo-
rithm can be used for solving instances of the minimum-
size prime implicant problem which have a practical
impact. Furthermore, observe that even though both the
minimum size prime implicant problem and the binate

covering problem have similar formulations, the algo-
rithms for solving each problem should have different
organizations, as the experimental results of min-prime
[141, bsolo and scherzo [4] clearly suggest.

As mentioned earlier, one key bottleneck of the pro-
posed min-prime algorithmic solution is the ILP layer
around GRASP. The repeated addition of large clauses to
the CNF formula reduces the ability of GRASP for back-
tracking non-chronologically and in several cases causes
GRASP to always backtrack chronologically. In contrast,
with bsolo, since no large clauses are created, non-chrono-
logical backtracking can in general be exercised.

One other improvement to the proposed algorithmic
framework consists of iterating the computation of prime
implicants by increasing size. This requires implementing

238

the procedure described in Section 4.3. Its usefulness
depends on the target number of prime implicants. If all
prime implicants are required, this approach clearly
becomes impractical when the total number of prime
implicants is exponential on the number of variables.

Finally, other realizations of the SAT-based branch
and bound ILP algorithm can be envisioned and used for
computing minimum-size prime implicants. These other
realizations utilize different bounding procedures. We are
currently experimenting with bounding procedures based
on LP-relaxations [3 , 71 and on Lagrangian relaxations [I ,
71.

References

[I] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network
Flows: Theory, Algorithms, and Applications, Prentice-
Hall, 1993.

[2] P. Barth, “A Davis-Putnam Based Enumeration Algorithm
for Linear Pseudo-Boolean Optimization,” Technical
Report MPI-1-95-2-003, Max-Planck-Institut fur Informa-
tik, January 1995.

[3] M. R. C. M. Berkelaar, UNIXTM Manual Page of Ip-solve.
Eindhoven University of Technology, Design Automation
Section, 1992.

[4] 0. Coudert, “On Solving Covering Problems,” in Proceed-
ings of the Design Automation Conference, June 1996.

[5] M. Davis and H. Putnam, “A Computing Procedure for
Quantification Theory,” Journal of the Association for Com-
puting Machinery, vol. 7 , pp. 201-215, 1960.

[6] D. S. Johnson and M. A. Trick (eds.), Second DIMACS
Implementation Challenge, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 1993.
DIMACS benchmarks available in ftp://Dimacs.Rut-
gers.EDU/pub/challenge/sat/benchmarks/cnf.

[7] G. L. Nemhauser and L. A. Wolsey, Integer and Combina-
torial Optimization, John Wiley & Sons, 1988.

[8] T. Ngair, “A New Algorithm for Incremental Prime Impli-
cant Generation,” in Proceedings of the International Joint
Conference on Artificial Intelligence, 1993.

[9] C. Pizzuti, “Computing Prime Implicants by Integer Pro-
gramming,” in Proceedings of International Conference on
Tools with Artijicial Intelligence, November 1996.

[IO] S. J. Russell and P. Norvig, Art$cial Intelligence: A Mod-
ern Approach, Prentice-Hall, 1994.

[I l l T. Schiex and G . Verfaillie, “Nogood Recording for Static
and Dynamic Constraint Satisfaction Problems,” in Pro-
ceedings of the International Conference on Tools with Arti-
ficial Intelligence, pp. 48-55, 1993.

[12] J. P. M. Silva and K. A. Sakallah, ‘‘Conflict Analysis in
Search Algorithms for Propositional Satisfiability,” in Pro-
ceedings of the International Conference on Tools with Arti-
jcial Intelligence, November 1996.

[I31 J. P. M. Silva and A. L. Oliveira, “Improving Satisfiability

Algorithms with Dominance and Partitioning,” in Interna-
tional Workshop on Logic Synthesis, May 1997.

141 J. P. M. Silva, “On Computing Minimum Size Prime Impli-
cants,” in International Workshop on Logic Synthesis, May
1997.

151 J. P. M. Silva, GRASP source code, available from ftp://
algos.inesc.pt/pub/users/jpms/soft/grasp/.

1161 R. Zabih and D. A. McAllester, “A Rearrangement Search
Strategy for Determining Propositional Satisfiability,” in
Proceedings of the National Conference on Arti$cial Intelli-
gence, pp. 155-160, 1988.

239

ftp://Dimacs.Rut

