
Prime Object Proposals with Randomized Prim’s Algorithm

Santiago Manen1 Matthieu Guillaumin1 Luc Van Gool1,2

1Computer Vision Laboratory 2ESAT - PSI / IBBT
ETH Zurich K.U. Leuven

{smanenfr, guillaumin, vangool}@vision.ee.ethz.ch

Abstract

Generic object detection is the challenging task of
proposing windows that localize all the objects in an image,
regardless of their classes. Such detectors have recently
been shown to benefit many applications such as speeding-
up class-specific object detection, weakly supervised learn-
ing of object detectors and object discovery.

In this paper, we introduce a novel and very efficient
method for generic object detection based on a randomized
version of Prim’s algorithm. Using the connectivity graph
of an image’s superpixels, with weights modelling the prob-
ability that neighbouring superpixels belong to the same ob-
ject, the algorithm generates random partial spanning trees
with large expected sum of edge weights. Object localiza-
tions are proposed as bounding-boxes of those partial trees.

Our method has several benefits compared to the state-
of-the-art. Thanks to the efficiency of Prim’s algorithm, it
samples proposals very quickly: 1000 proposals are ob-
tained in about 0.7s. With proposals bound to superpixel
boundaries yet diversified by randomization, it yields very
high detection rates and windows that tightly fit objects.

In extensive experiments on the challenging PASCAL
VOC 2007 and 2012 and SUN2012 benchmark datasets, we
show that our method improves over state-of-the-art com-
petitors for a wide range of evaluation scenarios.

1. Introduction

Generic object detection is a recent development of com-

puter vision research that has received a fast-growing inter-

est [1, 3, 9, 27], cf Fig. 1. This is mainly due to the large

number of applications of such systems. The most common

motivation for using such object proposals relates to class-

specific object detection [2, 27]. The proposals can indeed

be used as a replacement for the computationally expensive

sliding window approach for object detection [6, 12, 15].

This yields important computational savings as the number

of classes and the complexity of the object detectors grow.

Figure 1: Detecting any object in images (bounding-boxes in

blue) is a recent development of computer vision. We compare the

best proposals of our approach (in yellow) with Objectness ([2], in

red) on four images of the VOC2007 dataset. Our algorithm gen-

erates tighter-fitting windows. [NB: Figures best viewed in color.]

Clearly, the computational cost to obtain the proposals is of

crucial importance as it should not imper the later savings.

Generic object proposals are also used as a regular-

ization for weakly supervised learning approaches in vi-

sion. By limiting the set of possible object locations to

those that are likely to contain an object, it becomes pos-

sible to learn the appearance and localize objects of new

classes [7, 8, 16, 17, 24, 23]. In a similar spirit, recent work

has explored applications in object discovery [18], weakly

supervised learning of object interaction with humans [19]

or with other objects [5], as well as action recognition in

still images [22] and content-aware media re-targeting [26].

For all of these applications, the quality of the underlying

object proposals – commonly measured by the intersection-

over-union (IoU) [10] of image windows – is a critical fac-

tor of performance [21]. Indeed, when considering object

detection, the recall of the complex models applied to object

proposals cannot exceed the recall of the proposals them-

selves. Moreover, for the application of weakly supervised

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.315

2536

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.315

2536



learning, the quality of possible object locations will impact

both the ability to find those objects and the quality of the

models that can be learnt from those windows used as au-

tomatic annotations. This highlights the need for methods

that are able to generate high-quality and tightly fitting win-

dows, and, in particular, this implies performing analysis

beyond the coarse detection criterion of 0.5 IoU.

In this paper, we propose a novel algorithm to generate

very quickly high-quality object proposals, c.f . Fig. 1. Our

approach is based on Prim’s algorithm [20], which greed-

ily computes the maximum spanning tree of a weighted

graph. The stochastic version we propose, the Randomized
Prim’s (RP) algorithm, is designed to sample random par-

tial spanning trees of a graph with large expected sum of

edge weights. This is done by (i) replacing the greedy se-

lection of edges in Prim’s algorithm with multinomial sam-

pling proportional to edge weights, and (ii) using a random-

ized termination criterion to avoid covering the full graph.

To obtain the proposals, we apply RP on the graph

induced by the superpixels [13] of an image, with edge

weights representing the likelihood that two neighbouring

superpixels belong to the same object. Based on a train-

ing set, we use logistic regression to discriminatively learn

these weights as a linear combination of several superpixel

similarities. When the randomized stopping criterion of RP

is met, we generate an object proposal using the bounding-

box of the superpixels spanned by the current tree.

Our approach combines the following advantages: (i) su-

perpixel boundaries yield proposals that tightly fit objects;

(ii) randomization increases the diversity of our proposals

and (iii) RP is very efficient, leading to a very fast ob-

ject proposal method. We have conducted extensive experi-

ments on the PASCAL VOC2007 [10], VOC2012 [11] and

SUN2012 [29] benchmark data sets and show the superior-

ity of RP in speed and performance compared to state-of-

the-art methods [2, 21, 27], especially in difficult scenarios

such as IoU ≥ 0.6: 1000 object proposals are obtained in

less than 0.7s while detecting 74% of the objects.

Below, we first discuss related work (Sec. 2), then de-

scribe RP in details (Sec. 3). We present how we use RP for

object proposals in Sec. 4, including how we learn the edge

weights for the graph of superpixels. We then present our

experiments in Sec. 5 and draw conclusions in Sec. 6.

2. Related Work
Generic object detection is a fairly recent topic of re-

search, with origins dating only three years ago [1, 3].

Alexe et al. [1] introduced the Objectness measure, which

samples image windows with the probabilities that they

contain an object of any class. This is performed using a set

of well-designed cues that are combined in a Naı̈ve Bayes

framework. To sample from the 4d distribution of windows

with scores, the authors propose to first score 100.000 win-

dows, then subsample them based on their probabilities. In

their subsequent work [2], significant improvements in de-

tection rate were obtained using Non-Maximum Suppres-

sion as in class-specific object detection [12]. This ap-

proach proved very successful and triggered several exten-

sions, including additional cues and using discriminative

training [21], fusion with region saliency [4] and general-

ization to video using motion segmentation [25].

Carreira et al. [3] simultaneously proposed a method

based on graphcuts to generate image segmentations that

are likely to contain objects. Each segmentation generates

a bounding-box that is used as proposal for an object. To

obtain many proposals, several graphcuts are run using ran-

dom positive and negative seeds. In a similar spirit, in [9],

initial superpixels are grown using foreground-background

CRF segmentation with random seeds, and proposals are

ranked according to extracted features.

These existing methods have benefits over our approach.

[2, 21] provide scores with the proposals, which improve

detection rate (by re-ranking proposals) and serve as prior

knowledge for discovering new object categories [8]. [3, 9]

are based on image segmentation and hence provide a pixel-

level mask for each proposal. However, they are typically

slow (several seconds [2] to several minutes [3, 9] per im-

age) and are not able to retrieve all the objects in all images.

The current state-of-the-art method in terms of detection

rate operates on the connectivity graph of an image’s super-

pixels [27]. It performs an ad-hoc hierarchical bottom-up

agglomeration of groups of superpixels. Groups are greed-

ily merged two-by-two according to their similarities, and

proposals are generated at each step of the agglomeration.

The procedure yields a fixed number of proposals that is

only twice the original number of superpixels in the image.

Contrary to the hard-decisions taken by [27], our ap-

proach is based on randomly growing groups of superpix-

els. This allows to generate any desirable number of ob-

ject proposals and explore new groupings across several

runs. Therefore, it shows more diversity in the set of object

proposals and obtains significantly higher dectection rates

than [27]. Moreover, because it does not compute similari-

ties between groups of superpixels, our approach is signifi-

cantly faster (about 6 times faster for 1000 proposals).

3. The Randomized Prim’s Algorithm
We cast the problem of sampling connected groups of

superpixels that are likely to contain the same object as that

of sampling partial spanning trees of superpixels that have

high sum of edge weights. This is the role of the Random-
ized Prim’s (RP) algorithm that we present here.

Let G = (V, E , ρ) be the weighted connectivity graph of

the superpixel segmentation of an image, where the vertices

V are the superpixels and the edges (n,m) ∈ E connect

superpixels n and m. The weight function ρ : E → [0, 1]
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(a) Initialization
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(b) Iteration 2

0

1

2

3 4

5
6

0.6 0.2

0
.8

0.4
0.5

0
.2

0.1

0.7 0.
3

0.7

3

5

1

(c) Iteration 3
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(d) Iteration 4

Figure 2: (a) The Randomized Prim’s algorithm initializes the tree T1 (green) with a random node. At iteration k (b-d), a new

edge is added to the tree Tk. The edges are sampled from the set Ek (red) of edges connecting Tk to its frontier, proportionally

to their edge weights. The Prim’s algorithm corresponds to always selecting the edge in Ek with maximum weight.

assigns weights ρ(n,m)=ρn,m to edges. For now, we will

assume that those weights represent the probability that the

superpixels n and m belong to the same object.

For a vertex n ∈ V , let N(n) ⊂ V be the subset of

vertices connected to n, i.e. its neighbours. We denote as

the frontier N(S) of a set of vertices S ⊂ V the union of its

neighbourhoods: N(S) =
⋃

n∈S N(n)\S.

Our algorithm generates random partial spanning trees

independently. Thus, we describe below how a single tree

is sampled using the Randomized Prim’s algorithm, and this

procedure is repeated as many times as required by the user.

3.1. Description of the Core Algorithm

Similar to the Prim’s algorithm, the Randomized Prim’s

algorithm is an iterative tree-growing procedure. At each

iteration k of the algorithm, we refer to the current partial

spanning tree as Tk. We initialize the tree with a random

vertex from the graph: n ∼ Unif(V) and T1 = {n}.
At each subsequent iteration, we sample a candidate su-

perpixel from the frontier N(Tk) to add to the tree Tk. To

do so, we look at the edges Ek connecting Tk to its frontier:

Ek=E∩(Tk×N(Tk)). An edge (n,m)∈Ek is then sampled

from the multinomial distribution associated with probabil-

ities proportional to ρn,m, which we denote as Mult(Ek, ρ):
ek = (n,m) ∼ Mult(Ek, ρ). (1)

This is equivalent to sampling the vertex m from N(Tk)
proportionally to the sum of weights of edges leading to m
in Ek, or, alternatively, to first sample uniformly a super-

pixel n in Tk and then sample m based on ρn,m. Fig. 2

illustrates this procedure. Note, Prim’s algorithm instead

greedily chooses the edge in Ek with the largest weight, i.e.

ek = argmax(n,m)∈Ek ρn,m.

3.2. Multinomial Sampling over a Dynamic Set

The key technical element for the efficiency of Prim’s

algorithm is the data structure to keep track of the dynamic

set of edges Ek. As our graphs are planar and thus have

low density,1 a max-heap leads to a time complexity of

1A planar graph with more than 3 vertices has at most 3|V|−6 edges.

O(|V| log |V|). With a max-heap, extracting the maximum

element, inserting or deleting elements are O(log |Ek|), i.e.

logarithmic with respect to the size of the set of edges.

We adapt this data structure to obtain a similar time com-

plexity for the Randomized Prim’s algorithm. The key idea

is that multinomial sampling can be performed using bi-

nary search on the cumulative sum of probabilities [28], and

those probabilities need not be normalized. We therefore

extend a binary search tree structure (BST) so as to main-

tain, for each node i, the sum of edge weights Wi of the

subtree. Using this BST, we uniformly sample a number w
between 0 and the total sum of edge weights W (readily ac-

cessible at the root node). Based on the values WL and WR

of the children nodes, we perform a recursive binary search

to find the edge ek such that the sum wk of edge weight on

its left satisfies wk ≤ w < wk + ρ(ek). When adding or re-

moving nodes in the BST, one simply need to update Wi for

all the ancestor nodes i. Hence the complexity of extraction

of sampled edges, insertion and deletion are all O(log |Ek|).
3.3. Randomized Stopping Criterion

In RP, a stopping criterion is necessary in order to sam-

ple partial spanning trees that do not cover the full graph of

superpixels. This allows to propose windows other than the

full image. To do this, we sample a uniform stopping cri-

terion ξ0 between 0 and 1 at the initialization step and use

a function ξ(·) ∈ [0, 1] to evaluate the opportunity to add

ek to Tk, and terminate as soon as ξ(Tk, ek) > ξ0. Other-

wise we add ek to Tk and proceed with iterations. We detail

in Sec. 4.2 our choice of ξ(Tk, ek) for object proposals.

We summarize in Alg. 1 the full procedure to sample

a partial spanning tree with large expected sum of edge

weights using the Randomized Prim’s algorithm.

4. Randomized Prim’s for Object Proposals
Using the connectivity graph of a superpixel segmenta-

tion [13], we obtain groups of connected superpixels by ap-

plying the Randomized Prim’s algorithm, and we use the

bounding-boxes of these groups as window proposals. We

illustrate the process on an example image in Fig. 3.
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(a) Superpixel segmentation (b) Initialization (c) Iteration k (d) Proposal from partial tree

Figure 3: We apply the Randomized Prim’s algorithm to the connectivity graph of superpixels of an image (a). (b) It starts

with one superpixel (green). At each iteration (c), it samples a neighbouring superpixel (red) and decides to add it or return

the bounding-box as a proposal (d). The brightness of red indicate the relative probability of sampling superpixels (lighter

means more probable). The superpixels in blue are not connected to the current tree, hence cannot be sampled.

Algorithm 1: The Randomized Prim’s Algorithm.

input : Weight graph G=(V, E , ρ)
output: Partial spanning tree Tk

k = 0;1

Tk = ∅;2

E0 = BST(∅) ; /* Empty binary search tree */3

m ∼ Unif(V);4

ξ0 ∼ Unif(0, 1);5

repeat6

k = k + 1;7

Tk = Tk−1 ∪ {m};8

/* Add edges (m, p)p∈N(Tk), remove (p,m)p∈Tk
*/9

Ek = updateBST(Ek,m, Tk, N(Tk), E , ρ);10

(n,m) ∼ Mult(Ek, ρ);11

ξ(Tk, ek) = (1− ρn,m + α(Tk))/2;12

until ξ(Tk, ek) > ξ0 ;13

Following [27], we further augment the diversity of win-

dows using C=4 different graphs corresponding to the su-

perpixel segmentations of 4 color spaces (HSV, Lab, Op-

ponent and rg). To sample a single window proposal, we

uniformly select one graph Gc among the C and proceed

as in Alg. 1 using Gc. The procedure is simply repeated as

many times as the user desires.

4.1. Learning Edge Weights

An important aspect for RP is to set the weights ρn,m
from which edges (n,m) will be sampled. We model the

weight ρ with a logistic function to obtain the probability

that n and m contain the same object:

ρn,m = σ(wTΦnm + b) (2)

σ(x) = (1 + exp(−x))−1, . (3)

where Φnm is a vector containing simple and efficient fea-

tures that measure the similarity and compatibility of n and

m, σ is the sigmoid function and b a bias term.

We resort to training data to learn the weights and bias.

For this, we assign a superpixel to a segmented object if

at least 60% of its surface is within the object. Then we

mine for pairs of superpixels that belong to the same object

(positive pairs, yi = 1), and pairs that do not (negative pairs,

yi = 0) and compute their feature vectors Φi. We use the

maximum likelihood estimator to set w and b:

{w∗, b∗}=argmax
w,b

∑
i

yi ln ρi + (1− yi) ln(1− ρi), (4)

where ρi = σ(wTΦi+ b). This log-likelihood function is

concave, so we simply perform gradient ascent.

The features we have combined in Φ are simple features

than can be computed efficiently:

1. Color Similarity fc. Color consistency is a important

cue for objects. With hn the normalized color histogram of

the superpixel n, fc(n,m) ∈ [0, 1] is set as the l1-norm of

their intersection: fc(n,m)= |hn ∩ hm|. We have used the

Lab colorspace and 16 bins for each component.

2. Common Border Ratio fb. Connections between su-

perpixels are not all as likely to happen within objects. Let

ln and lm be the perimeters of superpixels n and m (resp.)

and ln|m be the length of their common border. We define

the feature fb as the maximum ratio between their common

border and each of their perimeters:

fb(n,m) = max

(
ln|m
ln

,
ln|m
lm

)
. (5)

This cue is most valuable for superpixels that favor color

consistency over compactness, such as [13].

3. Size fs. [27] has empirically shown that size is a pow-

erful cue to prioritize superpixel grouping. Let an be the

area of the superpixel n as a fraction of the image size. Then

the size feature fs(n,m) is defined as:

fs(n,m) = 1− an − am (6)

This feature favors the merging of smaller superpixels first.

The resulting weights are the following:

Feature Color Similarity Common Border Ratio Size Bias

Weight 2.69 1.00 2.36 -3.00
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All three cues have similar importance, showing that

they all contribute to the probabilities. Note that the scale of

the weights and the bias have a major impact on the sigmoid

defined in Eq. (2). This highlights the need to learn those

weights, as we also show experimentally below (Sec. 5).

4.2. Termination function

Our termination function ξ(Tk, ek) includes two terms:

(1) The probability (1− ρn,m) that the sampled edge ek
does not connect superpixels of the same object. (2) A size

term α(Tk) ∈ [0, 1] computed as the fraction of objects in

the training data with area smaller than Tk. In practice, we

found the mean of these two terms to give good results:

ξ(Tk, ek) = (1− ρn,m + α(Tk))/2. (7)

To conclude the implementation description, our code

for object proposals using the Randomized Prim’s algo-

rithm is available online for download.2

5. Experiments
We present in Sec. 5.1 our experimental protocol and the

evaluation measures. In Sec. 5.2, we compare several vari-

ants of our approach, including colorspaces, a greedy ap-

proach and untrained weights. Then, we compare our re-

sults to the state of the art in Sec. 5.3.

5.1. Data sets and evaluation protocol

Following previous work [2, 3, 9, 14, 21, 27], we have

used the PASCAL VOC 2007 [10] data set to evaluate our

approach and compare it to the state of the art. This dataset

is composed of 9, 963 images containing objects of 20 dif-

ferent classes. Following [2], we used the classes bird, car,
cat, cow, dog, and sheep for training and the remaining 14

classes for testing, and we removed from the test set the im-

ages that had an occurrence of any training class and vice-

versa. This left us with 2, 941 images and 9, 532 objects in

the test set. [2] had only 7, 610 test objects because they

removed those annotated as difficult or truncated.

For further comparison, we have also evaluated our al-

gorithm against existing methods on the trainval set of the

larger PASCAL VOC 2012 [11] dataset and test set of the

SUN2012 [29] dataset. We followed the same procedure

as for VOC 2007, removing from both datasets the images

which contained an instance of any of the training classes.

This yielded 6, 642 images containing 19, 772 objects for

VOC 2012 and 11, 811 images containing 201, 353 objects

for the SUN2012. To show the generality of our approach

accross datasets, we used the weights learnt on VOC2007.

Our evaluation is based on IoU, which measures the

quality of a window proposal w with respect to the ground-

truth bounding boxes b of objects. Following the definition

2http://www.vision.ee.ethz.ch/software/
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Figure 4: Performance of our algorithm, for 10, 000 propos-

als, sampling from individual segmentations or from all.

in [10], IoU(w, b) = |w∩b|
|w∪b| . The resulting value ranges from

0 (no overlap) to 1 (the windows are the same).

Using a threshold θ∈ [0.5, 1] for the IoU as the detection

criterion, we measure the detection rate as the fraction of

objects localized with an IoU above θ. This number varies

with the number of proposals (#win) that we ask for each

image. In our experiments, we compare detection rates with

respect to both θ and #win parameters. For brevity, we can

resort to the volume-under-surface metric (VUS), which ex-

tends the area-under-curve to two parameters. This metric

favors, with a single number, methods that can retrieve as

many objects, as tightly, and with as few proposals as pos-

sible. For computing the VUS, we consider linear and log-

arithmic scales for #win. The latter favors high detection

rates for low numbers of windows.

5.2. Variants of our approach

In this section, we validate experimentally our model by

comparing the following variants:

Individual color spaces. We compare the performance of

our algorithm when using the four individual graphs corre-

sponding to different colorspaces, as described in Sec. 4,

and sampling among all graphs. As we show in Fig. 4 for

10,000 proposals, the Lab color space gives the worst in-

dividual result. Opponent, rg, and HSV sequentially im-

prove the detection rate by up to 5% for IoU ≥ 0.5. When

sampling from the different graphs, we obtain as much as

8% improvement over Lab, and 3% on the best color space

(HSV). In terms of linear VUS, the combination also im-

proves over individual segmentations: 59% vs. 55% for

HSV and rg and 54% for Lab and opponent. This high-

lights that individual segmentations have less diversity in

their proposals than their combination.
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Speed. We report in Tab. 1 the decomposition of the time

cost of RP when using the fastest (Lab) or all four super-

pixel segmentations. There is a clear trade-off between de-

tection rate and speed. Using only one segmentation, it

takes less than 0.3s to sample 1000 proposals, at the cost

of a lower detection rate. When using multiple segmenta-

tions, a better detection rate is obtained, but the method is

2.5 times slower. Notably, both variants are still 4 to 10
times faster than the previous fastest method [2] (2.8s), and

yield state-of-the-art detection rates.

Edge sampling strategies. To show the benefits of our

edge sampling strategy, we compare the following settings:

a) Uniform sampling, discarding weights; b) Sampling us-

ing weights derived from [27]; c) Greedy Prim’s algorithm

using our learnt weights; d) Our proposed RP. For all vari-

ants, we used all four segmentation graphs, the same initial-

ization and the same random termination criterion.

In Fig. 5, we show the detection rates at 1000 windows,

relative to the performance of uniform sampling. We see

that sampling uniformly or with adhoc weights [27] give the

worst results. This is because those approaches do not ex-

ploit valuable information than can by learnt from training

data. Finally, the best performance is obtained when train-

ing the combination of features so as to maximize the proba-

bility to grow the tree within the same object (Sec. 4.1). The

greedy approach obtains higher detection rate for coarse

IoU, and our RP algorithm outperforms the greedy as well

as all other sampling strategies for IoU≥ 0.65.

5.3. Comparison with the State-of-the-art

We now compare our method to the state of the art

[2, 27, 21] using code available online. To obtain a specific

number N of windows from each of them, we use the fol-

lowing procedures. a) Selective Search [27] returns window

proposals in a single batch of about 2050 windows in aver-

age. We uniformly subsample N from this batch; b) Object-

ness [2] provides a score and applies non-maxima suppres-

sion (NMS), yielding on average 1850 windows. We keep

Table 1: Split time cost of RP for about 1000 unique proposals,

averaged over the 2941 test images of PASCAL VOC2007. [2] and

[27] take 2.8s and 3.9s per image (resp.). Sampling is particularly

efficient and scales linearly with the number of proposals. The

measures have been taken on 1 desktop CPU (3.50GHz). Trivially

parallelizable processes are marked with *.

RP
Computational time (s)

Lab All

a) Colorspace conversion 0.06 0.10*

b) Segmentation 0.10 0.40*

c) Feature preprocessing 0.02 0.08*

d) Sampling 0.09* 0.09*

Total 0.27 0.67
Detection Rate (IoU ≥0.5) 0.81 0.86
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Figure 5: Detection rates for various sampling strategies,

relative to the performance of uniform sampling. Learnt

weights for random sampling achieves the best performance

for IoU≥ 0.65.

the N proposals that have the highest scores; c) Rahtu [21]

proposes 10,000 windows which are re-ranked using NMS.

We use the top N ranked windows. d) Using our approach,

we can directly sample any given number of windows, yet

we ensure that we have N unique proposals. Methods that

score or rank proposals are expected to obtain much higher

detection rates when keeping few (≤100) proposals.

We compare the performance of these methods in terms

of the linear/log VUS metric in Tab. 2. For the PAS-

CAL VOC 2007 data set RP obtains the best overall VUS
(0.59/0.28), compared to 0.49/0.25 for the second best

method [21, 27]. As expected, the gap is larger for the lin-

ear VUS. Results are similar for the other datasets (PAS-

CAL VOC 2012 and SUN2012). RP consistently outper-

forms [2] and [27] on both metrics.

In Fig. 6, we show a more detailed comparison on VOC

2007 for various values of IoU threshold and number of ob-

ject proposals #win. We make the following observations.

For thresholds larger than 0.6 (Fig. 6a and 6b), our

method outperforms the state-of-the-art scoreless method

of [27] for any number of proposed windows, and the gap

increases with the threshold. For thresholds ≤0.6 (Fig. 6c),

[27] is marginally better than RP for 500 to 5000 windows.

When sampling at least 500 proposals (Fig. 6d and 6e),

RP generally also outperforms ranking methods [2, 21]. For

few proposals (Fig. 6f), objectness [2] outperforms RP for

lower thresholds (≤ 0.7), then [21] is best between 0.7 and

Table 2: Comparison of VUS with linear or log scaling of #win.

#win varies from 1 to 10,000 proposals, and θ from 0.5 to 1.0.

Volume Under Surface (VUS)

VOC 2007 VOC 2012 SUN 2012

Method linear log linear log linear log

[2] 0.33 0.23 0.33 0.24 0.23 0.15

[21] 0.47 0.25 - - - -

[27] 0.49 0.22 0.52 0.24 0.49 0.23

RP 0.59 0.28 0.61 0.31 0.52 0.26
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Figure 6: Comparison of detection rates obtained by 3 state-of-the-art methods and ours (RP). We plot the performance for various

thresholds of IoU (top row) and various numbers of proposal windows (bottom row). Please refer to the text for discussion. The black

crosses represent the average number of proposals provided by each method (except ours).

0.85, and RP dominates beyond 0.85. This is because Ob-

jectness scores are focused on convex objects, and Rahtu’s

ranking was designed to boost the recall for higher IoU [21].

Both curves show typical signs of using NMS, as the detec-

tion rate falls rapidly above a certain IoU threshold.

Moreover, note how Objectness fails to find the most

difficult objects, as its detection rate is only 37.9% for

1850 windows at 0.7 IoU(Fig. 6b), whereas we obtain up

to 68.5% detection rate for the same number of windows.

On the same setting, [27] obtains 65.2% and [21] 61.1%.

The values at 0.9 IoU are even more impressive: 2.0% [2],

5.7% [21], 16.4% [27] and 27.9% (RP) for #win=1850.

In other words, for 1850 proposals, we find 1/4 of the ob-

jects perfectly (IoU≥ 0.9), 2/3 with very good localization

accuracy (IoU ≥ 0.7), and 90% correctly (IoU ≥ 0.5). In-

terestingly, since our method is able to generate many more

windows, with 10,000 proposals we can recover more than

40% of the objects perfectly, 80% accurately, and 95% over-

all. One can observe that apart from the setting where both

#win ≤ 100 and IoU ≤ 0.65, our method is either the best

performing method or is close to the best method.

We compare the best proposed windows for our ap-

proach vs. Objectness in Fig. 1 and provide more examples

in Fig. 7 to illustrate the typical accuracy of our detections.

6. Conclusion
In this paper, we have proposed a new method for

generic object detection. Contrary to previous work based

on grouping superpixels, we have proposed a randomized

and very efficient method, which extends Prim’s algorithm.

Among the benefits, randomization allows our approach to

avoid repeating previous mistakes, hence increases the di-

versity of proposals and the detection rate. As they are

bound to superpixel boundaries, the best proposals fit the

objects accurately. The performance is improved by maxi-

mizing the probability that the sampled groups of superpix-

els remain within the same object. In the end, our algorithm

yields windows significantly faster and significantly more

accurately than the state-of-the-art. For instance, 86% of

the objects can be found in less than 0.7s using 1000 pro-

posals. In future work, we will develop a score for windows

to further increase the detection rate with few proposals.
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Figure 7: Best windows proposed by our method (yellow), out of 1000, for the ground-truth annotations (blue). The examples in the

bottom right show some limitations of our approach. It fails to merge two parts of the same object that are dissimilar and have a thin

common border or when the superpixel segmentations miss object boundaries.
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