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Abstract An upgrade of the PRIMELT algorithm for calculating primary magma composition is given

together with its implementation in PRIMELT3 MEGA.xlsm software. It supersedes PRIMELT2.xls in correcting

minor mistakes in melt fraction and computed Ni content of olivine, it identifies residuum mineralogy, and

it provides a thorough analysis of uncertainties in mantle potential temperature and olivine liquidus tem-

perature. The uncertainty analysis was made tractable by the computation of olivine liquidus temperatures

as functions of pressure and partial melt MgO content between the liquidus and solidus. We present a com-

puted anhydrous peridotite solidus in T-P space using relations amongst MgO, T and P along the solidus; it

compares well with experiments on the solidus. Results of the application of PRIMELT3 to a wide range of

basalts shows that the mantle sources of ocean islands and large igneous provinces were hotter than oce-

anic spreading centers, consistent with earlier studies and expectations of the mantle plume model.

1. Introduction

Basalts, high-MgO picrite melts and komatiites that have erupted on Earth were produced by variable condi-

tions of partial melting of a mantle source and partial crystallization, assimilation, and mixing during transit

to and within the crust. If the effects of partial melting can be isolated, then it is possible to use their com-

positions to distinguish hot from cold mantle sources, which is important in understanding the thermal

characteristics of ambient and anomalous mantle [Herzberg et al., 2007; Putirka et al., 2007; Lee et al., 2009].

However, extracting this information from a lava is not straightforward because primary magmas that form

by partial melting of a mantle source are transformed by partial crystallization, assimilation, and mixing dur-

ing transit to the crust [O’Hara, 1968]. This is the primary magma problem in mantle petrology.

A forward model is a petrological method for computing how the chemistry of melts change from the

beginning of melt production at depth in the mantle to solidification in the crust. Melts in the mantle can

respond to variations in temperature (T) and pressure (P) of melting, variations in mantle source composi-

tion (X), and the extent to which it melts (F, also called melt fraction). In principle, these can be constrained

by experimental petrology and parameterization of its results [Asimow et al., 2001; Longhi, 2002; Herzberg

and O’Hara, 2002; Herzberg and Asimow, 2008; Kimura et al., 2009]. However, a primary magma composition

also depends on how the mantle melts, whether it is by batch, fractional, accumulated fractional, or some

more complex melting process. Melts tend to drain from their sources by buoyant porous flow at low melt

fractions [Ahern and Turcotte, 1979; McKenzie, 1984], so primary magmas are thought to form by the mixing

of small melt droplets during decompression. This component can only be constrained computationally

[Langmuir et al., 1992; Herzberg and O’Hara, 2002; Herzberg and Asimow, 2008] as its detailed simulation in

the laboratory is not practical [Asimow and Longhi, 2004]. It is typically based on parameterizations of exper-

imental data and is included as a fractional melting component in the forward model. It is important to con-

sider because, at constant MgO and melt fraction, accumulated fractional melts can have substantially

higher FeO contents than batch melts [Herzberg and O’Hara, 2002].

An inverse model attempts to reconstruct the processes of fractional crystallization in order to identify an

array of potential melt or primary magma compositions that may have formed in the mantle. Unraveling

the inverse process provides a partial solution to the primary magma problem, and many computational

models are available [Langmuir and Hanson, 1980; McKenzie and Bickle, 1988; Langmuir et al., 1992;
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Danyushevsky, 2001; Herzberg and O’Hara, 2002; Herzberg and Asimow, 2008; Lee et al., 2009; Putirka et al.,

2007; Kimura et al., 2009]. The solution is only partial because multiply saturated lavas and even primitive

olivine phyric lavas no longer contain complete information about their origin. At some stage, olivine must

be added incrementally to move up in temperature toward more primitive compositions, and it is necessary

to know at what point the computed melt reflects the primary magma composition in the mantle; that is,

how do we know when to stop adding olivine?

In principle, an erupted basalt composition can have its primary magma composition constrained

when there is commonality to the inverse and forward model components. The underlying theory was

described by Herzberg and O’Hara [2002], and is described again in section 2 of this paper. The algo-

rithm was first publicly implemented in software called PRIMELT1.XLS [Herzberg et al., 2007], and it is a

mass balance solution to the primary magma problem for an assumed peridotite composition. PRIMELT

is calibrated from experiments on peridotite KR4003 [Walter, 1998] and parameterizations of these and

other experiments [Herzberg and O’Hara, 2002]. PRIMELT1.XLS [Herzberg et al., 2007] was limited to spi-

nel peridotite and harzburgite melting; this was followed by PRIMELT2.XLS, which included garnet peri-

dotite melting and additional tests for suitability of the method for the input sample composition

[Herzberg and Asimow, 2008]. In this paper, we report PRIMELT3 MEGA.XLSM, which differs from its

predecessors in the following ways.

1. Improvements were made to melt fractions in projection space.

2. The residuum mineralogy is identified.

3. Approximations to olivine liquidus temperatures at 1 atmosphere were replaced by more accurate

temperatures.

4. Olivine liquidus temperatures in T-P space are used to provide new insights into mantle potential temper-

ature and its uncertainties. This is made tractable by a computed peridotite solidus, a new feature.

5. PRIMELT2 computes the Ni contents of coexisting olivine and liquid using partition coefficients from Beat-

tie et al. [1991], but a small error was reported to us by J.-I. Kimura (personal communication, 2011), and this

was corrected in PRIMELT3.

6. MEGA refers to a macroenabled option that can batch process a list of input compositions automatically,

which is very useful for large data sets.

We provide a brief review of the inverse and forward model components of all PRIMELT models using the

improvements that have been made. However, the interested user is encouraged to read the many features

of PRIMELT2 [Herzberg and Asimow, 2008] that we have carried unmodified to its present form. The more

important of these are discussed in abbreviated form in the Appendix A. These are error codes that describe

whether the primary magma composition has been adversely compromised by clinoproxene addition/sub-

traction, pyroxenite melting, or the effects of CO2 on melting. We also provide in the Appendix A an abbre-

viated summary of all computational uncertainties.

A copy of PRIMELT3 MEGA.xlsm is provided in supporting information S1, and information about its content

is given in the Appendix A. PRIMELT3 has been applied to lava compositions for which PRIMELT2 primary

magma solutions were previously reported [Herzberg et al., 2007; Herzberg and Asimow, 2008; Herzberg and

Gazel, 2009]. In general the differences between PRIMELT2 and PRIMELT3 primary magma solutions are

small, and prior inferences regarding mantle potential temperature remain mostly unmodified. However,

we will revisit a number of applications with the intention of providing a more rigorous estimation of uncer-

tainties in olivine liquidus temperature, mantle potential temperature, and anhydrous peridotite solidus

temperatures.

2. PRIMELT3 Melt Fractions

An example of how PRIMELT3 works to constrain primary magma composition is given in Figure 1. The

black cross is lava composition 1187-8 from the Ontong Java Plateau [Fitton and Godard, 2004] (FeO/

FeOT5 0.9) projected from Diopside into the plane Olivine-Anorthite-Quartz (Figure 1a) and in FeO-MgO

space (Figure 1b). This is a primitive whole rock lava composition that is plausibly related to the primary

magma composition by subtraction of olivine only. The choice of a primitive lava composition is important
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because PRIMELT3 reconstructs the primary magma composition by addition or subtraction of olivine to

the lava composition. PRIMELT3 cannot invert the liquid line of descent involving [L1Ol1Plag] or

[L1Ol1Plag1Cpx].

Addition of olivine to the OJP lava composition produces an array of potential primary magma composi-

tions in both Ol-An-Qz and FeO-MgO projection space. But how do we know when to stop adding olivine?

Most petrological models stop adding olivine when the liquid composition is in equilibrium with an

assumed olivine composition, typically having an Mg-number of 90 or 91. In contrast, the PRIMELT calcula-

tion is stopped when a common melt fraction is uniquely identified in both projection and FeO-MgO space,
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Figure 1. Illustration of primary magma calculation using forward models of peridotite melting in multicomponent and binary MgO-FeO

projection spaces integrated with an inverse model of olivine addition. Arrays of black circles illustrate how a primary magma is computed

from a lava composition, using a whole-rock composition from the Ontong Java Plateau (large black cross) as an example (see text); PRI-

MELT seeks a common melt fraction in both projections, providing a mass balance solution to the primary magma problem. Small open

symbols with numbers are various primary magma solutions provided by PRIMELT3.xlsm (supporting information S1). (a) A multicompo-

nent projection of liquid compositions (mole%) obtained by melting fertile mantle peridotite from Diopside into the plane Olivine-

Anorthite-Silica [Herzberg and O’Hara, 2002]. All weight % compositions are converted to mole %, and projection coordinates are calcu-

lated in the following way:

Olivine51.5 TiO21 0.5 Al2O31 0.5 Cr2O31 0.5 FeO1 0.5MnO1 0.5MgO2 0.5 CaO2 0.5 Na2O1 3.0 K2O1 0.5 NiO

Anorthite51.0 TiO21 1.0 Al2O31 1.0 Cr2O3

Quartz51.0 SiO22 0.5 Al2O32 0.5 Cr2O32 0.5 FeO2 0.5MnO2 0.5MgO2 1.5 CaO2 3.0 Na2O2 3.0 K2O2 0.5 NiO

Bold red lines separate three residuum lithologies. Black solid lines are melt fraction contours. Small hexagons labeled by numbers indicate

successful primary magma solutions for a variety of lavas; see Figure 1b for legend. (b) A binary MgO-FeO projection of primary magma

compositions formed by accumulated fractional melting, from Herzberg and Asimow [2008]. The symbols are the same as in Figure 1a.
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which is 0.28 for the example considered in Figure 1. This is what is meant by a mass balance solution to the

primary magma problem, given an assumed peridotite composition that was parameterized to yield melt frac-

tions in Figure 1 (i.e., KR4003) [Walter, 1998; Herzberg and O’Hara, 2002]. PRIMELT3 computes olivine phenoc-

rysts that would crystallize from the primary magmas, and these can have Mg-numbers ranging from 90 for

relatively low-degree melts to 93 in very high-degree melts; the assumption of constant olivine composition

can propagate to an error in mantle potential temperature of over 100�C. The primary magma for the Ontong

Java Plateau has 16.85% MgO, the melt fraction was 0.28, the mantle potential temperature was 1483�C, and

the predicted most primitive olivine phenocryst composition had an Mg-number of 91.5. These results can be

found in the worksheet ‘OJP’ in PRIMELT3 MEGA.xlsm, given in supporting information S1.

Melt fractions in FeO-MgO space (Figure 1b) are identical to those reported in Herzberg and Asimow [2008]

for PRIMELT2 and for the case of primary magmas produced by accumulated fractional melting. However,

melt fractions shown in Ol-An-Qz are an improvement over those reported for PRIMELT2. This projection

identifies melt fractions for residuum mineralogies that consist of spinel peridotite, garnet peridotite and

harzburgite. Unlike FeO-MgO space, melt fractions in Ol-An-Qz display discontinuities where one residue

changes to another, as revealed by the red lines in Figure 1a. The condition where there is a unique melt

fraction for two residues is satisfied to good approximation along the red boundaries, but misfits were dis-

covered for PRIMELT2 and these have been corrected.

Here we use three expressions that capture the behavior of melt fraction in Ol-An-Qz for three different

residual lithologies (Figure 1a). For melt extraction from residues of harzburgite (the meaning of the residual

mineralogy names we adopt is explained below):

F156:2819An2–14:7789An310:00825ð1=AnÞ2 (1)

PRIMELT3 adopts F1 from PRIMELT2 [Herzberg and Asimow, 2008] without modification.

For melt fraction from residues of spinel peridotite:

F25X1YOl1Z=Ol (2)

where:

X5ðX11X2Þ=2 (3)

Y5Qz0:245expð0:93111:623QzÞ (4)

Z5Qz0:577expð0:769–7:514QzÞ (5)

and:

X15–1:99412:25Qz10:041=Qz (6)

X25–1:183–3:005Qz113:774Qz2–12:615Qz3 (7)

For melt fraction from residues of garnet peridotite:

F35–2:534515:329ðQz10:348OlÞ10:3012=ðQz10:348OlÞ (8)

Ol, An, and Qz in equations (1)–(8) are coordinates for liquids that project from diopside into the plane

olivine-anorthite-silica; their calculation is given in the caption to Figure 1.

PRIMELT3 melt fractions are similar to those of PRIMELT2 for garnet peridotite and harzburgite melting (Fig-

ure 2a). The most significant improvement is for elevated melt fractions appropriate to spinel peridotite

melting. However, as discussed below, these differences in melt fractions do not propagate to large differ-

ences in inferred mantle potential temperature (Figure 2b).

3. Source Residuum Mineralogy and Composition

PRIMELT3 uses the Ol-An-Qz projected compositions of primary magmas to identify the residuum mineral-

ogy from which it separated. It is important to note, however, that an aggregate fractional melt is not in

equilibrium with its residue. Only the final drop of liquid extracted is in equilibrium with the residue.
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Nevertheless, mass balance is main-

tained with an equation that is identical

to that for batch melting [Herzberg,

2004]:

Co5FCL1ð12FÞCS (9)

where Co is the initial source composi-

tion, F the mass fraction of the aggre-

gate melt, CL is the aggregate liquid

composition, and CS is the composition

of the residue in equilibrium with the

last drop of liquid extracted. We there-

fore refer to the residues as the solid

that was left behind, not the solid in

equilibrium with the aggregate primary

melt. Also, any complementary residue

is only strictly valid for a melting situa-

tion that occurs along a single stream-

line for both liquid and solid, most

appropriate for simple cylindrical melt-

ing regimes. This is not likely to be real-

ized even for plumes which deform as

they impact the base of a lithosphere.

And it is clearly not true of an aggregate

fractional melt extracted from corner-

flow driven melting regimes below oce-

anic ridges, which leave behind many

residues with variable extents of deple-

tion. PRIMELT3 does not compute resid-

uum composition, but the reader can

easily do this using equation (9) and the

composition of peridotite KR4003 [Herz-

berg and O’Hara, 2002, Table 1]; in view

of the above mentioned complexities, a

residue so computed may be consid-

ered a ‘‘mean’’ composition. Satisfactory

residue compositions are obtained for

the major elements SiO2, Al2O3, FeO,

MgO, and CaO, and these can be used

to compute temperatures and pressures

of melting [Lee and Chin, 2014]. How-

ever, compared with typical peridotites

of similar fertility, KR4003 is somewhat

deficient in TiO2,and Na2O, high in K2O, and P2O5 has not been determined. Hence, residue compositions

calculated for these minor elements will not be reliable.

We have used the general terms spinel peridotite and garnet peridotite for the clinopyroxene-bearing resid-

ual mineralogies rather than the more conventional term ‘‘lherzolite’’ because there are important variations

and uncertainties in peridotite mineralogy that remain poorly constrained. The rock name lherzolite specifi-

cally requires the presence of modal olivine, orthopyroxene, and clinopyroxene; yet the presence of ortho-

pyroxene at high pressure is composition dependent, poorly constrained and controversial. For example,

the thermodynamic model of Holland et al. [2013] indicates garnet lherzolite melting (L1Ol1Opx1Cpx1Gt)

of the composition KLB-1 transforms to garnet peridotite melting (L1Ol1Cpx1Gt) at> 3.2 GPa, but the sta-

bility of orthopyroxene depends critically on peridotite composition. Also, spinel lherzolite transforms to

lherzolite6minor Cr spinel with increasing temperature and melt fraction. For example, the modal
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Figure 2. A comparison of inferred melt fractions for PRIMELT3 and PRIMELT2,

using successful solutions to the primary magma problem for Paleocene picritic

lavas from West Greenland [Larsen and Pedersen, 2009]. (a) The largest misfits

arise from high melt fractions of spinel peridotite. (b) Melt fraction differences

do not propagate to significant differences (i.e., �20�C errors) in inferences

drawn about mantle potential temperature TP.
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abundance of spinel drops dramatically when F> 0.10 in melting experiments on peridotite MM3 at 1 GPa

[Baker and Stolper, 1994]. Spinel in many naturally occurring harzburgites ranges from � 0 to 1.5% in the

mode [Doucet et al., 2012]. Most likely, temperature will determine whether garnet lherzolite (or peridotite)

transforms to spinel peridotite or harzburgite on decompression. Also, there is a stability field of garnet

harzburgite [L1Ol1Opx1Gt] that separates [L1Ol1Cpx1Gt] from [L1Ol1Opx] [Walter, 1998; Herzberg and

O’Hara, 2002], although it is restricted and, for simplicity, not represented in Figure 1a. In summary, the resi-

dues that are typically produced during decompression melting are:

garnet peridotite (Ol + Cpx + Gt ± Opx)

spinel peridotite (Ol + Opx + Cpx + spinel (Al or Cr))

harzburgite (Ol + Opx ± chrome spinel)

When a primary magma solution is constrained, it is necessary to compare melt fractions for accumulated

fractional melting in MgO-FeO space (i.e., FAFM) with melt fractions from the different possible residues as

shown in Figure 1a (i.e., F1Proj, F2Proj, F3Proj in Figure 1a). PRIMELT3 uses the following procedure:

If FAFM5 F1Proj, then the residuum5harzburgite.

If FAFM5 F2Proj, then the residuum5 spinel peridotite

If FAFM5 F3Proj, then the residuum5garnet peridotite

The critical projected contour that bounds clinopyroxene stability in Ol-An-Qz plots at coordinates:

QzCPX5–0:07410:1713=Ol–0:0135=Ol2 (10)

such that harzburgite is the residuum if Qz>QzCPX.

Projection coordinates that separate residues of garnet peridotite from spinel peridotite or harzburgite are

defined by:

QzLZ=HZ5 16:843128:733An–14:183expðAnÞð Þ–1 (11)

such that garnet peridotite is the residuum if Qz<QzLZ/HZ and also if Ol> 0.5.

4. Olivine Liquidus Temperatures

PRIMELT3 computes the composition of olivine in equilibrium with liquid in the inverse model. This requires

knowledge of the Fe-Mg partitioning between these phases, also called KD, and the method of Toplis [2005]

was adopted. There is a temperature dependency to the calculation of KD in the Toplis [2005] model and PRI-

MELT2 used a simplified version of the method of Beattie [1993] as given in Herzberg and Asimow [2008, equa-

tion (12)]. For primary magmas with MgO5 10–30%, representative of MORB basalts to komatiites, the

average difference between the Beattie T and modified Beattie T is 8�C, well within the631�C (2r) uncertainty

stated by Beattie [1993]. However, this difference gets larger for liquids with MgO contents outside the 10–

30% bounds. Therefore, PRIMELT3 has adopted the original olivine liquidus temperatures from Beattie [1993]

for all calculations. These are given in cells O11 and O15 and column AE in the PRIMELT3 worksheets.

The olivine liquidus temperature is an important way of evaluating the thermal propoperties of primary

magmas and their derivative melts, and many empirical petrological models have been used. Of these, Beat-

tie [1993], Ford et al. [1983], Sugawara [2000], and Ariskin et al. [1993] reported the results of parameteriza-

tions of large numbers of experimental observations. These and other models were reviewed by Putirka

et al. [2007], who concluded that the method of Beattie [1993] was the most accurate in predicting anhy-

drous experimental observations when pressure corrections from Herzberg and O’Hara [2002] were adopted.

This is provided again:
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T
Ol=L
P ðoCÞ5T

Ol=L
1 154P–2P2 (12)

where T
Ol=L
P is the olivine liquidus tem-

perature in �C at pressure P in gigapas-

cals, T
Ol=L
1 is the olivine liquidus

temperature at 1 atmosphere (�C)

[Beattie, 1993], and the pressure con-

stants describe the effect of pressure

on increasing olivine liquidus tempera-

ture [Herzberg and O’Hara, 2002; Herz-

berg and Asimow, 2008]. Application of

the Beattie [1993] thermometer to 521

experimental glasses at 1 atmosphere

and without water has a 1 r uncer-

tainty of6 23.8�C [Putirka et al., 2007].

The pressure terms up to 7 GPa add an

uncertainty of6 31�C [Herzberg and

O’Hara, 2002]. The total uncertainty in

temperature at all pressures is

(23.821 312)0.55 39�C (61 r), in good

agreement with6 38.5�C from 870

experiments reported by Putirka et al.

[2007].

We are interested in mapping the MgO

content of melts in T-P space between

the anhydrous peridotite liquidus and

solidus, as discussed in the section that

follows. In order to simplify this calcula-

tion, we obtain the olivine liquidus

temperature as a function of the

weight% MgO content of the melt by

parameterizing 1248 anhydrous experi-

ments containing olivine and quench

melt, conducted from 1025 to 2020�C

and 1 atmosphere to 14 GPa; this is an

upgrade of a database used by Putirka

et al. [2007] and kindly supplied to us

(K. Putirka, personal communication,

2014). The parameterization was

pinned to the 1 atmosphere melting

temperature of pure forsterite Mg2SiO4 (18906 20�C) [Bowen and Andersen, 1914], which remains a point of

reference for all subsequent high pressure experimental studies [Davis and England, 1964; Ohtani and Kuma-

zawa, 1981; Presnall and Walter, 1993] and for olivine liquidus models [Beattie, 1993; Ghiorso and Sack,

1995]. All experimental temperatures conducted at pressures greater than 1 atmosphere were corrected to

1 atmosphere (i.e., T
Ol=L
1 ) using the pressure terms in equation (12), yielding:

T
Ol=L
1 51020124:4MgO–0:161MgO2 (13)

where T
Ol=L
1 is in �C. Equation (13) captures experimental olivine liquidus temperatures with a 1r root mean

square error of6 46�C (Figure 3a); this uncertainty is only marginally higher than6 41�C using the Beattie

[1993] thermometer for this expanded database, but it has the advantage of requiring only one variable

melt compositional term to describe T
Ol=L
1 (i.e., MgO) rather than 8 terms. Equation (13) can be applied to a

wide range of melt compositions: MgO5 1–57%; Na2O1 K2O5 0–14%; SiO25 30–70%.

We compare our new thermometer with that based on MELTS [Ghiorso, 1994; Ghiorso and Sack, 1995],

which differs in using experimental data to parameterize the temperature at which the Gibbs energy is
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Figure 3. Olivine liquidus temperatures at 1 atmosphere. (a) An anhydrous experi-

mental database and a model description. (b) A comparison of the experimental

model T
Ol=L
1 with those derived from MELTS [Ghiorso and Sack, 1995] on a repre-

sentative range of compositions.
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minimized for any olivine-

liquid pair. We have applied

MELTS to estimate the temper-

ature at which olivine is in

equilibrium with a wide range

of melt compositions. These

are new PRIMELT3 primary

magma solutions to lava com-

positions for which PRIMELT2

primary magma solutions were

reported [Herzberg et al., 2007;

Herzberg and Asimow, 2008;

Herzberg and Gazel, 2009], in

addition to primary magmas

for Archean komatiites [Herz-

berg et al., 2010; see Appendix]

and peridotite KR4003 [Herz-

berg and O’Hara, 2002]. Our

empirical thermometer

described by equation (13) can

reproduce MELTS tempera-

tures to within6 7�C

(Figure 3b).

5. MgO Contents of Primary Magmas and the Anhydrous Peridotite Solidus

Revisited

In regions removed from subduction zones, major melting of peridotite begins when the mantle rises buoy-

antly to the anhydrous solidus, and further melting progresses as the temperature drops during continued

adiabatic decompression. Forward simulations of peridotite partial melting during adiabatic decompression

require knowledge of solidus temperatures, the heat of fusion, heat capacity, and thermal expansivity.

Many such simulations have been published, and the T-P paths differ because of differing assumptions

about the thermodynamic terms and how they change throughout the melting interval [Cawthorn, 1975;

McKenzie and Bickle, 1988; Langmuir et al., 1992; Iwamori et al., 1995; Asimow et al., 2001; Putirka et al., 2007].

What we seek is a petrological model that describes how primary magma compositions vary during a T-P

decompression journey. More specifically, we examine how their MgO contents change, and how well they

are described by forward simulations that differ in their assumed thermodynamic properties.

Figure 4 is a map of the MgO contents of liquids in equilibrium with olivine for peridotite KR4003 [Herzberg

and O’Hara, 2002], obtained by analytical solutions to the equations (12) and (13). For convenience, it was

solved for equilibrium melting of peridotite KR4003, but solutions are perfectly general and valid for frac-

tional melting and for all residuum lithologies. Equations (12) and (13) provide an opportunity to compute

the T-P conditions of the anhydrous peridotite solidus if the MgO content along it can be independently

constrained and with the condition that P5 Psolidus. We obtained a fit to this relation for P� 1 GPa:

Psolidus5MgO–0:52expð0:1310:15MgOÞ (14)

The following are experimental sources that were used for this calibration: 1.0 GPa [Baker and Stolper, 1994;

extrapolated to F5 0]; 3 GPa [Davis et al., 2011]; 5.0 and 9.7 GPa [Herzberg and Zhang, 1996]; 6 and 7 GPa

[Walter, 1998] (data on L1Ol1Cpx6Opx1Gt extrapolated to zero from F in the 0.11–0.41 range). It is impor-

tant to note that Walter’s data at 6 and 7 GPa yield linear arrays in MgO-FeO space over a wide range of F,

and these arrays accurately intersect the array of MgO-FeO contents of liquids on the solidus (see discussion

in Herzberg and O’Hara [2002]). The MgO contents of melts on the anhydrous peridotite solidus are shown

in Figure 5, and equation (14) reproduces all experiments in the 1–9.7 GPa range to within6 0.3 GPa in

most cases. Our parameterization indicates there are large changes in the MgO contents of near-solidus

All Liquid

SOLIDUS

MgO (wt%)

All Solid

SOLIDUS

1

Figure 4. Olivine liquidus temperatures for partial melts of peridotite KR4003 as functions of

MgO content and pressure, from equations (12) and (13) in the text. MgO contents of liquids

on the solidus are given in the following Figure 5, providing unique T-P solutions to the peri-

dotite solidus at pressures> 1 GPa. The 1r bracket represents T uncertainties from equation

(13).
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melts in the 1.0–1.5 GPa range, and it is broadly in agreement with other studies [Robinson et al., 1998; Fal-

loon et al., 2008; Chalot-Prat et al., 2010, 2013].

The new solidus shown in Figure 4 can be described by the equation:

Tsolidus5exp 7:1220:06=ðPsolidusÞ
4
10:187 � lnðPsolidusÞ

� �

(15)

where Tsolidus is the solidus temperature at pressure Psolidus in the 1.0–7.0 GPa range. This is the range for

which the pressure terms in equation (12) were derived [Herzberg and O’Hara, 2002], and the 1r uncertainty

in temperature is6 46�C. It is not clear whether equation (15) is valid at pressures beyond 7 GPa; however,

it also satisfies the T-P conditions of the anhydrous solidus at 15.3 GPa, the olivine-wadsleyite transition

[Herzberg and Zhang, 1996; Herzberg et al., 2000].

We now evaluate how our computed peridotite solidus compares with experimental observations, and

results are shown in Figure 6. Hirschmann [2000] and Herzberg et al. [2000] showed that solidus tempera-

tures are lowered with elevated alkalis and lower Mg-numbers, and this has been confirmed [Laporte et al.,

2014]. We therefore restrict this analysis to experimental data on peridotites KLB-1 and KR4003, which are

only moderately depleted in MgO with respect to the McDonough and Sun [1995] pyrolitic mantle. It is nota-

ble that Walter [1998] reported a whole rock composition for KR4003 with 37.3% MgO, but the total is low

(i.e., 99.18%) and the Mg-number for this composition is 89.2, in contrast with 89.5 for olivine in subsolidus

experiment 60.02. As discussed in Herzberg and O’Hara [2002], an MgO content of 38.12% for KR-4003

brings the total to 100%, raises its Mg-number to 89.4, and predicts 89.4–89.5 for solidus olivine. Data sour-

ces for the solidus brackets shown in Figure 5 are: Canil [1992], Takahashi [1986], Takahashi et al. [1993], Hir-

ose and Kushiro [1993], Herzberg et al. [2000], Walter [1998], Lesher et al. [2003], and Davis et al. [2011]. Our

computed anhydrous solidus and its temperature uncertainty are consistent with this experimental data-

base and previous parameterizations [Herzberg et al., 2000; Hirschmann, 2000]. However, temperatures at 2

GPa are higher, and temperatures in the 7–10 GPa range are lower, the latter being more consistent with

the experimental observations of Walter [1998] and Herzberg et al. [2000].

6. MgO Contents of

Primary Magmas and

Mantle Potential

Temperature

We are now positioned to evaluate

uncertainties in estimating mantle

potential temperature TP from the

MgO content of a PRIMELT3 pri-

mary magma. Shown in Figure 7

are the MgO contents of partial

melts and solid-state adiabatic gra-

dients from Iwamori et al. [1995]. It

is notable that the Iwamori et al.

adiabatic temperature profile hav-

ing a TP of 1300
�C is nearly identi-

cal to the most recent

determination of Katsura et al.

[2010] based on new thermoelastic

parameters of olivine. While there

are significant differences in for-

ward models of adiabatic gradients

in the melting region, the ones

given by McKenzie and Bickle

[1988], Langmuir et al. [1992], Iwa-

mori et al. [1995], Asimow et al.

[2001], and Putirka et al. [2007] are

0 10 20 30
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P
solidus

(GPa)

MgO  (wt%)

        MgO Contents 
Anhydrous Solidus Melts

Figure 5. Pressures of initial melting on the anhydrous peridotite solidus and the MgO

content of the near-solidus melts of mantle peridotite. Open circles used in the param-

eterization are experimentally constrained melt compositions from Baker and Stolper

[1994], Davis et al. [2011], Herzberg and Zhang [1996], and Walter [1998]. Closed circles

(not used in the parameterization for pressures �1 GPa) are near-solidus melt compo-

sitions from Robinson et al. [1998], Falloon et al. [2008], and Chalot-Prat et al. [2010,

2013]. Error bars for Herzberg and Zhang [1996] are 1r uncertainty arising from elec-

tron microprobe analysis. Error bars for Walter [1998] are 1r uncertainty arising from

uncertainty in Fe-Mg partitioning between olivine and melt [Herzberg and O’Hara,

2002].
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coincident with the isopleths

of MgO in Figure 7 to with-

in6 1.5 weight%. For preserva-

tion of clarity, we illustrate this

coincidence with adiabatic

melting paths obtained from

MELTS and pMELTS (Figure 7a).

These curves are generally sim-

ilar in shape, reflecting the

increase in melt productivity

from the solidus up to the

exhaustion of clinopyroxene in

both models. Although

pMELTS predicts a somewhat

higher overall melt productiv-

ity and hence a steeper ther-

mal gradient in the melting

region, both models predict

gradients that approximately

parallel the MgO isopleths. The

observation of coincidence

was originally made by Herz-

berg and O’Hara [2002], and it

provided the basis for calibrating TP from the MgO content of a primary magma [Herzberg et al., 2007; Herz-

berg and Asimow, 2008, equation (13)]. The present work is a confirmation of the earlier study, but here it

provides the basis for an updated calibration and uncertainty analysis.

The intersections of the solid-state adiabatic gradients with the anhydrous peridotite solidus having the

weight% melt MgO contents shown in Figure 7 yields:

TP51025128:6MgO–0:084MgO2 (16)

where TP is the mantle potential temperature in �C. Any thermodynamic adiabatic gradient model in the

melting region that differs from the MgO isopleths shown in Figure 7 by6 1.5 weight % will propagate to

an uncertainty in TP of<6 42�C. As existing adiabatic melting models satisfy this condition, mantle poten-

tial temperatures computed from equation (16) with PRIMELT3 primary magma MgO contents should be

accurate to within6 42�C.

Application of equation (16) to PRIMELT3 primary magma MgO contents yields mantle potential

temperatures that are similar to those of PRIMELT2 [Herzberg and Asimow, 2008], except that they

are lower by � 17�C on average. PRIMELT3.xlsm provides new TP estimates from equation (16) in

cell Q15; the potential temperature calculation from PRIMELT2 is also shown in cell P15 for

comparison. Results for MORB and representative lava compositions from various OIB, LIP, and

Archean komatiites are summarized in Figure 7b. Each OIB and LIP occurrence has primary magma

MgO contents that exhibit a 2–4% MgO range, equivalent to a TP range of �50–100�C. This has

been interpreted to reflect temperatures that are hotter in the axis of the plume relative to the

periphery [Herzberg and Asimow, 2008; Herzberg and Gazel, 2009]. OIB and LIPS are focussed

sources of heat and magmatism, not the products of broad upwellings [Anderson and Natland,

2014]. Therefore, maximum MgO contents should be most diagnostic of each mantle plume, and

only these are provided in Figure 7b together with their inferred TP maxima. PRIMELT3 predicts TP
increases in the following order: Siqueiros MORB<Galapagos5Canary Islands< Iceland<Gorgona

komatiites<Mauna Kea (postshield, Hawaii)<Archean komatiites.

Olivine liquidus temperatures at 1 atmosphere for Gorgona komatiites and Siqueiros MORB (Figure 7b) are

in good agreement with temperatures inferred from the aluminum content of olivine in equilibrium with

spinel [Coogan et al., 2014]. Collectively, these results support the mantle plume model for LIP and OIB

occurrences. PRIMELT3 cannot in general provide primary magma compositions for Archean komatiites (see
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Figure 6. The new computed anhydrous peridotite solidus (green curve) and experimental

constraints (open circles and closed squares). The 1r bracket represents T uncertainties

from equation (13) in the text. Red and blue curves are solidus curves from Hirschmann

[2000] and Herzberg et al. [2000], respectively.
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Appendix A), but olivine phenoc-

rysts and whole rock analyses

constrain MgO to 26–30% [e.g.,

Puchtel et al., 2004; Arndt et al.,

2008; Herzberg, 2011; Herzberg

et al., 2010]. Extremely deep

melting and TP in excess of

1700�C are inferred for Archean

komatiites (Figure 7b).

High MgO primary magmas

formed in a hot mantle with ele-

vated TP must also crystallize oli-

vine at high liquidus

temperatures should they erupt

at the surface. Mantle potential

temperature TP is related to oli-

vine liquidus temperature at 1

atmosphere T
Ol=L
1 by the

equation:

TP51:049T
Ol=L
1 –0:00019 T

Ol=L
1

� �2

11:487 � 1027 T
Ol=L
1

� �3

(17)

where both temperature terms

are in �C.

7. Nickel Contents of

Peridotite-Source

Primary Magmas

Lavas that originate by the mix-

ing of primary magmas with

olivine-fractionated derivative

liquids can have elevated Ni

contents [Herzberg et al., 2014];

mixing can occur anywhere,

such as during magma chamber

recharge or in lava flows. Application of PRIMELT3 to such lavas will yield primary magmas that are too high

in NiO because it cannot invert the mixing process. We recommend that the user instead compute the Ni

content of the primary magma with the equation [Herzberg, 2011]:

Ni ðppmÞ521:6MgO20:32MgO2
10:051MgO3 (18)

where MgO refers to the PRIMELT3 primary magma MgO content.

8. Conclusions

An upgrade of the PRIMELT algorithm [Herzberg and O’Hara, 2002] for calculating primary magma com-

position is given together with its implementation in PRIMELT3 MEGA.xlsm software. It is a mass balance

solution to the primary magma problem for an assumed peridotite source, and it supersedes PRI-

MELT2.xls [Herzberg and Asimow, 2008]. The major improvements are that it corrects for mistakes in melt

fraction and computed Ni content of olivine, it identifies residuum mineralogy, it provides a thorough

analysis of uncertainties in mantle potential temperature and olivine liquidus temperature, and it
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Figure 7. MgO contents of partial melts of mantle peridotite and mantle potential tempera-

tures. (a) Gray and blue curves are example adiabatic gradients in the supersolidus region

from MELTS [Ghiorso, 1994; Ghiorso and Sack, 1995] and pMELTS [Ghiorso et al., 2002]. (b)

Maximum MgO contents of PRIMELT3 primary magmas for Siqueiros MORB and selected

ocean islands, large igneous provinces, and Archean komatiites, and their inferred TP (see

worksheets for PRIMELT3 MEGA.XLSM).
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includes a batch-processing macro for handling large data sets automatically. The uncertainty analysis

was made tractable by the computation of olivine liquidus temperatures as functions of pressure and

partial melt MgO content, and it includes a new means of computing the anhydrous peridotite solidus in

T-P space. A successful PRIMELT3 primary magma solution for a basalt provides the user the following

information: primary magma composition, melt fraction (F), mantle potential temperature TP, olivine liq-

uidus temperatures at 1 atmosphere, olivine phenocryst composition at the liquidus, residuum mineral-

ogy, and (with some caveats) residuum composition. Results of the application of PRIMELT3 to a wide

range of basalts shows that the mantle sources of ocean islands and large igneous provinces were hotter

than oceanic spreading centers, consistent with earlier studies and predictions of the mantle plume

model.

Appendix A

As described in the text, PRIMELT3 MEGA.xlsm has a number of capabilities that were built into its

predecessor PRIMELT2.xls, and readers are encouraged to read Herzberg and Asimow [2008] for a

comprehensive description of its many features, including uncertainties. We begin by highlighting a

few of the new operational details, and discuss how they impact earlier discussions about

uncertainties.

A1. Using PRIMELT3 MEGA.xlsm for Primary Magma Calculation

We have provided in 7 separate worksheets example primary magma calculations for lavas from Mauna Kea

[Stolper et al., 2004], Ontong Java Plateau [Fitton and Godard, 2004], Gorgona [Arndt et al., 1997], West

Greenland [Larsen and Pedersen, 2009], Iceland [Sinton et al., 2005], the Superior Province in Canada [Fan

and Kerrich, 1997]. Additionally, new glass analyses were obtained for Siqueiros MORB from the East Pacific

Rise. Sample numbers are given so that the interested reader may go to the original references where the

lava analyses were reported and reproduce our calculations.

A new primary magma composition can be obtained by simply selecting one of the 7 worksheets (or, bet-

ter, making a copy of one of these worksheets and assigning it a new name) and replacing the weight%

oxides in row 4 with the new analysis of choice. Attention should be given the pressure of fractionation in

bars at cell $R$6 (which affects olivine-liquid KD) and to the Fe21/FeT setting at cell $F$5. If the user wishes

to obtain Fe21/FeT by instead constraining Fe2O3/TiO2 (see Herzberg and Asimow, 2008], enter this value in

cell $L$5 and then click the button labeled ‘‘Calculate Fe21/Fe*.’’ Primary magma compositions and condi-

tions of melting are given in row 11 for batch melting and row 15 for accumulated fractional melting. All

discussions about primary magmas in this paper refer to the case of accumulated fractional melting. A new

feature of PRIMELT3 MEGA.xlsm is that it allows the user to obtain primary magma information on large

batches of measured compositions using the worksheet entitled MEGAPRIMELT3. To use this function, put

sample names in column A and data in columns B through P (again, the option to fix Fe2O3/TiO2 is available

using column Q). Select the sample names (cells of column A) to be processed and then click the big but-

ton. Output will appear in columns R through BR: first warning flags, then batch melting output, then accu-

mulated fractional melting output. You may switch to other applications while Excel is running the MEGA

macro in the background.

A2. Using PRIMELT3.xlsm as a Calculator for Olivine Liquid Line of Descent

Like previous versions, PRIMELT3 MEGA.xlsm will add and subtract olivine to and from the input lava com-

position. It provides the Mg-number of olivine that would crystallize from the computed primary magma at

the surface in cell S15. But a new feature is that it also provides the equilibrium olivine composition at each

incremental step: down-temperature fractionation appears in rows 28–52, and up-temperature back-fractio-

nation appears in rows 55–115, with liquid compositions in columns B through N and olivine compositions

in columns P through AB. This can be used as a calculator for olivine liquid line of descent, and it can be

applied to any basalt. For example, it can be applied to basalt that originated from a pyroxenite source; in

this example, the reader will be warned of a pyroxenite error code, and information about temperatures,

pressure, and melt fraction will not be valid.

PRIMELT3 computes the composition of olivine in equilibrium with liquid using Ni partition coefficients

from Beattie et al. [1991], and Ti, Al, Cr, Ca and Mn partition coefficients from Herzberg and O’Hara [2002].
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Olivine is assumed to contain no Fe31, Na, K, and P. The model of Toplis [2005] is used for the Fe-Mg

exchange (i.e., KD), which is computed from the input lava composition and olivine liquidus temperature

[Beattie, 1993].

A3. Bulk Peridotite FeO and MgO Content

Cells R3 and R4 contain the bulk composition of peridotite KR-4003 for which PRIMELT has been calibrated.

These are used for melt fraction calculation, which depends on bulk peridotite FeO and MgO [Herzberg and

O’Hara, 2002; Herzberg and Asimow, 2008]. Varying these numbers is useful in reproducing experimental

melt fractions from FeO-rich and poor peridotite [Herzberg and O’Hara, 2002]. However, in general, we

encourage users to make no change here because their effects on primary magma composition and melt

fraction have not been fully evaluated.

A4. Application to Archean Komatiites

PRIMELT3 cannot be used to solve the primary magma problem for any melt whose source reached such a

high degree of melting that it exhausted all pyroxenes and left behind a residue of dunite, a problem that is

mainly restricted to aluminum-undepleted komatiites [Herzberg, 2004]. PRIMELT requires in its forward

model a range of MgO and FeO contents for any specific melt fraction, and this excludes melts extracted

from a dunite residue (Figure 1b). Aluminum-depleted komatiites likely left behind residues of Ol1Cpx1Gt

[Herzberg, 1992, 2004], but CaO is highly mobile during alteration and this will typically result in a composi-

tion that gets flagged as a pyroxenite source in a PRIMELT3 error code.

A5. Application to Fractionated Basalts

An enduring limitation of PRIMELT3 and its predecessors is that it can only reconstruct a primary magma

composition for a lava that has gained or lost olivine as a sole phenocryst phase. For example, most MORB

glasses and whole rocks differ from those from the Siqueiros Fracture Zone in that they have experienced

variable amounts of plagioclase and clinopyroxene fractionation [e.g., O’Hara, 1968]; the crystallization

sequence common to MORB is L1Ol, L1Ol1Plag, L1Ol1Plag1Cpx. Any attempt to restore primary

magma composition by addition of olivine to a lava that in fact experienced olivine1 plagioclase crystalliza-

tion will produce the erroneous result of a hot source [Herzberg et al., 2007; Till et al., 2012]. There are graph-

ical solutions to up temperature back-tracking L1Ol1Plag [Herzberg et al., 2007; Till et al., 2012] and it is

possible to encode it in software [Danyushevsky, 2001]. There are also nonunique iterative search methods

that can provide a candidate primary liquid that evolves to a given multiply saturated liquid composition

(incorporated in the latest versions of alphaMELTS [Smith and Asimow, 2005] and PRIMACALC2 [Kimura and

Ariskin, 2014]). However, small uncertainties in an improper inversion can result in large uncertainties in pri-

mary magma composition and inferred conditions of melting.

A6. Effects of H2O and CO2

It is commonly assumed that estimates of mantle potential temperature based on anhydrous parameteriza-

tions will be too hot if volatiles played a role. It is certainly true that volatiles can suppress solidus and liqui-

dus temperatures, and cold mantle can melt at conditions below the anhydrous peridotite solidus.

However, it is faulty logic to assume that a hot mantle source undergoing melting is necessarily cooled

down in some way by volatiles. The major effect of volatiles on MORB, OIB, and LIP melting will be to

increase melt productivity [e.g., Asimow and Langmuir, 2003].

A7. The Effects of Variable Peridotite Fertility

The effects of variable peridotite fertility on TP are minor as discussed previously [Herzberg and O’Hara,

2002; Herzberg and Asimow, 2008]. Depleted peridotites yield much less magma than fertile peridotite, but

there is little change in computed primary magma MgO and inferred TP.

A8. Uncertainties

There are many sources of uncertainty in PRIMELT calculation of primary magma composition, and these

have been discussed in Herzberg and O’Hara [2002] and Herzberg and Asimow [2008]. While PRIMELT3 MEG-

A.xlsm has not added to the uncertainties, it is important to provide an abbreviated review. These are:

1. Uncertainty in use of the Beattie [1993] olivine liquidus temperature calculation at 1 atmosphere is6 31�C

(1r; see discussion in section 4) [Putirka et al., 2007].
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2. A 1r uncertainty in the KD for Fe-Mg partitioning between olivine and liquid will contribute to6 1% MgO

[1r; Herzberg and O’Hara, 2002], which propagates to6 20�C in olivine liquidus temperature T
Ol=L
1 at 1

atmosphere, and to uncertainty in melt fraction of6 0.05 [Herzberg and O’Hara, 2002].

3. An uncertainty in Fe21/RFe of 0.9060.05 will propagate to6 1% MgO (6 20�C T
Ol=L
1 ). For MORB we use

Fe21/RFe of 0.88 [B�ezos and Humler, 2005], but new analytical results have suggested more oxidized condi-

tions for MORB than previous estimates [Cottrell and Kelley, 2011]. Evidence for oxidized conditions for

some ocean islands basalts was discussed previously [Herzberg and Asimow, 2008], and this can be accom-

modated by adjusting Fe2O3/TiO2 in cell L5.

4. Uncertainties in thermodynamic decompression models propagate to an uncertainty in mantle potential

temperature of<6 42�C (see section 6).

5. Melt fraction uncertainties in multicomponent projection space (Figure 1a) do not contribute significantly

to primary magma MgO content [Herzberg and Asimow, 2008]. This computational method is forgiving

because melt fractions in MgO-FeO space are more highly restricted, and large variations in F are inferred

from small increments of olivine addition and MgO (Figure 1b).

6. Clinopyroxene fractionation is common in intraplate magmatism, and has the effect of driving up the

FeO content of the derivative melt [Herzberg and Asimow, 2008]. PRIMELT3 will calculate anyway the pri-

mary magma composition and mantle potential temperature, but the result is erroneous. Clinopyroxene

addition and subtraction will perturb the CaO content of the melt, and PRIMELT provides filters for its detec-

tion in cell M13. CaO is also easily mobilized during greenschist facies metamorphism, and it may compro-

mise primary magma calculation from metamorphosed samples in the same sense as clinopyroxene

addition and subtraction [Herzberg et al., 2010].

7. Melts of carbonated peridotite can have MgO contents that are higher than noncarbonated peridotite

[Dasgupta et al., 2007] and PRIMELT3 warns the user of this possibility as an error code in cell G7.

8. Primary magmas of some pyroxenite sources can have lower CaO contents compared with those of peri-

dotite sources [Herzberg, 2006], although there may be important exceptions [Herzberg, 2011]. PRIMELT3

identifies pyroxenite sources as an error code in cell G7 for the case where the primary magma is too low in

CaO to have originated from a peridotite source.

10. Instantaneous fractional melts do not always mix to produce an accumulated fractional melt [Herzberg

et al., 2007; Herzberg and Asimow, 2008]. These often have unusually low contents of FeO, and they plot in a

forbidden region below the curve labeled L1Ol in Figure 1b. The calculation will proceed anyway, but the

user is alerted with the warning ‘‘FeO/MgO forbidden’’ in cell Q13.
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