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Abstract. For a rational elliptic curve in Weierstrass form, Chudnovsky
and Chudnovsky considered the likelihood that the denominators of the x-
coordinates of the multiples of a rational point are squares of primes. Assum-
ing the point is the image of a rational point under an isogeny, we use Siegel’s
Theorem to prove that only finitely many primes will arise. The same ques-
tion is considered for elliptic curves in homogeneous form, prompting a visit to
Ramanujan’s famous taxi-cab equation. Finiteness is provable for these curves
with no extra assumptions. Finally, consideration is given to the possibilities
for prime generation in higher rank.

1. Introduction

Suppose E denotes an elliptic curve in Weierstrass form which is defined over
Q. The standard reference for elliptic curves is [10]. The curve E is given by an
equation

(1.1) E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

with a1, . . . , a4, a6 ∈ Z. Suppose E has a non-torsion point P ∈ E(Q). Write

(1.2) x(nP ) =
An
B2
n

,

in lowest terms, with An and Bn in Z. In [3], Chudnovsky and Chudnovsky con-
sidered the likelihood that Bn might be a source of “large” primes. The following
examples are taken from their paper; in both, the index n was allowed to run out
to n = 100.

Example 1.1.
E : y2 = x3 + 26, P = [−1, 5].

The term B29 is a prime with 286 decimal digits.

E : y2 = x3 + 15, P = [1, 4].

The term B41 is a prime with 510 decimal digits.

In some respects, this method for producing primes mirrors the genus-zero sit-
uation with sequences such as the Mersenne and Fibonacci sequences. Genus-zero
sequences are expected to produce large primes; for many years, the largest known
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primes have come from the Mersenne sequence. However, in [5], further numeri-
cal work suggested that for fixed E and P , the sequence Bn should only contain
finitely many primes. A heuristic argument suggested that the number of prime
terms should be bounded. The elliptic Lehmer problem asks whether the global
height of a non-torsion rational point is bounded below by a uniform constant.
Under an affirmative answer, the methods in [5] predict a uniform upper bound for
the number of prime terms Bn.

The sequence Bn is a divisibility sequence, meaning that Bm|Bn whenever m|n.
This follows from the p-adic analysis of elliptic curves as in [10]. Therefore, using
Lemma (2.2) below, there can only be finitely many primes in the sequence Bn if P
is a nontrivial multiple of another point or if P is a non-integral point or the index
n is not itself prime. We call a point a generator if it is not a nontrivial multiple of
another point. Any generator can be taken as one of the basis elements for E(Q).
However, note that a generator cannot necessarily be included in a basis for E(Q)
modulo torsion.

Let E and E′ be two elliptic curves, defined over Q. An isogeny is a nonzero
homomorphism

φ : E → E′

taking the zero of E to the zero of E′. The isogeny has an integral degree m ≥ 1
(see section 2). The curves E and E′ are said to be m-isogenous if there is an
isogeny of degree m between them. The key definition of this paper now follows:

Definition 1.2. Writing φ(P ) = P ′, we say that the point P ′ ∈ E′(Q) is magnified.

For the magnified point P ′ write x(nP ′) = A′n/B
′2
n .

Theorem 1.3. Given an isogeny φ : E → E′ of degree > 1 and a magnified point
P ′ ∈ E′(Q), the terms B′n are prime for only finitely many n.

Example 1.4. Here and elsewhere, we use the notation on Cremona’s web site [2].
(1) The curve of conductor 136A1,

E : y2 = x3 + x2 − 4x,

is 2-isogenous to the curve in minimal Weierstrass form,

E′ : y2 = x3 + x2 + 16x+ 16.

The generator P = [−2, 2] on E maps to the generator P ′ = [0, 4] on E′. Thus the
sequence of denominators for P ′ on E′ contains only a finite number of primes.

(2) The curve of conductor 324A1,

E : y2 = x3 − 9x+ 9,

is 3-isogenous to the curve in minimal Weierstrass form,

E′ : y2 = x3 − 189x− 999.

The generator P = [1, 1] on E maps to the generator P ′ = [−8, 1] on E′. Thus the
sequence of denominators for P ′ on E′ contains only a finite number of primes.

The proof of Theorem 1.3 follows in the next section after some preliminaries
on isogenies and heights. Comments are also given about what is needed to obtain
effective and uniformity statements. A short section is then included with a more
explicit proof; this is justified since it does actually yield a stronger statement. It
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will be proved that only finitely many prime powers can occur among the denom-
inators; see Theorem 3.1. After that, the question of prime (power) appearance is
answered, without any hypotheses, for a curve in homogeneous form. Finally, these
methods will be used to comment on the higher-rank situation and the possibility
that two independent points can be used to produce infinitely many primes. This
opening section concludes with some notes.

Notes
1. We felt it incumbent upon us to comment on the scarcity, or not, of generators

for rank-1 curves which are magnified points. The following table, drawn from [2],
provides statistics for all curves of conductor less than or equal to 200. It gives the
number of isogeny classes of curves with a point of infinite order (all such curves
within the tables have rank 1), together with the number of such classes having
more than one curve in the class.

Range of conductor Classes with rank 1 Classes with isogeny
11-50 2 0
51-100 15 4
101-150 25 11
151-200 33 18
Total 75 33

It is difficult to draw general conclusions from the table. It is not known whether
the abundance of isogenies for small conductors is typical.

When the class contains more than one curve, there might be more than one
curve that satisfies the criterion of the theorem. For example, there are three
curves in the isogeny class 91B. The curve 91B2 is 3-isogenous to 91B1 and, under
the isogeny, the image of the generator of 91B2 is a generator of 91B1. The curve
91B2 is also 3-isogenous to 91B3 and, under this isogeny, the image of the generator
of 91B3 is a generator of 91B2. Thus both 91B1 and 91B2 have generators for which
the sequence of denominators contains only a finite number of primes.

2. It was suggested in [5] that if S denotes any fixed, finite set of primes, then
the S-free part of Bn can only be prime finitely often. The proof that follows
demonstrates this stronger property.

3. Under the assumption that a generator has everywhere good reduction, the
denominator sequence forms an elliptic divisibility sequence (EDS). For example,
the generator P ′ in Example 1.4 (2) has everywhere good reduction. See Shipsey’s
thesis [9] or [14] for background on these sequences. The statement in Theorem 1.3
holds for EDSs also. This is because the sequence of denominators always divides
the corresponding EDS.

2. Proof of Theorem 1.3

Firstly, recall some basic properties of isogenies. There is a dual homomorphism
φ′ : E′ → E, and the composite homomorphisms φ′φ and φφ′ are multiplication by
m on E and E′, respectively, for some integer m, which is said to be the degree of
the isogeny. If E and E′ are m-isogenous and m is prime, then for precisely one
of these curves a generator is mapped into a generator of the other. For the other
curve, a generator is mapped to m times a generator. Thus the theorem proves
that, within any isogeny class of curves containing more than one curve and having
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a point of infinite order, there exists at least one generator on at least one of the
curves for which the sequence of denominators contains only a finite number of
primes.

Secondly, recall Siegel’s Theorem and the behaviour of the height under isogeny.
Let

h = ĥ(P ) and h′ = ĥ(P ′)

denote the canonical heights of P and P ′. The first two statements in the Lemma
are variants of Siegel’s Theorem; see [10].

Lemma 2.1. For any finite set of primes S, only finitely many terms Bn are
S-units. A strong form of Siegel’s Theorem gives

(2.1)
log |An|
log |B2

n|
→ 1,

as n→∞. With the definitions above,

(2.2) h′ = mh.

Proof of Theorem 1.3. Suppose P denotes a generator on a curve E and there is an
isogeny φ : E → E′ that takes P to a generator P ′. Let S denote the set of primes
for which E,E′ and the isogeny cannot be reduced modulo p to give an isogeny on
elliptic curves modulo p. Then S is a finite set. For all sufficiently large n, there
is a prime divisor q of Bn not in S, by Siegel’s Theorem. Reducing the curves and
the isogeny modulo q we see at once that q divides B′n. Using (2.1) and (2.2) we
see that if n is large enough, q is a proper divisor. �

Notice that the proof also shows that the S-free part of the denominator can be
prime only finitely often, where S denotes any fixed finite set of primes. The proof
given is a fairly simple verification of Theorem 1.3. It seems worth investigating
how it could be stengthened. Firstly, we consider making the result effective. Then
we ask what might be required in order to prove the uniformity statement.

The effectiveness question can be settled using deep methods from elliptic tran-
scendence theory. For any finite set of primes S, write |k|S for the S-free part of
the integer k, with |k|S = k if S is the empty set.

Lemma 2.2. There is a constant K > 0 such that

(2.3) log |B2
n|S = 2hn2 +O((log n)K).

The constants K and the one implied by the big O-notation are effective.

Proof. Recall the following effective result about the difference between the Weil
height and the canonical height (see [10]):

(2.4) max{log(An), log(B2
n)} = 2hn2 +O(1).

When S is empty, elliptic transcendence theory (see [4]) gives (2.3) with K = 1.
For each p ∈ S, p-adic elliptic transcendence theory (see [4] again) shows there is
an effective constant Kp > 0 depending on E and p only, such that

log |B2
n|p = O((log n)Kp).

Putting these together with (2.4) gives (2.3). �
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Using Lemma 2.2 in the proof of Theorem 1.3 allows an effective version to be
proved, although in practice, the constants might be too unwieldy to use.

In order to obtain a uniform bound, a stronger version of Lemma 2.2 is required.
Let S consist of the primes for which E does not reduce to a nonsingular curve.
Suppose (2.3) could be strengthened to

(2.5) log |B2
n|S = 2hn2 +O(log(∆E)),

with a uniform error term, where ∆E denotes the discriminant of E. Then Lang’s
Conjecture, which says that log(∆E)/h is uniformly bounded, would enable the
uniformity statement to be proved. In the function field case, Lang’s Conjecture is
proved. However, we are unaware of anything in the literature as good as (2.5) for
the function field case (see [7], [12] and [13]).

Finally, note that Lang’s Conjecture implies an affirmative answer to the elliptic
Lehmer problem. Thus, our remarks above give a kind of post hoc credence to the
heuristic argument in [5].

3. Explicit isogenies

Theorem 3.1. Given an isogeny φ : E → E′ of degree > 1 and a magnified point
P ′ ∈ E′(Q), the terms B′n are prime powers for only finitely many n.

Proof. We give an explicit proof of Theorem 3.1 using Vélu’s formulae in [11]. This
proof exhibits a kind of generic factorizability of the denominators of the multiples
of P ′. Isogenies of composite degree are composed of isogenies of prime degree;
it is only necessary to prove the theorem for these. The formulae that follow, for
isogenies of prime degree, are taken from [11]. They make use of the coordinates
of a point S = (x1, y1) of order m on the curve and its multiples kS = (xk, yk),
for 1 < k < m. The point S may or may not have coordinates in the base field
Q. However the formulae, when applied to a point P on a curve E over Q, yield
an isogenous curve E′ and a Q-rational point P ′ whenever the isogeny exists. It is
necessary to consider the cases m = 2 and m odd separately.

For m = 2, the curve E must have a 2-torsion point S = (x1, y1) over Q. Let

t = 3x2
1 + 2a2x1 + a4 − a1y1,

u = 4x3
1 + b2x

2
1 + 2b4x1 + b6,

and

w = u+ x1t.

Then the isogenous curve E′ has

(3.1) [a′1, a
′
2, a
′
3, a
′
4, a
′
6] = [a1, a2,a3,a4 − 5t, a6 − b2t− 7w].

Also P ′ = (x′, y′), the image of P = (x, y), has x′ given by

(3.2) x′ = x+ t/(x− x1) + u/(x− x1)2.

It is possible that x1 and y1 are not in Z and, subsequently, the coefficients given
for E′ are also not in Z. It is possible, even if the coefficients of E′ are in Z, that
the curve E′ is not in minimal Weierstrass form. If this happens, a transformation
to take E′ to E0 which is minimal will take x to v2x0 + r for some v, r ∈ Z. The
denominator of x0 will thus be divisible by the denominator of x, and this will not
affect the primality statement. We shall assume this transformation has been made
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and retain the same notation. Note that the value for u in the formulae above is
zero because the roots of the expression on the right are the x-coordinates of the
two division points on the curve. The expressions above were given to unify the
presentation.

Suppose P denotes a generator on a curve E with coordinates in Z and there is
an isogeny φ : E → E′ that takes P to a generator P ′. Write Q = (X/Z2, Y/Z3) for
an arbitrary multiple of P. The isogeny maps this point to Q′ = (X ′/Z ′2, Y ′/Z ′3),
the same multiple of P ′. Using (3.2), and inserting u = 0, gives

X ′

Z ′2
=

X

Z2
+

tZ2

X − x1Z2
.

For all sufficiently large multiples of P, we have Z ′ > Z > 1 by (2.3) and (2.2).
Clearly (X,Z) = (Z,X − x1Z

2) = 1. Hence Z ′ will be a product of Z and a factor
of X − x1Z

2, coprime and both greater than 1. Hence the denominator cannot be
a prime power for all sufficiently large multiples of P ′.

For odd m, the formulae for t, u, w are given as follows. Define, for each k with
1 ≤ k ≤ (m− 1)/2,

tk = 6x2
k + b2xk + b4,

uk = 4x3
k + b2x

2
k + 2b4xk + b6,

and

wk = uk + xktk.

Then with
t =

∑
tk, u =

∑
uk, and w =

∑
wk,

the formula for E′ is exactly as in (3.1). However, x(P ′) is given by

(3.3) x′ = x+
(m−1)/2∑
k=1

{
tk

(x− xk)
+

uk
(x− xk)2

}
.

Again, the coordinates of the isogenous curve and the image of the point will
have values in Q but not necessarily in Z. Consider first the case where the xk and
hence t, u, w are integers. Write Q = (X/Z2, Y/Z3) for an arbitrary multiple of P.
The isogeny maps this point to Q′ = (X ′/Z ′2, Y ′/Z ′3), the same multiple of P ′.
Using (3.3) gives

X ′

Z ′2
=

X

Z2
+

(m−1)/2∑
k=1

{
tkZ

2

X − xkZ2
+

ukZ
4

(X − xkZ2)2

}
.

Now (X,Z) = (Z,X − xkZ2) = 1, in Q(xk). Just as before, for sufficiently large
multiples of P, we have Z ′ > Z > 1. Hence, for almost all multiples of P , Z ′ will
be a product of Z and a nontrivial factor of

∏
(X − xkZ2). This latter factor is

coprime with Z and both are greater than 1. As before, the denominator cannot
be a prime power for all sufficiently large multiples of P ′.

Finally, consider the case when the xk are not integers. The equation for the
x-coordinate of the m division points is a polynomial of degree 3 (m = 2) and
degree (m2 − 1)/2 (m odd) with leading coefficient r, where r | m2. If the xk
are not integers, then the values of rxk are. It follows that in the latter case,
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r2t, r3u, r4w are in Z. Hence E0 = [ra′1, r
2a′2, r

3a′3, r
4a′4, r

6a′6] and P0 = (r2x′, r3y′)
have coordinates in Z. The proof is now similar to the first case. �

4. The curve u3 + v3 = D

This section shows that the primality question can be answered in full generality
for elliptic curves in homogeneous form.

Theorem 4.1. Suppose E denotes an elliptic curve defined by an equation

(4.1) u3 + v3 = D,

for some nonzero D ∈ Q. Let P denote a non-torsion Q-rational point. Write, in
lowest terms,

P =
(
AP
BP

,
CP
BP

)
.

The integers BP are prime powers for only finitely many Q-points P .

Example. As Ramanujan famously pointed out, the taxi-cab equation

(4.2) x3 + y3 = 1729,

has two distinct integral solutions. These give rise to points P = [1, 12] and Q =
[9, 10] on the elliptic curve (4.2). The only rational points on (4.2) which seem to
yield prime power denominators are 2Q and P + Q (and their inverses).

Proof of Theorem 4.1. It is well known that there is a birational transformation
between the homogenous model (4.1) and the Weierstrass model

y2 = x3 − 2433D2.

The transformations are given by

x =
223D
u+ v

, y =
2232D(u − v)

u+ v
,

u =
2232D + y

6x
, v =

2232D − y
6x

.

Writing x = X/Z2 and y = Y/Z3 where (X,Z) = (Y, Z) = 1, it follows that

u =
2232DZ3 + Y

6XZ
.

If X divides the numerator of u, then X divides 2633D2. By Siegel’s Theorem, this
can only happen finitely often. Since Z is co-prime to the numerator, (2.1) shows
that, apart from a finite number of points, the denominator of u always has two
nontrivial coprime factors. �

5. Higher-rank considerations

Joe Silverman asked the first author what other possibilities there might be if the
elliptic curve has rank greater than 1. There exists a straightforward generalization
possible of the finiteness result, but a real surprise also lies in store.

Theorem 5.1. Let E denote an elliptic curve in Weierstrass form (1.1). Suppose
that P and Q denote independent points both magnified under the same isogeny.
Write

(5.1) x(nP +mQ) =
Anm
B2
nm

.
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Then there are only finitely many pairs (m,n) for which Bnm is prime.

Example. The elliptic curve

y2 + xy = x3 + x2 − 156x+ 2070

has independent generators P = [3, 39] and Q = [13, 43] which are magnified under
the same 2-isogeny. This is because T = [−69/4, 69] is a 2-torsion point for which
x(P ) − x(T ) and x(Q) − x(T ) are both rational squares. We can therefore appeal
to Cassels’ treatment of explicit 2-isogenies in [1] (see Lemma 1 on p. 60).

In [6] and [8], a heuristic argument together with results from some numerical
experiments indicate that for certain curves in Weierstrass form (1.1), if P and Q
denote independent non-torsion rational points, then the denominators of nP +mQ
can be the squares of primes infinitely often. Indeed, there seem to be asymptot-
ically c logX such primes with |m|, |n| < X . Of course, none of the numerical
examples that are considered in [6] and [8] use magnified points.

The proof of Theorem 5.1 involves little that goes beyond our earlier method; so
no details are given.

References

1. J. W. S. Cassels, Lectures on Elliptic Curves, London Mathematical Society Student
Texts 24, Cambridge University Press, Cambridge, 1991. MR 92k:11058

2. J. E. Cremona, Elliptic Curve Data, up-dated 14-1-02, http://www.maths.nott.ac.uk/
personal/jec/ftp/data/INDEX.html

3. D. V. Chudnovsky and G. V. Chudnovsky, Sequences of numbers generated by addition
in formal groups and new primality and factorization tests, Adv. in Appl. Math. 7
(1986), 385–434. MR 88h:11094
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