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PRIMES IN ARITHMETIC PROGRESSIONS

OLIVIER RAMARÉ AND ROBERT RUMELY

Abstract. Strengthening work of Rosser, Schoenfeld, and McCurley, we es-
tablish explicit Chebyshev-type estimates in the prime number theorem for
arithmetic progressions, for all moduli k ≤ 72 and other small moduli.

1. Introduction

In many applications it is useful to have explicit error bounds in the prime
number theorem for arithmetic progressions. Furthermore, in numerical work, such
estimates for small moduli are often the most critical. Let us recall the usual
notation, where x ≥ 0 is real:

θ(x; k, l) =
∑
p≡l(k)
p≤x

ln(p), where p denotes a prime number;

ψ(x; k, l) =
∑
n≡l(k)
n≤x

Λ(n), where Λ(n) is Von Mangoldt’s function.

Here we obtain estimates of the type

(1− ε) x

ϕ(k)
≤ θ(x; k, l) ≤ ψ(x; k, l) ≤ (1 + ε)

x

ϕ(k)

for all moduli k ≤ 72, all composite k ≤ 112, and 48 other moduli; ϕ(k) denotes
Euler’s function.

To obtain such estimates for the progression with modulus 1, Rosser and Schoen-
feld ([8, 9, 11]) developed an analytic method which combines a numerical verifica-
tion of the Riemann Hypothesis to a given height together with an explicit asymp-
totic zero-free region. McCurley ([3, 4, 5, 6]) adapted this method to progressions
with modulus k > 1. However, except for k = 3, he got poor numerical results
because of the paucity of numerical work on the Generalized Riemann Hypothesis.
Recently, the second author [10] did such computations, and we get reasonably good
results for all moduli accessible from his list. In fact, the results are better than
one would expect, owing to a smoothing process implicit in the method, explained
in §4.4.
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398 OLIVIER RAMARÉ AND ROBERT RUMELY

Our main theoretical result is Theorem 4.3.2, which provides an easy way to
get applications like Theorem 1 below. In Theorem 3.6.2 we also establish a zero-
free region for Dirichlet L-functions, valid for heights |t| ≥ 1000, which improves
somewhat on the region found by McCurley [4].

Finally, we mention that this paper is an important step in a forthcoming paper
by the first author, in which it is proved that every even integer can be written as
a sum of at most 6 primes.

Our main numerical result is the following:

Theorem 1. For any triple (k, ε, x0) given by Table 1 (see §5), and any l prime
to k, we have

max
1≤y≤x

|θ(y; k, l)− y

ϕ(k)
| ≤ ε x

ϕ(k)
for x ≥ x0,

max
1≤y≤x

|ψ(y; k, l)− y

ϕ(k)
| ≤ ε x

ϕ(k)
for x ≥ x0.

For example, if k = 1,

ε = 0.000213 for x0 = 1010, ε = 0.000015 for x0 = 1013,

ε = 0.000001 for x0 = 1030.

If k ≤ 13, one can take

ε = 0.004560 for x0 = 1010, ε = 0.002657 for x0 = 1013,

ε = 0.002478 for x0 = 1030, ε = 0.002020 for x0 = 10100.

If k ≤ 72, one can take

ε = 0.023269 for x0 = 1010, ε = 0.011310 for x0 = 1013,

ε = 0.010484 for x0 = 1030, ε = 0.008672 for x0 = 10100.

We have supplemented these analytic results with a tabulation up to 1010, ob-
taining surprisingly uniform bounds:

Theorem 2. For all moduli k in Table 1, and all l prime to k, uniformly for
1 ≤ x ≤ 1010,

max
1≤y≤x

∣∣∣∣θ(y; k, l)− y

ϕ(k)

∣∣∣∣ ≤ 2.072
√
x,

max
1≤y≤x

∣∣∣∣ψ(y; k, l)− y

ϕ(k)

∣∣∣∣ ≤ 1.745
√
x.

In particular, for a bound of the type in Theorem 1 when x0 ≤ x ≤ 1010, one can
take

ε = 2.072ϕ(k)/
√
x0.

Sharper bounds for individual moduli are given in Table 2 (see §5). Especially, for
k = 5 or k ≥ 7, the constant 1.745 in the error bound for ψ(x; k, l) can be replaced
by 1.000, and for k = 1 it can be replaced by

√
2.
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2. Numerical results about the GRH

Throughout the paper, p always stands for a prime and the gcd of k and l is
written (k, l).

The letter ρ always denotes a nontrivial zero of a Dirichlet L-function, i.e., a
zero with 0 < <ρ < 1. We will always write ρ = β + iγ.

Given a Dirichlet L-function L(s, χ), the set of its zeros with 0 < β < 1 will be
denoted by Z(χ). Thus, if χ′ is induced by χ, then Z(χ′) = Z(χ).

Given a nonnegative real number H, we will say that L(s, χ) satisfies GRH(H),
the Generalized Riemann Hypothesis to height H, if all its nontrivial zeros with
|γ| ≤ H verify β = 1

2 .
It is possible to prove or disprove GRH(H) for any given H and L(s, χ) with only

a finite amount of computation. Rumely [10] did such computations, obtaining:

Theorem 2.1.1.
◦ Every L-function associated with a Dirichlet character of conductor k ≤ 13

satisfies GRH(10000).
◦ Every L-function associated with a Dirichlet character of conductor in the sets

{k ≤ 72},
{k ≤ 112, k not prime},
{116, 117, 120, 121, 124, 125, 128, 132, 140, 143, 144,

156, 163, 169, 180, 216, 243, 256, 360, 420, 432}

satisfies GRH(2500).

Sharper results for individual moduli, together with bounds for the sums∑
|Im(ρ)|≤H
ρ∈Z(χ)

1

|ρ|

may be found in Tables 1 and 5 of [10]; these results were used in computing Table
1 below. The following facts about the Riemann zeta function were also used:

ζ(s) satisfies GRH(545439823.215)

(van de Lune, te Riele, and Winter [2]);

for H = 12030,
∑

|Im(ρ)|≤H

1

|ρ| ≤ 9.056

(R. S. Lehman, cf. Rosser and Schoenfeld [9]).

3. Zero-free regions for L-functions

This part follows McCurley [4] and some evaluations are taken directly from
McCurley’s paper without being re-established. We employ a device due to Stechkin
[12] to widen the zero-free region.

Let s = σ + it and s1 = σ1 + it be complex numbers with |t| ≥ 1000 satisfying

(3.1)

 1 < σ ≤ 1 +
√

2

2
≤ σ1 ≤

1 +
√

5

2
,√

σ(σ − 1) +
√
σ1(σ1 − 1) = 1
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and put κ(σ) =
1+ 4

5

√
σ−1√

5
. Note that 1/

√
5 ≤ κ(σ) ≤ 0.61004, and that σ ≥ κ(σ)σ1.

These assumptions on σ and σ1 will hold throughout the paper.
We define the auxiliary function

(3.2) f(t, χ) = <

∑
n≥1

Λ(n)

(
1

nσ
− κ(σ)

nσ1

)
χ(n)

nit


and introduce constants

(3.3)

{
ε1 = 0.0067,

ε2 = 10−6,



a0 = 11.1859355312082048,

a1 = 19.073344004352,

a2 = 11.67618784,

a3 = 4.7568,

a4 = 1,

A = a1 + a2 + a3 + a4 = 36.506331844352.

3.1. A device of Stechkin.

Lemma 3.1.1 (Stechkin). Let z be a complex number with 0 ≤ <z ≤ 1. Put

F (s, z) = <
{ 1

s− z +
1

s− (1− z̄)
}
.

Then
F (s, z) ≥ κ(σ)F (s1, z).

Moreover, if =z = =s and 1
2 ≤ <z ≤ 1, and if S(σ) = − 1

σ + κ(σ)
(

1
σ1

+ 1
σ1−1

)
,

then

−<
(

1

s− (1− z̄)

)
+ κ(σ)F (s1, z) ≤ S(σ).

Proof. The first inequality is implicit in Stechkin [12]: see the top line on p.132 of
the English translation. For the second inequality, note that when =z = =s = t,
then, writing z = β + it, the left side of the inequality becomes

− 1

σ − 1 + β
+ κ(σ)

(
1

σ1 − β
+

1

σ1 − 1 + β

)
.

For 1
2 ≤ β ≤ 1, both terms are increasing with β. Taking β = 1 we obtain the

result. �
As will be seen later, we will only need to consider σ in the interval [1, 1.062].

Although we will not use this, it can be shown that on [1, 1.062]

S(σ) = 2
√

∆ +
86

25
∆ +O(∆3/2),

where ∆ = σ − 1 and the implied constant can be taken as 18. Furthermore,
throughout the interval,

2
√

∆ + 3∆ ≤ S(σ) ≤ 2
√

∆ + 5∆.
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3.2. Handling the Γ-factor.

Lemma 3.2.1. If 0 ≤ a ≤ 2, ε1 = 0.0067 and ε2 = 10−6, then for |t| ≥ 1000

1

2
<
{

Γ′

Γ

(s+ a

2

)
− κ(σ)

Γ′

Γ

(s1 + a

2

)}
≤ 1− κ(σ)

2

(
ln

(
|t|
2

)
+ ε1 − 10ε2

)
.

Proof. We follow Lemma 2 of McCurley ([4]). Since <
(

Γ′

Γ (z)
)

is invariant under

z → z̄, we have for z = x+ iy, with x > 0:

(3.2.1) <Γ′

Γ

(
z + a

2

)
= ln

(
|y|
2

)
+

1

2
ln

∣∣∣∣∣1 +

(
x+ a

y

)2
∣∣∣∣∣− x+ a

(x + a)2 + y2
+ Θ(y)

where |Θ(y)| ≤ 1
|y| ·

[
π
2 − arctan

(
x+a
|y|

)]
≤
∣∣∣ π2y ∣∣∣. We apply this, taking z = s, s1.

Using σ ≥ κ(σ)σ1, we find

− σ + a

(σ + a)2 + t2
+ κ(σ)

σ1 + a

(σ1 + a)2 + t2
≤ 0,

1

4
ln

∣∣∣∣∣1 +

(
σ + a

t

)2
∣∣∣∣∣ ≤ 2.58

t2
,

1

2
(1 + κ(σ))Θ(t) ≤ 1.26453

|t| .

These facts, together with (1− κ(σ))/2 ≥ 0.19498, yield the result. �

3.3. Approximating f(t, χ). Here the character which is the argument of f(t, ·)
is assumed to be primitive.

Lemma 3.3.1. If χ0 is the trivial character and

E(σ) = 1.08699 + 1.40018
√
σ − 1 + 1.86576(σ− 1) + 2.32244(σ− 1)3/2,

then for 1 < σ ≤ 1.062,

f(0, χ0) ≤ 1

σ − 1
−E(σ).

Proof. We follow McCurley’s Lemma 3 ([4]). We have for any complex number z

(3.3.1) −ζ
′

ζ
(z) =

1

z − 1
− ln(π)

2
+

Γ′

2Γ

(z + 2

2

)
−

∑
ρ∈Z(χ0)

1

z − ρ,

where
∑
ρ is to be understood as limT→∞

∑
ρ,|γ|≤T . We use (3.3.1) for z = σ. Since

for any zero of ζ, we have |γ| ≥ 10 ≥ σ − β, we see that

(3.3.2)
σ − β

(σ − β)2 + γ2
≥ 1− β

(1− β)2 + γ2
.
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It follows that

f(0, χ0) = −ζ
′

ζ
(σ) + κ(σ)

ζ′

ζ
(σ1)

≤ 1

σ − 1
− ln(π)

2
+

Γ′

2Γ

(σ + 2

2

)
−<

 ∑
ρ∈Z(χ0)

1

1− ρ

+ κ(σ)
ζ′

ζ
(σ1).

We recall McCurley’s estimate (taken from the proof of Lemma 3 of [4])

Γ′

2Γ

(σ + 2

2

)
≤ 1− C0

2
− ln(2) + (

π2

8
− 1)(σ − 1),

where C0
∼= 0.5772156649 denotes Euler’s constant. Further, by (Landau [1, §76,

pp. 316-317]),

(3.3.3)
∑
ρ

1

1− ρ =
∑
ρ

1

ρ
= −1

2
ln(π)− ln(2) + 1 +

C0

2
.

Thus, we can take

(3.3.4) E(σ) = C0 −
(
π2

8
− 1

)
(σ − 1) + κ(σ)

(
−ζ
′

ζ
(σ1)

)
.

We now estimate −(ζ′/ζ)(σ1), which is a decreasing, nonnegative function of σ1.
As σ → 1+, σ1 approaches (1 +

√
5)/2 from below. Writing ∆ = σ − 1, we have

σ1 =
1 +
√

5
√

1− (8
5 )∆1/2 + (4

5 )∆−
(

4
5

)
∆3/2 + ((4

5 )∆2 + (1
5 )∆5/2)− . . .

2
.

For 0 ≤ ∆ ≤ 0.062 the series inside the radical is alternating, with decreasing terms.
Thus

σ1 ≤
1 +
√

5
√

1− (8
5 )∆1/2 + (4

5 )∆

2
.

Upon expanding and using ∆ ≤ 0.062, we obtain

σ1 ≤
1 +
√

5
(

1− 1
2

(
8
5∆1/2 − 4

5∆
)
− 1

8

(
8
5∆1/2 − 4

5∆
)2)

2

≤
1 +
√

5(1− (4
5 )∆1/2 + ( 4

25 )∆)

2
.

It follows that

(1 +
√

5)/2− σ1 ≥
(

2√
5

)
∆1/2 −

(
2

5
√

5

)
∆.

When −(ζ′/ζ)(σ1) is developed as a Taylor series about (1 +
√

5)/2, its coefficients
alternate in sign. The first four coefficients satisfy

B0 ≥ 1.13991, −B1 ≥ 2.48089, B2 ≥ 4.20397, −B3 ≥ 6.84664;
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these values were obtained by expressing the coefficients in terms of the deriva-
tives of the zeta function, which were computed using Euler-Maclaurin summation.
Thus,

−(ζ′/ζ)(σ1) ≥ 1.13991 + 2.48089

(
2
√

∆√
5
− 2

5
√

5
∆

)

+ 4.20397

(
2
√

∆√
5
− 2

5
√

5
∆

)2

+ 6.84664(0.84988
√

∆)3

≥ 1.13991 + 2.21897
√

∆ + 2.91938∆ + 2.85764∆3/2.

(Here we have again used that 0 ≤ ∆ ≤ 0.062.) Inserting this in (3.3.4) yields

E(σ) ≥ 1.08699 + 1.40018∆1/2 + 1.86576∆ + 2.32244∆3/2

and for the purposes of the lemma we can replace E(σ) by its bound. �
Lemma 3.3.2. If χ is a character of conductor k, then for |t| ≥ 1000 and ε1 =
0.0067,

f(t, χ) ≤1− κ(σ)

2
(ln

(
k|t|
2π

)
+ ε1)

− Σ′ <
{ 1

s− ρ +
1

s− (1− ρ̄)
− κ(σ)

s1 − ρ
− κ(σ)

s1 − (1− ρ̄)

}
,

where Σ′ denotes a sum over the zeros of L(s, χ) with β ≥ 1/2 and where the zeros
with β = 1/2 have a weight 1

2 .

Proof. We consider separately the cases k = 1 and k > 1.
First suppose k = 1. Using (3.3.1) with z = s, s1, we get

(3.3.5)

f(t, χ0) = <
{

1

s− 1
− κ(σ)

s1 − 1

}
+

1

2
<
{

Γ′

Γ

(
s+ 2

2

)
− κ(σ)

Γ′

Γ

(
s1 + 2

2

)}
− 1− κ(σ)

2
ln(π)− 1

2

∑
ρ∈Z(χ0)

(F (s, ρ)− κ(σ)F (s1, ρ)) .

By the functional equation of ζ(s), the last sum can be rewritten

Σ′ <
(

1

s− ρ +
1

s− (1− ρ̄)
− κ(σ)

s1 − ρ
− κ(σ)

s1 − (1− ρ̄)

)
,

where the notation is as in the statement of the lemma.
Lemma 3.2.1, together with

<
{

1

s− 1
− κ(σ)

s1 − 1

}
≤ σ − 1

t2
≤ ε2

and (1− κ(σ))/2 ≥ 0.19498, yields the result.
Now suppose k > 1. The proof is similar to the previous one, apart from the

absence of the pole at s = 1. Following McCurley’s Lemma 5 ([4]), we have

f(t, χ) =
1− κ(σ)

2
ln

(
k

π

)
+

1

2
<
{

Γ′

Γ

(
s+ a

2

)
− κ(σ)

Γ′

Γ

(
s1 + a

2

)}
− Σ′ (F (s, ρ)− κ(σ)F (s1, ρ))

with a = (1− χ(−1))/2, and Lemma 3.2.1 gives the required estimate. �
Using Lemmas 3.1.1 and 3.3.2, we get
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Lemma 3.3.3. If χ is a character of conductor k, then for |t| ≥ 1000 and ε1 =
0.0067

f(t, χ) ≤ 1− κ(σ)

2
(ln

(
k|t|
2π

)
+ ε1)

and if t = γ is the ordinate of a zero ρ = β + iγ with β > 1
2 , then

f(t, χ) ≤ 1− κ(σ)

2
(ln

(
k|t|
2π

)
+ ε1)− 1

σ − β + S(σ).

3.4. The default to primitivity. Let χ be a primitive character of conductor k
and let χm be the primitive character associated with χm, of conductor km. For a
prime p dividing k we put

(3.4.1)


cp(σ) =

1

pσ − 1
− κ(σ)

pσ1 − 1
,

Dp(k, σ, χ) = a0cp(σ) +
∑

1≤m≤4
p-km

am

(
1− κ(σ)

2
vp(

k

km
)− cp(σ)

)
,

where vp(x) is the p-adic valuation of x with vp(p) = 1. We seek a lower bound for

D(k, σ, χ) =
∑
p|k

ln(p)Dp(k, σ, χ).

This bound will be D∗(k, σ), defined below: put

(3.4.2)


D∗2(σ) = 5.99 c2(σ),

D∗3(σ) = 5.467 c3(σ),

D∗p(σ) = a0 cp(σ), for p ≥ 5,

and

(3.4.3) D∗(k, σ) =
∑
p|k

ln(p) D∗p(σ).

Lemma 3.4.1. The quantity cp(σ) is positive, and decreases as p increases or as
σ increases.

Proof. Easy. �
Lemma 3.4.2. We have 

1− κ(σ)

c2(σ)
− 1 ≥ −0.298,

1− κ(σ)

2c3(σ)
− 1 ≥ −0.328,

1− κ(σ)

2
− c5(σ) ≥ 0.

Proof. If σ− ≤ σ ≤ σ+, then

1− κ(σ+)

2
− c5(σ−) ≤ 1− κ(σ)

2
− c5(σ) ≤ 1− κ(σ−)

2
− c5(σ+).

Cutting the interval [1, (1 +
√

2)/2] into 10000 parts yields the third inequality in
the lemma. The two other inequalities may be obtained similarly. �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PRIMES IN ARITHMETIC PROGRESSIONS 405

Lemma 3.4.3. For each prime p | k, we have Dp(k, σ, χ) ≥ D∗p(σ).

Proof. If p ≥ 5, then c5(σ) ≥ cp(σ), so by Lemma 3.4.2 and the fact that k1 = k,
we see that for each prime dividing k,

Dp(κ, σ, χ) = a0cp(σ) +
4∑

m=2
p-km

am

(
1− κ(σ)

2
vp

(
k

km

)
− cp(σ)

)
≥ a0cp(σ) = D∗p(σ).

The proof is analogous for p = 2 and p = 3. Note that when p = 2, if p - km, then

vp
(
k
km

)
≥ 2. The constant in D∗2(σ) is a0 − 0.298(a2 + a3 + a4), and the one in

D∗3(σ) is a0 − 0.328(a2 + a3 + a4). �
Combining Lemmas 3.4.1 and 3.4.2 gives the desired result:

Corollary 3.4.4. For 1 ≤ σ ≤ (1 +
√

2)/2, we have D(k, σ, χ) ≥ D∗(k, σ). Fur-
thermore, on this interval D∗(k, σ) is a decreasing function of σ, with

a0

∑
p|k

ln(p)

p− 1
≥ D∗(k, σ) ≥ 0.

We finally need to go from an imprimitive character to a primitive one.

Lemma 3.4.5. The notations being as above, we have

f(0, χ0) = f(0, χ0) +
∑
p|k

ln(p)cp(σ),

and
f(t, χm) ≥ f(t, χm)−

∑
p|k
p-km

ln(p)cp(σ).

Proof. We have for any real number t,

f(t, χm) = f(t, χm) +
∑
p|k
p-km

ln(p)
∑
n≥1

<
(
χm(pn)

pint

)(
1

pnσ
− κ(σ)

pnσ1

)
.

If χm = χ0 and t = 0, then χm(pn)/pint = 1, otherwise its real part is ≥ −1. �
3.5. A positivity argument. The trigonometric polynomial

P (θ) =
4∑

m=0

am cos(mθ)

is also given by
P (θ) = 8(0.9126 + cos θ)2(0.2766 + cos θ)2

and thus is nonnegative. We have

(3.5.1)
4∑

m=0

amf(mt, χm) =
∑
n≥1

Λ(n)

(
1

nσ
− κ(σ)

nσ1

)
P (arg(χ(n)n−it)) ≥ 0.

Recalling Lemma 3.4.5, we then get

(3.5.2)
4∑

m=0

amf(mt, χm) ≥ a0

∑
p|k

ln(p)cp(σ)−
4∑

m=1

am
∑
p|k
p-km

ln(p)cp(σ).
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Lemma 3.5.1. We have

a0f(0, χ0) +
4∑

m=1

am

(
f(mt, χm) +

1− κ(σ)

2
ln

(
k

km

))
≥ D∗(k, σ).

Proof. By the definition ofD∗(k, σ), the inequality in the lemma follows from (3.5.2)
if we have

(3.5.3)

a0

∑
p|k

ln(p)cp(σ) −
4∑

m=1

am
∑
p|k
p-km

ln(p)cp(σ)

≥
∑
p|k

ln(p)D∗p(σ)−
4∑

m=1

am

(
1− κ(σ)

2

)
ln

(
k

km

)
.

However, by Lemma 3.4.3 we have, prime by prime,

a0cp(σ) +
∑

1≤m≤4
p|k,p-km

am

(
1− κ(σ)

2
vp

(
k

km

)
− cp(σ)

)
≥ D∗p(σ)

which certainly implies (3.5.3). �
3.6. The zero-free region. Inserting the bounds from Lemmas 3.3.1 and 3.3.3
in the expression from Lemma 3.5.1, if t is taken to be the ordinate of a zero β+ iγ
with β > 1/2, and |γ| ≥ 1000, we find that
(3.6.1)

a0

[
1

σ − 1
−E(σ)

]
+ a1

[(
1− κ(σ)

2

)
(ln

(
k|γ|
2π

)
+ ε1)− 1

σ − β + S(σ)

]
+

4∑
m=2

am

[(
1− κ(σ)

2

)
(ln

(
km|mγ|

2π

)
+ ε1) +

(
1− κ(σ)

2

)
ln

(
k

km

)]
≥ D∗(k, σ).

Recalling that κ(σ) =
1+ 4

5

√
σ−1√

5
, we can rewrite this as

(3.6.2) u− αu
√
σ − 1− w

σ − β +
1

σ − 1
−G ≥ 0,

where

(3.6.3)



u =
1

a0

5−
√

5

10

4∑
m=1

am(ln

(
km|γ|

2π

)
+ ε1),

α = (
√

5 + 1)/5 ∼= 0.647213595,

w = a1/a0
∼= 1.705118356,

G = E(σ)− wS(σ) +
D∗(k, σ)

a0
.
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Put x =
√
w−1 ∼= 0.305801806. A near-optimal value for σ in (3.6.2) is σ = 1+x/u.

Using this, and the fact that |γ| ≥ 1000, we find that 1 ≤ σ ≤ 1.062, validating the
bounds used in our estimates for E(σ) and S(σ). Inserting σ = 1 + x/u in (3.6.2)
and replacing G by any lower bound G = G(σ), we find

u− αu
√
x/u− w

1− β + x/u
+
u

x
−G ≥ 0.

Solving for 1− β and using (1 + 1/x) =
√
w/x gives

1− β ≥ w
u
√
w
x − α

√
xu−G

− x

u
.

Using w −√w = x
√
w and cross-multiplying by u/x2 yields

u

x2
(1− β) ≥

1 + α
√
x√

wu
+ 1

u
√
w
G

1− αx
√
x√

wu
− x

u
√
w
G
.

Finally, using x =
√
w − 1, we obtain

(3.6.4) 1− β ≥ 1

u
x2 −

(α/x)
√
u/x+(1/x2)G

1+(α/
√
w)
√
x/u+(1/(x

√
w))(x/u)G

.

Note that

(3.6.5)
u

x2
= R ln(k|γ|/C1),

where

(3.6.6)


R =

1

x2

A

a0

5−
√

5

10
∼= 9.645908801,

C1 = 2π exp

(
−ε1 − (1/A)

4∑
m=2

am ln(m)

)
∼= 4.171838431.

An especially useful choice for the lower bound G in (3.6.4) occurs when D∗(k, σ)
is replaced by a constant lower bound D, giving

(3.6.7) G = G(σ) = E(σ)− wS(σ) +
D

a0
.

In particular, we can always take D = 0, or, if for some H ≥ 1000 we are interested
only in zeros β + iγ with |γ| ≥ H, then by Corollary 3.4.4 we can take D to be the
value of D∗(k, σ) corresponding to H. As will be seen, G ≥ 0 on [1, 1.062].

Writing ∆ = x/u, and taking G as in (3.6.7), put

G1(∆) =
α

x

√
1

∆
+

1

x2
G(1 + ∆),

G2(∆) = 1 +
α√
w

√
∆ +

1

x
√
w
·∆ ·G(1 + ∆).

Then G1(∆)/G2(∆) is the fraction in the denominator of (3.6.4).
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Lemma 3.6.1. For each D ≥ 0, the functions G1(∆)/G2(∆) and G(1 + ∆) as
given by (3.6.7) are nonnegative and decreasing on [0, 0.062].

Proof. First suppose D = 0. Note that

E(σ) = 1.08699 + 1.40018
√

∆ + 1.86576∆ + 2.32244∆3/2

and that (after some manipulations)

S(σ) = − 1

1 + ∆
+

(
1 + 4

5

√
∆
)√

1− 8
5

√
∆2 + ∆ + 4

5 (∆2 + ∆)(
1−
√

∆2 + ∆
)2 .

It follows that the derivatives ofG(1+∆), G1(∆) and G2(∆) are sums and quotients
of various terms monotonic on [0, 0.062]. Thus, on any given subinterval, rigorous

upper bounds for G
′
(1 + ∆) and G′1(∆), and a rigorous lower bound for G′2(∆),

can be obtained. Dividing [0, 0.062] into subintervals of length 0.001, it was found

that G
′
(1 + ∆) < 0 and G′1(∆) < 0 throughout the interval, and G′2(∆) > 0 on

[0, 0.057].
Graphically it is clear that G2(∆) has a maximum at about 0.0590 and then

slowly decreases. To deal with the interval [0.057, 0.062], multiply through by
√

∆.

The derivatives of
√

∆ · G1(∆) and
√

∆ · G2(∆) are sums and quotients of mono-
tonic terms. Dividing [0, 0.062] into subintervals of length 0.001, it was found that

(
√

∆ ·G1(∆))′ < 0 on [0.047, 0.062] and (
√

∆ ·G2(∆))′ > 0 throughout [0, 0.062].
Combining these facts yields the monotonicity of G1(∆)/G2(∆). Its non-

negativity and that of G(1 + ∆) follow by evaluation at ∆ = 0.062.
Now let D ≥ 0 be arbitrary; let g1(∆), g2(∆) denote G1(∆) and G2(∆) when

D = 0. By the discussion above, it follows that g2 · g′1 − g1 · g′2 < 0 and g′1 < 0
on [0, 0.062]. Applying the quotient rule to G1(∆)/G2(∆), it is easily seen that for
G1(∆)/G2(∆) to be decreasing, it suffices to have

g′2 +
x√
w
g1 > 0.

This was checked by the same means as before. �
Theorem 3.6.2. If χ is a character of conductor k, and R = 9.645908801, then
any zero β + iγ of L(s, χ) with |γ| ≥ 1000 satisfies

1− β ≥ 1

R ln
(

k|γ|
4.1718

)
− 3.2356

√
ln
(

k|γ|
4.1718

) .

Proof. When β > 1
2 , the result follows from (3.6.4), taking G = 0 (which is permis-

sible by Lemma 3.6.1); here 3.2356 ≤ α
√
R/x/(1 + (α/

√
w)
√

0.062). It is easy to
check that the bound is decreasing in k and |γ|; when k = 1 and |γ| = 1000, it is
less than 0.02194. Thus the inequality holds when β ≤ 1

2 as well. �

Taking D = D∗(k, σ) in (3.6.7), we obtain a result better suited to the needs of
this paper: recall that α = (

√
5 + 1)/5, w = a1/a0 and x =

√
w − 1.
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Theorem 3.6.3. If χ is a character of conductor k, and H ≥ 1000, then any zero
β + iγ of L(s, χ) with |γ| ≥ H satisfies

1− β ≥ 1

R ln(k|γ|/C1(χ))
,

where

C1(χ) = C1(χ,H) = C1 · exp

 1

R
·

α
x

√
1
∆ + 1

x2G(1 + ∆)

1 + α√
w

√
∆ + 1

x
√
w
·∆ ·G(1 + ∆)


with ∆ = 1/(xR · ln(kH/C1)), G given by (3.6.7), and D = D∗(k, 1 + ∆) by (3.4.3).

Proof. When β > 1
2 , the result follows from (3.6.4) and Lemma 3.6.1. To see that

it holds for β ≤ 1
2 , one can use the upper bound 11.624 ≥ 1

x2 (E(σ)− wS(σ)),
the upper and lower bounds for D∗(k, σ) from Corollary 3.4.4, and the fact that
|γ| ≥ 1000 to show that

R ln(k|γ|/C1(χ)) ≥ 15. �

Some examples :

For k = 1, |γ| ≥ 545000000, 1− β ≥ 1/(R · ln(k|γ|/38.31)).

For k = 3, |γ| ≥ 10000, 1− β ≥ 1/(R · ln(k|γ|/20.92)).

For k = 12, |γ| ≥ 10000, 1− β ≥ 1/(R · ln(k|γ|/29.68)).

For k = 17, |γ| ≥ 2500, 1− β ≥ 1/(R · ln(k|γ|/20.90)).

For k = 420, |γ| ≥ 2500, 1− β ≥ 1/(R · ln(k|γ|/56.59)).

4. L-functions, ψ(X ; k, l) and θ(X ; k, l)

Before drawing consequences from Theorem 3.6.3, we need some lemmas.
In the following, we assume that the L-function under examination has no zero

satisfying

(4.1)


|γ| ≥ H ≥ 1000,

β > 1− 1

R ln(k|γ|/C1(χ))

for some positive constants R and C1(χ) such that

(4.2) R · ln
(

kH

C1(χ)

)
≥ 2.

When R = 9.645908801, then taking k = 1 and γ = 1000 in Theorem 3.6.2 shows
we can always use C1(χ) = 9.14; Theorem 3.6.3 gives sharper results.

4.1. Preparatory lemmas. We restate McCurley’s results before using them.
First of all, let us note the following consequence of McCurley [5] :
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Lemma 4.1.1 (McCurley). If χ is a Dirichlet character of conductor k, if T ≥ 1
is a real number, and if N(T, χ) denotes the number of zeros β + iγ of L(s, χ) in
the rectangle 0 < β < 1, |γ| ≤ T , then

|N(T, χ)− T

π
ln

(
kT

2πe

)
| ≤ C2 ln (kT ) + C3

with C2 = 0.9185 and C3 = 5.512.

Our values of C2 and C3 correspond to the choice η = 1
2 in McCurley’s notation

and are undoubtedly not optimal. (Note that our C2 is his C1, and our C3 is his
C2.) If k > 1, Lemma 4.1.1 follows immediately from ([5, Theorem 2.1]). When
k = 1, it follows from the theorem of Rosser cited in ([5, formula 2.17]).

Lemma 4.1.2. If k is the conductor of χ, and L(s, χ) satisfies GRH(H) for some
H ≥ 1, then ∑

|γ|≤H
ρ∈Z(χ)

1

|ρ| ≤ Ẽ(H),

with

(4.1.1) Ẽ(H) =
1

2π
ln2(H) +

ln
(
k

2π

)
π

ln(H) +C2 + 2

(
ln
(
k

2πe

)
π

+ C2 ln(k) + C3

)
.

Proof. We consider what happens for |γ| ≤ 1 and for |γ| > 1.
For |γ| ≤ 1, using GRH(1), we have

(4.1.2)
∑
|γ|≤1
ρ∈Z(χ)

1

|ρ| ≤ 2N(1, χ).

For |γ| > 1, one gets

∑
1<|γ|≤H
ρ∈Z(χ)

1

|ρ| ≤
∑

1<|γ|≤H
ρ∈Z(χ)

(∫ H

|γ|

dt

t2
+

1

H

)

=

∫ H

1

N(t, χ)−N(1, χ)

t2
dt+

N(H,χ)−N(1, χ)

H
,

thus

(4.1.3)
∑

1<|γ|≤H
ρ∈Z(χ)

1

|ρ| ≤
∫ H

1

N(t, χ)

t2
dt+

N(H,χ)

H
− N(1, χ)

1
.

Now we easily finish the proof on using Lemma 4.1.1. �
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Lemma 4.1.3. Let χ be a character with conductor k, let m ≥ 1 be an integer and
x, x0 be two real numbers such that x ≥ x0 ≥ 1 and 2R ln2(kH/C1(χ)) ≥ Log(x0).
Then ∑

|γ|≥H
ρ∈Z(χ)

xβ

|γ|m+1
+

∑
|γ|≥H
ρ∈Z(χ̄)

xβ

|γ|m+1
≤ x(Ã+ B̃) +

√
x(C̃ + D̃),

where, with C2 = 0.9185 and C3 = 5.512, we have

(4.1.4)



Ã =

∫ ∞
H

{
ln
(
kt
2π

)
π

+
C2

t

}exp
{
− ln(x0)

R ln(kt/C1(χ))

}
tm+1

dt,

B̃ =
1

Hm+1
exp

{
− ln(x0)

R ln(kH/C1(χ))

}
2(C2 ln(kH) + C3),

C̃ =
1

πmHm
(ln

(
kH

2π

)
+

1

m
),

D̃ =
1

Hm+1
(2C2 ln(kH) + 2C3 +

C2

m+ 1
).

Proof. The functional equation of the L-functions enables us to write

(4.1.5)
∑
|γ|≥H
ρ∈Z(χ)

xβ

|γ|m+1
+

∑
|γ|≥H
ρ∈Z(χ̄)

xβ

|γ|m+1
=

∑
|γ|≥H
ρ∈Z(χ)

(
x1−(1−β)

|γ|m+1
+

x1−β

|γ|m+1

)
.

One of β and 1− β is at most 1
2 , the other is less than

1− 1

R ln(k|γ|/C1(χ))
.

We can split our upper bound in two pieces. For the first,

(i)
∑
|γ|≥H
ρ∈Z(χ)

1

|γ|m+1
,

an integration by parts assures that this sum is bounded by C̃+ D̃. For the second,

(ii) S̃(x) =
∑
|γ|≥H
ρ∈Z(χ)

x

|γ|m+1
exp

{
− ln(x)

R ln(k|γ|/C1(χ))

}
,

we have S̃(x)/x ≤ S̃(x0)/x0, hence it remains to evaluate S̃(x0)/x0. Let us define

ϕm(t) =
1

tm+1
exp

{
− ln(x0)

R ln(kt/C1(χ))

}
and integrate it by parts:

(4.1.6)
S̃(x0)

x0
=

∑
|γ|≥H
ρ∈Z(χ)

∫ ∞
|γ|
−ϕ′m(t)dt =

∫ ∞
H

(N(t, χ)−N(H,χ)) (−ϕ′m(t)) dt.
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But
ϕ′m(t)

ϕm(t)
=

m+ 1

t ln2(kt/C1(χ))

[
− ln2(kt/C1(χ)) +

ln(x0)

(m+ 1)R

]
and our hypothesis gives us −ϕ′m(t) ≥ 0 for t ≥ H.

Lemma 4.1.1 gives us an upper bound for N(t, χ) and we integrate back by
parts. �
Lemma 4.1.4. If k is the conductor of χ, and L(s, χ) satisfies GRH(1), we have

∑
ρ∈Z(χ)

2

|ρ(2− ρ)| ≤ 3.94 ln(k) + 12.7.

Proof. The contribution to the sum of the zeros with |γ| ≤ 1 is at most 8
3N(1, χ).

The contribution of the remaining ones is not more than

4

∫ ∞
1

N(t, χ)−N(1, χ)

t3
dt = −2N(1, χ) + 4

∫ ∞
1

N(t, χ)

t3
dt,

and on using Lemma 4.1.1, we obtain the result. �
4.2. Computing Ã. The constant Ã is the dominant term in Lemma 4.1.3.
However, the integral defining Ã converges slowly, and care is needed in evaluating
it. This was forcefully brought home to us when we initially sought to compute
Ã using the pre-programmed numerical integration of PARI. Lionel Reboul of the
University of Lyon kindly verified the values by independent computations with
MAPLE. To our surprise, the values were the same for ln(x0) ≥ 40, but they were
not close for small x0 (for instance 0.032 instead of 0.034).

We will first give a simple lemma (Lemma 4.2.1) which gives a rather good upper

bound for Ã. Then we will describe a way for accurately computing Ã advocated by
Rosser, Schoenfeld, and McCurley, which involves transforming the given integral
to a sum of rapidly convergent incomplete Bessel integrals.

For m ≥ 2 let us define hm(t) by

(4.2.1) hm(t) =
1

π(m− 1)tm−1
(ln
( kt

2π

)
+

1

m− 1
) +

C2

mtm
.

Lemma 4.2.1. We have, under the hypothesis of Lemma 4.1.3, but with in addition
R ln2(kH/C1(χ)) ≥ ln(x0) and m ≥ 2,

Ã ≤ hm(H)

H
exp(− ln(x0)

R ln(kH/C1(χ))
),

Ã ≥ hm+1(H) exp(− ln(x0)

R ln(kH/C1(χ))
).

Proof. Let us define

(4.2.2) gm(t) =
ln( kt2π )

πtm
+

C2

tm+1
.
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Then, we readily see that h′m(t) = −gm(t). We also have

Ã =

∫ ∞
H

gm(t) exp(− ln(x0)

R ln(kt/C1(χ))
)
dt

t

=
hm(H)

H
exp(− ln(x0)

R ln(kH/C1(χ))
)

−
∫ ∞
H

(
ln2(kt/C1(χ))− ln(x0)

R

)
exp(− ln(x0)

R ln(kt/C1(χ))
)

hm(t)dt

t2 ln2(kt/C1(χ))

≤hm(H)

H
exp(− ln(x0)

R ln(kH/C1(χ))
);

the last inequality holds because our hypothesis ensures that(
ln2(kH/C1(χ)) − ln(x0)

R

)
≥ 0.

For the other inequality, we write

(4.2.3) Ã =

∫ ∞
H

gm+1(t) exp(− ln(x0)

R ln(kt/C1(χ))
)dt

and an integration by parts yields the result. �
We now turn to the accurate computation of Ã. Define

(4.2.4)



Kn(z, w) =
1

2

∫ ∞
w

un−1 exp[−z
2

(u+
1

u
)]du,

Um =

√
Rm

ln(x0)
ln
( kH

C1(χ)

)
,

zm = 2

√
m ln(x0)

R
.

Then simple algebraic manipulations yield

Lemma 4.2.2. There holds

Ã =
2

π

ln(x0)

Rm

(
k

C1(χ)

)m
K2(zm, Um)

+
2

π
ln

(
C1(χ)

2π

)√
ln(x0)

Rm

(
k

C1(χ)

)m
K1(zm, Um)

+ 2C2

√
ln(x0)

R(m+ 1)

(
k

C1(χ)

)m+1

K1(zm+1, Um+1).

The tails in the integrals K1 and K2 can be estimated as follows. Write

(4.2.5) erfc(x) =
2√
π

∫ ∞
x

e−t
2

dt.
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Lemma 4.2.3 (Rosser and Schoenfeld). Put y =
√
w−1/

√
w√

2
for w ≥ 1. Then

K1(z, w) <
e−z

2z

{
(1 +

3
√

2

8
y)e−zy

2

+ (
3

8
√
z

+
√
z)

√
π

2
erfc(y

√
z)
}
,

and

K2(z, w) <
e−z

2z

{
[
35
√

2

64
y3 + 2y2 + (

105

128z
+

15

8
)
√

2y + 2 +
2

z
]e−zy

2

+ (
105

128z
+

15

8
+ z)

√
π

2z
erfc(y

√
z)
}
.

Lemma 4.2.4. Assume z > 0.

The integrand in K1(z, w) is decreasing in u for u ≥ 1.

The integrand in K2(z, w) is increasing for 1 ≤ u ≤ 1+
√

1+z2

z and decreasing in
u afterwards.

Lemma 4.2.3 is accurate if w is large. Thus, K1 and K2 can be computed by
integrating numerically from w to some finite bound and then using Lemma 4.2.3.
In computing Table 1, this method was used in conjunction with Simpson’s rule to
get a sharp rigorous upper bound for Ã (within 1%). It should also be noted that R.
Terras [13] has given a rapid continued fraction algorithm for computing integrals
like K1 and K2. Although this algorithm does not produce a rigorous error bound,
we have used it to give an independent check on the numerical integrations.

4.3. Estimating ψ and θ through L-functions. We are now in a position to
prove Theorem 1. To do so we want to use Theorem 3.6 of McCurley [5]. But in
that theorem, the notation Z(χ) denotes the set of zeros of L(s, χ) with 0 ≤ β < 1,
so it is necessary to pay careful attention to the distinction between conductor
and modulus. In [5], the zeros with β = 0 are removed with some cumbersome
arguments (cf. [5, (3.25), (3.26), (3.27) and (3.38)]). The troubles caused by the
use of imprimitive characters can also be seen in ([5, (3.15)]).

However, it is possible to work from the beginning with primitive characters only.
If χ is a character modulo k, let χ1 be its associated primitive character. Given l
prime to k, consider further

wk(l, n) =
1

ϕ(k)

∑
χ mod k

χ1(n)χ̄(l).

If K is the largest divisor of k coprime to n, we have

wk(l, n) =

{
ϕ(K)
ϕ(k) if n ≡ l (mod K),

0 otherwise,

which can be proved as follows:

ϕ(k)wk(l, n) =
∑
d|k

∑
χ mod ∗d

χ(n)χ̄(l)

=
∑
d|K

∑
χ mod ∗d

χ(n)χ̄(l) =
∑

χ modK

χ(n)χ̄(l),
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where
∑
χ mod ∗d is a summation over the primitive characters modulo d. We now

consider
ψ∗(x; k, l) =

∑
n≤x

wk(l, n)Λ(n).

We have ψ(x; k, l) ≤ ψ∗(x; k, l) ≤ ψ(x; k, l) + f(k) ln(x) for x ≥ 1 with

(4.3.1) f(k) =
∑
p|k

1

p− 1
.

We remark that f(k) ≤ 3.5 if k has less than 12000 prime factors, which is true if k ≤
exp(127000), and in any case f(k) = O(ln(ln(ln(k)))). Thus, we can work with ψ∗

instead of ψ with a small loss. Now McCurley’s analysis ([5, §3]) goes through with
characters replaced by primitive characters since ψ∗ is also an increasing function.
More precisely, McCurley’s m(χ) now becomes the order of the zero of L(s, χ1) at
s = 0, i.e. m(χ) = 0 if χ(−1) = −1 or χ is the principal character, and m(χ) = 1
otherwise. In McCurley’s notation, this yields |d2| ≤ 1/2. Following the proof of
Lemma 3.5 of [5], we find further that if L(s, χ) satisfies GRH(1) and χ is not
principal, then

|b(χ)| ≤ 1.57 +
∑

ρ∈Z(χ)

2

|ρ(2− ρ)| ,

which, with Lemma 4.1.4 together with |b(χ0)| = ln(2π) yields “If every L-function
of modulus k satisfies GRH(1), then |d1 +d2| ≤ 3.94 ln(k)+12.7” instead of Lemma
3.5 of [5]. Finally, the right-hand side of ([5, (3.21)]) becomes

(δx)m
[

ln(2)

2
+

ln(2x)

2
+ 3.94 ln(k) + 12.7

]
.

An additional error term comes from replacing ψ∗ by ψ. The upper bound we get
this way is an increasing function of x, so we can introduce the maximum max

1≤y≤x
which is useful in practice. Thus we get

Theorem 4.3.1 (McCurley). Let x ≥ 1 be a real number, k ≥ 1 an integer, m a
positive integer, δ a real number with 0 < δ < x−2

mx , and H a positive real number.
Put

A(m, δ) =
1

δm

m∑
j=0

(
m

j

)
(1 + jδ)m+1.

Suppose that for each χ with modulus k, L(s, χ) satisfies GRH(1). Then

ϕ(k)

x
max

1≤y≤x
|ψ(y; k, l)− y

ϕ(k)
| <A(m, δ)

∑
χ

∑
ρ∈Z(χ)
|γ|>H

xβ−1

|ρ(ρ+ 1)...(ρ+m)|

+ (1 +
mδ

2
)
∑
χ

∑
ρ∈Z(χ)
|γ|≤H

xβ−1

|ρ| +
mδ

2
+ R̃,

where
∑
χ denotes the summation over all characters modulo k,

(4.3.2) R̃ =
ϕ(k)

x

[
(f(k) + 0.5) ln(x) + 4 ln(k) + 13.4

]
,

and f(k) is given by (4.3.1).
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We also wish to allow θ instead of ψ which can be done by recalling Theorem 6
of Rosser and Schoenfeld ([9]) :

(4.3.3) 0 ≤ ψ(x; k, l)− θ(x; k, l) ≤ ψ(x)− θ(x) ≤ 1.0012
√
x+ 3x

1
3 for x > 0.

Collecting our results, we finally get

Theorem 4.3.2. Let k ≥ 1 be an integer, and let H ≥ 1000 be a real number such
that every L-function with modulus k satisfies GRH(H). Put C = C1(χ0, H), where
χ0 is the trivial character, and let x0 be a real number such that R · ln2(H/C) ≥
ln(x0). Let m ≥ 2 be an integer, and let δ > 0 be a real number such that 0 < δ <
(x0 − 2)/(mx0).

Then for any x ≥ x0 we have

ϕ(k)

x
max

1≤y≤x
|ψ(y; k, l)− y

ϕ(k)
| ≤ (1 + (1 + δ)m+1)m

δm
ϕ(k)

2
((Ã+ B̃) +

1
√
x0

(C̃ + D̃))

+ (1 +
mδ

2
)
ϕ(k)
√
x0
Ẽ(H) +

mδ

2
+ R̃,

where Ã, B̃, C̃, D̃ are those of Lemma 4.1.3 with C1(χ) replaced by C and with

Ã estimated by Lemma 4.2.1, Ẽ(H) given by Lemma 4.1.2, and R̃ given by (4.3.2)
with x = x0.

If ∆̃ = ϕ(k)(1.0012x
−1/2
0 + 3x

−2/3
0 ), and Z̃ denotes the error bound above, then

Z̃ + ∆̃ is an upper bound for

ϕ(k)

x
max

1≤y≤x

∣∣∣∣θ(y; k, l)− y

ϕ(k)

∣∣∣∣ .
Proof. We use Theorem 4.3.1 and evaluate the sums over the zeros by appealing to
Lemmas 4.1.2 and 4.1.3. We also remark (cf. [8]) that

(4.3.4) A(m, δ) ≤ (1 + (1 + δ)m+1)m

δm
. �

Theorem 4.3.2 has been stated in such a way as to make its implementation as
simple as possible, and to minimize the numerical input required. For a stronger
version which yields slightly better results, see Theorem 5.1.1 below.

4.4. Heuristic control of the values of m, δ and ε. Let εk(m, δ) denote the

expression Z̃ + ∆̃ in Theorem 4.3.2, and let εk be its minimum value as m and δ
vary. This optimization is achieved in practice by first minimizing over δ (with m
held fixed) using any standard minimization algorithm, and then minimizing over
m.

In this section we aim to heuristically estimate the optimal values of m and δ
and the order of magnitude of εk, together with their dependence on k and H.
Under the hypothesis of Theorem 4.3.2, we note that in the formula for Z̃ + ∆̃:

(1) (1 + (1 + δ)m+1)m/δm is equivalent to 2m/δm if mδ tends to 0.
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(2) (Ã+ B̃+ (C̃ + D̃)/
√
x0) can be approximated by ln

(
kH
2π

)
/(πmHm) for large

H and x0.

(3) (1+mδ/2)Ẽ(H)x
−1/2
0 is asymptotic to x

−1/2
0

ln2(kH)
2π as H goes to infinity and

δ to 0. For large x0 it is negligible.
(4) R̃ is O(k ln(kx0)/x0) when x0 goes to infinity. For x0 large it is negligible.

(5) For large x0, ∆̃ is negligible.

Hence our εk can be approximated by

(4.4.1) f(m, δ) =
mδ

2
+
ϕ(k)

2

(
2

δH

)m ln
(
kH
2π

)
πm

.

We reduce this expression once more; numerically, it happens that the values of
m are almost always near 7. We replace the term

(
2
δH

)m 1
m by

(
2
δH

)m 1
m̄ , where m̄

is an estimation of the value of m and we finally consider

(4.4.2) f̄(m, δ) =
a

(δB)m
+
mδ

2

with

(4.4.3) a =
ϕ(k)

2

ln
(
kH
2π

)
πm̄

and B =
H

2
.

We now let m vary continuously. Then

∂f̄

∂δ
=

∂f̄

∂m
= 0

yields 
a

(δB)m
=
δ

2
,

a

(δB)m
ln(δB) =

δ

2
,

hence

δ =
2e

H
, m = ln(aH/e),

f̄(m, δ) = (m+ 1)
δ

2
= ln

(
Hϕ(k)

2πm̄
ln

(
kH

2π

))
· e
H
.(4.4.4)

It is striking that in this approximation, δ depends neither on m nor on k. We
have verified this numerically (δ is almost constant). The other striking thing is
that f̄(m, δ) (our εk) depends on k mainly through ln(ϕ(k)); we find numerically
that our εk’s increase very slowly when k increases. This is rather surprising since
there are ϕ(k) sums to evaluate, so we might have expected εk to depend on k by
a multiplicative factor ϕ(k).
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5. Numerical estimates for θ and ψ

In this section, we present the numerical estimates one can deduce from the
results in §§2, 3, and 4. Since the analytic bounds only become useful for x0 ≥ 1010,
we have supplemented them with a tabulation for low heights.

The following notation is used throughout:

(5.1)


ε(θ, x, k) = max

(l,k)=1

ϕ(k)

x
max

1≤y≤x
|θ(y; k, l)− y/ϕ(k)|,

ε(ψ, x, k) = max
(l,k)=1

ϕ(k)

x
max

1≤y≤x
|ψ(y; k, l)− y/ϕ(k)|.

The computations for the tables were performed on PCs using the Intel 80486
processor. The 80486-DX was used in Extended Precision mode, where it calculates
with an 80-bit word having a 1-bit sign, a 15-bit exponent, and a 64-bit mantissa.
It carries approximately 19.2 decimal digits of accuracy, and can represent numbers
over the range 10−4392 to 104392. In Tables 1 and 2, the results are reported to 6
digits of accuracy, and were rounded up in their last digit.

As a verification, independent computations were done using the calculator GP
of PARI, and some randomly chosen values were checked, with satisfying agreement.

5.1. Asymptotic results for x0 ≥ 1010.

Theorem 1. For any triple (k, ε, x0) given by Table 1,{
ε(θ, x, k) ≤ ε for x ≥ x0,

ε(ψ, x, k) ≤ ε for x ≥ x0.

Table 1 contains the best known bounds for all the moduli covered by Rumely’s
L-series calculations. The bounds were computed using a strong form of Theorem
4.3.2, which broke the error term into its contributions from each individual L-
series, and replaced the estimates for Ẽ(H) by tabulated values:

Theorem 5.1.1. Let k ≥ 1 be an integer. For each character χ modulo k, let
Hχ ≥ 1000 be such that L(s, χ) satisfies GRH(Hχ); we suppose Hχ = Hχ̄ for all
χ, and put C1(χ) = C1(χ,Hχ). Let x0 ≥ 10 be a real number such that for each d

dividing k, and each χ with conductor d, 2R · ln2(dHχ/C1(χ)) ≥ ln(x0). Let m be a
positive integer, and let δ > 0 be a real number such that 0 < δ < (x0 − 2)/(mx0).

For each χ with conductor d, let Ãχ, B̃χ, C̃χ, D̃χ be the constants from Lemma

4.1.3 computed using d and Hχ; let Ẽχ be a tabulated bound for
∑

ρ∈Z(χ)
|β|≤Hχ

1/|ρ|. Let

R̃ be as in Theorem 4.3.1.
Then for x ≥ x0

ε(ψ, x, k) ≤ 1

2
A(m, δ) ·

∑
χ

[
Ãχ + B̃χ + (C̃χ + D̃χ)/

√
x0

]
+

(1 +mδ/2)
√
x0

·
(∑

χ

Ẽχ

)
+mδ/2 + R̃.
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Table 1. Analytic epsilons for x ≥ x0

The values reported are ε = max(ε(θ, x0, k), ε(ψ, x0, k)), and have been rounded
up in the last decimal place (our notation is as in (5.1) of the paper).

k 1010 1013 1030 10100 k 1010 1013 1030 10100

1 0.000213 0.000015 0.000001 0.000001 46 0.012682 0.009592 0.009012 0.007046

2 0.000213 0.000015 0.000001 0.000001 47 0.018044 0.010720 0.010012 0.008148

3 0.002238 0.001951 0.001813 0.001310 48 0.011080 0.008876 0.008319 0.006373

4 0.002238 0.001943 0.001809 0.001324 49 0.017015 0.010461 0.009773 0.007891

5 0.002785 0.002250 0.002105 0.001606 50 0.012214 0.009447 0.008851 0.006861

6 0.002238 0.001951 0.001813 0.001310 51 0.014479 0.009803 0.009191 0.007312

7 0.003248 0.002406 0.002258 0.001770 52 0.012671 0.009058 0.008475 0.006656

8 0.002811 0.002257 0.002116 0.001634 53 0.019206 0.010734 0.010011 0.008188

9 0.003228 0.002380 0.002235 0.001759 54 0.011579 0.009061 0.008492 0.006572

10 0.002785 0.002250 0.002105 0.001606 55 0.016306 0.010159 0.009493 0.007591

11 0.004125 0.002590 0.002421 0.001954 56 0.012961 0.009462 0.008865 0.006969

12 0.002781 0.002241 0.002099 0.001610 57 0.015636 0.010300 0.009640 0.007691

13 0.004560 0.002657 0.002478 0.002020 58 0.014102 0.010007 0.009398 0.007440

14 0.003248 0.002406 0.002258 0.001770 59 0.020659 0.011057 0.010299 0.008451

15 0.008634 0.007628 0.007088 0.005045 60 0.010879 0.008740 0.008182 0.006204

16 0.008994 0.007938 0.007392 0.005393 61 0.021073 0.011080 0.010315 0.008475

17 0.010746 0.008587 0.008047 0.006203 62 0.014535 0.010088 0.009468 0.007527

18 0.003228 0.002380 0.002235 0.001759 63 0.015473 0.010048 0.009409 0.007510

19 0.011892 0.009442 0.008852 0.006838 64 0.014938 0.010019 0.009400 0.007530

20 0.008501 0.007465 0.006950 0.005024 65 0.018025 0.010412 0.009697 0.007837

21 0.009708 0.008143 0.007582 0.005625 66 0.011685 0.008844 0.008276 0.006357

22 0.004125 0.002590 0.002421 0.001954 67 0.022414 0.011252 0.010451 0.008620

23 0.012682 0.009592 0.009012 0.007046 68 0.014691 0.009884 0.009272 0.007412

24 0.008173 0.007107 0.006615 0.004775 69 0.017285 0.010536 0.009835 0.007944

25 0.012214 0.009447 0.008851 0.006861 70 0.012809 0.009431 0.008821 0.006862

26 0.004560 0.002657 0.002478 0.002020 71 0.023269 0.011310 0.010484 0.008672

27 0.011579 0.009061 0.008492 0.006572 72 0.012665 0.009118 0.008546 0.006759

28 0.009908 0.008298 0.007741 0.005800 74 0.015830 0.010323 0.009668 0.007768

29 0.014102 0.010007 0.009398 0.007440 75 0.016346 0.010341 0.009659 0.007724

30 0.008634 0.007628 0.007088 0.005045 76 0.015819 0.010331 0.009671 0.007751

31 0.014535 0.010088 0.009468 0.007527 77 0.020600 0.010854 0.010076 0.008235

32 0.011103 0.008857 0.008300 0.006399 78 0.012621 0.009108 0.008514 0.006625

33 0.011685 0.008844 0.008276 0.006357 80 0.014527 0.009700 0.009085 0.007218

34 0.010746 0.008587 0.008047 0.006203 81 0.019611 0.010834 0.010094 0.008264

35 0.012809 0.009431 0.008821 0.006862 82 0.016744 0.010524 0.009843 0.007953

36 0.009544 0.007900 0.007372 0.005563 84 0.012721 0.009304 0.008703 0.006792

37 0.015830 0.010323 0.009668 0.007768 85 0.021395 0.010990 0.010205 0.008353

38 0.011892 0.009442 0.008852 0.006838 86 0.017180 0.010598 0.009904 0.008025

39 0.012621 0.009108 0.008514 0.006625 87 0.019865 0.010903 0.010152 0.008278

40 0.010833 0.008627 0.008084 0.006183 88 0.016484 0.010131 0.009474 0.007646

41 0.016744 0.010524 0.009843 0.007953 90 0.012817 0.009413 0.008809 0.006884

42 0.009708 0.008143 0.007582 0.005625 91 0.023159 0.011148 0.010314 0.008484

43 0.017180 0.010598 0.009904 0.008025 92 0.017508 0.010574 0.009872 0.008009

44 0.011798 0.008871 0.008310 0.006440 93 0.020727 0.011013 0.010245 0.008375

45 0.012817 0.009413 0.008809 0.006884 94 0.018044 0.010720 0.010012 0.008148

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



420 OLIVIER RAMARÉ AND ROBERT RUMELY

Table 1 (continued)

k 1010 1013 1030 10100 k 1010 1013 1030 10100

95 0.023180 0.011282 0.010444 0.008570 144 0.018241 0.010486 0.009772 0.007976

96 0.014710 0.009886 0.009271 0.007395 150 0.016346 0.010341 0.009659 0.007724

98 0.017015 0.010461 0.009773 0.007891 154 0.020600 0.010854 0.010076 0.008235

99 0.020644 0.010823 0.010051 0.008238 156 0.018025 0.010363 0.009653 0.007827

100 0.016476 0.010310 0.009631 0.007737 162 0.019611 0.010834 0.010094 0.008264

102 0.014479 0.009803 0.009191 0.007312 163 0.044431 0.012935 0.011505 0.009799

104 0.018292 0.010424 0.009715 0.007922 168 0.017995 0.010459 0.009740 0.007882

105 0.017707 0.010434 0.009708 0.007787 169 0.042497 0.012769 0.011383 0.009670

106 0.019206 0.010734 0.010011 0.008188 170 0.021395 0.010990 0.010205 0.008353

108 0.015635 0.010079 0.009441 0.007589 174 0.019865 0.010903 0.010152 0.008278

110 0.016306 0.010159 0.009493 0.007591 180 0.018004 0.010482 0.009763 0.007903

111 0.023287 0.011261 0.010425 0.008589 182 0.023159 0.011148 0.010314 0.008484

112 0.018184 0.010498 0.009777 0.007942 186 0.020727 0.011013 0.010245 0.008375

114 0.015636 0.010300 0.009640 0.007691 190 0.023180 0.011282 0.010444 0.008570

116 0.020143 0.010962 0.010209 0.008353 198 0.020644 0.010823 0.010051 0.008238

117 0.023222 0.011135 0.010306 0.008499 210 0.017707 0.010434 0.009708 0.007787

118 0.020659 0.011057 0.010299 0.008451 216 0.023480 0.011154 0.010324 0.008542

120 0.014495 0.009785 0.009169 0.007257 222 0.023287 0.011261 0.010425 0.008589

121 0.031939 0.012053 0.010963 0.009223 234 0.023222 0.011135 0.010306 0.008499

122 0.021073 0.011080 0.010315 0.008475 242 0.031939 0.012053 0.010963 0.009223

124 0.021008 0.011055 0.010285 0.008436 243 0.043836 0.012879 0.011458 0.009740

125 0.029581 0.011885 0.010860 0.009072 250 0.029581 0.011885 0.010860 0.009072

126 0.015473 0.010048 0.009409 0.007510 256 0.036558 0.012394 0.011179 0.009461

128 0.022035 0.011123 0.010336 0.008526 286 0.033703 0.012101 0.010952 0.009218

130 0.018025 0.010412 0.009697 0.007837 326 0.044431 0.012935 0.011505 0.009799

132 0.016320 0.010123 0.009461 0.007593 338 0.042497 0.012769 0.011383 0.009670

134 0.022414 0.011252 0.010451 0.008620 360 0.028267 0.011631 0.010644 0.008854

138 0.017285 0.010536 0.009835 0.007944 420 0.027757 0.011602 0.010617 0.008766

140 0.017989 0.010523 0.009796 0.007898 432 0.039660 0.012542 0.011234 0.009519

142 0.023269 0.011310 0.010484 0.008672 486 0.043836 0.012879 0.011458 0.009740

143 0.033703 0.012101 0.010952 0.009218

If ∆̃ = ϕ(k)(1.0012x
−1/2
0 +3x

−2/3
0 ), and Z̃ denotes the above bound for ε(ψ, x, k),

then

ε(θ, x, k) ≤ Z̃ + ∆̃.

If k is not of the form k = 2k′ with k′ odd, and k 6= 1, then the values reported
in Table 1 are the minimal values of the expression Z̃ + ∆̃ in Theorem 5.1.1, when
2 ≤ m ≤ 14 and δ ranges over its allowable values. The minima were found using
Brent’s golden section/parabolic interpolation algorithm ([7, p. 283]). It should
be noted that as x0 and the Hχ vary, different terms in the expression become
dominant. Heuristically the best estimate is obtained using GRH data to height
H ∼= 4eπ ·√x0/(ϕ(k) · ln(x0)). The values in Table 1 are minima over the following
data sets:
(A) Rumely’s L-series and zeta data, using T = 2500 data for k ≤ 13,
(B) Rumely’s L-series and zeta data, using T = 5000 data for k ≤ 13,
(C) Rumely’s L-series and zeta data,
(D) Rumely’s L-series data + Lehman’s zeta data, with T = 12030,
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(E) Rumely’s L-series data + vdL, teR, Winter zeta data to T = 105,
(F) Rumely’s L-series data + vdL, teR, Winter zeta data to T = 106,
(G) Rumely’s L-series data + vdL, teR, Winter zeta data to T = 107,
(H) Rumely’s L-series data + vdL, teR, Winter zeta data to T = 545439823.

If k = 2k′ with k′ odd, and if N is the order of 2 in (Z/k′Z)×, then for (k, l) = 1

|ψ(x; k, l)− ψ(x; k′, l)| ≤ (1/N) ln(x) + ln(2),

|θ(x; k, l)− θ(x; k′, l)| ≤ ln(2).

For the values of x0 considered in Table 1, these inequalities yield estimates for
ε(θ, x, k), ε(ψ, x, k) better than those provided by Theorem 5.1.1 directly, and are
the ones reported. It will be observed that the bounds for k and k′ in Table 1 are
always the same: the additional term in the error estimate was swallowed up when
the values were rounded up to the nearest 10−6.

Finally, when k = 1, 2 the x0 = 1010 entry in Table 1 is derived from the main
table of Rosser and Schoenfeld ([9]), which gives ε(ψ, e23, 1) = 0.00020211; this
improves on the value 0.000272 given by Theorem 5.1.1.

5.2. Estimates over the range 0 − 1010. In Table 2 we compare |ψ(x; k, l) −
x/ϕ(k)| and |θ(x; k, l) − x/ϕ(k)| with

√
x, reporting the maximum ratio for 0 <

x ≤ 1010 for each k. Tabulations over the subintervals [10n, 10n+1] show that
the results are remarkably stable and uniform over the entire range, so that Table
2 gives a good representation of the true error. The only exception is for very
small moduli (k ≤ 6) where the initial primes distort the error estimates; more
accurate asymptotic values are given at the end of the table for these moduli. Let
N(k, l) be the number of solutions to a2 ≡ l (mod k) with 0 ≤ a < k. The function
(x−N(k, l)

√
x)/ϕ(k) usually gives a better approximation to θ(x; k, l) than x/ϕ(k);

we have also tabulated the maximal ratios |θ(x; k, l)− (x−N(k, l)
√
x)/ϕ(k)|

√
x.

We can summarize the main results of Table 2 as follows:

Theorem 5.2.1. For all the moduli in Table 1, uniformly over the range 0 ≤ x ≤
1010, the following bounds hold:

|θ(x; k, l)− x/ϕ(k)| ≤ 2.072
√
x,∣∣∣∣θ(x; k, l)− x−N(k, l)

√
x

ϕ(k)

∣∣∣∣ ≤ 1.174
√
x,

|ψ(x; k, l)− x/ϕ(k)| ≤ 1.745
√
x.

If k = 5, k ≥ 7 or x ≥ 224, then

|ψ(x; k, l)− x/ϕ(k)| ≤
√
x;

for k = 1, 3, 4 this holds if x ≥ 14.

Corollary 5.2.2. For these moduli, over the range 0 < x ≤ 1010,

ε(θ, x, k) ≤ 2.072
ϕ(k)√
x
, ε(ψ, x, k) ≤ 1.745

ϕ(k)√
x

;

for k = 5 or k ≥ 7, ε(ψ, x, k) ≤ ϕ(k)/
√
x.
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Table 2. Tabulations 0− 1010

k : The modulus.
θ : max

(l,k)=1
max

(0,1010]
|θ(x; k, l)− x/ϕ(k)|/

√
x

θ# : max
(l,k)=1

max
(0,1010]

|θ(x; k, l)− (x−N(k, l)
√
x)/ϕ(k)|/

√
x,

(1) where N(k, l) is the number of solutions to a2 ≡ l (mod k)
ψ : max

(l,k)=1
max

(0,1010]
|ψ(x; k, l)− x/ϕ(k)|/√x

Except for the ψ-values for a few small moduli, the bounds for θ, θ# and ψ are
remarkably good throughout the range 0− 1010. All values have been rounded up
in the last decimal place.

k θ θ# ψ k θ θ# ψ

1 2.052818 1.052818 1.414214∗ 39 0.769446 0.666830 0.668572

2 2.071193 1.071193 1.744754∗ 40 1.076203 0.813546 0.816561

3 1.798158 1.053542 1.070833∗ 41 0.818620 0.818620 0.817634

4 1.780719 1.034832 1.118034∗ 42 1.130693 0.863011 0.813182

5 1.412480 0.912480 0.886346∗ 43 0.832936 0.785317 0.784932

6 1.798158 1.173049 1.322876∗ 44 0.873277 0.873277 0.871473

7 1.105822 0.829249 0.779283 45 0.844820 0.844820 0.844864

8 1.817557 1.000000 0.926535 46 0.973114 0.882205 0.881655

9 1.108042 0.899812 0.788900 47 0.744386 0.787865 0.790079

10 1.412480 0.912480 0.961267∗ 48 1.096688 0.870037 0.876180

11 0.976421 0.885771 0.878823 49 0.744132 0.696513 0.697158

12 1.735502 1.000000 0.906786∗ 50 0.821890 0.832182 0.762408

13 0.892444 0.741007 0.737610 51 0.817323 0.770458 0.771552

14 1.105822 0.829249 0.897528 52 0.884117 0.837232 0.837318

15 1.097307 0.769689 0.760264 53 0.829958 0.791497 0.725979

16 1.253606 0.771116 0.773805 54 0.881762 0.789677 0.794864

17 1.001057 0.876057 0.873548 55 0.795133 0.795133 0.798504

18 1.108042 0.899812 0.824180 56 0.981635 0.828677 0.833854

19 1.001556 0.911763 0.911536 57 0.834201 0.834201 0.833807

20 1.276501 0.776501 0.800391 58 0.793283 0.744371 0.745533

21 1.130693 0.863011 0.805421 59 0.710444 0.724352 0.710444

22 0.976421 0.885771 0.879312 60 1.056320 0.749787 0.748270

23 0.973114 0.882205 0.880877 61 0.719386 0.715829 0.717979

24 1.703144 1.000000 0.744935 62 0.771883 0.838550 0.845276

25 0.821890 0.832182 0.764098 63 0.847851 0.736979 0.750188

26 0.892444 0.744403 0.744403 64 0.842522 0.781042 0.779800

27 0.881762 0.789677 0.795451 65 0.753091 0.753091 0.753171

28 1.039662 0.764535 0.775919 66 0.797466 0.779343 0.788725

29 0.793283 0.744371 0.745590 67 0.708427 0.738730 0.731833

30 1.097307 0.769689 0.760264 68 0.803940 0.803940 0.805077

31 0.771883 0.838550 0.845276 69 0.740573 0.732708 0.733806

32 1.015064 0.866076 0.860459 70 0.865028 0.782493 0.779932

33 0.797466 0.779343 0.788725 71 0.750488 0.750488 0.750488

34 1.001057 0.876057 0.874371 72 1.062100 0.754145 0.765297

35 0.865028 0.782493 0.779932 74 0.867916 0.816491 0.815422

36 1.163674 0.830341 0.829482 75 0.729046 0.684061 0.685155

37 0.867916 0.816491 0.815422 76 0.771532 0.768761 0.702507

38 1.001556 0.911763 0.911624 77 0.690677 0.690677 0.690677
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Table 2 (continued)

k θ θ# ψ k θ θ# ψ

78 0.769446 0.666830 0.668572 130 0.753091 0.753091 0.753171
80 0.806030 0.774123 0.773105 132 0.834519 0.762402 0.763278
81 0.757028 0.757028 0.757028 134 0.708427 0.738730 0.731833
82 0.818620 0.818620 0.817634 138 0.740573 0.732708 0.733806
84 0.811175 0.805972 0.805906 140 0.737551 0.764606 0.769112
85 0.694146 0.694146 0.694146 142 0.750488 0.750488 0.750488
86 0.832936 0.785317 0.784932 143 0.713437 0.713437 0.713437
87 0.688240 0.759668 0.688240 144 0.753220 0.680366 0.680366
88 0.780273 0.742456 0.741766 150 0.729046 0.684061 0.685155
90 0.844820 0.844820 0.844864 154 0.690677 0.690677 0.690677

91 0.688707 0.688707 0.688707 156 0.789471 0.789471 0.790208
92 0.728679 0.720354 0.719766 162 0.757028 0.757028 0.757028
93 0.691390 0.758056 0.691390 163 0.719154 0.719154 0.719154
94 0.744386 0.787865 0.790048 168 0.699889 0.674579 0.674416
95 0.698739 0.732484 0.698739 169 0.718525 0.718525 0.718525
96 0.825985 0.744111 0.742971 170 0.694146 0.694146 0.694146
98 0.744132 0.696513 0.697303 174 0.688240 0.759668 0.688240
99 0.740587 0.691390 0.691390 180 0.723937 0.723937 0.723937

100 0.813770 0.813770 0.812489 182 0.688707 0.688707 0.688707
102 0.817323 0.770458 0.771552 186 0.691390 0.758056 0.691390
104 0.723333 0.767924 0.765581 190 0.698739 0.732484 0.698739
105 0.653897 0.653897 0.653897 198 0.740587 0.691390 0.691390
106 0.829958 0.791497 0.725979 210 0.653897 0.653897 0.653897
108 0.764890 0.722346 0.661992 216 0.698739 0.698739 0.698739
110 0.795133 0.795133 0.795133 222 0.698739 0.754294 0.698739
111 0.698739 0.754294 0.698739 234 0.698739 0.698739 0.698739
112 0.740472 0.740472 0.742195 242 0.711433 0.717617 0.711433
114 0.834201 0.834201 0.834201 243 0.719154 0.731499 0.719154
116 0.764606 0.751262 0.700136 250 0.709028 0.709827 0.709028
117 0.698739 0.698739 0.698739 256 0.714815 0.714815 0.714815
118 0.710444 0.724352 0.710444 286 0.713437 0.713437 0.713437
120 1.032367 0.672746 0.672746 326 0.719154 0.719154 0.719154
121 0.711433 0.717617 0.711433 338 0.718525 0.718525 0.718525
122 0.719386 0.715829 0.716087 360 0.707926 0.707926 0.707926
124 0.691390 0.749162 0.691390 420 0.688445 0.688445 0.688445
125 0.709028 0.709827 0.709028 432 0.717112 0.717112 0.717112
126 0.847851 0.736979 0.750188 486 0.719154 0.731499 0.719154
128 0.754709 0.817209 0.817799

(*) The ψ-bounds for small k and x are distorted by powers of p = 2, 3. If the
range 0−1010 is replaced by 1500−1010, the bounds are much improved, as shown
below. Alternatively, a ψ-bound of 1.0 holds for X0 ≤ x ≤ 1010, with X0 as below:

k ψ : 1500 − 1010 X0

1 0.790594 8
2 0.805589 224
3 0.764104 14
4 0.879669 14
5 0.806086 0
6 0.785064 62
10 0.792735 0
12 0.862547 0
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424 OLIVIER RAMARÉ AND ROBERT RUMELY

Table 2 was computed by using a sieve. First, θ and ψ were computed for each
arithmetic progression. All three functions

[θ(x, k, l)− x/ϕ(k)]/
√
x, [ψ(x, k, l)− x/ϕ(k)]/

√
x,

[θ(x; k, l)− (x−N(k, l)
√
x)/ϕ(k)]/

√
x

are monotone decreasing between their jumps at primes or prime powers. Thus, to
determine their maximal absolute values over a given interval, it suffices to check
their values at the endpoints of the interval, and their left and right limits at primes
and prime powers within the interval.

Considerable roundoff error can accumulate in summing 109 or more floating
point numbers. To assure the accuracy of the computations, upper and lower
bounds for θ and ψ were computed by first rounding all the logarithms up and
down to the nearest 2−30. After this truncation, the upper and lower bounds could
essentially be computed by integer arithmetic, e.g. without roundoff error, and
θ and ψ were replaced by their bounds in such a way as to assure that Table 2
gave rigorous upper bounds. (This choice of the truncation would have allowed the
computation to continue as high as 1.7× 1010, considerably beyond its actual limit
of 1010.) Finally, the values were rounded up in their last digit.
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