
Primes in arithmetic progressions to large moduli 

b y  

E. BOMBIERI, J. B. FRIEDLANDER (I) (2) and H. IWANIEC(1) 

Institute for Advanced Study 
Princeton, NJ, U.S.A. 

Contents  

Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  203 

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  205 
2. Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  210 
3. A generalization of the problem . . . . . . . . . . . . . . . . . . .  214 
4. Evaluation of 9O3 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  216 

5. Evaluation of 9~ . . . . . . . . . . . . . . . . . . . . . . . . . . .  216 

6. A truncation of 9O~ . . . . . . . . . . . . . . . . . . . . . . . . . .  218 
7. Evaluation of go . . . . . . . . . . . . . . . . . . . . . . . . . . .  221 

8. Estimation of ~ .  First method . . . . . . . . . . . . . . . . . . .  223 
9. Estimation of ~1. Second method . . . . . . . . . . . . . . . . .  225 

10. Estimation of ~t~. Third method . . . . . . . . . . . . . . . . . .  230 

11. Special case. I . . . . . . . . . . . . . . . . . . . . . . . . . . . .  234 
12. Special case. II . . . . . . . . . . . . . . . . . . . . . . . . . . . .  235 

13. Special case. lII  . . . . . . .  . . . . . . . . . . . . . . . . . . . . .  239 
14. Special case. IV . . . . . . . . . . . . . . . . . . . . . . . . . . . .  242 
15. Proof of Theorem 8 . . . . . . . . . . . . . . . . . . . . . . . . .  244 
16. Proof of Theorem 9 . . . . . . . . . . . . . . . . . . . . . . . . .  248 

17. Proof of Theorem 10 . . . . . . . . . . . . . . . . . . . . . . . . .  249 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250 

A ( q ) - - t h e  von  M a n g o l d t  func t ion .  

r (q)--- the d iv i sor  func t ion .  

~0(q)---the Eu l e r  func t ion .  

~(q)- - - the  M 6 b i u s  func t ion .  

Notations 

(t) Supported in part by NSF grant MCS-8108814(A02). 
(2) Supported in part by NSERC grant A5123. 



204 E. BOMBIERI,  J. B. FRIEDLANDER AND H. IWANIEC 

e(~)--the additive character e 2~ri~. 

z(n)--a multiplicative character. 

f - - t he  Fourier transform off ,  i.e., 

f(t/) = f(~) e(~r/) d~. 
- a o  

m=-a(q)---means m=a (mod q). 

d/cmmeans a/c where ad =- 1 (mod c). 

m - M - - m e a n s  M<m<~2M. 

[lal]--means L 2 norm of a=(am), i.e., 

\ 1/2 

,oil-- Y lo:) �9 

e--any sufficiently small, positive constant, not necessarily the same in each occur- 

rence. 

B--some SUfficiently large, positive constant, not necessarily the same in each occur- 

rence. 

~ = l o g x .  

~r(x; q, a)--the number of primes p<~x, p=-a (mod q). 

~(x; q, a) = E n~,,~a (mod q) A(n). 

Some of our results depend on a variety of assumptions scattered throughout the 

paper. For ease of reference we list here the pages on which these are described. 

Assumption Page 

(At) 206 

(A2) 206 

(A3) 214 

(A4) 220 

(As) 229 

(A6) 235 

(A~) 237 

(AT) 239 

The reader should take some caution with our use of the constant e. Any statement 

including e is meant simply as the claim that the statement is true for all sufficiently 

small positive e. The meaning of "sufficiently small" may vary from one line to the 

next. 
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1. Introduction 

Given an arithmetic funct ionf(n) ,  it is natural to study its distribution in residue classes 

a (mod q). One focuses on the classes a with (a, q) = 1, without restricting the generality, 

and expects that among these classes a reasonable function f will be uniformly distrib- 

uted, such uniformity being measured by upper bounds for the magnitude of 

Af(x;q,a)= Z f(n)- 1--~ E f(n). 

n~--a(q) (n, q)= 1 

A not unreasonable goal is the estimate 

Af(x; q, a) < <  ~ .~-axl/211fl I, 

(1.1) 

(1.2) 

for any A>0,  the implied constant depending only on A, the result valid uniformly in q 

in a range as large as possible. In view of Cauchy's  inequality it is natural to regard 

(1.2) as saving (~a from the " t r ivial"  estimate. 

The following examples illustrate the largest known ranges of q in (1.2) for some 

basic functions: 

(i) f(n)=rk(n), the number of representations of n as the product of k factors, 

q<x ~ with 

02 = ~ (C. Hooley, Ju. Linnik, A. Selberg) 

03 = i + i (J. Friedlander and H. Iwaniec [9]) 

04 = �89 (Ju. Linnik [16]) 

05 = 9,  06 = ~2 . . . .  (J. Friedlander and H. Iwaniec [I0]). 

(ii) f(n)=r(n), the number of representations of n as the sum of two squares, 

q<x ~ with 0=2/3 (C. Hooley, Ju. Linnik, R. A. Smith). 

(iii) f(n)=b(n), the characteristic function of numbers represented as the sum of 

two squares. Then 

Af(x; q, a) = o as x ~ 
(lo 1/2 

uniformly in q<x ~ where O(x) is any function decreasing to zero as x---~oo (H. 

Iwaniec [14]). 
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(iv) f(n)=A(n), the von Mangoldt function, q<(logx) A with any A>0 (Siegel- 

Walfisz theorem). 

This last example, A(n), has of course received the most attention. The Riemann 

hypothesis for Dirichlet's L-series implies and is implied l~y 

~(x;q,a)= 1 . ~ ,  I/2+~, (1.3) ~( q---~ x + c, tx  ~. 

Here the constant implied in the symbol O depends at most on e; thus the Riemann 

hypothesis yields (1.2) for q<x~/2-L While a proof of (1.3) seems to be out of reach by 

present methods, it was shown in 1965 by E. Bombieri [1] and by A. I. Vinogradov [21] 

that (1.2) holds for almost all q<x ~/2-~. In the form given by Bombieri, the result 

yields (somewhat more than) 

max ~p(x;q, a ) -  x q<_a (~,q)=l - - ~  << x ~  -A (1.4) 

for any A>0 with Q=xl/2~ -s, where B and the implied constant depend on A alone. 

It was conjectured by P. D. T. A. Elliott and H, Halberstam [3] that (1.4) may hold 

with Q=x l-` but even the result with Q=x uz has not yet been achieved. Several 

simplifications and generalizations of the original arguments were provided; (see, for 

example, [11], [20], [22], [18]). It is now known that Bombieri's mean value theorem is 

valid for fairly general arithmetic functionsf(n). This is essentially due to Y. Motohashi 

[18]. The crucial property required is t ha t f can  be represented as a linear combination 

of convolutions of two sequences a-x-fl with the following properties. 

(A0 a=(am), m--M, M=x l-#, fl=(fln), n-N, N=x ~ with e<~0~<l-e. 

(A2) fl=(fl,,), n~N is well distributed in arithmetic progressions to small moduli, 

that is, for any d~>l, k~>l, l:~0, (k,/)=1 we have 

E ~n---- 
n~l(k) 

(n,d)=l 

1 E fl~<< ILBil N'/2r(d)B(l~ 
qg(k) (~, ak)= I 

with some B>0 and any A>0, the constant implied in << depending on A alone. 

Under the conditions (A0 and (A2) we have 

I/2 A 
E max [Aa./~(x; q, a)[ << Ilall II/lll x 
q~<Q (a, q)= 1 

(1.5) 
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with Q=x~/2~ -B, B=B(A)>O. The proof is a consequence of the large sieve inequality 

(see Theorem 0 below) 

I ~ *  ChZ(h ) <<(Q2+H) llCll2; (1.6) 
q~Q •(modq) I h<~H I 

here E* stands for summation over primitive characters. 

In order to complete the proof of (I.4) it remains to represent A(n) as a sum of 

convolutions a-x-fl of sequences with the above properties. This is a matter of combina- 

torial identities which we shall discuss later. 

It is the application of the large sieve inequality (1.6) that sets the limit 

Q--xl/2.~ -B and not the shape of the bilinear form a*fl. By this we mean that the 

location of 0 in [e, 1 - e l  in (A0 is irrelevant to the proof. 

In the series of papers by E. Fouvry and H. Iwaniec ([6], [4], [7], [5]) the first 

successful attempts were made to get mean value theorems for arithmetic progressions 

to moduli beyond x I/2. The large sieve inequality (1.6) is replaced by new arguments 

based on the dispersion method, Fourier analysis and Kloosterman sums, the last 

appealing to results from the spectral theory of automorphic functions. 

In these new arguments the parameter a is now forced to be (more or less) fixed so 

we must drop from both (1.5) and (1.4) the expression max(Q.q)= r Since, in most 

applications of (1.4), a is fixed, this causes no great concern. More serious is the fact 

that, for these arguments, the location of 0 does matter. 

One would like to prove, with Q=x 1/2+~, an estimate 

~,q Aa./3(x; q, a) << Ilall It'll x ''2~e-A (1.7) 
q<~Q 

(q,a)=l 

for general weights Fq and thus, in particular, for absolute values, 

yq = sgn Aa.~(x; q, a). 

This cannot yet be done. The class of weights for which (1.7) can be shown depends on 

the range of 0. 

In this paper we enhance the former arguments to extend substantially the range of 

O and to work out forms that were not considered before. For technical reasons only we 

deal with bilinear forms which satisfy some additional constraints, see (At) below. 

From our seven theorems of this type we infer, by combinatorial arguments, the 

following results. 
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THEOREM 8. Let a4:O, 01<I/3, 02<1/5, 501+202<2, and 01+02<29/56. For any 

numbers yq <<r(qO _ Oq2<<r{q2 ) n _  . and any A>0 we have 

ql <~xH1 q2 <~X92 
(ql q2' a) = 1 

the constant implied in << may depend at most o n  01, 02, a, A and B. 

THEOREM 9. Let a~0, e>0 and R<x  l/l~ For any A>0 there exists B=B(A) 

such that provided Q R < x ~  -~ we have 

r~g q<~Q 
(r,a)=l (q,a)=l 

the constant implied in << depends at most on e, a and A. 

COROLLARY 1 (the Titchmarsh divisor problem). Let a~O. For any A>0 we have 

�9 E A(n) ~(n +a) = cl(a) x log x+ c2(a) x+ O(x~-A), 
laP<n<~ 

the implied constants depending only on a and A. Here we have 

_ ~(2) ~(3) (1  P 
~(6) ~ _ p 2 # +  1) Cl(a)  

and 

(p-  1) (p2-p+ I) p2-p+l  

Definition. An arithmetic function2(q) is called "well factorable" of "level" Q if 

for any Q1,Q2>~I, Q1 Q2=Q there exist two functions ~q(qO, A2(q2) supported in 

[1, Q1] and [1, Q2] respectively such that 

121[~<1, [221~<1 and ~.=J . j - ) ( -A 2. 

The well factorable functions were introduced in connection with the modern 

linear sieve theory, cf. [15], [7]. 
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THEOREM 10. Let a=~O, e>0 and Q=x 4/7-e. For any weU factorable function 2(q) 

of  level Q and any A>0 we have 

E 2(q) ~ p ( x ; q , a ) - - ~  <<x~-A; 
(q,a)=l 

the constant implied in << depends at most on e, a and A. 

COROLLARY 2. Let er2(x) be the number o f  pairs o f  twin primes p, p+2 with p<-x. 

We then have 
Z~z(X) ~< (~ +e) Bx (log X) -2  

where n--2[Ip>2(l-(p-1)-2), for any e>0 and x>~xo(e). 

Theorems 8, 9 and Corollary 1 are new and they constitute the bulk of this paper. 

E. Fouvry has informed us that he has independently proved Corollary 1 and a slightly 

weaker version of Theorem 9. Theorem l0 and Corollary 2 improve the results of 

Fouvry and Iwaniec of [7] and of Fouvry [5]. 

In Theorem 8 the constraint 501+202<2 is unnecessary if Selberg's eigenvalue 

conjecture [2] holds. 

Our methods are capable of giving results for larger ranges of q, given good 

estimates for certain exponential sums. We formulate the following general conjecture. 

Let Az(p), l~<p< ~ denote the hypothesis (A2) with Ilflll NI/2 replaced by 

II~llpN 1-~/p where II~llp is the usual 1 v norm. 

Conjecture 1. Let (A1), A2(p) hold, a:4:0, A>0, r~>l, s~>l. There exists Bt=Bt(A) 

such that 

[Aa.#(x; q, a)[ << IlallrlLSll, Ml-~/rN~-I/s~ -a, 

q<x~-B1 

(q,a)=l 

the implied constant depending on e, a, A, B, r, s. 

Remark. We are led to the consideration of lp norms because H61der's inequality 

features in our arguments and because the optimal employment of this depends on the 

current state of the estimates for exponential sums. It is possible that H61der's 

inequality could be dispensed with. This leads us to extend the conjecture to the case 

where r or s (or both) is oo and in which case we define 

IJalloo = s u p  vS(n)la(n)l. 
n 
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The value of the above conjecture is limited due to the absence of plausible 

methods for attacking it. The following weaker conjecture can be reduced to the 

expected estimate for certain exponential sums whose arguments are rational functions 

in several variables. Lemma 1 is a prototype of such an estimate. 

Conjecture 2. Let e>0, (a), (fl) satisfy (A0, (A2) and laml~<rB(m), Lanl~<rB(n). For 

any A>0, a4=0 we have 

2 IAa*# (x;q'a)l<<x~-a' 
q<x314-~ 

(q,a)=l 

the implied constant depending on e, a, A and B. 

2. Lemmas 

In this section we state some results from the literature of which we shall have need. 

The most central to our purposes is the following estimate for sums of Kloosterman 

sums, cf. [2, Theorem 12]. 

LEMMA 1. Let go(~, ~1) be a smooth function with compact support in R+xR +. 

Let C, D, N, R, S>0 and g(c, d)=go(c/C, d/D). For any complex numbers Bnrs denote 

r ~ R  s ~ S  O<n<~N c d 
(rd, sc)= 1 

Then, for  any e>O we have 

Y/(C, D, N, R, S) << (CDNRS)%r D, N, R, S)IlSll 

where 

~2(C, D, N, R, S) = CS(RS+N) (C+DR)+C2DSX / (RS+N) R +D2NRS -1, 

the constant implied in << depending at most on e and g(~, ~l). 

The next lemma is a truncated Poisson formula. 

LEMMA 2. Let M>~I and let f (m)  be a smooth function with compact support in 

[-4M, 4M] such that 

fO)(m) << M -j, j = O, 1 .... 
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the constant implied in << depending on j alone. For any H>~ql+~M -~ we have 

Z f ( m ) = I  Z ] ( h ~ e ( - a h / q ) + O ( q - ' )  
rata(q) q thl<~H \ q / 

the constant implied in 0 depending on e alone. 

LEMMA 3. Let a~=O, A>0 and l<~k<~x l-~. We then have 

Z ~(m) ~ ( m - a )  << k (r(k)log x) B 

r e e l  (rood k) 

with some B=B(A) and the constant implied in << depending at most on e, a and A. 

Proof. Apply Cauchy's inequality and Theorem 2 of [19]. 

It is often convenient to work with numbers free of small prime factors. The 

following result, known in sieve theory as a "fundamental lemma", is useful for the 

relevant reduction. 

LEMMA 4. Let D>~2, z=D I/s with s~3. There exist two sequences {A~} d<<.D and 

{A~} d<~D such that 

( (~- ~ 1) (n) = (A + ~- 1) (n) = 1 i f  n has no prime factor <z 

()~- ~ 1) (n) ~< 0 ~< (A + ~- 1) (n) otherwise 

Z A ~ d - t = l - i ( l - 1 ) ( l + O ( e x p ( - s l o g s ) ) ) .  
d<~D p < z  

Proof. See [8]. 

Our next lemma is the combinatorial identity of Heath-Brown [12]. The use of 

similar identities to replace sums over primes by sums over divisor-like functions was, 

in the context of the dispersion method, originally made by Yu. V. Linnik, see [17]. 

LEMMA 5. Let  J>~l and n<2x. We then have 

A(n)= Z (-1)1 Z "'" Z Iz(m,)'"l~(mJ ) Z "'" Z logn,. (2.1) 
j =  1 m l . . . . .  my<~.xllJ n! . . . . .  nj m I ... my=n 
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In the next result we give rather general versions of two famous consequences of 

the large sieve inequality (1.6). The first of these is the Barban-Davenport-Halberstam 

theorem, the version of Hooley [13] being not quite sufficient for our purpose. The 

second is the formulation of the Bombieri-Vinogradov theorem in terms of general 

bilinear forms as described in (1.5). 

THEOREM 0. (a) Let (fin), n <-N, be any sequence of complex numbers satisfying 

the "Siegel-Walfisz" assumption (A2), For any A>0, there exists B1>0 such that 

I a~(modq)fln 1 2 E E q~(q) E ft, <<llfll[ 2N(I~ (2.2) 
q<~Q (a,q)=l n-~ (n,q)=l 

provided that Q~<N(IogN)-BL 

(b) Let (A1) and (A2) hold. For any A>0, there exists B1>0 such that 

E m a x  IzXa.~(x; q, a)l << Ilall IlPll x'/2~-A (1.5) 
q<~O (a,q)=l 

for any Q<<-xl/Z ~ -B~. 

Here in (a) and (b) the implied constants depend on A and on the constant B 

occurring in (A2), and in (b) also depends on the constant e occurring in (A0. 

Proof. (a) The left-hand side of (2.2) is just 

s =  nx(n) 
q<<.Q 

Let Z be induced by ~p m o d f  where q=fe, f >  1. Since 

~,&,z(n)= ~ ,8,,~(n), 
n (n,e)=! 

and qg(fe)~q~(f)q~(e), we have 

e~Q ~(modf)  ( 1 

= ~ ! (Se(f~F)+Se(f>F)), 
e~0 q~(e) 

say, where E* is restricted to primitive characters. For 2<~f<~F we split into progres- 

sions (modf) and apply (A2) getting 
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E ft, ~p(n) <<A' I 11 N'~(logN)-A'rB(e)f , 
(n,e)ffil 

so that 

Se(f<~ F) << r 2n(e) F311flllEN (log N)-2A'. (2.3) 

For Se(f>F) we split the sum into <<log Q intervals of the type (V, 2V]. The large 

sieve inequality gives 

S e ( f > F ) < <  log 2 Q sup V-I(V2+N) Ib~II 2 

F<V<~Q 

<< (Q+NF -1) I1~11 z log 2 Q. 

Thus, for some B2=B2(B) we have 

s < <  I I ll 2 (log Q) s2 {NF 3 (log N)-2A' +NF-  l + Q}. 

Taking BI=A+B2, A!=2B I and F=(logN) s', we get (a). 

(b) We have 

1 Ez(a)(~m amZ(m))(~n fl,,z(n) )" Aa.a(x; q, a) - tp(q) Z*Zo 

We reduce to primitive characters as in (a). The left-hand side T of (1.5) is thus bounded 

by 

q~(e) cp(f) am lP(m) 
e<~Q 2<~f<~Q/e ~( ( 1 

= E ~ (Te(f<~ F)+ Te(f> F)), 
e<~Q 

(2.4) 

say. By Cauchy's inequality 

Te(f~<F)~< / E 

2)1/2 

2.f.F qg(f)l ~p(m~od;, (m,e)=lE Otmlf l (m)~ k 

X 1 E fl,~p(m) 

(2.5) 

Here, the multiple sum in the second parentheses is just Se(f<~F) from (a) and to this 
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we again apply (2.3). To the first multiple sum we apply the large sieve inequality (1.6). 

Together these yield, provided that F < M  ~/2, 

T~(f~< F) << Ilall IkSII x'/2 rn(e) F3/2 (log N) -A' . (2.6) 

We split the sum Te(f>F) into intervals V<F<~2V. To each of these we apply Cauchy's 

inequality getting an expression like (2.5). Now we apply (1.6) to both sums in 

parentheses. In this way we get 

Te(f> F ) < <  (log 2 Q)tlatl Iball sup V-I(V2+M)~/2(V2+N) v2 
F<~V<~Q 

<<(log 2Q) IlalIIhaII(Q+Mv2+NI/2+Mv2N'/2F-I) �9 

Choose B2(B) so that 

(2.7) 

rB(e) << Le n2. 

e~Q qo(e) 

Take BI=A+2, F=.SL~(<MI/2), A'=~A+Bz+3. Combining (2.4), (2.6) and (2.7), we get 

the result. 

3. A generalization of the problem 

We consider the somewhat general sum 

(qr, a)=l \ mnma(qr) 
cp(qr) (mn, qr) I / 

(3.1) 

with coefficients am, fin satisfying (A0, (A2) and the coefficients yq, 6r satisfying 

(A3) lyql r(q) B, 16rl ~ r(r) B, QR < x. 

Our aim is to prove the following upper bound 

fi~(M, N, Q, R) <<A Ilall I~11 x 1'2 -A (3.2) 

with any A>O under certain constraints on M, N, Q, R and on the sequences (am), 

(~n), (~,q), (6,). 

By Cauchy's inequality we obtain 
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~2(M, N, Q, R) <~ ll6ll2llall2~M, N, Q, R) 

(r, am)=l ~.(q, am)=l \mnma(qr) 

with the aim of showing that for any A>0 

s'(u, N, Q, R) << 1 ll2xR-'  -A. 

q~(qr) _ 

(n, qr)= I 

215 

(3.3) 

Now we enlarge ~(M, N, Q, R) a bit by introducing a smooth weight function 

if m E [M, 2M] 

if m ~ [�89 3M] 

f(m)>>-O in front of { }2 such that 

f (m)  = 1 

f (m)  = 0 

fO)(m) << M -j, j -- O, 1 . . . . .  

In this way we obtain a smooth majorant b'*(M, N, Q, R). This is necessary for the 

application of Lemma 1 and simplifies other aspects of the treatment. Squaring out in 

bD*(M, N,  Q, R) we obtain 

~P~ = Y l - - 2 Y 2 + Y 3  ( 3 . 4 )  

where ~i = ~(M, N, Q, R), i= 1,2, 3 are defined by 

(am, r)= I (q, = I mnma(qr) 

and 

(am, r)= ! (am, ql q2 )=1 mnlwa(ql r) 

(n2, q2 r)= 1 

(E )2 
(am, r)=l \ (am,  q)=l tp(qr) (,,.q,)=l 
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Here we omitted the constraints r-R, q-Q, n-N for notational simplicity, so they 

have to be remembered in the sequel. 

We shall evaluate Sel, Se2 and Se3 separately. The above elementary arguments 

constitute the underlying idea of Linnik's dispersion method [17]. 

4. Evaluation of Sea 

We begin with the evaluation of the simplest sum. By Poisson's formula (Lemma 2) we 

get 

2 f(m)=-~-f(o)+o(r(b)). 
(m,b)=l 

This yields 

where 

Se3 =f(O) X+~3 (4.1) 

X= Z Z 2 t~(q"q2'r))'q,)'q2Z Zfl"lfln2 
(a, rql q2)= I 

(nl, ql r)= 1 

and ~(q~, q2, r)=tp(qt q2 r)/q~ q2rqg(ql r)q~(q2 r). The error term ~3 is bounded by 

83 <<  NIL~II2R-'-~ B 

which is admissible for (3.3). 

(4.2) 

We have 

5. Evaluation of Se2 

( q l q 2 , a ) = l  (ni,q0 =1 (n2,q2)=l 

where 

1 S(m). 
~0(q 2 r)  R <r<~2R m n  l =-a( q l r) 

(r, an! n2)= 1 (m, q2 )=l 



PRIMES IN ARITHMETIC PROGRESSIONS TO LARGE MODULI 217 

The constraint (m, q2)= 1 is relaxed by means of the M6bius inversion formula giving 

Ef(m) = E #(v) E f(vm). (5.1) 
m vlq2, (v, ql r)= 1 v m n  I ==-a(ql r) 

The terms with v>x z` contribute to 5e2 by Lemma 3 

O(I~3112R-1x 1-~) (5.2) 

which is acceptable for (3.3). Let  v<<.x z~. By Lemma 2 the innermost sum is equal to 

h E f ( v m ) -  1 r E f (  - ~ e ( - a h v n l ~ + O (  1--~ 
m=--avn--ql(ql r) vql lhl<~H ~ kVql r l \ ql r] \ QR ] 

where H o = x ' Q R M  - 1. By the 'reciprocity'  relation 

- a h  vnl - ah --ql r ah 

ql r vn~ vn I q~ r 
(mod 1) 

we get 

( - ) (  ) = Z f  ~ e ah + 0  
vql r ihl~no vqlr vn I QR ~ " 

Here the error term O((QR)- l+x  ~-1) contributes to 5e2 at most O(llflll2R-lNxq 
which is acceptable for (3.3). 

We first sum up the main termsf(O)/Vql r, i.e. the terms with h=0. The restriction 

v<.x2~ can be relaxed at the cost of the error term (5.2). Having done this the resulting 

total sum proves to be f(O)X. 

The remaining terms contribute to 5ez(n~, n2, q~, qz) 

( - )  
1 q2 r ~(v~lr) 1 Z ~(v). Z Z r2 ~q2r)  f e ah q,r  . 

ql q2 v<x z, v 0<IhN<H0 R<r<~ZR \ vnl / 
vlq 2, (v, ql)= 1 (r, avn  1 n2)= 1 

The innermost sum is essentially an incomplete Kloosterman sum. In order to estimate 

this we use the following result which easily follows from the A. Weil upper bound for 

complete Kloosterman sums 

1 <~d~D C 

(d, ck) = 1 

15-868283 A c t a  M a t h e m a t i c a  156. Imprim6 le 15 mai 1986 
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dq _q.._..q X ~- i  

q~(dq) ~o(q) (~l,q)=l,~l,ld 

where ~/* denotes the product of all prime factors of r /by (5.3) we first deduce that 

t<-d<-~O tp(dq) c 
( d, ck) = ] 

from which by partial summation we obtain 

a<~<. 2R r 21 q ~  fi ( v_~2 r ) e (a h q , , ) << ~2 (N'/2 + (h ' n ') R ) x* " 

(r, avn 1 nz)= 1 

Gathering the above results together we conclude that 

Y2 =':(0) X+R2 (5.4) 

with the error term R2 bounded by 

R 2 < <  ILaII2(QR-tN3~+ Q) x'+lLIJl[ZR-Ix '-~. 

This bound is acceptable for (3.3) provided that 

N <  x -~ and  QR<xJ-L 

These constraints will turn out to be weaker than those imposed when evaluating ~ .  

6. A truncation of S~ 

The evaluation of .5"~ is the most difficult and it involves the key arguments. Before 

applying them, in this section we reduce the range of the summation by elementary 

means. By definition we have 

(am, r)~ 1 (am, q'q")= I rant =--a(q~ r) 
mn2=--a(q"r) 

Letting qo=(q ', q'~, ql =q'/qo, q2--c['/qo we get 
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(a, qor)=l (ql,q2)=l (ni, qoqir)=l 

(a, ql q2 )=! nl~n2(qor) 

where/z (mod qo ql q2 r) is a common solution of 

/znl - a (mod qo ql r) 

/zn2 - a (mod qo q2 r). 

Let us impose the following condition 

m~lZ(qo ql q2 r) 

(6.1) 

Qo = .~A+B (6.3) 

which we henceforth assume. 

x~R ~< N (6.2) 

which could already be anticipated from (3.3); it ensures us that there are enough terms 

in 6e(M, N, Q, R) to produce a considerable cancellation. 

We first estimate trivially the contribution of terms with q0>Q0 where Qo will be 

chosen later. By Cauchy's inequality we deduce the following 

b~x(qo > Qo)<< E E E s ( m ) E  IT%q,[ E Ls.II2E lyq0q21 E l. 
Qo<qo <~2Q r - R  m ql nl=-arn(qoql r) q2 n2~ath(qoq2r) 

By (A3) and by Lemma 3 we obtain 

E E<< E ra(mn-a)za(qo ) 
q2 n2 nEafa(qo r) 

< < N ( q  0 r)-l~.c~B +x d2 << N(QoR)'I ~ s, 

provided Qo<x ~/2. This and (A3) imply 

Sel(qo > Qo) << N(QoR) -l ~B E E Ifl f r8(mn-a)" 
m n 

Finally, again by Lemma 3 and by (AI), we get 

~(qo > Qo)<< 11/3112x(QoR)-~.~ ". 

This bound is admissible provided 
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In a much similar way we estimate trivially the contribution of terms with 

(nl, n2)=no for some no>No, say. Namely we have 

Y,(no > No) <<  I [ ~ l l Z x ( N o R ) - ' 5 ~  B 

provided No<x ̀ /z. We take 

(6.4) 

~, f ( m )  --  

m=--~(qo ql q2 r) 

Here, by (6.1), we have 

nl--n2 n2ql a 
/t -- a F (mod I) 

qoqlq2 r qo r nlq2 qoqlq2rnl 

1 [ Z f (  h )e ( -/~h ~ + O ( 1 ) l  
qoqlq2 r thl<<.H qoqlq2 r qoqlqzr/  J 

H = x~M - 1Q2R. (6.9) 

with 

so (6,4) is admissible. 

Now, define 5'~(M, N, Q, R) to be the partial sum of 6PI(M, N, Q, R) restricted by 

qo ~< Qo, (6.6) 

no <~ No. (6,7) 

Therefore ~ differs from 5el by an admissible quantity (3.3). 

From now on we impose a new condition on fin, namely 

(A4) fin = 0 if n has a prime factor ~< No. 

This assumption is not crucial (see [7]) but it greatly simplifies the congruences (6.1). 

Due to (A4) and (6.7) each pair nl, n2 in 5e~ is coprime. Due to (A4) the terms in 5e~ 

with nl n2 not squarefree can be removed with admissible error as in (6.4). We write 

the resulting sum 6e~'* as 

2 Z Z 2 ~qoql~qoq2 Z Z ~2(nln2)flnlflnz Z f(m). ( 6 . 8 )  

qo<~Qo r~R (ql, q2)=l (nlq2,n2ql)=l m=-it(qoqlq2r ) 
(a, q0 ql q2 r) = 1 nl---n2(q0 r) 

To the innermost sum we apply Lemma 2 giving 

NO = ,~fA + B (6.5) 
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whence 

\ qoqlq2 r ] 
=e ( ) ah n 2 - n l  n2q'  + 0 (  [ahl ~. 

qor nlq2 \ q o q l q 2 r n l /  

Since f < < M  this yields 

~,m,- 1 ~ (  ~ )e(a~n~'~ql 
mml, t(qoq 1 q2r) qo ql q2 r ihl<~H qo ql q2 r qo r nl q2 

Finally, insering (6.10) into (6.8), by Lemma 3 we obtain 

Yl =/(0) ~+ ~1 + O([ ~l 12xR-' ,~.~--A) 

provided 

where 

N Q 2 R  < x 2-~, 

~ )  + O(x2e - l). 

(6.10) 

(6.11) 

(6.12) 

qo<~Qo r-R (ql,q2)=l qoql q2 r (nlqz, nzqt)=l 
(a, qoql q2 r)=l nlmn2(qor) 

(6.13) 

and 

~ l =  X r ~ R X  X ~qoq'"~l~q--~~ X X ~'/2(nln2)~nlfln2 
qo6Qo ~ (ql,q2)=l qoqlq2 r (ntq2, nxql)=l 

(a, qo ql q2 r)= I nl mn2(qo r) 

t t(  n  ql) x _ - e a h - -  . 
l~<lhl~<H q0 ql q2 r qo r nl q2 

Now it remains to evaluate ~ and to estimate ~1" 

(6.14) 

7. Evaluation of 

In this section we prove that ~ is asymptotically equal to X, apart from the admissible 

error term 

O(ILalI2NR-~ ~-A). (7.1) 
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This result is essentially of the type of the Barban-Davenport-Halberstam theorem and 

rests on Theorem 0. 

We remove from ~ the factor/~2(n~ n2) and the condition (nt, n2) = no= 1 at the cost 

of the admissible error term (7. I). The arguments are the same as those for (6.4). Thus 

qo <~Qo r~R (ql,q2)=l qo ql q2 r t((#,,) ~ nil(qor) n~l(qor) 
(a, qoqlq2r)=! \(n, ql)=l \ ( n ,  q2)=l 

-F O(I~II2 N R - I . ~ - A ) ,  

where E* stands for the summation over the primitive residue classes. 

By (A2), Theorem 0 yields 

E E *  ft. 1 E ft. <<llflU 2N(I~ (7.2) 
k~<g t(k) I .-t(k) cp(k) (.,qk)=l 

[ (n,q)=! 

for any A>0 provided that 

K ~< N (log N)-B(A), (7.3) 

the constant implied in << depending on A alone. Applying (7.2) with K=2QoR (as we 

may by (6.2) and (6.3)) we deduce by (A3) that 

~=  So+ O(ll/3112SR-I ~ )-A) (7.4) 

where 

qo<~Qo (qt,qP=t qo ql q2 rcp(qo r) r~R (nl,qoql r)=l 
(a, qoql q2r) =1 (n2,qoq2r)=l 

Finally, extending the summation over all qo we get 

S0 = X+ O([ ~[[2NR- I ~--A), (7.5) 

the error term being estimated by the same arguments as those for (6.2). Gathering 

together (7.4) and (7.5) we get what we claimed. 

Now, if we insert the results (4.1), (4.2), (5.1), (5.2) and (6.11) into (3.4) we see that 
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the main termsf(0)X disappear throughout and we are left with ~ and with a couple of 

admissible error terms (satisfying (3.3)). In the three next sections we give three 

treatments of a t  getting the admissible upper bound 

< <  Itall2R - ( 7 .6 )  

for different ranges of the parameters M, N, Q, R. 
For notational simplicity we write fl,, in place of 1~2(n)fln remembering that from 

now on the support of fin occurring in 3i~ is restricted to squarefree integers. 

8. Estimation of ~ .  First method 

The method begins with the arrangement of ~t in the following way 

(8 .1 )  

In order to separate the variables h, q~ from the remaining ones we first compute 

f(h/qoql q2r) = qoq2r f_~f(~qoq2r)e(~h/qOd~. 

Next we put k=(n2-nO/qor, thus l<~lkl<.K where K=N/R and (qok, nln2)=l, 
n~=n2(qolkl). Then, by (6.14) it follows that 

[~tl ~<4 X X Xl?q0q,[ X X ~.,fln2[ 
qo<~Qo I~kgK q2 (nlqvn2)ffil 

n I ~n2(q0 k) 

X | r) X X Yqoq'e(~h) e ahkn2q2 d~. 
l~h<~H (ql,antq2)=l ql \ ql / nl q2 

Hence, by Cauchy's inequality and by (A3) we get 

~! ( (  x'MQ -3rzR-I II ll 2 sup MVE(4NQ, 2N, K, H, 2Q) 

where by defintion 

M(C,D,K,H,Q)= X X X I X ~q~Qa(h'q)e(ahkT~-qc) 2' 
l<~c<~C l<~d<~D l~k<~K I<<.h~H I 

(8.2) 
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the supremum being taken over all coefficients a(h, q) with 

la( h, q)l ~< 1. (8.3) 

Now, we appeal to Lemma 1 to infer the following 

LEMMA 6. Let C, D, H, K, Q~ I, a~O and e>0. We then have 

M(C, D, K, H, Q)<< (CDHKQ) ~ {CDHKQ+H(KQ)I/Z(H+Q) ./2 

• [C(Q 2 +HKQ) (Cq-OQ 2) + C2DQ~ / Q2 + HKQ +D2HKQ 3]'/2} 

(8.4) 
the constant implied in << depending on e and a only. 

Proof. Clearly, it suffices to prove (8.4) for a modified sum having the variables c, 

d reduced by a smooth weight function g(c, d) as described in Lemma 1. Squaring and 

changing the order of summation we represent ~/(C, D, K, H, Q) as 

~(C, D, ]aIHK Q, Q2, 1) (cf. Lemma 1) with the coefficients 

Bnrs=Bnr= 2 2 2 2 2 tZ(hl,ql)t~(h2'q2)" 
l<~qt,q2~ Q l<~hl,h2<<-H I<~k<~K 

ql q2=r ak(h~ q2-h2qt) =n 

The terms on the diagonal (n=0) are not covered by Lemma 1, they contribute trivially 

<< cox, Z Z Z Z << co.Ke( log2.Q)'  
l<~q l, q2~Q I~<h 1, hz<~H 

hi q2=h2 ql 

The terms off the diagonal (n4:0), by Lemma 1, contribute 

where 

<< (CDHKQ)':(C, D, lalHKQ, QE, I)Ilnll 

IBo: 
n~>l r~>l 

<< (HKQ)~K 2 2 2 2 1 
l<~ql,q2<~ Q l l<~hi,h2 <~H 

h I q2-h2qt=l 
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= (HKQ) *K ~ { q l ,  q2, hi, h2" h3, h4; (hi-h3) q2 = ( h 2 - h a )  ql} 

<< (BKQ)*K(H2Q2 +H3Q). 

Gathering the above results together we obtain (814). 

Assume that 

NX Q < x I-E. 

Then HK<<Q, so Lemma 6 yields 

M(4NQ, 2N, K, H, 2Q) << x~ { N3 M-t Q4 + N3/2M-I QW2Ri/2 + N2M-1QSRV2}. 

Combining this with (8.2) we end up with 

~1 << llflllER-lxl/E+*{Nal/2 + NI/4aS/4g'/4 + NVZORl/4} �9 

This bound satisfies (7.6) provided (8.5) and 

NQSR < x 2-*, N2Q4R < x 2-,. 

Concluding the investigations of this section we formulate our results as 

THEOREM 1. Suppose (AI)-(A4) hold. We then have (3.3) provided 

x~R < N <  x-" min {xVZQ -1/2, x2Q-SR -I , xQ-ER-I/2}. 
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(8.5) 

(8.6) 

9. Estimation of ~ .  Second method 

The method begins with the arrangement of ~ in the following way 

~ , = X . . . X ] ~ h  ~ ] .  (9.1) 

To separate the variables h, n2 from the remaining ones requires more effort than 

in the first method (8.1). 

We first wish to get rid of the condition (r,a)=l; to this end we appeal to the 

M6bius formula 

~1 i f (r ,a)=l  

~l~a.,)/-~/,(6) [0 otherwise. 
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Hence we get 

~qoql ~qoqz 

~ta qo~Qo t)r~R (ql,q2)=l 

(qo, a)= I (a, ql q2 )= ! 

( h ) (  n2n n2q) 
x ~ fl',fl'z E f -- e ah ~qor n-~lq--2 " 

(nlq2,n2q~)=! l<<-Ihl~tt dqoql q2 r 
nl~n2(6qor) 

(9.2) 

Now we change the variable r into k defined by 

n2-nl = c~qork, 

(c~qok, nln2)= l and n2 =-n~(t~qok). 

The remaining condition 6r~R is interpreted as 

In particular we have 

where now K=N/qoR. 

qolklR < In2-n,I ~ 2qolklR. 

(9.3) 

(9.4) 

(9.5) 

Next we detect the condition (9.5) by means of additive characters, i.e., we appeal to 

the following integral relation 

e((n2-n l) a)F(a) da = (9.8) 
otherwise 

where 

We wish to separate the variables h, n2 from the remaining ones. We detect the 

conditions (9.4) by means of multiplicative characters X (mod k) and W (mod 6q0), i.e., 

we appeal to the following orthogonality relations 

1 ~ z(nl)x(n2) = (10 if n I m n 2 (mod k), (n I n 2, k ) = l  

qg(k) x (modk) otherwise (9.7) 

1 ~ f l if n|---n 2 (mod 6q0), (nl n2, 6q0) =1 
~P(6q0) v, (modaqd ~(nl)~P(n2)= [0  otherwise. 

l ~< Ikl ~ g (9.6) 
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therefore 

F(a) = X e(al) << min {N, I1~11 -I) 
qotkiR <lll~2qolklR 

f f  IF(a)] da << log 2N. (9.9) 

Finally, in order to separate the variables in f, we write 

f~f(~qoqiq2r)e(~ h) :f(h/~qo ql q2 r) = 6qo ql q2 r d~ 

= dqo ql q2 r f(~dqo qt q2 r) e(~h) d~ 

with Y=3qoM/Q2R, because f has compact support in [~M, 3M]. Hence by the inver- 

sion formula 

f (  h/dqo q l q2 r) = dqo q l q2 r for f.:| e(~rldqo ql q2 r) e(~h ) drl d~ 

(9.10) 

= 6qo kr e(~r/(n 2-n I)) e(~h) dr I d~. 
Jo 3-| \qtq2/ 

Here we notice that If(r/)l<<min {M, rl-2M-I), so 

f:| = I \ql q2/ " ~  l.:(rl)l d,1 < < - -  
q l q 2  (9.11) 

I /1  

Now collecting the formulas (9.2)-(9.1 I) we conclude that 

qo<~Qo I<~k<~K cP(6qo) cp(k) v:(o%) z(k) (ql,q2)=l 

(nl,ql)=! I~[h[~H (n 2, iq2)=l ~1 q2 

with some Ifl(h, ne)l=lfln~l. Hence by Cauchy's inequality and by Lemma 3 

~, << x~MN~:2Q-'/2R-3~II~II ~'J2(4NQ, 2Q, NR-', H, 2~  

(9.12) 

(9.13) 

where by definition 
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l<~c<~ C l~d<~D i<~k<~ K q~(k) z(k) 
~ fl(h,n)z(n)e ahk 

I<~h<~H l<~n<<.N 

(9.14) 

with some coefficients fl(h, n) such that ~(h, n)l~l/~.l. 
Now, we appeal to Lemma 1 to infer the following 

LEMMA 7. Let C, D, H, K, N ~ I ,  a*O and e>0. Then, for any complex numbers ~ n  

we have 

~ ( C , D , K , H , N ) < <  (CDKHNY {CDHK  I,sZ 

+ [C(N 2 +HKN)  (C+DN 2) + C2DN~/N = + H K N  +DEHKN 3] ~/2 

where the implied constant may depend on a and e and where o(n)= E~=,  (a, fl). 

Proof. As before it suffices to prove the result for a sum modified by a smooth 

weight function g(c, d). Squaring and changing the order of summation we transform 

N(C, 1), K, H, N) into 5g(C, D, lal KHN, N 2, 1) (cf. Lemma 1) with the coefficients 

Bird" ~ ~ E2  fl(h,'n,)fl(h2'nz)" 
nln2=r l<~k<~K l<~hl,h2<~It 

(k, n! n2)= 1, n! En2(k) a(hl n2-h2 nl ) k=l 

The terms on the diagonal (l=0) are trivially found to contribute 

<< (HKN)~CDHK ~ I .1 =. (9.16) 

The terms off the diagonal (i*0), by Lemma 1, contribute 

<< (CDHKN)%r D, lal HKN, N 2, l)IIBII (9.17) 

where IIell 2 IB,Z. 

Let B'(I, n 2) be the contribution to Blr of the terms with nl =nE=n in case r=n 2 and 

nil, and let B"(l, r) be the contribution to Bit of all remaining terms. 

For the first sum we have 
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B'(l, n2)<< Ifln] 2 :~: (k, h l, h2; a(hl-h2)kn = 1} 

<< ]fl.IZH(HKNy 

and nil or else the sum is void. Hence 

E E ]B'(I, n2)l z << (HKNyH3K E 18.14" 
1 nil n 

For the second sum we have 

B"(I, r) << (HKN)~(H+ N) N -I E (nl, n2)1~.,r 
nl "2 =r 

~lB"(l'r)l 2 << (HKNy(H+N)H2N-' Z (n,'nz)lfl,,,fl,,2fl,,3fl,,,I 
l r "I t12=n3 t14 

Hence 

<< (HKNy(H+ N) H E E o(n) ~8.14 
tl 

by H61der's inequality. 

Gathering together the above estimates we conclude that 
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Then HK<N, so Lemma 7 yields 

2 e 3 2 1 1/2 1/2 ~#(4NQ, 2 0, NR -1, H, 2N) << I1 11 x Q N M- {Q+RN +RQ }. 

Q2N < x 1-~. (9.19) 

(9.20) 

IIBII z << (HKNy HE(HK + N) E 0 (n) Ifl,l 4' (9.18) 
n 

Finally, we complete the proof of Lemma 7 by (9.16), (9.17), Lemma l and (9.18). 

Remark. In the circumstances of ~1 the n's are squarefree, so o(n)=r(n)<<n ~. 
This fact that n 's  are squarefree will be useful (not crucial) in other situations as well. 

Le t  us assume that 

(A,) N '-~ E ]fl.[ 4 <<  I .12 �9 
n 

Assume also that 
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By (9.12) and (9.20) we get 

~! << I~I[2x~MI/2N3/2Q'/2R-3/2 { Q'/2 + RNI/4 + RQI/4} . 

This bound satisfies (7.6) provided Q2N2<xl-~R, QNS/2<x I-', and Q3/2N2<xl-e. 
Concluding the investigations of this section we formulate our results as 

THEOREM 2. Suppose (A0--(As) hoM. We then have (3.3) provided 

_ ,  . f / xR \ "2 { x x 2 mm~[-Q -T) ' \ Q / ,  ~.~,./l/4j~, xeR<N<x 

10. Estimation of ~1. Third method 

This method does not depend on the factorization of the moduli qr; in other words we 

assume that 

R = 1. (i0.1) 

This method was first applied by E. Fouvry in [5]; it begins with the arrangement 

of ~ t  in the following form 

In order to separate the variables in fwe  write 

= qo ql q2 e(~h) d~; 

by (6.14) we get 

~1<< Z Z Zl~/qoql~/qoq21 
qo<~Qo (ql, q2 )= I 

X f 3q~ 

.SO 
Z e(~h) Z Z  fl,,fln2e( ahnz-nl n2qt) 

I<~h<~H (nlq2,n2ql)=l qO nl q2 
nlmn2(q O) 

d~. 

Hence, by Cauchy's inequality we get 
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~, << x~MQ-1 ~a(Q, H, N) (10.3) 

where qg~(Q, H, N) is given by 

~g(ql,q2) I ~ e(~h) ~ ~ fln, fln2e(ah 
(ql, q2 )= I I ~h<~H (hi q2, n2 ql)= I 

nl~n2(mod qe),nl *n2 

n2--nl  n 2 q l )  

qo n lq2  

with some qo~>l and some real ~. Here g(qt,q2) is a smooth function supported in 

[�89 3qo'Q]x[�89 3qo'Q ]. 

Now we appeal to Lemma 1 to infer the following 

LEMMA 8. Let H, N, Q>~I, a*O, qo>~l. Assume (As) and that ft ,=0 if n is not 
squarefree. We then have 

%(Q, H, N) << (HNQYII~II 4 { HQ 2 + ( V H  + N) HNQ[ N 4 + HN 3 + QN + Q @ ' / 2 }  ; 

the constant implied in << may depend on e and a at most. 

Proof. Squaring and changing the order of summation we get 

q~a(Q,H,N)= ~ e((h,-h2)~) ~ fl~,fl~z ~ 
I<~hl, h2<~H (nl,  ~12)= ! (n3, n4)= I 

(n2q I, n I qz)=l 

(n 4 qj, n 3 q2)= ! 

n 1 ~n2(qo) n~ mn4(q O) 

( . n 2 - n l  n2 q l  

g(ql'q2)e ahl qo nlq2 

(10.4) 

\ 
n4-n______ ! n4ql ]. 

a h  2 / qo n3 q2 

Denote 61 =(nl, n4), 62=(n2, n3); thus the exponent is equal to (mod 1) 

nz_n 1 n3n 4 n4--n 3 nln2~ qln2n4/6162 
ah i qo 6162 ah2 ~ /  qo q2 nl n3 

(we recall that n's are squarefree, so the above expression is well defined). This 

transforms qgB(Q,H,N) into four sums of the type Yf(3Q, 3Q, 8[alHNa, N~,N~) where 

N j = N  or 2N, see Lemma 1, with the coefficients 
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Btrs = Z f l n ~ f l ~ 2 ~  Z Z e((h~-h2)~), 
N < n l ,  n2, n3, n4<~2N 1 ~<hl, h2~H 

the variables of summation being restricted by the conditions n~ n3=s, 

n2 n4=(n l ,  n4) (n2, n3) r, (hi, n2)=(n3, n4) = 1, nl ~n2(qo), n3=n4(qo) and 

ahl(n2-nl) n3 n4-ah2(n4-n3) nl n2 -- (nl n3, n2 n4) qo 1. (10.5) 

The terms on the diagonal (l--0) are not covered by Lemma l; they contribute trivially 

Z Z 1. 
(n I , n2)=(n 3, n4)= 1 1 ~<hl, hz<~H 

hl(n2-n I ) n 3 n4=h2(n4-n 3) n I n2 

By Cauchy 's  inequality the above does not exceed 

e E E E 
(nl,  n2)= 1 n3, n4~N l<~hl,h2 <~H 

hl(n2-n 1) n 3 n4=h2(n4-n 3) n 1 n 2 

. 

Given h2, nl,n2 we find that n3n4lh2nln2, so there are <<(HN) ~ values of hl,n3,n4. 
Hence,  the terms on the diagonal (/=0) contribute 

<< (HN)'HQ211flll 4. (10.6) 

The terms off the diagonal (14=0), by Lemma 1, contribute 

<< (HNQ)~dS(3Q, 30, 8lal HN3, 4N2, 4NZ) Ilnll (10.7) 

where 

E E 
l>-I r s 

We first give an upper bound for Btrs. By (10.5) we infer that hi is determined modulo 

nl n2/(nl n2, n3 n4), whence 

]Blrsl<<(HN-2+l) Z Z 
n I n3=8 n 2 n4=(n I n3, n 2 n4) r 

(nl, n2)=(n3, n4)= 1 

m + 
- -  B r s  , 

(n, n z, n 3 n 4) ]fl.~fl.=fl.3fl.4] 
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say. Thus, 

Ilnll 2 << ~] n~+~ E Intr~l 
r,s t 

<< (HN-=+ 1)H 2 ~*l,8,,,,e,,~/~m,/~,,,~1 ~ [fln2fln4flm:flmJ (nl, ?/2, n3,n4) 

where E* means that the range of summation is restricted by 

?/1 n3 = ml m3, 

n2 n4(ml m 3, m2 m 4) = m 2 m4(n I n 3, n2 n4), 

(n I , n 2) = (n 3, n 4) = (m I , m 9 = ( m  3, m4) = 1. 

Using (As) and two applications of Cauchy's  inequality we get 

118112 << g~(ng-2+ 1) nZll/~ll 8. (10.8) 

Combining (I0.6), (10.7), (10.8) and Lemma I we obtain 

qg~(Q, H, N) <<  (nNa)fl~3114 

x {HQE+(-X/-~+ I) H[QZN4(N4+HN3)+Q3N3X/ N4+HN3 +QZHN3] 1/2) 

completing the proof of  Lemma 8. 

From Lemma 8 and (10.3) it follows that 

~1 •< 'lflll2xeMQ -1 { Q~-+ (~MM +N) Q ~  [ N4+ Q2MN3 + Q N + Q  2 ~ ]  1/2}1/2. 

This bound satisfies (7.6) provided Q2<xl-~N, QN3<x l-e, QZN3<x3/2-~, QN<x 2/3-~, 
and O4N3<xS/2-e. Assuming that N<x 1/6 these inequalities all follow from only two, the 

first and the last ones. Concluding the investigations of this section we formulate our 

results as 

THEOREM 3. Suppose (A1)-(As) hold. Let R= 1. We then have (3.3) provided 

xe-  I Q 2 < N< x5/6-e Q -4/3. 

Remark. We may omit the restriction N<X 1/6 because otherwise Q<x 1/2-~ and 

the result follows from the large sieve inequality (see (1.5)). 

16-868283 Acta Mathematica 156. Imprim6 le 15 mai 1986 

233 



234 E. BOMBIERI, J. B. FRIEDLANDER AND H. IWANIEC 

11. Special  case.  I 

In this section we consider the following sum 

A(M,N,L,R)= E 
r~R 

(r,a)=l 

E E E ~m3nAl-- 1"--~- ~[ "~ E E E r 
m~M n~N I-L W I"r! m~M n~N l~L 

mnl=-a(r) (toni, r)m 1 

(11.1) 

where M, N, L, R~>I, MNL=x with the aim of showing that 

A(M, N, L, R) << Ilall I~1111'ql x '/~e-A (I 1.2) 

with any A>0 under certain constraints on M, N, L, R and the sequences (am), (fin), 

(~t). 
The expression (ll.1) is a particular case of (3.1), namely 

A(M, N, L, R) = ~(M, NL, 1, R) 

with an obvious interpretation of the coefficients. We adopt the hypotheses (A2), (A4) 

for ~n) and the hypothesis (A4) for 2t, so the results of Sections 3-7 can be applied. 

Therefore, our problem reduces to the estimation of ~ which is given by (see (6.14)) 

[ . .  n212~ 
9~,= E 1 E f(h/r) E fln, fln22'lAt2e~anr~lll / 

r--R r l~<[h[~< H (nllt,n212)= ! 
(r, a )= 1 nl Ilffi_n212(r ) 

where H=xEM-IR (see (6.9)) and k=(nlll-n212)/r. To estimate ~ l  we apply the 

method of Section 9 obtaining (compare with (9.12)) 

l<~k<~g qg(6)qg(k) V,(nlodO) x(modk ) nl ii 12 

/ . .  n212~ 
x E Ef(h'n2)~Px(n2)e~anx~lll ] 

I<~lhl~<H n 2 

with some ~(h, nz)l--13n21 and K=4NLR -1. Hence by Cauchy's inequality we get (com- 

pare with (9.13), (9.14)) 

~ l  << x'MR-IKU2llflll IIAIl~ ~A/~( 4NL, 2L, 2NLR-', H, 2N). (I1.3) 

For an estimate of ~t~ we appeal to Lemma 7. Let us assume that 
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then HK<N, so Lemma 7 yields 

L < x-  eM, 

~a << x~M-IN2L(L2+RNm+RLI:2) I ll 2. 

Finally (11.3) and (! 1.5) yield 

~ ,  << x'M'/2N3iZLR-3/2(L+R'/2NU4+R'/ZL TM) ILell 2 Ilall 2 

We require this bound to be <<llflllzll2[lZR-Ix I-~ (compare with 

satisfied under (11.4) and the following conditions: 

N2L 3 < x I-*R 

Then we have (11.2) provided 
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(11.4) 

(11.5) 

(7.6)) which is 

(11.6) 

N4L3+N~L 2 < x 2-e. (11.7) 

x~R < NL (11.8) 

(compare with (6.2)). Notice that (11.8) and (11.6) imply (11.4). 

Concluding the investigations of this section we formulate our results as 

THEOREM 4. Suppose (A2)--(A5) hold for (fin), that (A4) holds for (21), and that 

(11.6), (11.7) and (11.8) also hold. Then we have (11.2). 

12. Special ease. II 

In this section we consider ~(M, N, Q, R) with the special coefficients 

(A6) a , , , -  1. 

Now there is no point to using the dispersion method because we can execute the 

summation over m immediately by applying Poisson's formula (Lemma 2). We assume 

the hypotheses (A0 and (A3). Before we proceed to estimate fi~(M, N,Q, R) we replace 

am by a smooth function a(m), say, whose graph is 

~ a ( m )  

( 1 - x - g M  M 2M 2M(l+x -e) 
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The relevant correction in ~(M, N, Q, R) is bounded by (apply Lemma 3) 

O(ll~llNmMx-~%. 

Now, applying Lemma 2 we get 

Z a ( m ' = l  h/~<na(h) (-ah~) +O(Q-IR-I, 
m~a~(qr) qr I ~ --~ e 

with H=x~QRM -1 and 

1 ~,, a(m)=la(o)+o(O_ZR_%(qr)). 
cp(qr) (m, qr)= 1 qr 

Hence 

~ ( M , N , Q , R ) :  Z Z ~q~r Z ~n X ~(h)= e 
q~Q r~R qr ,v n-N l~<[hl~<H 
(qr, a)= 1 (n, qr)= 1 

In order to separate the variables in ti we write 

giving 

h 
~ (-q-~) = q f_| a(~q' e ( ~--~-hr ) d~ 

~(M, N, Q, R) << It'll M'/2xV2-t/2 

+ x 2 t R H - I Z  Z ]~nl 
q~Q n~N 

X Z 
l<~h<~H r~R, (r,a)=l 

with some real ~. Hence by Cauchy's inequality 

(12.1) 

where 

 rel )e( 

LEMMA 9. Let a#:O, C,D,H,R~I.  We then have 

with t6(h, r)[~<l. We have the following 

~(C,D,H,R)= Z Z [ Z Z 6(h'r'e(ahd---)i 2 
l<~c~C l<~d~D l<~h~H l~r<~R \ cr / 

I/2 1/2 e/2 t 1/2 1 1/2 @(M,N,Q,R)<<I~3I{M x - +[~3I[xM Q- R- ~ (2Q, 2N, H, 2R) (122) 
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~g( C, D, H, R) << (CDHR)~ ( H2 + CDHR + HRU2(H + R)I/2 

• [D(R2+HR) (D+CR2)+D2CR~+C2HR3]  '/2} 

the constant implied in << depending on e and a only. 

Proof. This easily follows from Lemma 6 because 

$( C, D, H, R) <~ sg(D, C, 1, H, R)+ O(({a{ Hlog 2RCD)2). 

To see this apply the "reciprocity" relation d/cr=---~/d+ I/cdr(mod l) giving 

e(ah d )  =e( -ah  ~--~-r ]+o(lalh] 
\ d ] \cdr]" 

This completes the proof. 

Let us assume that 

x~Q<M. (12.3) 

We then have H<R and by Lemma 9 

~(2Q, 2N, H, 2R) << x~{Q2R2NM-I+QR2M-I[QNR4+QN2R2+Q3R4M-1]I/2}. 

Hence, by (12.2) we get 

~(M, N, Q, R) << II/ ll x"2-~M ''2 (12.4) 

which is admissible, provided (12.3) and xeQR4<xM, xeQR2<M2, and x~Q3R4<x2M. 

Concluding the investigations of this section we put or results into 

THEOREM 5. Let (AI), (A3) and (A6) hold. Let a~=O and e>0. We then have (12.4) 

provided 

M > x ~ m a x  {Q,  x-1QR 4, Q1/2R, x-2Q3R4}. (12.5) 

Now, by means of Lemma 4 we extend Theorem 5 to the following sequences 

{~ if(m,P(z))=l 
(A~') a m = otherwise 

where P(z)=Ilp<zp and z is a sufficiently small number. 

Without loss of generality we may assume that 

fin 1> 0,  



238 E. BOMBIERI, J. B. FRIEDLANDER AND H. IWANIEC 

otherwise, consider the two sequences 8~ =max {0, 8.} and 8.-=min {0, 8n} separately. 

Then 

say where 

and 

~g(M,N;q,a):= E E am8,. -1--~ E E a m S n  
mn~--a(q) fff(q) (ran, q)= 1 

<~ E '~a ~" qg(q) dm-M n a~l'Cz) 
(d.q)=l ~. dmn~a(q) (dmn, q)=l 

= E+(M, N; q, a)+A(M, N; q), 

E+(M'N;q'a):= E 2~ ~_~fl, q~q) dm~ M 
al/'fz) 

(d, q)= ! ~. dmnma(q) (dmn, q)= 1 

A(M, N; q) : = 
aqP(Z) dra--M ~(q) fn, q)=1 

(d, q)= 1 (m, q)= I 

Analogously, we have 

E(M, N; q, a) >~ E-(M, N; q, a)- A(M, N; q). 

From the above estimates it follows that 

IE(M, N; q, a)l ~< 
(d,q)=l 

d~D 

E 1 E 
a,,,-u ,, q~(q) dm-M ,, 

dranma(q) (dmn, q)= 1 

+ IA(M, N; q)l. 

The inner sum can be interpreted as E(d-lM, dN; q, a) with the coefficients a;~= 1 and 

fl'=8,,/d for n---0(d), 8 ; : 0  for n~0(d). 

Let  us choose D=xL Then, given d with l<~d<D, Theorem 5 is applicable for 

~(d-lM, dN, Q, R) giving (see (12.4)) 

~(d-~M, dN, Q, R) << I[~11 x I/2-̀ d-~/~M':2 

whence 

E ~(d-IM' aN, Q, R)<< II~II xl/2-~(DM) I/2 << II~II x "-~)/2M~/2 
d~D 

provided (12.5) holds (with e replaced by 2e). 
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Now it remains to estimate A(M, N; q). We have 

1 E 1= M +o(r(q)~ 

m~d- ]M 
(m, q)= I 

whence 

A(M,N;q)= )---ff--2"~ E +O(\--~]r(q) ~ ] E fl~ 
de(z) ~ (n, q)= I 

\(d,q)ffil (d,q)=l 

<< (Mexp  ( - s  log " r(q)'~ ~ fl~ 

where s=logD/logz. Taking z<~exp(Iogx/loglogx) we get s>-eloglogx, so 

A(M'N;q)<<'~-AQ-IM E ft. 
(n,q)=l 

which is admissible. 

Concluding the above investigations we formulate 

THEOREM 5*. Theorem 5 holds tf(A6) is replaced by (A~) subject to 

z ~< Zo = exp (logx/log log x). 
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13. Special case. Ill 

In this section we consider ~(M, N, Q, R) with the special coefficients 

(A7) yq= 1 for Q<q<~Qi with Q<QI <~2Q, QR <x~ -B. 

Without loss of  generality we may assume that 

Q2R <~x. (13.1) 

To see this note that we are dealing with the equation 

mn = a+qrs 

with m~M, nuN, Q<q<~Ql, r~R where MN=x~QRs. Since both q and s are counted 

with weight 1 (see (A7)) they appear symmetrically in ~ except that s runs through an 
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interval dependent on m, n, r. By a subdivision argument we remove this dependence 

with an admissible error term, since s-S=x/QR>~ B, this lower bound being crucial to 

the argument. Now, we have either Q2R<-x or S2R<~x and without loss of generality we 

assume (13.1). 

We replace the coefficients ~q by a smooth function y(q), say, whose graph is 

(1-Qol)Q Q Q! (l+Qol)Ql 

The relevant correction in @(M, N, Q, R) is bounded by (apply Lemma 3) 

o(llall Iltlll xi/2,'~BQol:2) 

which is admissible (see (3.2) and (6.3)). Now we adopt the hypotheses (Ap-(A4) and 

(A7) so the results of Sections 3-7 can be granted. Therefore our problem (to prove 

(3.2)) reduces to the estimation of ~ (see (6.14)). To this endwe  appeal directly to 

Lemma 1. Writing 

( hqoql q2r)=q~ f ~ f _f(~qo ql q2) e(~h/r) d~ 

we get 

qo<~Qo (ql, q2)= 1 

(qo, a)= 1 (ql q2, a)= 1 

• • E E  
r 

r~R (nl q2, n2 ql )= 1 
(r,a)=l nl=-'n2 (qo r) 

Y(qo qi) )'(qo q2) f(~qo qi q2) 

Z e t te ::n, q,),,. 
l<~fhl~n \ qo r nl q2 

The condition (qi q2, a)= 1 can be removed by means of the M6bius formula (as in 

Section 9) 

E ~(6)={10 if(a'qlq2)=l 
6I(a, q! q2) otherwise 
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Hence 

2 t t ( b ,  b2) 2 f ~  2 ~'(d, qoq,)Y(d2qoq2 )f(~6,62qoq,q2) 
61 62[a qo<~Qo (ql,  q2 ) =  1 

(qo, a)  = 1 

.nl  n2q ) , 
X 2 1 2 ~  fin, fin2 Z e e 

r - I  r l~<lhl~<H o2 qor n l q 2  (nl q2, n2 ql  ) =  l 
(r, a)= 1 

nl------n2 (q0 r) 

(13.2) 

For fixed 6 1 ,  6 2 ,  qo and ~, the sum over the remaining variables is of the type 

5~(C,D,N,R,S) of Lemma 1 with C----~Q/d2qo, D-.-~Q/dlqo, N---~Ia]HN/O1d2qoR, 
R----.N, and S-...~N, and with the coefficients B,,,.s interpreted by 

t 
r~R,  (r, a )= l l~<lhl~<H 

qod(nl-n2) ah(n2-nO=6 t 62qorl 

e(~h/r). 

We have IB,,,,,,J<<x~R-11~,,,~,,21 whence 

X E X I ,o,,I 
1 n I n 2 

<< x'R-' 2 2 2 1fl,,,fl,,2Bt,,,,,2l (13.3) 
n I n 2 I 

<<x~R-2Hl[flll 4. 

Moreover, by (13.1) we have Q<~X/--x- and so 

~2{. Q , Q [alnN N, | \ 
\62 qo 61 qo' 61 6z qo R' N /  

< <  xe Q2 N4 + xe Q3 NS/2 " (13.4) 

Combining (13.1)-(13.4), by Lemma 1, we infer that 

~i  << x~MQ-Z~c[ln[t 

<< x~MQ - Z(QN2 + Q3/2NS/4) R- l( QZRM-1 ) 1/2 I LSI I z �9 

This bound satisfies (7.6) provided N3R<x 1-~ and N3/2QR<x~-L The latter condi- 

tion is a consequence of the former and (13.1). 

Summarizing this section we have 
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THEOREM 6. Let (A1)-(A4) and (A7) hold. Let a•O and e>0. We then have (3.2) 

provided 

x~R < N < x-e(x/R) 1/3. 

14. Special case. IV 

In this section we consider the following sums 

(q, al)= 1 

where M, N, L, Q, R~ 1, LMN= x, showing that 

A(M,N,L, Q,R)<<x 1-~ (14.1) 

subject to certain constraints on M, N, L, Q, R. 

By elementary arguments (familiar from the previous sections) the problem re- 

duces to estimating sums of the type 

6,, 
r--R I~L 

(r, a ) = i  (/, r)ffil 

Xl E Y(q)(~  ~ a ( m ) f l ( n ) - - -  
| ( q ,  al)=l ~ m n 
~. XlmnEa(qr) 

with [~tr[~<l 

cp(qr) 
(ran, qr)= I 

and a(m)=f(m/M), fl(n)=f(n/N), y(q)=f(q/Q) where f(~) is a smooth 

function whose graph is 

I I 

l - x  -~ 1 2 2+x -~ 

By Lemma 2 we have 
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a(m) = ti(O) + 1 a h -ah--~ 0 
mEa-i'ff(qr) qt ~ E -~ e N 

with H=x~QRM -l and 

qg(qr) ~_~ a(m)= a(0)+O(x'). 
(m, qr)= ! qr 

Hence 

Ao(M, N, L, Q, R) 

e 

r - R  l~L  q n I ~<lhl<~H 
(qr, aln)= ! 

(14.2) 

(-ah~r )+O(x'+eM-'). 

Here the error term is admissible provided 

We have 

M > x2L 

(--ahT~--n~ ( e = e +O(x e-I) 
\ qr / 

(14.3) 

so after separation of variables in d by means of 

d(h)=q )d' 

we transform (14.2) into 

A0(M, N, L, Q, R) 

I'3M/Q l 6t, e 
< < /  [ ~  ~ ~ -  ( ~ - ) ~  ~ '(q)a(~q)fl(n)e(azhy-~-r~ 

ao I , t h r \ aln / 

<< M(QR)-I~(N, Q, a2H, R, [a[ L )+  x I-~ 

d +O(xl-9 

where ~r(C, D, N, R, S) is the expression from Lemma 1 with bounded coefficients. By 

Lemma 1 

x  tlnll 

where lIB l[ 2 << HLR 
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5 2 < <  NL(LR+H)(N+QR)+N2QLV ~ (LR+H)R +Q2HRL -1. 

Then H<x~LR, so 

and 

N<x~QR and Q2R<x. (14.4) 

5~ << x~(QRLN) I/2 (LR + NL 1/2) 1/2 

Ao << xeM(Qr)-I (QRLN)I/2(LR + NL I/2)I/2 ( Q ~ )  I/2+ xl-e 

( ~  X l - e  

provided 
LR < X l l 2 - e ,  (14.5) 

and LI/2R < Mx-L (14.6) 

The conditions (14.4) can be removed without loss of generality. To this end we assume 

that N<M, so N<x~/2<x'QR because otherwise the result follows from (1.5): The 

assumption Q2R<x can be removed as in Theorem 6. Thus we have 

THEOREM 7. If(14.5) and (14.6) hold, then we have (14.1). 

As in Section 12, using Lemma 4 we can extend the result to sums 

A*(M, N, L, Q, R) say, where the variables l, m, n are free of prime factors p<z (<-Zo). 
This gives 

THEOREM 7*. If(14.5) and (14.6) hold then 

A*(M, N, L, Q, R) <<  x (log x) -a .  

15. Proof of Theorem 8 

We first make the trivial observation that it is enough to prove the following 

ql~Ql q2~Q2 
(q! q2, a)= l ) (n, q l q2 P(z))= 1 

\ (n, P(z)) = 1 

< < x ~  -A (15.1) 
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01 
Q I = x  , Q2=x ~ 

01 < 1/3-e, 02< 1/5-e 

01"4-02 • 29/56-e, 501+202 < 2 - e  

(15.2) 

01+02 > 1/2-e, (15.3) 

the last constraint (15.3) being imposed because in the opposite case the estimate (15.1) 

follows from the Bombieri mean-value theorem (1.4). Here z is any number <x. We 

take 

z = z0 = exp (logx/loglogx) (15.4) 

but, in fact '  any number z with No<z<zo (see (6.5), (A4) and Theorem 5*) would be 

equally good. 

Next,  we apply Lemma 5 with J = 7  for any n from (15.1). By an obvious partition 

of the range of summation in (2.1) into O((logx) j~A'§ intervals we reduce the problem 

to estimating the following sums 

where 

~(M, ..... MjIN , ..... Nj)= ~ ~ yqbq2A(Ml ..... MjlN, ..... Nj;q, q2,a) 
q ~ Q t  qz~Q2 

(qlq. , ,a)=l 

A(M 1 . . . . .  M j l N  l . . . . .  Nj; q, a) 

* ~t(ml)... bt(mj)- ~ ~ *  /~(ml)... ~t(rnj). 
m I ... m jn  1 ... nj-~a(q) f(q) (m I ... min I ... nj, q)=l 

mi E.~i, niE,Ac i miE ~ i ,  niE ~ti 

Here E* means that the summation is restricted to numbers free of prime factors <z,  

and ~i ,  2r are intervals of the type 

~/~i "~-- [(1 -A)Mi,  Mi), ,Acz �9 = [(1 -A)Ni,  Ni) 

with 

MI. . .MjNI . . .Nj=x,  Ml . . . . .  M j < x  ! /7 
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and 

m ~ ~ -AI 

where A1 is a sufficiently large constant depending on A. Our aim is to show that 

~gfM 1 . . . . .  Mjl N, . . . . .  Nj) << x f  A2 (15.5) 

for any A2>0 (actually A2=A+14(AI+I) suffices). To this end we shall appeal to 

Theorems 1, 2, 3, 4 and 5*. Accordingly we need to represent A(MilNi; q, a) as a 

bilinear or trilinear form; this can be arranged once one groups the intervals d/~ .. . . .  d/j, 

N~ . . . . .  Nj into two or three disjoint sets. The resulting coefficients am, bm are convolu- 

tions of the truncated Mfbius function and of the constant function I; in particular they 

satisfy the hypothesis of Theorems 1, 2, 3, 4 and 5*. In this case the hypothesis (A2) 

(the most crucial one) is a consequence of the Siegel-Walfisz theorem. 

What is left to do is of a combinatorial nature; we must show that there exists a 

decomposition of each product 

M1... MjN1.. .  Nj = x, 

into blocks in the range of the variables in our previous theorems. We begin the 

construction by introducing the following notation: 

M i=X ul, N i=xv~ 

with 

Next, put 

O~l.t j<<.. . .~Itl~,  O ~ v j ~ . . . ~ v  I, I t l+.. .+Itj+vl+.. .+vj=l.  (15.6) 

- - 5  4 
0 1 = 2 ( 0 1 + 0 2 ) - - 1 ,  ~)2 - -  ~--3(01-~" 02) ,  ~)3 = 02 , 

I 1 0 4  = min {2+~02-01, ](1-01), ~-101}, Q5 = 01, Q6 = � 89  

and introduce the intervals 

0 1/28 

11 
! 

o~+e 

I/7 I/5 I/4 I/3 2/5 

I t ! ~' I a 

Q2--E Q3"I- ~ Q4- E Q5-,FE Q6-s 1/2 
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If  (15.6) has a partial sum located in one of the intervals TH1,  TH2,  TH3 then 

Theorems 1, 2, 3 are applicable respectively. Therefore, let us assume that there is no 

partial sum of  (15.6) located in the prescribed intervals. 

Notice that Q6-e~>e+max {01, 01 +402-1,�89 +02, 301 +402-2 } , so if Vl>Q6-e then 

Theorem 5* is applicable. Consequently we may assume now that 

vl < ps+e. (15.7) 

Next,  notice that 2(p l+e)<p2-e  , so  the terms of (15.6) which a r e  < Q 2 - e  give in 

total T with 

I ~ < Q I + E  , (15.8) 

of course r contains all/x~, ...,izj and possibly some of the vi's. The remaining v's must 

be located either in 

a = [O2--e, Q3+e] 

or in 

[~ = [ O 4 - - e ,  Q5+e].  

Any two numbers v', 1/' in a give Q3+e<v'+v"<o6--e so  v'+v" must be in b. Moreover, 

together with any 1/" from b give r+V"<Qs+e+p~+e<Q6-e, so r + v "  must be in b. 

From the above discussion it follows that we can arrange (15.6) as a sum of partial sums 

,~ l+ . . .+ ,~k = 1, ,~.l ~ ... ~>,~k 

each but at most one located in b, the exceptional one being in a. In fact the exceptional 

one must exist because otherwise we would have 3<k<4 which is impossible. Hence 

we conclude that the situation is the following: 

k = 4 ;  21,22,A36 b; )~4 E C[. 

In this situation it turns out that Theorem 4 is applicable with N=x ~s, L=x ~2. We verify 

the hypothesis (11.6), (11.7) and (11.8) as follows: 

223+322 ~< ~(21 +22+23) = ~(1-24) 

~<~(l-02+e)<I+O1+O2-e because O~+02>�89 

4,~s+3,~2<~7r,~ +- - = 3 ~, I A2+~3) ~(1--~4) 

~< 7(1 - Q2 + e) < 2 -  e because 01 + 02 < 29/56. 
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,~2+~3 ~ 2(04--e ) > 81+82+e because 581+282 < 2 and 81 < 1/3, 82 < 1/5. 

This completes the proof of Theorem 8. 

Remark.  The inequality 01+82<29/56 cannot be improved by a refinement of the 

combinatorial arguments used in the proof because of the case vl = . . .  =v7 = 1/7. 

16. Proof of  Theorem 9 

The proof is much the same as that of Theorem 8; the difference is that we appeal to 

Theorems 6 and 7* instead of  1, 2, 3, 4 and 5*. 

If  (15.6) has a partial sum, say 2, with 

82 + e < 2 < ~(1 - 82) - e (recall that 82 < ][0) (16.1) 

then Theorem 6 is applicable. Therefore, suppose (15.6) has no partial sum in (16.1). 

Notice that 2(82+e)<~(1-82)-e , 

total, say r, with 

so the terms of (15.6) which are <~(1-82)-e  give in 

r<~ 82+e, (16.2) 

of course r contains all/21 . . . . .  ~j and possibly some of 1,'i'S. Hence we conclude that 

(15.6) can be partitioned as follows 

Vl+.. .+Vk+r= 1, 

with VI>~.,>~Vk>~(1--02)--e, 02+e>r.  This implies that l~<k~<3. We now apply Theo- 

rem 7* with M = x  ~I and 

SO 

otherwise 

~< X 1-2(1- 02)/3+2e L =  x = ~ x  '-vt-v2 ifk~>2} 

M N  [.x ~ otherwise 

We verify the hypotheses (14.5) and (14.6) as follows: 

LR < x I-2(I-~176 < xl/2-r 

and 
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L I / 2 R M  -1 < x 1/2-(1-05)/3+02-(1-02)/3+2e ~ x-e'~ 

since 02<1/I0, the previous inequalities hold for sufficiently small e. This completes 

the proof of Theorem 9. 

Corollary 1 is an immediate consequence of Theorem 9 with R=  1. 

17. Proof of Theorem 10 

The proof is again similar to that of Theorem 8. The difference is only in combinatorial 

arguments, which, due to the well factorable weights 2(q) are more flexible. We apply 

Theorems 1 and 2 with 

R = x - ~ N  and Q<~x4/7-4~N -1. 

Theorem 1 is applicable if 

and Theorem 2 is applicable if 

X 2/7-e < N < x 3/7+e (17.1) 

X 1/7-e < N < x 2/7+e (17.2) 

We now adopt the arguments of Section 15 up to the formula (15.6). If there exists a 

partial sum of (15.6), say 2, with 

1~<2~<73 (17.3) 

then the results (17.1) and (17.2) complete the proof. Suppose there is no partial sum of 

(15.6) in (17.3). All the terms/~i and those 2i~<1/7 give in total, say r, with 

r ~< ~. (17.4) 

Hence v1~>3/7 and Theorem 5* is applicable with 

M = N 1 = x vl >I x 3/7 

and 

Q, R <~ x 2/7- 2~. 

This completes the proof of Theorem 10. 

17-868283 Acta Mathematica 15& Imprim6 le 15 mai 1986 
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Corol lary 2 is an immediate  consequence of Theorem 10 and of  the linear sieve 

result  of  [15]. 

A d d e d  in p r o o f  (September  26, 1985). Recent ly the authors have extended the 

methods  of  this paper  to prove the following 

THEOREM. Le t  a4=0, A > 0  and x ~ 3 .  We then have 

~r(x; q, a ) -  ~ (log log x) B 
E ~wjlix < <  x (logx) 3 

(q,a)=l 
q<X, Cx - (log x) A 

where B is an absolute constant  and the constant  implied in < <  depends at most  on a 

and A.  
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