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PRIMITIVE ACTIONS AND MAXIMAL
SUBGROUPS OF LIE GROUPS

MARTIN GOLUBITSKY

0. Introduction

The classification of the primitive transitive and effective actions of Lie
groups on manifolds is a problem dating back to Lie. The classification of the
infinite dimensional infinitesimal actions was originally done by Cartan [3] and
was made rigorous by some joint work of Guillemin, Quillen and Sternberg
[81, whose proof was further simplified by Guillemin [7] recently by using some
results of Veisfieler [19].

The classification of the primitive actions of a given finite dimensional Lie
group is equivalent to that of the Lie subgroups of that group, which satisfy a
certain maximality condition (see Prop. 1.5). This correspondence although
more or less known seems never to have been stated in the literature (under
the assumption that the leaves of a foliation are connected) so in § 1 we state
it. The rest of §1 is devoted to showing that the isotropy subalgebras of
primitive actions are an intrinsically well-defined class, namely, they are the
Lie algebras which correspond to maximal Lie subgroups and contain no proper
ideals. We call these subalgebras primitive and hasten to add that this termi-
nology does not agree with the use of “primitive” in [7], [8], [11], [12], [13]
and [16]. In these articles a “primitive subalgebra” is a maximal Lie subalgebra
which contains no proper ideals. In light of Theorem 1.10 we do feel that this
is a more reasonable terminology. Also we show that every subalgebra which
is “primitive” in the old sense is primitive in the new sense. The main result of
this paper is that there exist primitive subalgebras which are not maximal sub-
algebras, i.e., there exist maximal Lie subgroups whose Lie algebras are not
maximal subalgebras. In § 3 we classify the primitive, maximal rank, reductive
subalgebras of the (complex) classical algebras giving many examples of primi-
tive subalgebras which are, in fact, not maximal. §2 and § 4 combined show
that non-maximal primitive algebras exist only when the containing algebra is
simple and the primitive subalgebra is reductive. The proofs of this involves
essentially classifying the primitive subalgebras. In doing so we duplicate results
of Morozov [15] on the classification of the maximal primitive subalgebras of
non-simple algebras and results of Karpelevich [10] and Ochiai [16] on the
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classification of the maximal non-reductive subalgebras of the simple Lie alge-
bras. For the latter result we use and generalize some work of Veisfieler [19].

The deepest work on the problem is still that of Dynkin [4], [5] who classi-
fied the maximal reductive subalgebras of the classical algebras. Clearly there
is some overlap between § 3 and Dynkin’s work. A comparison and statement
of this overlap appears in [6].

The author would like to express his sincere gratitude to Robert Blattner,
Armand Borel, Bertram Kostant, Shlomo Sternberg, and in particular, to his
thesis supervisor, Victor Guillemin, who have provided in many instances the
insight and ideas in this paper.

1. Preliminaries

Throughout this section G will denote a Lie group which acts on a manifold
M. Let L(G) = g denote the Lie algebra of G. For what follows G and M can
be throught of as in either the real or complex category.

Definition 1.1. A k-foliation on M is a collection of k dimensional im-
mersed submanifolds {F,,},,¢ such that v, m’ e M,

(a) mekF,,

(b) F, is connected and has a countable base for its topology,

(¢) ceither F, =F, orF, NF, =0.

The unique submanifold of the foliation containing the point m is called the
leaf through m.

Definition 1.2. Let F be a foliation on M. Then F is invariant under the

actionof Gifi vae G,me M,

aFm:Fam;

i.e., the action of G on M preserves the leaves of the foliation.

Note. 3 two trivial foliations on any manifold; viz. foliation of the manifold
(1) into points or (2) into connected components. These foliations are invariant
under any Lie group action.

Definition 1.3. The action of G on M is primitive iff the only foliations on
M invariant under the action of G are the trivial foliations.

The problem posed by Lie is to classify up to equivalence all of the primitive
transitive and effective actions of Lie groups on manifolds. By standard results
this is equivalent to determining (up to conjugacy) the set of closed subgroups
P such that

(a) G acts primitively on G/P (using transitivity), and

(b) P contains no proper normal subgroups of G (using effectiveness).
Hence we have the following:

Definition 1.4. Let P be a closed subgroup of G. P is primitive ift

(a) P is proper,

(b) the standard action of G on G/P is primitive, and
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(c) P contains no proper normal subgroups of G.

Primitivity of Lie subgroups of G can be translated into a “maximality con-
dition” on those subgroups.

Proposition 1.5. Let P be a closed subgroup of G. P is primitive iff

(i) P is proper,

(ii) P contains no proper normal subgroups of G, and

(iii) if H is a Lie subgroup of G containing P, then either dim H = dim P
or dim H = dim G.

The proof of Proposition 1.5 follows directly from

Lemma 1.6. Let I be a closed subgroup of G. Then 1 a surjective corre-
spondence from the set of all Lie subgroups of codimension k in G containing
I to the set of all foliations of G[I of codimension k invariant under the action
of G.

Proof. Let H be a Lie subgroup of G, containing I, e be the coset of the
identity in G/I, and F, be the connected component of H/I containing e.
Define F,, = aF,. We leave it to the reader to check that F is a well-defined
foliation on G /I which is invariant under the action of G, and that codim F
= codim H.

This correspondence is surjective. Let F be a foliation on G/I invariant
under G. Define H = {a e G|aF, = F,}. H is clearly a subgroup of G con-
taining /. Let r: G — G/I be the canonical projection. Then H = r(F,).
Since r is a submersion and F, is an immersed submanifold, H is an immersed
submanifold. Hence H is a Lie subgroup and codim H = codim F.

We leave it to the reader to check that the foliation induced from H is just F.

For the rest of the paper we assume that G is connected.

Proposition 1.7. (i) Let P be a closed maximal Lie subgroup of G which
contains no proper normal subgroups of G. Then P is primitive.

(ii) Let P be a non-discrete primitive subgroup of G, and P° the connected
component of the identity in P. Then

normg (P") = {x e G|xP* = P'x}

is a closed maximal Lie subgroup of G. Moreover dim P° = dim P =
dim norm P°.

Proof. (i) follows directly from Proposition 1.5. (ii) Let P’ = norm, P°.
Note that P being closed implies P° being closed which implies that P’ is closed.
By Proposition 1.5 either dim P = dim P’ or dim P’ = dim G. In the latter
case P’ = G since G is connected. But then P° is a proper normal subgroup of
G. Since P° C P, we have a contradiction to the primitivity of P. Thus dim P
= dim P’ = dim P°.

Now we show that P’ is a maximal Lie subgroup. Let K be a Lie subgroup
of G containing P’. Then K contains P and by Proposition 1.5 either dim K =
dim P or dim K = dim G. In the latter case K = G since G is connected. If
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dim K = dim P, then K'= P’. But then K C normg; K° = norm,; P’ and
K="P.

We wish to classify those Lie subalgebras of g = L(G) which are equal to
L(P) where P is some primitive subgroup.

The reader may verify the following:

Lemma 1.8. Let P be a primitive subgroup of G, and p = L(P). Then p
contains no proper ideals of g.

Definition 1.9. Let p be a proper subalgebra of g. Then p is primitive iff

(i) p contains no proper ideals of g,

(i) normg P is a maximal Lie subgroup of G, where P° is the connected
Lie subgroup of G corresponding to p and dim normgz P° = dim P°.

Note that L(norm, P*) = norm, (p) = {a ¢ g|[a, p] C p}.

Theorem 1.10. p is a primitive subalgebra of g iff p is the isotropy algebra
corresponding to some primitive effective and transitive action.

Proof. <& follows from Proposition 1.7 and Lemma 1.8.

= Let P = norm; P°. From the definition, p = L(P). P is closed since
P = {aec G|Ad a(p) = p}, and p is a closed subset of g. Let H be the normal
subgroup of P whose elements act as the identity on G/P. By Lemma 1.8, H
is discrete. Replacing G and P by G/H and P/H respectively, we still have
L(G) = g and L(P) = p, and what we did above holds. Now apply Proposition
1.7 (i) to P and get that P is primitive. Thus p is the isotropy algebra of some
primitive transitive and effective action.

The definition of primitive subalgebra as given in Definition 1.9 seems to
depend on which connected Lie group G one chooses to use. In fact, primitivity
does not depend on such a choice, as shown by the following. .

Lemma 1.11. Let G be a connected Lie group with Lie algebra g, G be
the connected simply connected covering group of G, and ¢: G — G be the
covering projection. Let D = Ker ¢. Let h be a Lie subalgebra of g, H® and
H?* the associated connected Lie subgroups of G and G, respectively. Let H =
normg, H® and H = normg H°. Then H is a maximal Lie subgroup of G iff H
is a maximal Lie subgroup of G. In particular, H = ¢~'(H) and H = 50(}? ).
Also dim H = dim H.

The proof is straightforward and we leave it to the reader to verify.

2. A criterion for primitive subalgebras

Theorem 2.1. Let p be a subalgebra of g containing no proper ideals of g.
Let P = normg (P°). Then p is primitive iff p is maximally invariant under
AdP,i.e.,

(%) if pClC gand Ad P(l) C I, then either l=porl=g .

Proof. Suppose p is primitive, and such an ! be given. Let L = norm, L°.
Claim: L contains P. If ae P and s ¢ [, then
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aexpsa! =expAda(s) Cexpl C L.

So aL’a~' is contained in L° and ¢ is in L, as claimed. Since P is a maximal
Lie subgroup, L=PorL=G. If L =P, then dim P* < dim L' < dim L =
dim P = dim P® by primitivity, so { = p. If L = G, then L° is normal in G
and [ is an ideal.

Now let I be an ideal containing p. We show | = g. L°P is a subgroup since
L' is normal, and it is also a Lie subgroup. By fiat define the connected com-
ponent of the identity to be L°. Clearly this is an analytic subgroup and is
normal in L°P. Also L°P/L" is countable since P/P° is. Now L°P contains P,
and since P is a maximal Lie subgroup either L°P = P or L°P == G. L'P = P
implies [ = p which is a contradiction to primitivity so LP = G. Therefore
L'=@G,ie., [l =g.

Conversely, if () holds we show that P is a maximal Lie subgroup. Assume
L is a Lie subgroup containing P. Then Ad L(I) = so that Ad P(l) = I and
therefore [ = g or [ = p. In the first case L = G, and in the latter L normalizes
L = P° and so L is contained in P, i.e., L = P.

Corollary 2.2. Every maximal subalgebra p of g containing no proper ideals
of g is primitive.

Proposition 2.3. Assume g is not simple. Let p be a primitive subalgebra
of g. Then p is a maximal subalgebra. In fact, we can classify these algebras
as Morosov originally did.

(i) If g is not semi-simple, then there exists an abelian ideal k such that
p Pk = g, and p acts faithfully and irreducibly on k. (These are the so-called
affine primitive examples).

(i) If g is semi-simple, then there exists a simple algebra g, such that
g=gDg and p = {(x,x)|x e g}, the diagonal of g under that isomorphism.

Proof. (i) Let k be a minimal nonzero abelian ideal in g. Then p + k is
invariant under Ad P, so p + k = g by Theorem 2.1. Now p N & is an ideal
of g, since [p + k,p N k1 C Ip,p N k1 C p N k. By primitivity p N k =0
sop®@ k=g Letl={xep|lx, k] =0} lis an ideal of g since [l,p + k] =
[, p] C I. Again by primitivity, ] = 0 and p acts faithfully on k. To show p
acts irreducibly on %, let k¥’ be an invariant subspace of k. k’ is an abelian sub-
algebra, and is also an ideal since [p + &, k'] = [p, k'] C k’. Hence by the
minimality of k, either ¥’ = k or k¥’ = 0.

(i) Let k,, k, be simple ideals of g. Then p + k, = p + k, = g by Theorem
2.1 and the primitivity of p. Now [p N k,,pl C p N k, and [p N &, k,] = 0,
so p N k, is an ideal of g contained in p. Thus p Nk, =0 =p N k, and
dim g = dim p 4 dim k;, = dim p + dim k,. This implies that all the simple
ideals have the same dimension, say r. Suppose g = k, @ .- - @ k,. Then itis
clear that s = 2 and dim p = dim &k, = dim %,.

Let #,: g — k, be the canonical map with kernel &,, and #,: g — k, the map
with kernel k,. Then =, |p is a Lie algebra isomorphism so that &k, = k, = g,.
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Hence the map n, @ n,: g — g, P g, is a Lie algebra isomorphism and the
image of p is as promised.

3. The primitive, maximal rank, reductive subalgebras

For the rest of the paper all objects (i.e., groups and algebras) will be com-
plex so G is assumed to be a complex simple connected Lie group with Lie
algebra g. In this section we will compute the primitive, maximal rank, reduc-
tive subalgebras of the classical algebras. Recall that an algebra is reductive if
it is the direct sum of its center with a semi-simple ideal.

Let Int, be the group of all inner automorphism of g. If & is a subalgebra of
g, denote by Int, (4) the subgroup of Int, whose elements also map £ into itself.

Proposition 3.1. Let p be a proper subalgebra of the simple Lie algebra g.
Then p is primitive iff (x) if m is a subalgebra of g containing p such that
Int, (p)(m) = m, then m = p or m = g, i.e., p is maximally invariant under
the action of Int, (p).

Proof. Take G to be the adjoint group; then Ad P is just Int, (p). Apply
Theorem 2.1 noting that g is simple.

When p is of maximal rank we shall reduce this criterion for primitivity to
a question about the finite Weyl group acting on a finite set. Recall that p is
of maximal rank in g if there exists a Cartan subalgebra s of g contained in p.

Let W, be the Weyl group relative to A, i.e., W, = Int, (h)/I(h) where

I(h) = {a e Int, (h) |« is the identity on A} .

Any Cartan subalgebra of g decomposes g into the direct sum of root spaces,
i.e., g = h 3] e, where the ¢’s are the roots of g relative to 4, and the e,’s

14
are the one-dimensional root spaces. Also
le,,e,J Ce,.y (@# —¥), le,hlCe,.

Also [e,, e,] = 0 iff ¢ + 4 is not a root. Define the one-dimensional subspaces
x,of hby x, = [e_,,e,]. Let fe W,, and let & represent f in Intg (h). Then

D flp) =pea, () fle) =e5,, (i) fx) = X,

are all well-defined and consistent ways of viewing the Weyl group action.
Now let m be any subalgebra of g containing #. Then & is a Cartan sub-
algebra of m, and m decomposes into m = h @ }; e, where the sum is taken
over some subset of the roots. Let K,, = {¢ a root on h|e, C m}. Then K,
completely determines m. Note that if m is reductive, then K,, = —K,,. Let

Wm == {f& Whlf(Km) c Km} .

We now restate Proposition 3.1 for maximal rank subalgebras.
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Proposition 3.2. Let p be a maximal rank subalgebra of g containing h.
Then p is primitive iff (xx) if p C m C g, mis a subalgebraand W, C W, then
m=porm=g.

Proof. Let m be a subalgebra of g containing p.

& Assume (xx) holds and Int, (p) leaves m invariant. Let f ¢ W,, and let
a ¢ Int, (h) represent f. Then a(p) C p since f ¢ W,. By assumption a(m) C m
so feW,,. Hence m = p or m = g. By Proposition 3.1, p is primitive.

= Assume W, C W,,. To show p = m or p = g. By Proposition 3.1 it is
sufficient to show that Int, (p)(m) C m. Let « € Int, (p). Then «(h) is a Cartan
subalgebra of g, and a(h) C p. By the Cartan subalgebra conjugacy theorem
there exists p ¢ Int, (p) which also fixes m such that foa(h) = A. Thus foa
leaves A and p invariant, and defines an element in W,. By assumption W, C
W, s0 Boa(m) C m. Since f(m) = m, we must have that a(m) = m. Thus
Int, (W(m) = m.

Corollary 3.3. Let h be a Cartan subalgebra of a simple Lie algebra g.
Then h is primitive iff the roots of g all have the same length. This happens in
A,, D, (n arbitrary), E, E., and E,.

Note. The primitivity of the Cartan subalgebras of sl (2, C) = A, was noted
by Blattner.

Proof. W, acts transitively on roots of a given length. If there is but one
length, then the only algebra strictly containing 4 invariant under W, is g. By
Proposition 3.2, 4 is primitive.

The roots of a simple Lie algebra come in at most two different lengths. In
all cases where the roots are of different lengths the longer root spaces plus the
Cartan subalgebra form a proper subalgebra which is invariant under W,.
Again by Proposition 3.2, k is not primitive in this case.

We now describe the root systems of 4, B,,, C, and D,,. For a reference see
[2]. Let z,, - - -, z, be an orthonormal basis for R*, andlet Z? = Z, D .. - @ Z,
(n-times) where Z, is the group { + 1} under multiplication.

A, (n>2): roots are z; — 23, 1 < i,j< n,i=jand W, = Per (n), the
permutation group on n letters acting in the obvious way on z, - - -, z,.

B,(n > 2): roots +z;, +z; =+ z;, 1 <i,j<n,i#jand W, = Per (n) ® Z2.
The action of the Z} part of the Weyl group is given by: f = (a,, - - -, a,) € Z?
acts on z; by f(z,) = a;z;.

C,(n>3): roots are =2z, +z; +2;, 1<i,j<n, i#+jand W,=
Per (n) @ Zz.

D,(n>4): roots are z; + z;, 1 <i,j<n,izjand W, = Per (n) @ Z7
subject to the constraint that if f = (a,, - - -, a,) € Z? then ﬁ a, = 1.

=1
The following ideas will be used repeatedly:
(i) If pis reductive, maximal rank, then K, = —K,,.

(ii) If ¢ and + are roots in K,,, and ¢ + isarooting, then o + 4 ¢ K,.
Just note that [e,, e,] # 0 iff ¢ + 4 is a root and [e,, e,] C e,,,. So if pisan
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algebra and ¢ + + is a root, then [e,,e,] = ¢,,, C p, i.e., ¢ + ¥ e K,.

(iii) If m is a vector space which is the direct sum of the Cartan subalgebra
h and certain root spaces, then K, makes perfectly good sense. To check that
m is a subalgebra, it is sufficient (by (ii)) to show that K, is closed under
addition, i.e., to show that if ¢, ¥ € K, and ¢ + + is a root, then ¢ + ¥ ¢ K,,,.

Let p be a maximal rank, reductive subalgebra of 4, _,, B, C,, or D,,. Then
p defines an equivalence relation ~ on the numbers 1, - - -, n.

Define i ~ jifi =jorz, + z;e K, or z; — z; € K,. ~ is clearly reflexive
and symmetric. We show that ~ is transitive: Let { ~ j and j ~ k. We can
assume that 7, j, and k are all distinct. Now i ~ j implies that z; — z; or z; +
z; is in K,. Thus either z; — z; and z; — z; arein K, or z; + z;and —z; — z;
are in K,,. Similarly for j and %.

Assume +(z; —z) e K,. If =(z; — z,) e K, then (z; — z;) + (z; — z4)
is a root in K, since p is a subalgebra. So i ~ k. If *(z; + z,) € K,, then
(z; — zy) + (z; + z;) is aroot in K, and again i ~ k. Similarly if +(z; + z;)
¢ K,. In any case the reductivity of p gives that ~ is an equivalence relation.

By a suitable relabelling of 1, ---,n we can assume that the equivalence
classes come in blocks. The length of an equivalence block is the number of
equivalent numbers in the block.

Lemma 3.4. Let f ¢ Per (n) N W,. Then f preserves the equivalence rela-
tion, i.e., i ~ jimplies f(i) ~ f().

Proof. By definition since f(z;) = z;,.

Lemma 3.5. Let p be a primitive, maximal rank, reductive subalgebra of
g. If i ~ ], then either +z; + z; and +2z; are in K, (subject to the constraint
that the roots are also in g), or else there exists exactly one equivalence class.

Proof. Let m be the vector space defined by

K,=K,U U{xz, £z} U 0 {£2z},
iJ i=1

when the added roots are in g. We show that m is a subalgebra by a case by
case examination. For 4,_,, K,, = K, since p is assumed to be reductive. For
B, the roots of K, are of the form z; + z; or +z,. First note that i ~ j and
+z; € K, implies that +z; ¢ K,,, since p is a reductive subalgebra. (E.g., if
z; — z; and —gz; are in K, then —z; ¢ K, since p is a subalgebra. Using
K, = —K, we have the result for any of the possibilities.) A rootin K,, — K,
has the form z; = z;. To show m is a subalgebra when g is B, we need only to
show that if ¢ is in K,, and ¢ + (+z; £ z;) is a root (+2; £ z; a root in
K, — K,), then it is in K,,. ¢ must have the form +z; or +z; = z;. In the
first case the only possibility for ¢ + (+z; + z;) to be a root is *z;, which
is a root in K, as noted above since +z; + z; € K,, implies i ~ j. If ¢ has the
form +z, + z;, then the sum with +z, + z; is a root only if k£ or [ is equal
to either i or j. But then i ~ j and & ~ [, and that equality gives i ~j ~ k ~ 1
so the sum of the roots is in K, by definition of K,,. D, is the same as B,
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except that we do not have the z;’s as roots and we may use the same arguments
as in B,. In C, just note that 2z; + (—z; = z;) = z; + z; so that as in B,
the relation i ~ j is not disturbed. So we have shown that in every case m is
a subalgebra.

By Lemma 3.4 the permutations in W, leave K, invariant. Clearly the action
of Z¢ N W, does not disturb K,,. Thus W,, contains W,, and by Proposition
3.2, m = por m = g. If m = g, then there is exactly one equivalence class;
if m = p we have our result.

Theorem 3.6. Let p be a primitive, maximal rank, reductive subalgebra of
one of the classical Lie algebras. Then all of the equivalence classes have the
same length or there exist at most two equivalence classes. Moreover, having
fixed a Cartan subalgebra in p, the root structure, and the equivalence relation
as above, we obtain the following restrictions:

(i) In A,_,, dall blocks are of the same length.

(ii) In B,, there exist at most two blocks.

If there are exactly two blocks, then the roots +z; are in K, for all i in one
of the blocks, say the second block. There exists one primitive subalgebra with
one block, namely, the algebra of longer roots

g, = h @ Z e:zi+zj .
(2N

(i) In C,, the algebras with more than one block contain e.,, for all i,

i.e., all of the longer roots. There exists one primitive subalgebra with one
block, namely,

hd Z; sy -

(iv) In D,, there exist two primitive subalgebras of one block when n is
even, namely,

n—1

n—1
L ez,;—zJ- ’ h@ ZleZi—Zj® ; ei(zi+z,.) .

h® Y

1,j=1 ,f=
Finally all of the above algebras are primitive and give a complete classification
of the primitive, maximal rank, reductive subalgebras of the classical algebras.

Note. The results for blocks of length greater than two in A4,_, were
suggested by A. Borel.

Proof. Let g be a classical algebra not equal to B,. Suppose there exist
two blocks of the same length. Let m be the subalgebra defined by “equivalenc-
ing” all blocks of the same length, i.e., m = p® } e, where ¢ = *z;, + z,,
and i and j are in blocks of the same length. To check that m is actually a
subalgebra, we use the same case by case techniques used in the proof of the
last lemma. By Lemma 3.4, W, is contained in W,,. By primitivity m = p or
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m = g. By assumption m = p, so m = g. Hence all blocks must have the
same length.

Suppose all of the blocks are of different lengths, then let m be formed from
p by “equivalencing” two of the blocks, i.e., m =p @ 3 e.,,.,, where i is in
one of the blocks and j is in the other. By Lemma 3.4 an element of W, must
preserve each block so W, contains W, and m = g by primitivity. Hence there
must have been only two blocks.

(ii) In B,, the roots are +z;, +2z; + z;. Suppose z; € K,, Then +z;¢ K,
for all j ~ i since p is a reductive subalgebra. Also if z;,z; € K,,, then +z; +
z; € K, since p is a subalgebra. Thus equivalence blocks either have or do not
have their +z,’s, and there exists only one block with its z,’s in K, say the
last block. If p contains some z;’s, then form m from p by “equivalencing”
all blocks without z,’s. By Lemma 3.4, W, is contained in W, and m + g,
so by primitivity m = p, i.e., there were but two blocks to begin with. If no
z,’s are in p, then p is contained in the algebra of longer roots. By primitivity
p is the algebra of longer roots.

(i) In A,_,, suppose p consists of two blocks of different lengths. Let
m = p@® ) e, where ¢ = z; — z; with i in the first block and j in the second
block. Clearly m + g and m # p. But by Lemma 3.4, W, contains W, hence
p is not primitive.

(iii) Let p be an algebra with more than one block. By Lemma 3.5. K,
contains 2z, for all i, which are the longer roots of C, . If p has one equivalence
block, we then claim that +z; + z; € K, for some i and j implies that p = g.
First +z; = z; € K, for all i and j. Choose k # i, j. By assumption z; — z, or
Z; + zi is in K, say z; — z;. Since p is a subalgebra, z; — z, and —z, — z;
are in K,,. Since p is reductive, +z; = z, are in K,. It is then easy to see that
the long roots must be in K, so that p = g. If p is a proper algebra, it is
determined by the roots z, + sign ()z; (i = 2, - - -, n) since

z; + sign (i, )z; = z, + sign (Dz, — sign ()z, — sign (i) sign (j)z;
= z; — sign () sign (j)z; ,
i.e.,
sign (i, j) = —sign () sign (j) .

By choosing the element (1, —sign (2), - - -, —sign (»)) from the Z7 factor of
the Weyl group we see that p is conjugate via an inner automorphism to the
algebra where sign (i) = —1fori=2,...,n, i.e.,

p:h(—BZe,i_Zj .
1,7

We show the primitivity of p here. Let m be a subalgebra of g properly con-
taining p. Then K, contains a root of the form z2z;, +(z; + z;). Say the



PRIMITIVE ACTIONS OF LIE GROUPS 185

sign is 4. Then K, contains all such roots 2z; and z; + z; since m is a sub-
algebra containing p. Now the element (—1, - -+, —1) ¢ Z? is in W, since it
takes z; — z; to z; — z;. Applied to z; + z; we get that —z, — z; is in K,, if
m is invariant under W,. So m = g, and p is primitive.

(iv) Suppose that p has one equivalence block. Then as above p is deter-

mined by sign (2), - - -, sign (n). In D,, we cannot take arbitrary elements from
Z7, since we need the elements with an even number of —1’s. Again up to
inner automorphism, we can assume that sign(2) = ... =sign(n — 1) =

—1. So p is determined by sign (n). Now we divide our discussion into two
cases: n even and n odd.

(a) neven. The element (—1, .-, —1) e Zp is in W,. Using the same
arguments as in C, we see that p is primitive.

(b) n odd. For any element (a,, - - -, a,) of the Weyl group to be in W,,

we need that a; have the same sign for all i. Since ﬁ a, = 1,a, =1 for all i.
i=1

So W, consists entirely of permutations.
Embed p in

m=p® .Zlemu (sign(n) = —1)
i,J=

to get p not primitive. Similarly for sign (n) = 1. Also, note that the two
primitive algebras given for even n are not conjugate via an inner automorphism.

We must now show that all of these algebras are primitive. We have already
settled the question when there is exactly one block. When there are two blocks
of different lengths, these algebras are all maximal and hence primitive. The-
refore we may assume that we are in the case where all of the blocks have the
same length k. Consider the following cyclic permutation:

fo=0Gk+1,¢+ Dk, sk +2,¢+ Dk —1,---,(s + Dk, tk + 1) .

f¢ interchanges the s-th and the #-th block. So f: € W, since f does not disturb
any of the roots in the other blocks.

We now show that the block decompositions give primitive algebrasin 4,,_,,
and note that almost exactly the same argument yields the results for C,
and D,,.

Let p, (k divides n) be the subalgebra of 4,,_, given by the blocks of length
k. Let m be an algebra with W, contained in W,, and suppose m contains
but is not equal to p,. We show that m = g, and thus p, is primitive. By
assumption there exists ¢ € K,, — K,. Let ¢ = z; — z;. Number the blocks
from O to (n/k) — 1. Then the s-th block includes sk 4 1,...,(s + Dk.
Assume i is in the s-th block and j is in the ¢-th block. Since arbitrary permu-
tations within blocks are in W,, we have that z;, — z; with ’ in the s-th block
and j’ in the #-th block are in K,,. Now since f¢ shows that we can permute the
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blocks arbitrarily, we get that z;, — z,, is in K,, where ¢ is in any block and
j’ is in any other block, i.e., K,, = K, and p is primitive.

In C, and D, we note that by an appropriately chosen element of Z? we can
show that if z,, — zy,, € K, then z; + zy,, € K,,. In C,, take the element
with —1’s in the s-th block (from sk 4+ 1, ..., (s + 1)k). In D,, when the
number of blocks is greater than two, take the element with —1’s in the s-th
block and in any other block aside from the s-th block so that the number of
—1’s is even. If the number of blocks is two, the algebra is maximal. g.e.d.

The following table contains a list of all of the maximal rank, primitive,
reductive subalgebras of the classical algebras. By T* we denote the k-dimen-
sional center of the subalgebra.

An—l(nzz): As—1®"'@As_1®TT_1 s.r=n and s>1
S ————
7! the Cartan subalgebra
B,n>2): D, ,®T the algebra of longer roots
Dm@Bn—m 1_<_m§n—1
C.(n>3): C,®C,_. 1 <m < n—1 (two blocks)
A, BT the one algebra with one block
C,h..--PC, s.r=n and s>1
\-'_Y\/
AD .- DA, the algebra of longer roots
v—y—y
D,n>4): D,,®T
Dm®Dn—m 2Smgn/2
D,®..- DD, s-r=n and s> 1
T" the Cartan subalgebra
A, @T when 7 is even embedded in two

non-inner automorphic ways.
In all of these one must take into account the isomorphisms

A =B =C, D,=A4,®4,, B,=C,, A,=D,.

4. The nonreductive primitive subalgebras

We now classify the non-reductive primitive subalgebras of the complex
simple Lie algebras. This classification shows that these subalgebras are all
maximal (the main theorem of the section) and is obtained by extending some
results of Veisfieler. The non-reductive maximal subalgebras are then classified
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along with the classification of the graded Lie algebras of the kind which
Veisfieler considered. The result duplicates the classification of the non-reductive
maximal subalgebras which was obtained by Karpelevich [10] and is included
only because it follows simply from the results needed for the main theorem.
The results on the Veisfieler gradings although not stated before are implicit
in some work of Ochiai [15].

We assume that the reader is familiar with Guillemin’s description of the
Veisfieler gradings [7, §§ 7 and 8], and we will not include any proofs for the
statements on graded and filtered algebras, which we make here and are either
already proved or essentially proved in [7].

Let g be a complex simple Lie algebra, and G an associated connected Lie
group. Let p C g be a primitive non-reductive subalgebra, and P° the connected
Lie subgroup of G associated with p and P = norm, P°. The Veisfieler gradings
were obtained for the case where p is actually a maximal subalgebra—we
extend the methods to the case where p is an arbitrary primitive subalgebra.

Let I° = p, and choose I"! to be a minimally invariant subspace of g con-
taining p properly which is invariant under Ad P.

Define

Ft=1t 4 [P, E={xelMx, P C i} vix>1.

Lemma 4.1. (a) [I*, '] C I!17, vi,j|.
(b) AdP leaves I invariant Vi.
(c) 3k, m (nonnegative integers) such that

g:l“"j...:)l"—__:p:)...:)lmH:{()},

i.e., 31 a well-defined filtration on g.
The filtration on g yields a corresponding graded Lie algebra

=50 D

where gt =P/l Let g =8'D ... g and g*r =98P --- g™

Lemma 4.2. (i) [§%, 8/] C §9, vi,j.

(i) g7 ' generates §~ as a Lie algebra, in fact §* = [, §**'].

Gii) If%e@®g*and %, §'1=0, then X = 0.

(iv) AdP acts irreducibly on §'.

(v) @° acts completely reducibly on §' under the adjoint action.

(vi) &* # 0. (The nonreductivity of p is needed here.)

Proof. (i)-(iv) are standard. (v) Let ¥V be any nonzero subspace of ! on
which g° acts irreducibly. Let 8 ¢ Ad P. Then

[B(V), 81 = [B(V), B(gH] = pLV, g'1 < (V) ,

so 2° leaves invariant and clearly acts irreducibly on B(V). Let V' = ¥ B(V),
BEAd P
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V’ is nonzero and invariant under Ad P. By (iv), ¥V’ = §'. So §! is written
as the sum of irreducible subspaces. Hence 2° acts completely reducibly on
g7'. (vi) Suppose g+ = 0. Then g* = I' = P.

By (iii) and (iv) g° acts faithfully and completely reducibly on g-'. Hence
by a standard theorem (see [8, p. 81]) g° = p is reductive, a contradiction.

Theorem 4.3 (Extended Veisfieler Lemma), Let § = §*@® ... D g™ be
a finite dimensional Lie algebra satisfying the conclusions of Lemma 4.2, i.e.,

(a) g°! generates - as a Lie algebra.

(b) Int, (p) acts irreducibly on §-'.

) IfXecgDgrand [X,87'] =0, then ¥ = 0.

d gr=+0.

Then (i) g is semi-simple, (ii) k = m, (iii) §~* = (§)*.

The proof is essentially the same as that of Lemma 8.1 in Guillemin [7].
We leave the details of the changes to the reader.

Note that since g is semi-simple the degree derivation is inner, i.e., there
exists D e g° such that ad D|g? = i X identity.

Proposition 4.4. g is isomorphic to § as Lie algebras. Under this isomor-
phism p = "D g*.

The proof of this result is the same as the case where p was assumed maxi-
mal. We only need the existence of the element D e #°. Hence we can write g
as a graded Lie algebra g = g7 * @ - .- @ g* where p = 8" @ g*.

Proposition 4.5. g° is of maximal rank.

Proof. Let h C g° C p be a Cartan subalgebra of g’. We show & is a
Cartan subalgebra of g. Now /4 is a Cartan subalgebra of g iff

(i) A is nilpotent, and

(ii) normg (h) = hA.

Clearly (i) is unaffected by what algebra 4 is contained in, hence we need only
to show that norm, (h) = norm,, (k). Every subalgebra g of g containing D is
graded since ad D: g — ¢, and g is then graded by the eigenspace decomposi-
tion. We note first that D ¢ & because D ¢ center g,.

Let norm, (h) = g *@® --- @ q*, and x € ¢°, i + 0. Then [D, x] = ix, but
[D,x] elh,x] C h C g by choice of x. Thus xe g’ N g* and x = 0, so that
we have that norm, (4) C g, and hence norm, () = norm,, (h) = h.

Definition 4.6. A subalgebra of a simple Lie algebra is parabolic if it con-
tains a maximal solvable subalgebra. Give a Cartan subalgebra # of g and a
system I of simple roots on A. Then the algebra 7 ® ZO e, is a maximal

o=
solvable subalgebra. Let @ = 7 e,.

=0
Proposition 4.7. In the notation above, there exists a system of simple

roots e, - - -, @, where rank g = n such that g* C Q,. Moreover p = g' @ g*
is parabolic.

Proof. h@® g* is a solvable subalgebra and is hence contained in a maximal
solvable subalgebra in m @ Q, where m is some Cartan subalgebra of g and 17
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is a system of simple roots on m. Now m and h are both Cartan subalgebras
of the algebra m @ Q,. By the Cartan subalgebra conjugacy theorem there
exists an inner automorphism g of m @ Qj such that f(h) = m. g extends to
be an inner automorphism of g. Define a system of simple roots on & by a] =
a;0ofonh-Il"' = {af, - --,a}. Then Qp = Q).

Since g preserves m @ Q, we have that A ® Q; C m @ Q;. By dimension
they are equal. Therefore h P g* C h P Q..

Now gt C Q. Infact, let xe g, i > 0. Then ix = [D,x] e [h,h D Q]
C Q.. Since i # 0, we have that x ¢ Q.. Next note that e, C g*iff (D) = i,
where ¢ is a nonzero root. In fact, let x e e,. Since D ¢ h, [D, x] = ¢(D)x.
Thus x is always an eigenvector for ad D and clearly the above holds. Let ¢
be a positive root. Suppose (D) < 0. Then e_, C g* C Q. since —¢(D) > 0.
But then e_, is in the space generated by positive root spaces, a contradiction
since —¢ is a negative root. Thus if ¢ > 0, then (D) > 0, i.e.,e, C gD g*.
Hence h® Q. C 8@ g+, and g* @ g* is parabolic.

Theorem 4.8. If p is a primitive and parabolic subalgebra of a simple Lie
algebra, then p is maximal. In particular, any primitive, non-reductive sub-
algebra is maximal.

Proof. If p is parabolic, P = P° (see [2, Theorem 4, p. 24]). Hence P can
be a maximal Lie subgroup only if p is a maximal Lie subalgebra.

We can now assume that g acts irreducibly on g7! (see Guillemin [7]).

Theorem 4.9. Let h C g be a Cartan subalgebra, and Il = {a;, - - -, a,}
the set of simple roots given by Proposition 4.7. Then a;(D) is either 0 or 1 for
all i, and there exists exactly one i for which a,(D) = 1.

Proof. (a) a;D)iseitherOor 1 (1 <i< n), ande, C g"P g* since o
is positive. Therefore [e,,, g7'] # 0 by property (iii) of Lemma 4.2, g7 is the
direct sum of root spaces e, where (D) = —1. Hence there exists a root space
e, such that [e,, e,] #+ 0, i.e., ¢ + a; is a root. Let ¢ = Y nyx; be the de-
composition of ¢ into simple roots. ¢ is a negative root, so n; < 0 for all j.
Now ¢ + «; is aroot. If o, (D) > 1, then (p + a)(D) >0, and ¢ + «a; is a
positive root, implying that all n; > 0,j + i, i.e., ¢ = —a;. But then ¢(D) =
—1 implies «,(D) = 1, a contradiction, so 0 < «;(D) < 1.

(b) Since D =+ 0, there exists «; such that «,(D) = 0, i.e., a;(D) = 1.
Define V;, = 3, e, where (D) = —1. lf p = 3] njay, then n; = 0. First we

show V; to be invariant under g, where g, = h® 3, e,. Clearly [4,V,] C
+(D)=0

V;. Now either [e,,e,] = 0, or ¢ 4 + is a root and [e,,e,] C e,.,. If ¢ +
is a root, then (¢ + ¥)(D) = —1. Let 4» = 3 m;a, be the expansion of 4 in
terms of simple roots. Then m; = 0; otherwise, assuming +« is positive we
obtain

¥v(D) > me,(D) 2 (D) =12>0,

a contradiction. Similarly if 4 is a negative root. So in terms of its expansion
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in simple roots ¢ + y has a nonzero coefficient on «; since ¢ does. Hence
e, CV, Nowe_, CV,, hence ¥V, # 0. Since g, acts irreducibly on g~!, we
have V; = g7'. Suppose that a;(D) = 1 also with j #i. Thene_, CV; =
g7' = V. But cleary e_,, is not contained in V;. So this cannot happen.

Corollary 4.10. In the Veisfieler graded algebras (those graded algebras
satisfying (ii), (iii), (vi) of Lemma 4.2 and having g° act irreducibly on g7*),
there exist a Cartan subalgebra h of ¢ and a system of simple roots on h with
a distinguished simple root o such that

(i) &' = h® Y e, where the coefficient on « in the expansion of ¢ in terms
of simple roots is zero,

(i) g' = 3] e, where the coefficient of « in the expansion of ¢ in terms of
simple roots is i.

Corollary 4.11. Let p be a non-reductive maximal subalgebra of a simple
Lie algebra g. Then p is of maximal rank, and there exist a Cartan subalgebra
h C p and a system of simple roots with a distinguished simple root « such
that p = h @ 3, e, where the expansion of ¢ in terms of simple roots has a
nonnegative coefficient on a.

Added in proof. We should note that the primitive, maximal rank, reductive
subalgebras of the (complex) exceptional Lie algebras have been classified in
the paper: M. Golubitsky & B. Rothschild, Primitive subalgebras of excep-
tional Lie algebras, Pacific J. Math. 39 (1971) 371-393.
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