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Primitive Binary Polynomials

By Wayne Stahnke

Abstract. One primitive polynomial modulo two is listed for each degree n through

n = 168. Each polynomial has the minimum number of terms possible for its degree. The

method used to generate the list is described.

Introduction. The accompanying table contains one primitive polynomial

modulo two for each degree n, 1 ^ n ^ 168. Since the number of physical logic

elements required to implement a given polynomial is a function of the number of

terms in that polynomial, each entry has as few terms as possible for polynomials

of its degree.

Each polynomial listed for n > 1 is of one of two forms. If there exist one or more

primitive trinomials ftx) = x" + xk + 1 the trinomial with the smallest k is listed.

If no primitive trinomials exist, the polynomial given is of the form g(x) = xn +

xb + a + xb + xa + 1, with 0<a<b<n — a. For these polynomials, a is as small

as possible, and for the a listed, b is as small as possible. This form was chosen because

it corresponds to the configuration of logic elements introduced by Scholefield [1],

which implements the reciprocal polynomial x"g(x~ ') using only n unit-delay elements

and two two-input modulo-two adders. The conventional shift-register configuration

[2] can also implement g(x) or x"g(x~l), at the expense of one additional two-input

modulo-two adder.

In the table, only the degrees of the individual terms of the primitive polynomials

are listed, so that for example

125, 108, 107, 1, 0   represents   g(x) = x125 + x108 + x107 + x + 1.

The only similar table known to the author is Watson's [3] which lists one primitive

polynomial for each degree n through n = 100, and also for n = 107 and n = 127.

The entries in Watson's table are not of any particular form, and many of them do

not have the minimum possible number of terms.

The Test for Primitivity. The test for primitivity consists of four stages. The

first two stages, which are used because of their relatively high speed, eliminate all

of the reducible polynomials. The last two stages form a necessary and sufficient

test for primitivity.

In the first stage, the trial polynomial p(x) is rejected as reducible (and therefore

not primitive) if each one of its terms is an even power of x, since in that case the

polynomial is a square.
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In the second stage, the greatest common divisor of p(x) and x2" + x is calculated

for each m, 1 ^ m ^ [n/2], using the Euclidean algorithm. The trial polynomial is

rejected as reducible if the result is not equal to 1 for each m. This stage forms a

necessary and sufficient test for the irreducibility of p(x) since every irreducible

polynomial of degree m is a factor of x2" + x [A, p. 103].

Exponents of Terms of Primitive Binary Polynomials
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Exponents of Terms of Primitive Binary Polynomials
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If the trial polynomial is irreducible, the test goes forward to the third stage, which

verifies that p(x) divides x2* + x, which is equivalent to saying that the period of

p(x) divides 2" — 1. This must be true since it has already been established that p(x)

is irreducible, so this stage checks for possible machine errors of certain types in the

second stage.

If 2" — 1 is prime, the trial polynomial is primitive. If 2" — 1 is composite, how-

ever, the period of p(x) may be a factor of 2" — 1. This possibility is tried in the

fourth stage in which x<2"~1)/a mod p(x) is calculated for each prime factor q of

2" — 1. If the result is 1 for any q, the trial polynomial is not primitive.

If the trial polynomial survives all four stages of the test, it is primitive, which is

checked by repeating the third and fourth stages of the test on the reciprocal poly-

nomial x"p(x ~ ').

The program was run on the IBM 360/67 at Fairchild Semiconductor. At the

beginning of each computer run, the factors of 2" — 1 were multiplied together for

each n and it was verified that their product was actually 2" — 1. No machine errors

were encountered in any of the computer runs. All of the trinomials were checked

against the list of Zierler and Brillhart [5], and all of the polynomials of degree

n ^ 19 were checked against Marsh's list [6]. There were no discrepancies.

The factors of 2" — 1 were taken from Riesel [7] and checked against other sources

in the literature ([8], [9], [10], [11], [12], [13], [14]) with a few exceptions. The factori-

zations for n = 125, 137, 139, 141, 143, 145, 149, 157, 161 and 167 were furnished
by John Brillhart, with whose kind permission they were used to complete the pre-

paration of the table.

Fairchild Semiconductor

464 Ellis Street
Mountain View, California 94040
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