## Primitive Central Idempotents in Rational Group Algebras

Gurmeet K. Bakshi<br>Panjab University<br>Chandigarh, India<br>email:gkbakshi@pu.ac.in

## $G$ : finite group <br> $\mathbb{Q}[G]$ : the rational group algebra of $G$.



```
G : finite group
Q [G] : the rational group algebra of G.
```

The problem of determining the Wedderburn decomposition of $\mathbb{Q}[G]$ naturally leads to the computation of the primitive central idempotents of $\mathbb{Q}[G]$.

## Aim of the talk

In this talk, I give a survey of the known results so far on computation of the primitive central idempotents of the rational group algebra $\mathbb{Q}[G]$ of a finite group $G$ and also some of my recent results (with Passi) in this area.

## Classical method of determining primitive central idempotents of $\mathbb{Q}[G]$.

## The classical method is in two steps

(i) First compute the primitive central idempotents of the complex group
algebra $\mathbb{C}[G]$ using the character table of $G$.
(ii) Then compute the primitive central idempotents of $\mathbb{Q}[G]$ using a
group action.

## Classical method of determining primitive central idempotents of $\mathbb{Q}[G]$.

The classical method is in two steps
(i) First compute the primitive central idempotents of the complex group algebra $\mathbb{C}[G]$ using the character table of $G$.
(ii) Then compute the primitive central idempotents of $\mathbb{Q}[G]$ using a group action.

## Primitive central idempotents of $\mathbb{C}[G]$

The set $\operatorname{Irr}(G)$ of complex irreducible characters of $G$

The set of primitive central idempotents of $\mathbb{C}[G]$


Given $\chi \in \operatorname{Irr}(G)$,


## Primitive central idempotents of $\mathbb{C}[G]$

The set $\operatorname{Irr}(G)$ of complex irreducible characters of $G$


The set of primitive central idempotents of $\mathbb{C}[G]$

$$
e(\chi)=\frac{1}{o(G)} \sum_{g \in G} \chi\left(g^{-1}\right) g
$$

is a primitive central idempotent of $\mathbb{C}[G]$, called the primitive central idempotent associated with $\chi$.

## Primitive central idempotents of $\mathbb{Q}[G]$, from those of $\mathbb{C}[G]$.

$$
\begin{aligned}
& \text { Aut( } \mathbb{C}) \text { acts on } \mathbb{C}[G] \text { by acting on the coefficients. i.e. } \\
& \qquad \sigma . \sum a_{g} g=\sum \sigma\left(a_{g}\right) g, \quad\left(\sigma \in A u t(\mathbb{C}), \sum a_{g} g \in \mathbb{C}[G]\right) \\
& \text { Aut }(\mathbb{C}) \text { acts on } \operatorname{Irr}(G) \text { by } \\
& \qquad \sigma \cdot \chi=\sigma o \chi, \quad(\sigma \in \mathbb{A}, \chi \in \operatorname{Irr}(G)) \text {. } \\
& \text { Orbit of both } \chi \text { and } e(\chi) \text { can be obtained by applying the elements of } \\
& \text { Gal }(\mathbb{Q}(\chi) / \mathbb{Q}) \text { to } \chi \text { and } e(\chi) \text { respectively. }
\end{aligned}
$$

## Primitive central idempotents of $\mathbb{Q}[G]$, from those of $\mathbb{C}[G]$.

- $\operatorname{Aut}(\mathbb{C})$ acts on $\mathbb{C}[G]$ by acting on the coefficients. i.e.

$$
\sigma . \sum a_{g} g=\sum \sigma\left(a_{g}\right) g, \quad\left(\sigma \in \operatorname{Aut}(\mathbb{C}), \sum a_{g} g \in \mathbb{C}[G]\right) .
$$

- $\operatorname{Aut}(\mathbb{C})$ acts on $\operatorname{Irr}(G)$ by

$$
\sigma \cdot \chi=\sigma o \chi, \quad(\sigma \in \mathbb{A}, \chi \in \operatorname{Irr}(G)) .
$$

> Orbit of both $\chi$ and $e(\chi)$ can be obtained by applying the elements of $\operatorname{Gal}(\mathbb{Q}(\chi) / \mathbb{Q})$ to $\chi$ and $e(\chi)$ respectively.

## Primitive central idempotents of $\mathbb{Q}[G]$, from those of $\mathbb{C}[G]$.

- $\operatorname{Aut}(\mathbb{C})$ acts on $\mathbb{C}[G]$ by acting on the coefficients. i.e.

$$
\sigma . \sum a_{g} g=\sum \sigma\left(a_{g}\right) g, \quad\left(\sigma \in \operatorname{Aut}(\mathbb{C}), \sum a_{g} g \in \mathbb{C}[G]\right) .
$$

- $\operatorname{Aut}(\mathbb{C})$ acts on $\operatorname{Irr}(G)$ by

$$
\sigma \cdot \chi=\sigma o \chi, \quad(\sigma \in \mathbb{A}, \chi \in \operatorname{Irr}(G)) .
$$

Orbit of both $\chi$ and $e(\chi)$ can be obtained by applying the elements of Gal( $\mathbb{D}(\chi) /(\mathbb{D})$ to $\chi$ and $e(\gamma)$ respectively.

## Primitive central idempotents of $\mathbb{Q}[G]$, from those of $\mathbb{C}[G]$.

- $\operatorname{Aut}(\mathbb{C})$ acts on $\mathbb{C}[G]$ by acting on the coefficients. i.e.

$$
\sigma \cdot \sum a_{g} g=\sum \sigma\left(a_{g}\right) g, \quad\left(\sigma \in \operatorname{Aut}(\mathbb{C}), \sum a_{g} g \in \mathbb{C}[G]\right) .
$$

- $\operatorname{Aut}(\mathbb{C})$ acts on $\operatorname{Irr}(G)$ by

$$
\sigma \cdot \chi=\sigma o \chi, \quad(\sigma \in \mathbb{A}, \chi \in \operatorname{Irr}(G)) .
$$

Orbit of both $\chi$ and $e(\chi)$ can be obtained by applying the elements of $\operatorname{Gal}(\mathbb{Q}(\chi) / \mathbb{Q})$ to $\chi$ and $e(\chi)$ respectively.

The set of distinct orbits of $\operatorname{lrr}(G)$ under the action of Aut $(\mathbb{C})$.

The set of primitive central idempotents of $\mathbb{Q}[G]$

is a primitive central idempotent of $\mathbb{D}[G]$.

The set of distinct orbits of $\operatorname{lrr}(G)$ under the action of Aut $(\mathbb{C})$.

Corresponding to an orbit of $\chi$

The set of primitive central idempotents of $\mathbb{Q}[G]$
$e_{\mathbb{Q}}(\chi)=\sum_{\sigma \in G a l(\mathbb{Q}(\chi) / \mathbb{Q})} e(\sigma \circ \chi)$
is a primitive central idempotent of $\mathbb{Q}[G]$.

## The following question is of concern to mathematicians for the last many years

## Question

Does there exist any character free expressions (avoiding the
computations on the extension of rationals) of primitive central
idempotents of © [G]?

## The following question is of concern to mathematicians for the last many years

## Question

Does there exist any character free expressions (avoiding the computations on the extension of rationals) of primitive central idempotents of $\mathbb{Q}[G]$ ?

## Idempotents from subgroups.

Let $H$ be a subgroup of a finite group $G$. Then

$$
\hat{H}=\frac{1}{o(H)} \sum_{h \in H} h
$$

is an idempotent of $\mathbb{Q}[G]$, called the idempotent determined by $H$.
$\hat{H}$ is central if and only if $H$ is normal in $G$.

Note that $\hat{G}$ is always a primitive central idempotent of $\mathbb{Q}[G]$, which we
call the trivial primitive central idempotent of (D) $[G]$

## Idempotents from subgroups.

Let $H$ be a subgroup of a finite group $G$. Then

$$
\hat{H}=\frac{1}{o(H)} \sum_{h \in H} h
$$

is an idempotent of $\mathbb{Q}[G]$, called the idempotent determined by $H$.
$\hat{H}$ is central if and only if $H$ is normal in $G$.

Note that $\hat{G}$ is always a primitive central idempotent of $\mathbb{Q}[G]$, which we call the trivial primitive central idempotent of $\mathbb{Q}[G]$

## A Question.

Is it possible to obtain primitive central idempotents of $\mathbb{Q}[G]$ from the subgroup structure of $G$ ?

We see progress in this direction

## Sehgal(1978), Topics in Group Rings, Proposition 1.16

It was shown by Sehgal that if $G$ is a finite abelian group, then the primitive of $\mathbb{Q}[G]$ can be written as a linear combination of the idempotents of the form $\hat{H}, H \leq G$.

Later Jespers Leal and Milies gave explicit description of the primitive (central) idempotents of $\mathbb{Q}[G], G$ a finite abelian group.

## Primitive (central) idempotents of $\mathbb{Q}[G]$, when $G$ is a cyclic group of prime power order (Jespers, Leal and Milies)

Let $G=\langle x\rangle$ be a cyclic group of order $p^{m}, m \geq 1, p$ a prime. Let

$$
G=G_{0} \supseteq G_{1} \supseteq \ldots \supseteq G_{m}=1
$$

be the descending chain of all the subgroups of $G ; G_{i}=<x^{p^{\prime}}>$, then the primitive (central) idempotents of the rational group algebra $\mathbb{Q}[G]$ are



## Primitive (central) idempotents of $\mathbb{Q}[G]$, when $G$ is a cyclic group of prime power order (Jespers, Leal and Milies)

Let $G=\langle x\rangle$ be a cyclic group of order $p^{m}, m \geq 1, p$ a prime. Let

$$
G=G_{0} \supseteq G_{1} \supseteq \ldots \supseteq G_{m}=1
$$

be the descending chain of all the subgroups of $G ; G_{i}=\left\langle x^{p^{i}}\right\rangle$, then the primitive (central) idempotents of the rational group algebra $\mathbb{Q}[G]$ are

$$
e_{0}=\hat{G} \quad \text { and } \quad e_{i}=\hat{G}_{i}-\hat{G_{i-1}}, 1 \leq i \leq m .
$$



## Primitive (central) idempotents of $\mathbb{Q}[G]$, when $G$ is a cyclic group of prime power order (Jespers, Leal and Milies)

Let $G=\langle x\rangle$ be a cyclic group of order $p^{m}, m \geq 1, p$ a prime. Let

$$
G=G_{0} \supseteq G_{1} \supseteq \ldots \supseteq G_{m}=1
$$

be the descending chain of all the subgroups of $G ; G_{i}=\left\langle x^{p^{i}}\right\rangle$, then the primitive (central) idempotents of the rational group algebra $\mathbb{Q}[G]$ are

$$
e_{0}=\hat{G} \quad \text { and } \quad e_{i}=\hat{G}_{i}-\hat{G_{i-1}}, 1 \leq i \leq m .
$$

If $G$ is any finite abelian group, then by decomposing $G$ as a product of cyclic $p$ - groups, the primitive central idempotents of $\mathbb{Q}[G]$ can be obtained.

Primitive (central) idempotents of $\mathbb{Q}[G]$, when $G$ is an Abelian p- group

Moreover any non trivial primitive central idempotent $\mathbb{Q}[G]$ is of this
type.

# Primitive (central) idempotents of $\mathbb{Q}[G]$, when $G$ is an Abelian p- group 

Let $G$ is an Abelian p-group. If $H$ is a subgroup of $G$ such that $G / H$ is cyclic and $L / H$ is the minimal subgroup of $G / H$, then

$$
e_{H}=\widehat{H}-\widehat{L}
$$

is a primitive central idempotent of $\mathbb{Q}[G]$ with $\mathbb{Q}[G] e_{H} \cong \mathbb{Q}\left(\zeta_{d}\right)$, where $d=o(G / H)$ and $\zeta_{d}$ is primitive dth root of unity.

Moreover any non trivial primitive central idempotent $\mathbb{Q}[G]$ is of this

# Primitive (central) idempotents of $\mathbb{Q}[G]$, when $G$ is an Abelian p- group 

Let $G$ is an Abelian p-group. If $H$ is a subgroup of $G$ such that $G / H$ is cyclic and $L / H$ is the minimal subgroup of $G / H$, then

$$
e_{H}=\widehat{H}-\widehat{L}
$$

is a primitive central idempotent of $\mathbb{Q}[G]$ with $\mathbb{Q}[G] e_{H} \cong \mathbb{Q}\left(\zeta_{d}\right)$, where $d=o(G / H)$ and $\zeta_{d}$ is primitive dth root of unity.

Moreover any non trivial primitive central idempotent $\mathbb{Q}[G]$ is of this type.

## Some Notations as given by Jespers, Leal and Paques, 2003

- $G$ :- a finite non trivial group.
- $\mathcal{M}(G):=$ the set of all minimal normal subgroups of $G$

where $M$ a subgroup of $G$ containing $N$ and $\bar{M}=M / N$.


## Some Notations as given by Jespers, Leal and Paques, 2003

- $G$ :- a finite non trivial group.
- $\mathcal{M}(G):=$ the set of all minimal normal subgroups of $G$.

where $M$ a subgroup of $G$ containing $N$ and $\bar{M}=M / N$.


## Some Notations as given by Jespers, Leal and Paques, 2003

- $G$ :- a finite non trivial group.
- $\mathcal{M}(G):=$ the set of all minimal normal subgroups of $G$.
- $\varepsilon(G):=\prod_{M \in \mathcal{M}(G)}(1-\hat{M})$
- For $N \leq G, N \neq G$, put

where $M$ a subgroup of $G$ containing $N$ and $\bar{M}=M / N$.


## Some Notations as given by Jespers, Leal and Paques, 2003

- $G$ :- a finite non trivial group.
- $\mathcal{M}(G):=$ the set of all minimal normal subgroups of $G$.
- $\varepsilon(G):=\prod_{M \in \mathcal{M}(G)}(1-\hat{M})$
- For $N \unlhd G, N \neq G$, put

$$
\varepsilon(G, N)=\prod_{\bar{M} \in \mathcal{M}(G / N)}(\hat{N}-\hat{M})
$$

where $M$ a subgroup of $G$ containing $N$ and $\bar{M}=M / N$..


## Some Notations as given by Jespers, Leal and Paques, 2003

- $G$ :- a finite non trivial group.
- $\mathcal{M}(G):=$ the set of all minimal normal subgroups of $G$.
- $\varepsilon(G):=\prod_{M \in \mathcal{M}(G)}(1-\hat{M})$
- For $N \unlhd G, N \neq G$, put

$$
\varepsilon(G, N)=\prod_{\bar{M} \in \mathcal{M}(G / N)}(\hat{N}-\hat{M})
$$

where $M$ a subgroup of $G$ containing $N$ and $\bar{M}=M / N$..

- $\varepsilon(G, G)=\hat{G}$.

Another description of the Primitive (central) idempotents of $\mathbb{Q} G$, when $G$ is a finite Abelian Group given by Jespers, Leal and Paques (2003)

## Jespers, Leal and Paques [2003]

If $G$ is a finite abelian group, then the primitive (central) idempotents of $\mathbb{Q}[G]$ are precisely all the elements of the form $\epsilon(G, N)$, with $N$ a subgroup of $G$ so that $G / N$ is cyclic.

## Another description of the Primitive (central) idempotents of $\mathbb{Q} G$, when $G$ is a finite Abelian Group given by Jespers, Leal and Paques (2003)

## Jespers, Leal and Paques [2003]

If $G$ is a finite abelian group, then the primitive (central) idempotents of $\mathbb{Q}[G]$ are precisely all the elements of the form $\epsilon(G, N)$, with $N a$ subgroup of $G$ so that $G / N$ is cyclic.

## Primitive Central Idempotents of $\mathbb{Q} G$, when $G$ is a finite Nilpotent Group

## Jespers, Leal and Paques [2003]

Let $G$ be a finite nilpotent group. Then primitive idempotents of $Q G$ are
precisely all the elements of the form

( the sum over all $G$ - conjugates of $\varepsilon\left(G_{m}, H_{m}\right)$, where $H_{m}$ and $G_{m}$ are
subgroups of $G$ satisfying:

## Primitive Central Idempotents of $\mathbb{Q} G$, when $G$ is a finite Nilpotent Group

```
Jespers, Leal and Paques [2003]
```

Let $G$ be a finite nilpotent group. Then primitive idempotents of $\mathbb{Q} G$ are precisely all the elements of the form

$$
\sum_{g \in G}\left(\varepsilon\left(G_{m}, H_{m}\right)\right)^{g}
$$

( the sum over all $G$ - conjugates of $\varepsilon\left(G_{m}, H_{m}\right)$, where $H_{m}$ and $G_{m}$ are subgroups of $G$ satisfying:

- $H_{0} \subseteq H_{1} \subseteq \cdots \subseteq H_{m} \subseteq G_{m} \subseteq G_{m-1} \subseteq \cdots \subseteq G_{0}=G$, - $H_{i} \unlhd G_{i}, Z\left(G_{i} / H_{i}\right)$ is cyclic, $0 \leq i \leq m$.
- $G_{i} / H_{i}$ is not abelian for $0 \leq i \leq m-1$ and $G_{m} / H_{m}$ is abelian.
$=G_{i+1} / H_{i}=C_{G / H_{i}}\left(Z_{2}\left(G_{i} / H_{i}\right)\right)$.
- $\bigcap H_{i}^{\times}=H_{i-1}, 1 \leq i \leq m$.
- $H_{0} \subseteq H_{1} \subseteq \cdots \subseteq H_{m} \subseteq G_{m} \subseteq G_{m-1} \subseteq \cdots \subseteq G_{0}=G$,

■ $H_{i} \unlhd G_{i}, Z\left(G_{i} / H_{i}\right)$ is cyclic, $0 \leq i \leq m$.

## - $G_{i} / H_{i}$ is not abelian for $0 \leq i \leq m-1$ and $G_{m} / H_{m}$ is abelian.

- $G_{i+1} / H_{i}=C_{G_{i} / H_{i}}\left(Z_{2}\left(G_{i} / H_{i}\right)\right)$.

- $H_{0} \subseteq H_{1} \subseteq \cdots \subseteq H_{m} \subseteq G_{m} \subseteq G_{m-1} \subseteq \cdots \subseteq G_{0}=G$,
- $H_{i} \unlhd G_{i}, Z\left(G_{i} / H_{i}\right)$ is cyclic, $0 \leq i \leq m$.
- $G_{i} / H_{i}$ is not abelian for $0 \leq i \leq m-1$ and $G_{m} / H_{m}$ is abelian.
$\square$
- $G_{i+1} / H_{i}=C_{G_{i} / H_{i}}\left(Z_{2}\left(G_{i} / H_{i}\right)\right)$.
- $H_{0} \subseteq H_{1} \subseteq \cdots \subseteq H_{m} \subseteq G_{m} \subseteq G_{m-1} \subseteq \cdots \subseteq G_{0}=G$,
- $H_{i} \unlhd G_{i}, Z\left(G_{i} / H_{i}\right)$ is cyclic, $0 \leq i \leq m$.
- $G_{i} / H_{i}$ is not abelian for $0 \leq i \leq m-1$ and $G_{m} / H_{m}$ is abelian.
- $G_{i+1} / H_{i}=C_{G_{i} / H_{i}}\left(Z_{2}\left(G_{i} / H_{i}\right)\right)$.

■ $H_{0} \subseteq H_{1} \subseteq \cdots \subseteq H_{m} \subseteq G_{m} \subseteq G_{m-1} \subseteq \cdots \subseteq G_{0}=G$,

- $H_{i} \unlhd G_{i}, Z\left(G_{i} / H_{i}\right)$ is cyclic, $0 \leq i \leq m$.
- $G_{i} / H_{i}$ is not abelian for $0 \leq i \leq m-1$ and $G_{m} / H_{m}$ is abelian.
- $G_{i+1} / H_{i}=C_{G_{i} / H_{i}}\left(Z_{2}\left(G_{i} / H_{i}\right)\right)$.
- $\bigcap_{x \in G_{i-1} / H_{i-1}} H_{i}^{\times}=H_{i-1}, 1 \leq i \leq m$.


## Primitive Central Idempotents of $\mathbb{Q} G$ associated with monomial irreducible characters.

```
Olivieri, Rio, Simon [2004]
Let }G\mathrm{ be a finite group,
K<G, X be a linear complex character of K, and
\chi}\mp@subsup{}{}{G}\mathrm{ the induced character on G.
If }\mp@subsup{\chi}{}{G}\mathrm{ is irreducible, then the primitive central idempotent of QG
associated with }\mp@subsup{\chi}{}{G}\mathrm{ is
```


(where $H=$ ker $\chi$ and the sum is over all distinct $G$ - conjugates of

## Primitive Central Idempotents of $\mathbb{Q} G$ associated with monomial irreducible characters.

Olivieri, Rio, Simon [2004]
Let $G$ be a finite group,
$K \leq G, \chi$ be a linear complex character of $K$, and
$\chi^{G}$ the induced character on $G$
If $\chi^{G}$ is irreducible, then the primitive central idempotent of $\mathbb{Q} G$
associated with $\chi^{G}$ is

(where $H=\operatorname{ker} \chi$ and the sum is over all distinct $G$ - conjugates of

## Primitive Central Idempotents of $\mathbb{Q} G$ associated with monomial irreducible characters.

## Olivieri, Rio, Simon [2004]

Let $G$ be a finite group,
$K \leq G, \chi$ be a linear complex character of $K$, and
$\chi^{G}$ the induced character on $G$
If $\chi^{G}$ is irreducible, then the primitive central idempotent of $Q G$
associated with $\chi^{G}$ is

(where $H=\operatorname{ker} \chi$ and the sum is over all distinct $G$ - conjugates of

## Primitive Central Idempotents of $\mathbb{Q} G$ associated with monomial irreducible characters．

## Olivieri，Rio，Simon［2004］

Let $G$ be a finite group，
$K \leq G, \chi$ be a linear complex character of $K$ ，and
$\chi^{G}$ the induced character on $G$.
If $\chi^{G}$ is irreducible，then the primitive central idempotent o
associated with $\chi^{G}$ is

$$
e_{\mathbb{Q}}\left(\chi^{G}\right)=\frac{\left[\operatorname{Cen}_{G}(\varepsilon(K, H)): K\right]}{\left[\mathbb{Q}(\chi): \mathbb{Q}\left(\chi^{G}\right)\right]} \sum_{g} \varepsilon(K, H)^{g},
$$

（where $H=$ ker $\chi$ and the sum is over all distinct $G$－conjugates of

## Primitive Central Idempotents of $\mathbb{Q} G$ associated with monomial irreducible characters.

## Olivieri, Rio, Simon [2004]

Let $G$ be a finite group,
$K \leq G, \chi$ be a linear complex character of $K$, and
$\chi^{G}$ the induced character on $G$.
If $\chi^{G}$ is irreducible, then the primitive central idempotent of $\mathbb{Q} G$
associated with $\chi^{G}$ is

(where $H=\operatorname{ker} \chi$ and the sum is over all distinct $G$ - conjugates of

## Primitive Central Idempotents of $\mathbb{Q} G$ associated with monomial irreducible characters.

## Olivieri, Rio, Simon [2004]

Let $G$ be a finite group,
$K \leq G, \chi$ be a linear complex character of $K$, and
$\chi^{G}$ the induced character on $G$.
If $\chi^{G}$ is irreducible, then the primitive central idempotent of $\mathbb{Q} G$ associated with $\chi^{G}$ is

$$
e_{\mathbb{Q}}\left(\chi^{G}\right)=\frac{\left[\operatorname{Cen}_{G}(\varepsilon(K, H)): K\right]}{\left[\mathbb{Q}(\chi): \mathbb{Q}\left(\chi^{G}\right)\right]} \sum_{g} \varepsilon(K, H)^{g}
$$

(where $H=k e r \chi$ and the sum is over all distinct $G$ - conjugates of $\varepsilon(K, H))$

## My Recent Joint Work with I.B.S.Passi

## Definition

A complex irreducible character $\chi$ of a finite group $G$, with an affording representation $\rho$, is defined to have the property $\mathcal{P}$ if for all $g \in G$, either
$\chi(g)=0$ or all the eigen-values of $\rho(g)$ have the same order.

We have derived explicit expression for the primitive central idempotent
of OrG] associated with a complex irreducible character having the
property $\mathcal{P}$. Several consequences of this result are then obtained

## My Recent Joint Work with I.B.S.Passi

## Definition

A complex irreducible character $\chi$ of a finite group $G$, with an affording representation $\rho$, is defined to have the property $\mathcal{P}$ if for all $g \in G$, either $\chi(g)=0$ or all the eigen-values of $\rho(g)$ have the same order.

We have derived explicit expression for the primitive central idempotent
OT[G] associated with a complex irreducible character having the
property $\mathcal{P}$. Several consequences of this result are then obtained.

## My Recent Joint Work with I.B.S.Passi

## Definition

A complex irreducible character $\chi$ of a finite group $G$, with an affording representation $\rho$, is defined to have the property $\mathcal{P}$ if for all $g \in G$, either $\chi(g)=0$ or all the eigen-values of $\rho(g)$ have the same order.

We have derived explicit expression for the primitive central idempotent of $\mathbb{Q}[G]$ associated with a complex irreducible character having the property $\mathcal{P}$. Several consequences of this result are then obtained.

## Some equivalent conditions for $\chi \in \operatorname{Irr}(G)$ to have the property $\mathcal{P}$.

> Let $\chi \in \operatorname{Irr}(G)$ and $\rho$ a representation of $G$ affording the character $\chi$. Let

$\bar{p}$ denote the corresponding induced representation of $G / \operatorname{ker}(\chi)$ and $\bar{\chi}$
the character of $\bar{\rho}$. For $g \in G$, the following statements are equivalent:
(i) All the eigen-values of $\rho(g)$ are of the same order.
(ii) $\bar{\rho}$ maps all primitive central idempotents of the rational group algebra $\mathbb{Q}\left[/ \operatorname{ker}^{\prime}(\chi) g^{-1]}\right.$ to zero, except the idempotent $\epsilon(\langle\operatorname{ker}(\chi) g\rangle, 1)$, which gets mapped to the identity matrix (ii) $\bar{\chi}^{1}\langle\operatorname{ker}(\chi) g\rangle$ is a sum of faithful irreducible characters of $\langle\operatorname{ker}(\chi) g\rangle$

## Some equivalent conditions for $\chi \in \operatorname{Irr}(G)$ to have the property $\mathcal{P}$.

Let $\chi \in \operatorname{Irr}(G)$ and $\rho$ a representation of $G$ affording the character $\chi$. Let $\bar{\rho}$ denote the corresponding induced representation of $G / \operatorname{ker}(\chi)$ and $\bar{\chi}$ the character of $\bar{\rho}$. For $g \in G$, the following statements are equivalent:
> (i) All the eigen-values of $\rho(g)$ are of the same order.
> (ii) $\bar{\rho}$ maps all primitive central idempotents of the rational group algebra ©r[/ker'( $\left.\chi^{\prime} g^{-1}\right]$ to zero, except the idempotent $\epsilon(\langle\operatorname{ker}(\chi) g\rangle, 1)$, which gets mapped to the identity matrix (ii) $\bar{\chi}\langle\operatorname{ker}(\chi) g\rangle$ is a sum of faithful irreducible characters of $\langle\operatorname{ker}(\chi) g\rangle$

## Some equivalent conditions for $\chi \in \operatorname{Irr}(G)$ to have the property $\mathcal{P}$.

Let $\chi \in \operatorname{Irr}(G)$ and $\rho$ a representation of $G$ affording the character $\chi$. Let $\bar{\rho}$ denote the corresponding induced representation of $G / \operatorname{ker}(\chi)$ and $\bar{\chi}$ the character of $\bar{\rho}$. For $g \in G$, the following statements are equivalent:
(i) All the eigen-values of $\rho(g)$ are of the same order.
(ii) $\bar{\rho}$ maps all primitive central idempotents of the rational group algebra $\mathbb{Q}[\langle\operatorname{ker}(\chi) g\rangle]$ to zero, except the idempotent $\epsilon(\langle\operatorname{ker}(\chi) g\rangle, 1)$, which gets mapped to the identity matrix (ii) $\left.\bar{\chi}\right|_{\langle\operatorname{ker}(\chi) g\rangle}$ is a sum of faithful irreducible characters of $\langle\operatorname{ker}(\chi) g\rangle$

## Some equivalent conditions for $\chi \in \operatorname{Irr}(G)$ to have the property $\mathcal{P}$.

Let $\chi \in \operatorname{Irr}(G)$ and $\rho$ a representation of $G$ affording the character $\chi$. Let $\bar{\rho}$ denote the corresponding induced representation of $G / \operatorname{ker}(\chi)$ and $\bar{\chi}$ the character of $\bar{\rho}$. For $g \in G$, the following statements are equivalent: (i) All the eigen-values of $\rho(g)$ are of the same order.
(ii) $\bar{\rho}$ maps all primitive central idempotents of the rational group algebra $\mathbb{Q}[\langle\operatorname{ker}(\chi) g\rangle]$ to zero, except the idempotent $\epsilon(\langle\operatorname{ker}(\chi) g\rangle, 1)$, which gets mapped to the identity matrix .
(ii) $\bar{\chi} \mid\langle\operatorname{ker}(\chi) g\rangle$ is a sum of faithful irreducible characters of $\langle\operatorname{ker}(\chi) g\rangle$.

## Some equivalent conditions for $\chi \in \operatorname{Irr}(G)$ to have the property $\mathcal{P}$.

Let $\chi \in \operatorname{Irr}(G)$ and $\rho$ a representation of $G$ affording the character $\chi$. Let $\bar{\rho}$ denote the corresponding induced representation of $G / \operatorname{ker}(\chi)$ and $\bar{\chi}$ the character of $\bar{\rho}$. For $g \in G$, the following statements are equivalent: (i) All the eigen-values of $\rho(g)$ are of the same order.
(ii) $\bar{\rho}$ maps all primitive central idempotents of the rational group algebra $\mathbb{Q}[\langle\operatorname{ker}(\chi) g\rangle]$ to zero, except the idempotent $\epsilon(\langle\operatorname{ker}(\chi) g\rangle, 1)$, which gets mapped to the identity matrix .
(ii) $\left.\bar{\chi}\right|_{\langle\operatorname{ker}(\chi) g\rangle}$ is a sum of faithful irreducible characters of $\langle\operatorname{ker}(\chi) g\rangle$.

## Some equivalent conditions for $\chi \in \operatorname{Irr}(G)$ to have the property $\mathcal{P}$.

Let $\chi \in \operatorname{Irr}(G)$ and $\rho$ a representation of $G$ affording the character $\chi$. Let $\bar{\rho}$ denote the corresponding induced representation of $G / \operatorname{ker}(\chi)$ and $\bar{\chi}$ the character of $\bar{\rho}$. For $g \in G$, the following statements are equivalent: (i) All the eigen-values of $\rho(g)$ are of the same order.
(ii) $\bar{\rho}$ maps all primitive central idempotents of the rational group algebra $\mathbb{Q}[\langle\operatorname{ker}(\chi) g\rangle]$ to zero, except the idempotent $\epsilon(\langle\operatorname{ker}(\chi) g\rangle, 1)$, which gets mapped to the identity matrix .
(ii) $\left.\bar{\chi}\right|_{\langle\operatorname{ker}(\chi) g\rangle}$ is a sum of faithful irreducible characters of $\langle\operatorname{ker}(\chi) g\rangle$.

## Theorem 1 (Bakshi-Passi, 2010)

Let $G$ be a finite group and $\chi$ a complex irreducible character of a group
$G$ satisfying the property $\mathcal{P}$. Then the primitive central idempotent
$e_{\mathbb{Q}}(\chi)$ of $\mathbb{Q}[G]$ associated with $\chi$ is given by

where, for $g \in G, d(g)$ denotes the order of $g$ modulo $\operatorname{ker}(\chi), \mu$ and $\phi$ denote respectively the Möbius mu and Euler phi function.

## Theorem 1 (Bakshi-Passi, 2010)

Let $G$ be a finite group and $\chi$ a complex irreducible character of a group
$G$ satisfying the property $\mathcal{P}$. Then the primitive central idempotent $e_{\mathbb{Q}}(\chi)$ of $\mathbb{Q}[G]$ associated with $\chi$ is given by

$$
e_{\mathbb{Q}}(\chi)=\frac{1}{\sum_{g \in G, \chi(g) \neq 0}\left(\frac{\mu(d(g))}{\phi(d(g))}\right)^{2}} \sum_{g \in G, \chi(g) \neq 0} \frac{\mu(d(g))}{\phi(d(g))} g,
$$

where, for $g \in G, d(g)$ denotes the order of $g$ modulo $\operatorname{ker}(\chi), \mu$ and $\phi$ denote respectively the Möbius mu and Euler phi function.

## key Lemmas

## Lemma 1

Let $\zeta$ be a primitive $n$-th root of unity, $n \geq 1$. Then

$$
\sum_{1<i<n(i n)=1} \zeta^{i}=\mu(n)
$$

## Lemma 2

Let $G$ be a group of order $n$ and $\zeta$ be a primitive $n$-th root of unity. If $\chi \in \operatorname{lrr}(G)$ and $g \in G$ are such that all the eigen-values of $\rho(g)$ have the same order then


## key Lemmas

## Lemma 1

Let $\zeta$ be a primitive $n$-th root of unity, $n \geq 1$. Then

$$
\sum_{1 \leq i \leq n,(i, n)=1} \zeta^{i}=\mu(n)
$$

Lemma 2
Let $G$ be a group of order $n$ and $\zeta$ be a primitive $n$-th root of unity. If $\chi \in \operatorname{Irr}(G)$ and $g \in G$ are such that all the eigen-values of $\rho(g)$ have the same order, then

$$
\sum_{\sigma \in \operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})} \sigma(\chi(g))=\mu(d) \chi(1) \frac{\phi(n)}{\phi(d)},
$$

## Proof of the Theorem

Let $\zeta$ be a primitive o(G)-th root of unity. From the classical method used to compute the primitive central idempotents of $\mathbb{Q}[G]$ associated with $\chi$, we have


## Proof of the Theorem

Let $\zeta$ be a primitive o(G)-th root of unity. From the classical method used to compute the primitive central idempotents of $\mathbb{Q}[G]$ associated with $\chi$, we have

$$
e_{\mathbb{Q}}(\chi)=\sum_{\sigma \in \operatorname{Gal}(\mathbb{Q}(\chi) / \mathbb{Q})} e(\sigma \circ \chi)
$$



## Proof of the Theorem

Let $\zeta$ be a primitive $\mathrm{o}(\mathrm{G})$-th root of unity. From the classical method used to compute the primitive central idempotents of $\mathbb{Q}[G]$ associated with $\chi$, we have

$$
\begin{aligned}
e_{\mathbb{Q}}(\chi) & =\sum_{\sigma \in G a l(\mathbb{Q}(\chi) / \mathbb{Q})} e(\sigma \circ \chi) \\
& =\frac{\chi(1)}{o(G)} \sum_{g \in G}\left(\sum_{\sigma \in G a /(\mathbb{Q}(\chi) / \mathbb{Q})} \sigma(\chi(g))\right) g^{-1} \\
& =\frac{\chi(1)}{o(G)} \sum_{g \in G, \chi(g) \neq 0}\left(\sum_{\sigma \in G a /(\mathbb{Q}(\chi) / \mathbb{Q})} \sigma(\chi(g))\right) g^{-1}
\end{aligned}
$$

## Proof of the Theorem

Let $\zeta$ be a primitive o(G)-th root of unity. From the classical method used to compute the primitive central idempotents of $\mathbb{Q}[G]$ associated with $\chi$, we have

$$
\begin{aligned}
e_{\mathbb{Q}}(\chi) & =\sum_{\sigma \in \operatorname{Gal}(\mathbb{Q}(\chi) / \mathbb{Q})} e(\sigma \circ \chi) \\
& =\frac{\chi(1)}{o(G)} \sum_{g \in G}\left(\sum_{\sigma \in G a l(\mathbb{Q}(\chi) / \mathbb{Q})} \sigma(\chi(g))\right) g^{-1} \\
& =\frac{\chi(1)}{o(G)} \sum_{g \in G, \chi(g) \neq 0}\left(\sum_{\sigma \in \operatorname{Gal}(\mathbb{Q}(\chi) / \mathbb{Q})} \sigma(\chi(g))\right) g^{-1}
\end{aligned}
$$

$$
=\frac{\chi(1)}{o(G)} \sum_{g \in G, \chi(g) \neq 0} \frac{1}{[\mathbb{Q}(s): Q(\chi)]}\left(\sum_{\sigma \in G a(\mathbb{Q}(\zeta) / \mathbb{Q})} \sigma(\chi(g))\right) g^{-1},
$$



$$
\begin{aligned}
& =\frac{\chi(1)}{o(G)} \sum_{g \in G, \chi(g) \neq 0} \frac{1}{[\mathbb{Q}(\zeta): \mathbb{Q}(\chi)]}\left(\sum_{\sigma \in G a l(\mathbb{Q}(\zeta) / \mathbb{Q})} \sigma(\chi(g))\right) g^{-1}, \\
& =\frac{\chi(1)}{o(G)[\mathbb{Q}(\zeta): \mathbb{Q}(\chi)]} \sum_{g \in G, \chi(g) \neq 0} \mu(d(g)) \chi(1) \frac{\phi(n)}{\phi(d(g))} g^{-1}, \text { using Lemma } 2
\end{aligned}
$$



$$
\begin{aligned}
& =\frac{\chi(1)}{o(G)} \sum_{g \in G, \chi(g) \neq 0} \frac{1}{[\mathbb{Q}(\zeta): \mathbb{Q}(\chi)]}\left(\sum_{\sigma \in G a l(\mathbb{Q}(\zeta) / \mathbb{Q})} \sigma(\chi(g))\right) g^{-1}, \\
& =\frac{\chi(1)}{o(G)[\mathbb{Q}(\zeta): \mathbb{Q}(\chi)]} \sum_{g \in G, \chi(g) \neq 0} \mu(d(g)) \chi(1) \frac{\phi(n)}{\phi(d(g))} g^{-1}, \text { using Lemma } 2 \\
& =\frac{(\chi(1))^{2} \phi(n)}{o(G)[\mathbb{Q}(\zeta): \mathbb{Q}(\chi)]} \sum_{g \in G, \chi(g) \neq 0} \frac{\mu(d(g))}{\phi(d(g))} g^{-1} \\
& =\frac{\left((f(1))^{2} \phi(n)\right.}{o(G)(C(s): Q(\chi)]}
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{\chi(1)}{o(G)} \sum_{g \in G, \chi(g) \neq 0} \frac{1}{[\mathbb{Q}(\zeta): \mathbb{Q}(\chi)]}\left(\sum_{\sigma \in G a l(\mathbb{Q}(\zeta) / \mathbb{Q})} \sigma(\chi(g))\right) g^{-1}, \\
= & \frac{\chi(1)}{o(G)[\mathbb{Q}(\zeta): \mathbb{Q}(\chi)]} \sum_{g \in G, \chi(g) \neq 0} \mu(d(g)) \chi(1) \frac{\phi(n)}{\phi(d(g))} g^{-1}, \text { using Lemma } 2 \\
= & \frac{(\chi(1))^{2} \phi(n)}{o(G)[\mathbb{Q}(\zeta): \mathbb{Q}(\chi)]} \sum_{g \in G, \chi(g) \neq 0} \frac{\mu(d(g))}{\phi(d(g))} g^{-1} \\
= & \frac{(\chi(1))^{2} \phi(n)}{o(G)[\mathbb{Q}(\zeta): \mathbb{Q}(\chi)]} \sum_{g \in G, \chi(g) \neq 0} \frac{\mu(d(g))}{\phi(d(g))} g \\
& \left(a s \chi(g) \neq 0 \Leftrightarrow \chi\left(g^{-1}\right) \neq 0 \text { and } d(g)=d\left(g^{-1}\right)\right) .
\end{aligned}
$$

Since $e_{\mathbb{Q}}(\chi)^{2}=e_{\mathbb{Q}}(\chi)$, we obtain, by comparing the coefficient of 1 on both sides of this equation we get that

$$
\frac{(\chi(1))^{2} \phi(n)}{o(G)[\mathbb{Q}(\zeta): \mathbb{Q}(\chi)]}=\frac{1}{\sum_{g \in G, \chi(g) \neq 0}\left(\frac{\mu(d(g))}{\phi(d(g))}\right)^{2}},
$$

which completes the proof of our theorem.

## Some Consequences

## Notation.

Let $H \unlhd G$, and $K / H=\langle H a\rangle$ a cyclic subgroup of $G / H$.

- If $K \neq H$ and $o(K / H)=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{n}^{\alpha_{n}}$, $p_{i}$ 's distinct primes, $\alpha_{i}$ 's
$\geq 1$, we define

where, for any $g \in L, d(g)$ is the order of $g$ modulo $H$ and $L / H$ is
the subgroup of $K / H$ of order $p_{1} p_{2} \ldots p_{n}$.
- Set $E_{H, H}=\hat{H}$.


## Notation.

Let $H \unlhd G$, and $K / H=\langle H a\rangle$ a cyclic subgroup of $G / H$.

- If $K \neq H$ and $o(K / H)=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{n}^{\alpha_{n}}, p_{i}$ 's distinct primes, $\alpha_{i}$ 's
$\geq 1$, we define

$$
E_{H, K}:=\frac{\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{n}-1\right)}{o(H) p_{1} p_{2} \cdots p_{n}} \sum_{g \in L} \frac{\mu(d(g))}{\phi(d(g))} g
$$

where, for any $g \in L, d(g)$ is the order of $g$ modulo $H$ and $L / H$ is the subgroup of $K / H$ of order $p_{1} p_{2} \ldots p_{n}$.

- Set $E_{H, H}=\hat{H}$.


## Notation.

Let $H \unlhd G$, and $K / H=\langle H a\rangle$ a cyclic subgroup of $G / H$.

- If $K \neq H$ and $o(K / H)=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{n}^{\alpha_{n}}, p_{i}$ 's distinct primes, $\alpha_{i}$ 's
$\geq 1$, we define

$$
E_{H, K}:=\frac{\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{n}-1\right)}{o(H) p_{1} p_{2} \cdots p_{n}} \sum_{g \in L} \frac{\mu(d(g))}{\phi(d(g))} g
$$

where, for any $g \in L, d(g)$ is the order of $g$ modulo $H$ and $L / H$ is the subgroup of $K / H$ of order $p_{1} p_{2} \ldots p_{n}$.

- Set $E_{H, H}=\hat{H}$.
$\chi \in \operatorname{Irr}(G)$,
$Z(\chi) / \operatorname{ker}(\chi):=Z(G / \operatorname{ker}(\chi))$.

It is known that $Z(G / \operatorname{ker}(\chi))$ is cyclic and $\chi(1)^{2} \leq[G: Z(\chi)]$.
$\chi \in \operatorname{Irr}(G)$,
$Z(\chi) / \operatorname{ker}(\chi):=Z(G / \operatorname{ker}(\chi))$.

It is known that $Z(G / \operatorname{ker}(\chi))$ is cyclic and $\chi(1)^{2} \leq[G: Z(\chi)]$.
We determine the primitive central idempotent of $\mathbb{Q}[G]$ associated with $\chi$ provided $\chi(1)^{2}=[G: Z(\chi)]$.

## Corollary 1

Let $\chi$ be an irreducible character of a group $G$ of degree $\sqrt{[G: Z(\chi)]}$.
Then

$$
e_{\mathbb{Q}}(\chi)=E_{\mathrm{ker}(\chi), z(\chi)} .
$$

## If, in addition, $o(Z(\chi) / \operatorname{ker}(\chi))=p^{k}$ for some prime $p$ and $k \geq 1$, then

$$
e_{\mathbb{Q}}(\chi)=\hat{\operatorname{ker}}(\chi)-\hat{L},
$$

where $L / \operatorname{ker}(\chi)$ is the unique subgroup of $Z(G / \operatorname{ker}(\chi))$ of order $p$.

## Corollary 1

Let $\chi$ be an irreducible character of a group $G$ of degree $\sqrt{[G: Z(\chi)]}$.
Then

$$
e_{\mathbb{Q}}(\chi)=E_{\mathrm{ker}(\chi), z(\chi)} .
$$

If, in addition, $o(Z(\chi) / \operatorname{ker}(\chi))=p^{k}$ for some prime $p$ and $k \geq 1$, then

$$
e_{\mathbb{Q}}(\chi)=\hat{\operatorname{ker}}(\chi)-\hat{L},
$$

where $L / \operatorname{ker}(\chi)$ is the unique subgroup of $Z(G / \operatorname{ker}(\chi))$ of order $p$.

## Corollary 2

If $\chi \in \operatorname{Irr}(\chi)$ with $\chi(1)^{2}=[G: Z(G)]$, then $e_{\mathbb{Q}}(\chi)=E_{\operatorname{ker}(\chi), Z(G)}$.

## Corollary 3

If $\chi \in \operatorname{Irr}(G)$ such that $G / Z(\chi)$ is abelian, then $E_{\operatorname{ker}(\chi), Z(\chi)}$ is the primitive central idempotent of $\mathbb{Q}[G]$ associated with $\chi$.

## Applications

## We now apply these results to write quite simple expressions of the

 primitive central idempotents in the rational group algebra $\mathbb{D}[G]$ of- an extra special p-group,
- a CM $_{p-1 \text {-group, }}$
- a nilpotent group of class $\leq 2$ and
- those associated with normally monomial irreducible characters.


## Applications

We now apply these results to write quite simple expressions of the primitive central idempotents in the rational group algebra $\mathbb{Q}[G]$ of

- an extra special p-group,
- a CM ${ }_{p-1}$-group,
- a nilpotent group of class $\leq 2$ and
- those associated with normally monomial irreducible characters.


## Applications

We now apply these results to write quite simple expressions of the primitive central idempotents in the rational group algebra $\mathbb{Q}[G]$ of

- an extra special p-group,
- a CM ${ }_{p-1 \text {-group, }}$
- a nilpotent group of class $\leq 2$ and
- those associated with normally monomial irreducible characters.


## Applications

We now apply these results to write quite simple expressions of the primitive central idempotents in the rational group algebra $\mathbb{Q}[G]$ of

- an extra special p-group,
- a $\mathrm{CM}_{p-1}$-group,
- a nilpotent group of class $\leq 2$ and
- those associated with normally monomial irreducible characters.


## Applications

We now apply these results to write quite simple expressions of the primitive central idempotents in the rational group algebra $\mathbb{Q}[G]$ of

- an extra special p-group,
- a $\mathrm{CM}_{p-1}$-group,
- a nilpotent group of class $\leq 2$ and
- those associated with normally monomial irreducible characters.


## Applications

We now apply these results to write quite simple expressions of the primitive central idempotents in the rational group algebra $\mathbb{Q}[G]$ of

- an extra special p-group,
- a $\mathrm{CM}_{p-1}$-group,
- a nilpotent group of class $\leq 2$ and
- those associated with normally monomial irreducible characters.


## Extra special p-groups

> Recall that a finite $p$-group $G$ is said to be extra special if (i) $G^{\prime}=Z(G)$,
> (ii) $o(Z(G))=p$, and
> (iii) $G / Z(G)$ is an elementary abelian group.

## Extra special p-groups

Recall that a finite $p$-group $G$ is said to be extra special if
(i) $G^{\prime}=Z(G)$,
(ii) $o(Z(G))=p$, and
(iii) $G / Z(G)$ is an elementary abelian group.

It is known that every extra special $p$-group has order $p^{2 n+1}$ for some positive integer $n$ and the irreducible complex representations of an extra special $p$-group $G$ of order $p^{2 n+1}$ are given as follows:
(i) There are exactly $p^{2 n}$ irreducible representations of dimension 1 ; these representations are just the ones corresponding to the representations of the abelian group $G / G^{\prime}$. (ii) There are exactly $p-1$ faithful irreducible characters $\chi_{i}$ of degree $p^{n}$, which vanish outside $Z(G)$ and satisfy $\chi_{i} \|_{Z(G)}=p^{n} \lambda_{i}, \lambda_{i}$ a faithful linear character of $Z(G)$. Note that all of these characters have the property $\mathcal{P}$

It is known that every extra special $p$-group has order $p^{2 n+1}$ for some positive integer $n$ and the irreducible complex representations of an extra special $p$-group $G$ of order $p^{2 n+1}$ are given as follows:
(i) There are exactly $p^{2 n}$ irreducible representations of dimension 1 ; these representations are just the ones corresponding to the representations of the abelian group $G / G^{\prime}$.
(ii) There are exactly $p-1$ faithful irreducible characters $\chi_{i}$ of degree $p^{n}$, which vanish outside $Z(G)$ and satisfy $\left.\chi_{i}\right|_{Z(G)}=p^{n} \lambda_{i}, \lambda_{i}$ a faithful linear
character of $Z(G)$
Note that all of these characters have the property $\mathcal{P}$

It is known that every extra special $p$-group has order $p^{2 n+1}$ for some positive integer $n$ and the irreducible complex representations of an extra special $p$-group $G$ of order $p^{2 n+1}$ are given as follows:
(i) There are exactly $p^{2 n}$ irreducible representations of dimension 1 ; these representations are just the ones corresponding to the representations of the abelian group $G / G^{\prime}$.
(ii) There are exactly $p-1$ faithful irreducible characters $\chi_{i}$ of degree $p^{n}$, which vanish outside $Z(G)$ and satisfy $\left.\chi_{i}\right|_{Z(G)}=p^{n} \lambda_{i}, \lambda_{i}$ a faithful linear character of $Z(G)$.

Note that all of these characters have the property $\mathcal{P}$

It is known that every extra special $p$-group has order $p^{2 n+1}$ for some positive integer $n$ and the irreducible complex representations of an extra special $p$-group $G$ of order $p^{2 n+1}$ are given as follows:
(i) There are exactly $p^{2 n}$ irreducible representations of dimension 1 ; these representations are just the ones corresponding to the representations of the abelian group $G / G^{\prime}$.
(ii) There are exactly $p-1$ faithful irreducible characters $\chi_{i}$ of degree $p^{n}$, which vanish outside $Z(G)$ and satisfy $\left.\chi_{i}\right|_{Z(G)}=p^{n} \lambda_{i}, \lambda_{i}$ a faithful linear character of $Z(G)$.

Note that all of these characters have the property $\mathcal{P}$.

If $\chi$ is one of the linear characters as listed in (i) above and $H=\operatorname{ker}(\chi)$, then, $G / H$ is cyclic and by Theorem 1 and arguing as in Corollary 1 , it follows that

$$
e_{\mathbb{Q}}(\chi)= \begin{cases}\hat{G} & \text { if } \operatorname{ker}(\chi)=G \\ \hat{H}-\hat{L} & \text { if } \operatorname{ker}(\chi) \neq G\end{cases}
$$

where $L / H$ is the subgroup of $G / H$ of order $p$. Also we note that for any normal subgroup $H$ of $G$ with $G / H$ cyclic, there is a linear character in the list (i) above with $\operatorname{ker}(\chi)=H$.

If $\chi$ is any of the $p-1$ faithful irreducible characters as listed in (ii) above, then by Theorem 1, it turns out that $e_{\mathbb{Q}}(\chi)=1-Z(G)$. Note

If $\chi$ is one of the linear characters as listed in (i) above and $H=\operatorname{ker}(\chi)$, then, $G / H$ is cyclic and by Theorem 1 and arguing as in Corollary 1 , it follows that

$$
e_{\mathbb{Q}}(\chi)= \begin{cases}\hat{G} & \text { if } \operatorname{ker}(\chi)=G \\ \hat{H}-\hat{L} & \text { if } \operatorname{ker}(\chi) \neq G\end{cases}
$$

where $L / H$ is the subgroup of $G / H$ of order $p$. Also we note that for any normal subgroup $H$ of $G$ with $G / H$ cyclic, there is a linear character in the list (i) above with $\operatorname{ker}(\chi)=H$.

If $\chi$ is any of the $p-1$ faithful irreducible characters as listed in (ii) above, then by Theorem 1, it turns out that $e_{\mathbb{Q}}(\chi)=1-Z \hat{(G)}$.
that the primitive central idempotents $\hat{G}$

If $\chi$ is one of the linear characters as listed in (i) above and $H=\operatorname{ker}(\chi)$, then, $G / H$ is cyclic and by Theorem 1 and arguing as in Corollary 1 , it follows that

$$
e_{\mathbb{Q}}(\chi)= \begin{cases}\hat{G} & \text { if } \operatorname{ker}(\chi)=G \\ \hat{H}-\hat{L} & \text { if } \operatorname{ker}(\chi) \neq G\end{cases}
$$

where $L / H$ is the subgroup of $G / H$ of order $p$. Also we note that for any normal subgroup $H$ of $G$ with $G / H$ cyclic, there is a linear character in the list (i) above with $\operatorname{ker}(\chi)=H$.

If $\chi$ is any of the $p-1$ faithful irreducible characters as listed in (ii) above, then by Theorem 1, it turns out that $e_{\mathbb{Q}}(\chi)=1-Z \hat{(G)}$. Note that the primitive central idempotents $\hat{G}, 1-Z \hat{(G)}, \hat{H}-\hat{L}$, where $H$ runs through all proper subgroups of $G$ such that $G / H$ is cyclic and $L / H$ is the subgroup of $G / H$ of order $p$, are all distinct. Therefore, we have the following:

## Theorem 2

If $G$ is an extra special $p$-group, then all the primitive central idempotents of $\mathbb{Q}[G]$ are given by

$$
\hat{G}, 1-Z \hat{(G)} \text { and } \hat{H}-\hat{L},
$$

where $H$ runs through all the proper normal subgroups $H$ of $G$ with $G / H$ cyclic and $L / H$ is the unique subgroup of $G / H$ of order $p$.

## $\mathrm{CM}_{p-1}$ groups

Recall that a $p$-group $G$ is called a $\mathrm{CM}_{p-1}$-group if every proper normal subgroup $H$ of $G$ with $Z(G / H)$ cyclic is the kernel of exactly $p-1$ irreducible characters of $G$.

It is known that every non-principal irreducible character of a

## $\mathrm{CM}_{p-1}$ groups

Recall that a $p$-group $G$ is called a $\mathrm{CM}_{p-1}$-group if every proper normal subgroup $H$ of $G$ with $Z(G / H)$ cyclic is the kernel of exactly $p-1$ irreducible characters of $G$.

It is known that every non-principal irreducible character of a $\mathrm{CM}_{p-1}$-group $G$ satisfies $\chi(1)^{2}=[G: Z(\chi)]$.

## Thus as an immediate consequence of Corollary 1 , we have the following :

## Theorem 3

If $G$ is a $\mathrm{CM}_{p-1}$-group, then all the primitive central idempotents of
$\mathbb{Q}[G]$ are given by

$$
\hat{G} \text { and } \hat{H}-\hat{L} \text {, }
$$

where $H$ runs over all proper normal subgroups of $G$ with $Z(G / H)$ cyclic and $L / H$ is the unique subgroup of $Z(G / H)$ of order $p$.

## Nilpotent groups of class $\leq 2$

For an abelian group $G$, it is known that there is 1-1 correspondence between the primitive (central) idempotents of $\mathbb{Q}[G]$ and the (normal) subgroups $H$ of $G$ such that $G / H$ is cyclic; the following theorem extends this result to nilpotent groups of class $\leq 2$.

Theorem 4 Let $G$ be a nilpotent group of class $\leq 2$. Then there is $1-1$ correspondence between the primitive central idempotents of $\mathbb{Q}[G]$ and the normal subgroups $H$ of $G$ such that $Z(G / H)$ is cyclic. Noreover, for a normal subgroup $H$ of $G$ with $Z(G / H)$ cyclic, $E_{H, Z}$ is the primitive centrai idempotent of O[G] which is associated with it, where

## Nilpotent groups of class $\leq 2$

For an abelian group $G$, it is known that there is 1-1 correspondence between the primitive (central) idempotents of $\mathbb{Q}[G]$ and the (normal) subgroups $H$ of $G$ such that $G / H$ is cyclic; the following theorem extends this result to nilpotent groups of class $\leq 2$.

Theorem 4 Let $G$ be a nilpotent group of class $\leq 2$. Then there is $1-1$ correspondence between the primitive central idempotents of $\mathbb{Q}[G]$ and the normal subgroups $H$ of $G$ such that $Z(G / H)$ is cyclic. Moreover, for a normal subgroup $H$ of $G$ with $Z(G / H)$ cyclic, $E_{H, z}$ is the primitive central idempotent of $\mathbb{Q}[G]$ which is associated with it, where $Z / H=Z(G / H)$.

## Monomial irreducible characters

$K$ be a subgroup of a group $G$
$\chi_{K}$ : a linear character on $K$
$\chi_{K}^{G}$ : the induced character on $G$ (such a character of $G$ is called a monomial character)

If $\chi_{K}^{G} \in \operatorname{Irr}(G)$, Oliveri, Rio and Simon(2004) obtained an expression of the primitive central idempotent $e_{\mathbb{Q}}\left(\chi_{K}^{G}\right)$ of $\mathbb{Q}[G]$
associated with $\chi_{k}^{G}$

## Monomial irreducible characters

$K$ be a subgroup of a group $G$
$\chi_{K}$ : a linear character on $K$
$\chi_{K}^{G}$ : the induced character on $G$ (such a character of $G$ is
called a monomial character)
If $\chi_{k}^{G} \in \operatorname{Irr}(G)$, Oliveri, Rio and Simon(2004) obtained an
expression of the primitive central idempotent $\mathbb{e}_{\mathbb{Q}}\left(\chi_{K}^{G}\right)$ of $\mathbb{Q}[G]$
associated with $\chi_{K}^{G}$.

Here is a more simplified expression of $e_{\mathbb{Q}}\left(\chi_{K}^{G}\right)$, when $K$ and $\operatorname{ker}\left(\chi_{K}\right)$ are both normal subgroups of $G$.

Theorem 5 Let $\chi_{K}^{G}$ be a monomial irreducible character of a group $G$. If $K$ and $H=\operatorname{ker}\left(\chi_{K}\right)$ are both normal in $G$, then If, in addition, $o(K / H)=p^{k}$ for some prime $p$ and $k \geq 1$, then
where $L / H$ is the unique subgroup of $K / H$ of order $p$.

Here is a more simplified expression of $e_{\mathbb{Q}}\left(\chi_{K}^{G}\right)$, when $K$ and $\operatorname{ker}\left(\chi_{K}\right)$ are both normal subgroups of $G$.

Theorem 5 Let $\chi_{k}^{G}$ be a monomial irreducible character of a group $G$. If $K$ and $H=\operatorname{ker}\left(\chi_{K}\right)$ are both normal in $G$, then

$$
e_{\mathbb{Q}}\left(\chi_{K}^{G}\right)=E_{H, K}
$$

. If, in addition, $o(K / H)=p^{k}$ for some prime $p$ and $k \geq 1$, then

$$
e_{\mathbb{Q}}\left(\chi_{K}^{G}\right)=E_{H, K}=\hat{H}-\hat{L},
$$

where $L / H$ is the unique subgroup of $K / H$ of order $p$.

## Shoda Pair, (Olivieri, Rio and Simon, 2004)

A pair $(H, K)$ of subgroups of $G$ is called a Shoda pair if it satisfies the following conditions:
(i) $H \unlhd K$,
(ii) $K / H$ is cyclic, and
(iii) if $g \in G$ and $[K, g] \cap K \subseteq H$, then $g \in K$.

By Shoda's Theorem (Shoda, 1933), if $\chi$ is a linear character of a subgroup $K$ of $G$ with kernel $H$, then the induced character $\chi^{G}$ is irreducible if and only if $(H, K)$ is a Shoda pair (Olivieri, Rio and Simon, 2004).

## As an immediate consequence of Theorem 5, we have the following:

## Corollary

If $(H, K)$ is a Shoda pair in $G$ with $H, K \unlhd G$, then $E_{H, K}$ is a primitive central idempotent of $\mathbb{Q}[G]$.

It may be noted that our expressions for primitive central idempotents in these results are quite simple and, as such, may possibly be of help in further studies.

## THANK YOU

