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Abstract. This paper studies Batyrev’s notion of primitive collection. We use primi-
tive collections to characterize the nef cone of a quasi-projective toric variety whose fan has
convex support, a result stated without proof by Batyrev in the smooth projective case. When
the fan is non-simplicial, we modify the definition of primitive collection and explain how our
definition relates to primitive collections of simplicial subdivisons. The paper ends with an
open problem.

Introduction. Let X be the toric variety of a fan Σ . When X is smooth and projective,
Batyrev [1] defines a collection {ρ1, . . . , ρk} of 1-dimensional cones of Σ to be a primitive
collection provided it does not span a cone of Σ but every proper subset does. Each primitive
collection gives a primitive inequality, and one of the nice results of [1] states that the nef
cone of X is defined by the primitive inequalities. For a proof, Batyrev cited the work of Oda
and Park [12] and Reid [14], without giving details.

The survey article [3] by the first author notes that Batyrev’s theorem applies to simplicial
projective toric varieties. Casagrande [2] and Sato [15] explain how primitive collections
relate to Reid’s paper [14], and Kresch [9] gives a proof in the smooth case. However, a
complete proof of Batyrev’s result in the simplicial case has never appeared in print. In this
paper, we give two proofs of Batyrev’s theorem, one based on [9] and the other on [14].
We also extend the definition of primitive collection to the non-simplicial case and show that
primitive collections still have the required properties. Our results apply to all quasi-projective
toric varieties whose fans have convex support of maximal dimension.

NOTATION. We use standard notation and terminology for toric varieties. Let N and
M = HomZ(N,Z) be dual lattices of rank n with associated real vector spaces NR = N⊗ZR

and MR = M ⊗Z R.
Let X = XΣ be a toric variety of a fan Σ in NR

∼= Rn. We always assume that the
support |Σ| of Σ is convex of dimension n. Hence all maximal cones have dimension n.

Given Σ , Σ(k) denotes the set of k-dimensional cones of Σ , and Σ(k)◦ is the subset of
Σ(k) consisting of k-dimensional cones not lying on the boundary of |Σ|. An interior wall is
an element of Σ(n − 1)◦. Also, σ(k) denotes the set of k-dimensional faces of a cone σ .

We use the convention that ρ will denote both an element of Σ(1) and its primitive
generator in N . The torus-invariant divisor associated to ρ is denoted Dρ .
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Also recall that a piecewise linear function φ can be represented by giving mσ ∈ MR

for each σ ∈ Σ(n), i.e., φ(u) = 〈mσ , u〉 if u ∈ σ . We define PL(Σ) as the vector space of
all piecewise linear functions on Σ . The function φ is well-defined in PL(Σ) if and only if
the following statement holds: if τ is an interior wall and σ , σ ′ are the n-dimensional cones
on each side of τ , then mσ − mσ ′ ∈ τ⊥. The support function φ of a torus-invariant Cartier
divisor D satisfies D = ∑

ρ φ(ρ)Dρ . Note the absence of minus signs.
For us, φ is convex if and only if φ(u) + φ(v) ≥ φ(u + v) for all u, v ∈ |Σ|. We also

define CPL(Σ) ⊂ PL(Σ) to be the cone consisting of all convex piecewise linear functions on
Σ . A function φ ∈ PL(Σ) is strictly convex when φ(u) + φ(v) > φ(u + v) for all u, v ∈ |Σ|
not lying in the same cone of Σ . The toric variety X is quasi-projective if and only if there
exists a strictly convex φ ∈ PL(Σ). When this happens, the interior of CPL(Σ) is nonempty
and consists of all strictly convex piecewise linear functions in PL(Σ).

OUTLINE OF THE PAPER. In Section 1, we give a new definition of primitive collection
and state our main theorem. We also recall the nef and Mori cones and review the description
of the Mori cone in terms of the wall relations coming from interior walls. In Section 2,
we prove Batyrev’s theorem in the simplicial case, and then we treat the non-simplicial case
in Section 3. This section also studies how primitive collections for Σ relate to primitive
collections for a simplicial subdivision Σ ′ of Σ . The final section of the paper explores an
open problem dealing with the quasi-projective hypothesis.

1. Primitive collections and the main theorem.
1.1. Primitive collections. The nef cone Nef(X) of X is the quotient of the cone

CPL(Σ) ⊂ PL(Σ) by all linear functions on Σ . Thus

Nef(X) ⊂ Pic(X)R = Pic(X) ⊗Z R .

Here is the central definition of our paper.

DEFINITION 1.1. A subset {ρ1, . . . , ρk} ⊂ Σ(1) is called a primitive collection for Σ

if {ρ1, . . . , ρk} is not contained in a single cone of Σ but every proper subset is.

REMARK 1.2. In the smooth projective case, Batyrev defined {ρ1, . . . , ρk} ⊂ Σ(1) to
be a primitive collection when {ρ1, . . . , ρk} does not generate a cone of Σ but every proper
subset does. When Σ is smooth or more generally simplicial, this is clearly equivalent to
Definition 1.1.

DEFINITION 1.3. Let {ρ1, . . . , ρk} be a primitive collection. We say that φ ∈ PL(Σ)

satisfies the primitive inequality for {ρ1, . . . , ρk} if

φ(ρ1) + · · · + φ(ρk) ≥ φ(ρ1 + · · · + ρk) .

If φ ∈ PL(Σ) is convex, i.e., if φ is in CPL(Σ), then φ clearly satisfies the primitive
inequality for every primitive collection. In other words,

CPL(Σ) ⊂ {φ ∈ PL(Σ) ; φ(ρ1) + · · · + φ(ρk) ≥ φ(ρ1 + · · · + ρk)

for all primitive collections {ρ1, . . . , ρk} for Σ} .
(1)
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The main result of our paper is that the inclusion (1) is in fact an equality, i.e., the nef cone is
defined by the primitive inequalities. Here is the precise statement.

THEOREM 1.4 (Main theorem). Let X be a quasi-projective toric variety coming
from the fan Σ in NR

∼= Rn. If |Σ| is convex of dimension n, then

CPL(Σ) = {φ ∈ PL(Σ) ; φ(ρ1) + · · · + φ(ρk) ≥ φ(ρ1 + · · · + ρk)

for all primitive collections {ρ1, . . . , ρk} for Σ} .

Section 2 will prove Theorem 1.4 when X is simplicial and Section 3 will treat the non-
simplicial case.

1.2. The Mori cone. The proof of the main theorem will use extremal rays. Hence we
need recall the Mori cone of a toric variety. Although this material is well-known to experts,
we include many details since the results we need do not appear explicitly in the literature.
We begin with the exact sequence

0 → MR → PL(Σ) → Pic(X)R → 0

which dualizes to

0 → N1(X) → PL(Σ)∗ → NR → 0

where PL(Σ)∗ denotes the dual of PL(Σ) and N1(X) is the dual of Pic(X)R . The cone
CPL(Σ) ⊂ PL(Σ) contains the image of MR and hence dualizes to a cone

NE(X) = CPL(Σ)∨ ⊂ N1(X) ⊂ PL(Σ)∗ .

We call NE(X) the Mori cone of X. When X is quasi-projective, Nef(X) has maximal di-
mension in Pic(X)R , so that the Mori cone NE(X) ⊂ N1(X) is strongly convex. The unique
minimal generators of the Mori cone are called extremal ray generators.

We now review the combinatorial description of NE(X) in terms of the interior walls of
Σ . The basic observation is that relations among elements of Σ(1) give elements of N1(X).
The map φ ∈ PL(Σ) �→ (φ(ρ))ρ ∈ RΣ(1) gives a commutative diagram

0 �� MR
�� RΣ(1) �� An−1(X)R �� 0

0 �� MR
��

��

PL(Σ) ��

��

Pic(X)R ��

��

0

where An−1(X) is the Chow group of (n − 1)-cycles modulo rational equivalence. This dual-
izes to

0 �� An−1(X)∗R ��

��

RΣ(1)∗ ��

��

NR
��

��

0

0 �� N1(X) �� PL(Σ)∗ �� NR
��

��

0 .

In the top row, the map RΣ(1)∗ → NR sends the standard basis element eρ to ρ ∈ N . Thus
An−1(X)∗R can be interpreted as all linear relations among the ρ’s in Σ(1), and the surjective
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map An−1(X)∗R → N1(X) shows that every element of N1(X) comes from a linear relation
among the ρ’s in Σ(1).

Interior walls of Σ give the following linear relations. Given an interior wall τ , let σ

and σ ′ be the n-dimensional cones on each side of τ , i.e., τ = σ ∩ σ ′. Pick n − 1 linearly
independent vectors ρ1, . . . , ρn−1 in τ (1) and pick vectors ρn ∈ σ(1) \ τ (1), ρn+1 ∈ σ ′(1) \
τ (1). Then there is a nontrivial relation

n+1∑
i=1

aiρi = 0 , ai ∈ Q, an, an+1 > 0 ,(2)

where the final condition holds since ρn and ρn+1 lie on opposite sides of the wall. Hence
the coefficients a1, . . . , an+1 are unique up to multiplication by a positive constant. Let aτ ∈
RΣ(1)∗ have components (aτ )ρi = ai for i = 1, . . . , n + 1 and (aτ )ρ = 0 otherwise. Using
the above diagram, we see that aτ ∈ A1(X)R .

DEFINITION 1.5. Depending on the context, we use the term wall relation to refer to
the equation (2), the vector aτ ∈ An−1(X)∗R , or its image lτ ∈ N1(X).

Notice that in the non-simplicial case, a given wall can have many choices for the
ρ1, . . . , ρn+1 in the wall relation (2), while in the simplicial case, ρ1, . . . , ρn+1 are uniquely
determined by the wall.

THEOREM 1.6. Let Σ be a fan in NR
∼= Rn with convex support of dimension n.

1. For τ ∈ Σ(n − 1)◦, the different choices of the wall relation (2) all give the same
lτ ∈ N1(X) up to a positive constant.

2. The Mori cone in N1(X) is given by

NE(X) =
∑

τ∈Σ(n−1)◦
R≥0lτ .

PROOF. This follows from Oda and Park [12, Thm. 2.3]. We give the details since their
definition of lτ differs from ours.

Let τ = σ ∩σ ′ and pick a wall relation
∑n+1

i=1 aiρi = 0, an, an+1 > 0 as in (2). Rescaling
by a positive constant, we may assume an+1 = 1, so that

ρn+1 = −a1ρ1 − · · · − anρn .(3)

Then lτ ∈ PL(Σ)∗ is the linear functional on PL(Σ) given by

lτ (φ) = a1φ(ρ1) + · · · + an−1φ(ρn−1) + anφ(ρn) + φ(ρn+1)

= a1〈mσ ′ , ρ1〉 + · · · + an−1〈mσ ′ , ρn−1〉 + an〈mσ , ρn〉 + 〈mσ ′ , ρn+1〉
since φ(u) = 〈mσ ′ , u〉 for u ∈ σ ′ and φ(ρn) = 〈mσ , ρn〉 by ρn ∈ σ . However, (3) implies
that

〈mσ ′ , ρn+1〉 = 〈mσ ′ ,−a1ρ1 − · · · − an−1ρn−1 − anρn〉
= −a1〈mσ ′ , ρ1〉 − · · · − an−1〈mσ ′ , ρn−1〉 − an〈mσ ′ , ρn〉 .
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Hence the above formula for lτ (φ) simplifies to

lτ (φ) = an〈mσ , ρn〉 − an〈mσ ′ , ρn〉 = 〈mσ − mσ ′ , anρn〉 .

Note that anρn ∈ σ \ τ . Since mσ − mσ ′ ∈ τ⊥ and (σ + span(τ ))/span(τ ) is 1-dimensional,
it follows that up to a positive constant,

lτ (φ) = 〈mσ − mσ ′, v〉
for any v ∈ σ \ τ . This proves the first part of the theorem and also shows that our lτ

agrees with the lτ appearing in the statement of [12, Thm. 2.3]. Then the second part follows
immediately from [12, Thm. 2.3]. �

1.3. Primitive relations. Let P = {ρ1, . . . , ρk} be a primitive collection for Σ . Then
ρ1 + · · · + ρk lies in some unique minimal cone σ of Σ . Pick a subset S ⊂ σ(1) satisfying

ρ1 + · · · + ρk =
∑
ρ∈S

bρρ, bρ > 0 , S linearly independent .(4)

The equation (4) gives the vector aP ∈ RΣ(1)∗ defined by

(aP )ρ =




1 ρ ∈ P \ S

1 − bρ ρ ∈ P ∩ S

−bρ ρ ∈ S \ P

0 otherwise .

From (4), it follows that aP ∈ An−1(X)∗R .

DEFINITION 1.7. Depending on the context, we use the term primitive relation to refer
to the equation (4), the vector aP ∈ An−1(X)∗R , or its image lP ∈ N1(X) under the map
An−1(X)∗R → N1(X).

When X is smooth, the case ρ ∈ P ∩ S cannot occur [1, Prop. 3.1], but happens fre-
quently in the simplicial case. In this case, we bound bρ as follows.

LEMMA 1.8. The coefficients in the primitive relation (4) satisfy bρ < 1 when ρ ∈
P ∩ S. Hence P is determined by the positive entries of aP .

PROOF. Suppose ρ1 ∈ S and bρ1 ≥ 1. Subtracting ρ1 from each side of (4) gives

ρ2 + · · · + ρk = (bρ1 − 1)ρ1 +
∑

ρ∈S\{ρ1}
bρρ .

Since ρ2, . . . , ρk lie in a cone of Σ , this equation implies that ρ2, . . . , ρk and S \ {ρ1} lie in
the same cone of Σ . Adding in ρ1 shows that P lies in a cone of Σ , which is impossible. �

The minimal cone σ containing ρ1 + · · · + ρk need not be simplicial, so there may be
many subsets S satisfying (4). But when there are many choices for aP , they all give the same
element lP ∈ N1(X), as shown by the following proposition.

PROPOSITION 1.9. Let P = {ρ1, . . . , ρk} be a primitive collection for Σ and let lP ∈
N1(X) be defined as above. Then:
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1. When regarded as an element of PL(Σ)∗, lP is the linear functional on PL(Σ)

defined by

φ �→ φ(ρ1) + · · · + φ(ρk) − φ(ρ1 + · · · + ρk) .

2. lP ∈ NE(X).

PROOF. Let σ ∈ Σ be the smallest cone containing ρ1 + · · · + ρk . Since φ is linear on
σ and S ⊂ σ(1), we obtain

lP (φ) = ∑
ρ(aP )ρφ(ρ) = ∑k

i=1 φ(ρi) − ∑
ρ∈S bρφ(ρ)

= ∑k
i=1 φ(ρi) − φ(

∑
ρ∈S bρρ) = ∑k

i=1 φ(ρi) − φ(
∑k

i=1 ρi) .

This proves the first part of the proposition, and then the second part follows immediately
from the first part and (1) since NE(X) = CPL(Σ)∨. �

We can formulate Theorem 1.4 in terms of primitive relations as follows.

PROPOSITION 1.10. Let X be the toric variety of the fan Σ in NR
∼= Rn. If |Σ| is

convex of dimension n, then the following are equivalent :
1. CPL(Σ) = {

φ ∈ PL(Σ) ; φ(ρ1) + · · ·+ φ(ρk) ≥ φ(ρ1 + · · ·+ ρk) for all primitive
collections {ρ1, . . . , ρk} for Σ

}
.

2. NE(X) = ∑
P R≥0lP , where the sum is over all primitive collections for Σ .

PROOF. This follows easily from Proposition 1.9 and NE(X) = CPL(Σ)∨. �

The strategy for proving Theorem 1.4 in the simplicial case is the observation, implicit in
[14], that every minimial generator of NE(X) is a primitive relation lP for some primitive col-
lection P . Then Theorem 1.4 for simplicial fans follows immediately from Proposition 1.10.
We give the details of this argument in Section 2.

1.4. Curves and the Mori cone. An interior wall τ gives a complete torus-invariant
curve V (τ) ∼= P 1 in X. Let

cτ : Pic(X)R → R

denote the linear functional that sends an R-Cartier divisor D to the intersection product
V (τ) · D. Thus

cτ ∈ Pic(X)∗R = N1(X) .

Up to a positive multiple, this gives the same class as the wall relation lτ ∈ N1(X) from Defi-
nition 1.5. Although this result is well-known to experts, we include a proof for completeness.

PROPOSITION 1.11. Let Σ be a fan in NR
∼= Rn with convex support of dimension n.

For each τ ∈ Σ(n − 1)◦, cτ ∈ N1(X) is a positive multiple of the wall relation lτ appearing
in Theorem 1.6.

PROOF. When Σ is simplicial, we have τ (1) = {ρ1, . . . , ρn−1} and as in the proof of
Theorem 1.6, we have the wall relation

a1ρ1 + · · · + anρn + ρn+1 = 0 .
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Since Σ is simplicial, the divisors Dρ corresponding to ρ ∈ Σ(1) are Q-Cartier, so that
V (τ) · Dρ is defined. By [14, (2.7)], we have

V (τ) · Dρ =




0 ρ /∈ {ρ1, . . . , ρn+1}
aiV (τ ) · Dρn+1 ρ = ρi, i ∈ {1, . . . , n}
V (τ) · Dρn+1 > 0 ρ = ρn+1 .

(5)

The proof in [14] assumes Σ is simplicial and complete and τ is any wall; the argument
applies without change when Σ is simplicial and τ is an interior wall.

For the general case, we use the well-known fact that Σ has a simplicial refinement Σ ′
such that Σ ′(1) = Σ(1) (see Corollary 3.2 and Remark 3.3). If X′ is the toric variety of Σ ′,
then we have a proper map

X′ π→ X .

Let τ ′ be an interior wall of Σ ′ contained in τ , and let V (τ ′) and V (τ) be the corresponding
curves in X′ and X. The induced map π |V (τ ′) : V (τ ′) → V (τ) has degree d = [Z(τ ∩ N) :
Z(τ ′ ∩ N)], which implies that π∗V (τ ′) = d V (τ). Let D be a Cartier divisor on X. By the
projection formula,

V (τ) · D = (1/d) π∗V (τ ′) · D = (1/d) V (τ ′) · π∗D .

If we write D = ∑
ρ αρDρ on X, then π∗D = ∑

ρ αρDρ on X′ since Σ ′(1) = Σ(1). If
aτ ′ = (aρ)ρ is the wall relation of τ ′ coming from (2), then up to a positive constant,

V (τ ′) · π∗D =
∑
ρ

aραρ

since Σ ′ is simplicial. However, the wall relation for τ ′ is one of the (possibly many) wall
relations for τ , i.e., aτ ′ is one of the possible choices for aτ . Then the formula

V (τ) · D = 1

d
V (τ ′) · π∗D = 1

d

∑
ρ

aραρ

shows (again up to a positive constant) that the class of V (τ) in N1(X) is the image of aτ in
N1(X). In other words, cτ equals lτ up to a positive constant, as claimed. �

We conclude our discussion of the Mori cone explaining how our definition of NE(X)

relates to the standard geometric approach. Since X need not be complete, we work in the
relative context. Let U be the affine toric variety of the strongly convex cone |Σ|/(|Σ| ∩
(−|Σ|)). This gives a proper toric morphism X → U .

Following [10] or [14], the Mori cone of X → U is defined as follows. Let Z1(X/U) be
the free group generated by irreducible curves in X that map to a point in U . Then we have a
natural pairing

Z1(X/U) × Pic(X) → Z .

By restricting to torus-invariant curves coming from interior walls, one sees easily that this
pairing is nondegenerate with respect to Pic(X), i.e., if a Cartier divisor satisfies C ·D = 0 for
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all torus-invariant curves C coming from interior walls, then [D] = 0 in Pic(X). It follows
that the above pairing induces a perfect pairing

N1(X/U) × Pic(X)R → R .

Thus N1(X/U) is what we call N1(X). Dropping the U from the notation is reasonable since
in our situation U is determined functorially by X.

Finally, NE(X/U) ⊂ N1(X) is the cone generated by irreducible curves in X that map
to a point in U , and the Mori cone is its closure NE(X/U) in N1(X). Then Theorem 1.6 and
Proposition 1.11 easily imply that

NE(X) = NE(X/U) = NE(X/U) =
∑

τ∈Σ(n−1)◦
R≥0cτ ,

where cτ ∈ N1(X) is the class of the torus-invariant curve V (τ) associated to τ . This is the
Relative Toric Cone Theorem.

REMARK 1.12. The Relative Toric Cone Theorem is stated for toric morphisms X →
S by Matsuki [10, Thm. 14-1-4] or Reid [14, (1.7)]. As pointed out by Fujino and Sato in [6,
Ex. 4.3], this fails when the torus action on S has no fixed points. They give the easy example
of the projection map X = C∗ × P 1 → S = C∗. The fibers of this map are never torus-
invariant, so that torus-invariant curves cannot generate N1(X/S). Fortunately, the Relative
Toric Cone Theorem holds for our map X → U because |Σ| ⊂ NR

∼= Rn is convex of
dimension n.

2. The simplicial case. A nice feature of the simplicial case is that N1(X) =
An−1(X)∗R . Hence an interior wall τ gives aτ = lτ , and a primitive collection P gives
aP = lP .

2.1. Primitive collections and extremal walls. Let τ be an interior wall of a simplicial
fan Σ with τ (1) = {ρ1, . . . , ρn−1}, and let ρn and ρn+1 be the generators that are needed to
span the cones on each side of the wall. The uniquely determined wall relation is

n+1∑
i=1

aiρi = 0 , an > 0, an+1 = 1 , ai ∈ Q ,(6)

by the discussion following (2).

PROPOSITION 2.1. Let Σ be a quasi-projective simplicial fan with convex support
of dimension n. Let τ be an extremal wall, meaning that the wall relation (6) generates an
extremal ray lτ ∈ NE(X). Then:

1. P = {ρi ; ai > 0} is a primitive collection for Σ .
2. In RΣ(1)∗, the primitive relation aP of P and wall relation aτ of τ are equal up to a

positive constant.

PROOF. We give two proofs. The first is based on [9, Thm. 2.4], which assumes that X

is smooth and complete. We adapt the argument to the simplicial case as follows.
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We first make a useful observation about convex support functions. If φ is convex and
σ ∈ Σ , we can change φ by a linear function so that

φ(ρ) = 0 , ρ ∈ σ(1) and φ(ρ) ≥ 0 , ρ /∈ σ(1) .(7)

Now take an extremal wall τ with wall relation (6). Consider the set

P = {ρi ; ai > 0} = {ρ ; (aτ )ρ > 0} .

We will prove that P is a primitive collection whose primitive relation lP equals lτ up to a
positive constant. Recall that aP = lP and aτ = lτ since Σ is simplicial.

We first prove by contradiction that P �⊆ σ(1) for all σ ∈ Σ . Suppose P ⊆ σ(1) and
take a strictly convex support function φ. We may assume that φ is of the form (7). Since
φ(ρ) = 0 for ρ ∈ Σ(1), we have

lτ (φ) =
∑

ρ /∈σ(1)

(aτ )ρφ(ρ) .

However, φ(ρ) ≥ 0 by (7), and P ⊆ σ(1) implies (aτ )ρ ≤ 0 for ρ /∈ σ(1). It follows that
lτ (φ) ≤ 0, which is impossible since φ is strictly convex and aτ = lτ is in NE(X) \ {0}. Thus
no cone of Σ contains all rays in P .

It follows that some subset Q ⊆ P is a primitive collection. This gives the primitive
relation aQ = lQ ∈ N1(X), and we also have aτ ∈ N1(X). Let

β = aτ − λaQ ∈ N1(X) ,

where λ > 0. We claim that if λ is sufficiently small, then

{ρ ; βρ < 0} ⊆ {ρ ; (aτ )ρ < 0} .(8)

To prove this, suppose that βρ < 0 and (aτ )ρ ≥ 0. Then the definition of β forces (aQ)ρ > 0,
so that ρ is in Q by Lemma 1.8. Combined with Q ⊆ P , we see that (aτ )ρ > 0 by the
definition of P . But we can clearly choose λ sufficiently small so that

(aτ )ρ > λ(aQ)ρ whenever (aτ )ρ > 0 .

This inequality and the definition of β imply βρ > 0, a contradiction.
We next claim that β is in NE(X). By (8), we have

{ρ ; βρ < 0} ⊆ {ρ ; (aτ )ρ < 0} ⊆ τ (1) ,

where the second inclusion follows from (6) and the definition of aτ . Now let φ be convex.
By (7) with σ = τ , we may assume

φ(ρ) = 0 for ρ ∈ τ (1) and φ(ρ) ≥ 0 for ρ /∈ τ (1) .

Then

β(φ) =
∑

ρ /∈τ (1)

φ(ρ)βρ ≥ 0 ,

where the final inequality follows since φ(ρ) ≥ 0 and βρ < 0 can happen only when ρ ∈ τ (1).
This proves that β is in NE(X).
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Since aQ = lQ is in NE(X) by Proposition 1.9, the equation

aτ = λaQ + β

expresses aτ = lτ as a sum of elements of NE(X). But lτ is extremal. This forces aQ and
β to lie in the ray generated by aτ . Since aQ is nonzero, aτ is a positive multiple of aQ. In
particular, they have the same positive entries. Then P = Q follows from the definition of P

and Lemma 1.8. This completes the first proof.
The second proof begins with the extremal wall relation (6). For i = 1, . . . , n + 1, set

∆i = Cone(ρ1, ..., ρ̂i , ..., ρn+1) .

In [14], Reid proved that ⋃
ai>0

∆i = Cone(ρi ; i = 1, . . . , n + 1)(9)

(see the lemma on [14, p. 403]) and

∆i ∈ Σ(n) whenever ai > 0(10)

(see (5) and [14, Cor. 2.10]). Reid assumed that Σ is simplicial and complete. His proofs
generalize to our situation without change—see [18].

Let I = {i ∈ {1, . . . , n + 1} ; ai > 0}, so that P = {ρi ; i ∈ I }. In order to prove that
P is a primitive collection, we first show that Cone(ρi ; i ∈ I) is not a cone in Σ . So assume
Cone(ρi ; i ∈ I) ∈ Σ and consider the relation∑

i∈I

aiρi =
∑
i∈I c

−aiρi ,

where the coefficients on the left are positive. Then
∑

i∈I aiρi lies in the relative interior of
the cone Cone(ρi ; i ∈ I) ∈ Σ , but

∑
i∈I c −aiρi lies in the wall τ ∈ Σ since n, n + 1 ∈ I

and ai ≤ 0 for i ∈ I c. It follows that Cone(ρi ; i ∈ I) ⊂ τ , which is a contradiction since ρn

and ρn+1 do not lie in the wall.
Now we show that every proper subset of P generates a cone of Σ . Let K be any proper

subset of I . Then Cone(ρi ; i ∈ K) is a face of ∆j for any j ∈ I \ K . But ∆j ∈ Σ by (10).
Hence P = {ρi ; i ∈ I } is a primitive collection.

Finally, we consider the primitive relation of P , which can be written∑
i∈I

ρi =
∑

ρ∈σ(1)

bρρ ,(11)

where σ is the minimal cone of Σ containing
∑

i∈I ρi . Since Cone(ρ1, . . . , ρn+1) = ⋃
i∈I ∆i

and ∆i ∈ Σ by (9) and (10), it follows that (11) is a relation among ρ1, . . . , ρn+1. This
relation is unique up to a nonzero constant since Σ is simplicial. Thus aP is a nonzero multiple
of aτ , necessarily positive by Lemma 1.8 and the definition of P . �

REMARK 2.2. Batyrev clearly knew this proposition, though it is not stated explicitly
in [1]. Proposition 2.1 is closely related to Theorem 1.5 in Casagrande’s paper [2] and appears
implicitly in the remarks preceeding Proposition 2.2 in Sato’s paper [15].
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2.2. The main theorem. We can now prove the simplicial case of our main theorem.

THEOREM 2.3. Let Σ be a simplicial quasi-projective fan in NR
∼= Rn with convex

support of dimension n. Then the cone CPL(Σ) is defined by the primitive inequalities, i.e.,

CPL(Σ) = {φ ∈ PL(Σ) ; φ(ρ1 + · · · + ρk) ≤ φ(ρ1) + · · · + φ(ρk)

for all primitive collections {ρ1, . . . , ρk} for Σ} .

PROOF. By Proposition 1.10 it suffices to show that the primitive relations lP generate
the Mori cone. We already know that lP is in NE(X) (Proposition 1.9) and that NE(X) is
generated by the extremal wall relations lτ (Theorem 1.6). Furthermore, NE(X) is generated
by extremal wall relations since X is quasi-projective. Hence it suffices to show that every
extremal wall relation is a primitive relation. This is what we proved in Proposition 2.1, and
the theorem follows. �

Here is an example of Theorem 2.3.

EXAMPLE 2.4. Figure 1 shows the complete simplicial fan Σ in R3 with five minimal
cone generators:

ρ0 = (0, 0,−1) , ρ1 = (1, 1, 1) , ρ2 = (1,−1, 1) , ρ3 = (−1,−1, 1) , ρ4 = (−1, 1, 1)

and six maximal cones:

σ1 = Cone(ρ0, ρ1, ρ2) , σ2 = Cone(ρ0, ρ2, ρ3) , σ3 = Cone(ρ0, ρ3, ρ4) ,

σ4 = Cone(ρ0, ρ4, ρ1) , σ5 = Cone(ρ1, ρ2, ρ4) , σ6 = Cone(ρ2, ρ3, ρ4) .

FIGURE 1. Simplicial fan in R3.

This fan is easily seen to be projective, and primitive collections are:

P1 = {ρ1, ρ3} , P2 = {ρ0, ρ2, ρ4} ,

so that φ ∈ PL(Σ) is convex if and only if

φ(ρ1) + φ(ρ3) ≥ φ(ρ1 + ρ3)

φ(ρ0) + φ(ρ2) + φ(ρ4) ≥ φ(ρ0 + ρ2 + ρ4) .
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To get a more concrete characterization, we use the associated primitive relations:

P1 : ρ1 + ρ3 = ρ2 + ρ4

P2 : ρ0 + ρ2 + ρ4 = 1

2
ρ2 + 1

2
ρ4 .

Let Di be the torus-invariant divisor associated to ρi . Then the divisor D = ∑4
i=0 aiDi

corresponds to the support function φ satisfying φ(ρi) = ai . It follows that D is nef if and
only if

a1 + a3 ≥ a2 + a4

a0 + a2 + a4 ≥ 1

2
a2 + 1

2
a4 , i.e., 2a0 + a2 + a4 ≥ 0 .

In contrast, Σ has 9 walls, so Theorem 1.6 describes NE(X) using 9 generators, corre-
sponding to 9 wall inequalities defining CPL(Σ) ⊂ PL(Σ). Fortunately, these can be sim-
plified considerably. We denote by τi,j the wall that is spanned by ρi and ρj . By abuse of
notation we will also call τi,j the corresponding class in NE(X). One can compute that the 9
walls fall into three groups:

τ2,4

τ1,2 ≡ τ3,4 ≡ τ2,3 ≡ τ1,4 ≡ 4τ0,1 ≡ 4τ0,3

τ0,2 ≡ τ0,4 ≡ 2τ1,2 + 2τ2,4 .

Hence τ2,4 and τ1,2 ≡ · · · ≡ 4τ0,3 give the extremal rays of the Mori cone, while τ0,2 ≡ τ0,4

do not give an extremal ray. One can check that the primitive collection P1 generates the same
ray as τ2,4 and P2 generates the same ray as τ1,2. �

Example 2.4 is nice because there were few primitive collections. However, the follow-
ing example shows that primitive collections vastly outnumber interior walls in general.

EXAMPLE 2.5. Let Σ be a complete fan in R2 with r ≥ 4 minimal generators, say
ρ1, . . . , ρr , arranged counterclockwise around the origin. Then there are r walls, all interior.
One easily checks that the primitive collections are given by P = {ρi, ρj } for i < j and
ρi, ρj not adjacent. Hence the fan Σ has(

r

2

)
− r = r(r − 3)

2
,

primitive collections. This is greater than the number of walls provided r ≥ 6. �

3. The non-simplicial case.
3.1. Simplicial refinements. In order to prove our main theorem in the non-simplicial

case, we will need the following result on the existence of simplicial refinements with special
properties.

THEOREM 3.1. Let Σ be a quasi-projective fan in NR
∼= Rn with convex support of

dimension n and fix P ⊂ Σ(1) such that P ∩ σ(1) is linearly independent for all σ ∈ Σ .
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Then there exists a quasi-projective simplicial refinement Σ ′ of Σ satisfying Σ ′(1) = Σ(1)

such that P ∩ σ(1) generates a cone in Σ ′ for all σ ∈ Σ .

PROOF. Since Σ is quasi-projective, we can find φ ∈ CPL(Σ) which is strictly convex.
We first modify φ so that it takes positive values on Σ(1). To see why this is possible, consider
the cone

σ̂ = Cone((ρ, φ(ρ)) ; ρ ∈ Σ(1)) ⊂ NR × R .

Since φ is strictly convex for Σ , it follows that σ̂ is a strongly convex cone with minimal
generators given by (ρ, φ(ρ)) for ρ ∈ Σ(1). Hence we can find (m,µ) ∈ MR × R such that

〈m,ρ〉 + µφ(ρ) > 0 for all ρ ∈ Σ(1) .

Replacing φ with 〈m,−〉 + µφ, we may assume φ(ρ) > 0 for all ρ ∈ Σ(1), as claimed.
It follows that for each ρ ∈ Σ(1), there is a unique vρ ∈ ρ such that φ(vρ) = 1. Given

σ ∈ Σ , one sees easily that

Qσ = {v ∈ σ ; φ(v) = 1}
is a polytope with vertices vρ for ρ ∈ σ(1).

To create Σ ′, assign a weight wρ to each ρ ∈ Σ(1) as follows:

• For ρ ∈ P , set wρ = 1.
• For ρ ∈ Σ(1) \ P , pick 0 < wρ < 1 generic. The exact meaning of generic will be

explained in the course of the proof.

We will use the weights wρ to triangulate Qσ following a variant of the method used in
[7, p. 215, Example 1.1]. Consider

Gσ,w = Conv(0, wρvρ ; ρ ∈ σ(1)) .

Since the vectors wρvρ lie on the 1-dimensional rays of σ , it is easy to see that the vertices
of Gσ,w consist of the origin and the points wρvρ for ρ ∈ σ(1). Furthermore, the faces of
Gσ,w not containing the origin project to a polyhedral subdivision of Qσ . Projecting from the
origin in NR , we get a refinement Σσ of σ that satisfies Σσ (1) = σ(1). Figure 2 on the next
page shows two 3-dimensional cones σ , each with a set P ∩ σ(1) and a choice of weights
giving the polytope Gσ,w inside σ .

We claim that the fans Σσ have the following three properties:
A. P ∩ σ(1) generates a cone of Σσ for all σ ∈ Σ .
B. If τ is a face of σ ∈ Σ , then Στ is the refinement of τ induced by Σσ .
C. If the wρ are sufficiently generic for ρ ∈ Σ(1) \ P , then Σσ is simplicial for all

σ ∈ Σ .

Proof of A. Since φ is linear on σ , there is an affine hyperplane Hσ such that Qσ =
Hσ ∩ σ . Since wρ ≤ 1 for all ρ, the polytope Gσ,w lies on the side of Hσ containing the origin,
and the intersection Hσ ∩ Gσ,w is clearly the convex hull of the points vρ for ρ ∈ P ∩ σ(1)

by the choice of the weights wρ . It follows easily that P ∩ σ(1) generates a cone of Σσ .
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FIGURE 2. Two examples of σ , P ∩ σ(1), and a choice of weights.

Proof of B. If τ is a face of σ , then one easily sees that

Gτ,w = Gσ,w ∩ τ .

From here, B follows immediately.
Proof of C. We may assume σ ∈ Σ(n). For ρ ∈ σ(1), write

vρ = (a
ρ
1 , . . . , aρ

n ) ∈ Rn.

When we have vρ1, vρ2, . . . , we write instead

vρi = (a
(i)
1 , . . . , a(i)

n )

and we set wi = wρi .
Now suppose that Σσ is non-simplicial for some choice of weights wρ . This implies that

Gσ,w has a face F of dimension n− 1 not containing the origin that is not an (n− 1)-simplex.
It follows that F has at least n + 1 vertices. Pick n + 1 vertices of F as follows. We first
pick those vertices of F of the form vρ = wρvρ for ρ ∈ P ∩ σ(1). There are at most n such
vertices since P ∩σ(1) is linearly independent. Since dim(F ) = n−1, we can extend them to
affinely independent vertices w1vρ1, . . . , wnvρn . Since F is non-simplicial, we can pick one
more, wn+1vρn+1 . Note that wn+1 = wρn+1 where ρn+1 /∈ P .

Now consider the (n + 1) × (n + 1) matrix


1 w1a
(1)
1 · · · w1a

(1)
n

...
...

...

1 wn+1a
(n+1)
1 · · · wn+1a

(n+1)
n


 .
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By construction, the vectors w1vρ1, . . . , wnvρn are affinely independent, but once we add
the last vector, w1vρ1 , . . . , wn+1vρn+1 are affinely dependent since they lie in a (n − 1)-
dimensional face.

It follows that this matrix has rank exactly n. Since the weights wi are nonzero, the same
is true for the matrix

M =



w−1
1 a

(1)
1 · · · a

(1)
n

...
...

...

w−1
n+1 a

(n+1)
1 · · · a

(n+1)
n


 .

The determinant of M must vanish. The resulting linear equation in the w−1
i gives a necessary

condition for Σσ to be non-simplicial. Furthermore, the affine independence of w1vρ1, . . . ,

wnvρn guarantees that w−1
n+1 actually appears in the determinant. As noted above, we also

have w−1
n+1 = w−1

ρ for some ρ ∈ σ(1) \ P .
Since Σ(n) is finite, we get a finite system of non-trivial linear equations in the w−1

ρ for
ρ ∈ σ(1) \ P that give necessary conditions for some Σσ to be non-simplicial. If we pick the
weights wρ to avoid these finitely many subspaces, the resulting subdivisions Σσ will be all
simplicial. This completes the proof of C.

Now pick weights wρ that satisfy conditions A–C and consider the set of cones

Σ ′ =
⋃
σ∈Σ

Σσ .

Then Σ ′ is a fan that refines Σ by B and satisfies Σ ′(1) = Σ(1). Furthermore, Σ ′ is simplicial
by C. Finally, given σ ∈ Σ , P ∩ σ(1) generates a cone of Σ ′ by A. Hence the proof of the
theorem will be complete once we prove that Σ ′ is quasi-projective.

Since Σ is quasi-projective, it suffices to prove that the induced map XΣ ′ → XΣ = X

is projective. The latter happens when Σ ′ has a piecewise linear function ϕ ∈ PL(Σ ′) which
is strictly convex relative to Σ , meaning that for all σ ∈ Σ , ϕ|σ is strictly convex with respect
to the subfan {σ ′ ∈ Σ ′ ; σ ′ ⊂ σ } (see [8, p. 27, (*) and Theorem 10]).

We construct the desired ϕ : |Σ ′| = |Σ| → R by setting

ϕ(ρ) = w−1
ρ φ(ρ) for ρ ∈ Σ ′(1) = Σ(1) ,

and extending linearly on each cone σ ′ ∈ Σ ′. This gives a well-defined function in PL(Σ ′)
since Σ ′ is simplicial. Assuming φ is rational, we can also assume that the wρ are rational.
Hence we can assume that ϕ is rational as well.

We claim that ϕ is strictly convex with respect to Σσ = {σ ′ ∈ Σ ′ ; σ ′ ⊂ σ } for each
σ ∈ Σ . To see this, first observe that

ϕ(wρvρ) = 1 for all ρ ∈ σ(1) ,

since φ(vρ) = 1. It follows that inside σ , the inequality ϕ ≤ 1 defines

Gσ,w = Conv(0, wρvρ ; ρ ∈ σ(1)) .
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The convexity of Gσ,w implies that, if u, v ∈ σ , then

ϕ(u) + ϕ(v) ≥ ϕ(u + v) ,

with equality if and only if u, v lie in the same cone of Σσ . To prove this, we may assume
u, v �= 0, so that

u = λu0 , v = µv0 , where λ,µ > 0 and ϕ(u0) = ϕ(v0) = 1 .

Then (λ/(λ + µ))u0 + (µ/(λ + µ))v0 is in Gσ,w, so that

ϕ(u + v) = (λ + µ)ϕ

(
λ

λ + µ
u0 + µ

λ + µ
v0

)
≤ λ + µ = ϕ(u) + ϕ(v) .

It is equally easy to show that equality occurs exactly when u, v lie in the same cone of Σσ .
Hence ϕ has the required properties, which completes the proof of the theorem. �

COROLLARY 3.2. If Σ is a quasi-projective fan in NR
∼= Rn with convex support

of dimension n, then there exists a quasi-projective simplicial refinement Σ ′ with the same
1-dimensional generators.

PROOF. Apply Theorem 3.1 with P = ∅. �

REMARK 3.3. This corollary has other proofs, including Fujino [5] (via the toric Mori
program) and Thompson [17] (via stellar subdivision).

3.2. The main theorem. We can now prove the non-simplicial case of our main theo-
rem.

THEOREM 3.4. Let Σ be a non-simplicial quasi-projective fan in NR
∼= Rn with

convex support of dimension n. Then the cone CPL(Σ) is defined by the primitive inequalities,
i.e.,

CPL(Σ) = {φ ∈ PL(Σ) ; φ(ρ1 + · · · + ρk) ≤ φ(ρ1) + · · · + φ(ρk)

for all primitive collections {ρ1, . . . , ρk} for Σ} .

PROOF. By Corollary 3.2, Σ has a quasi-projective simplicial refinement Σ ′ satisfying
Σ ′(1) = Σ(1). Then observe that

CPL(Σ) = PL(Σ) ∩ CPL(Σ ′)

and that

CPL(Σ ′) = {φ ∈ PL(Σ ′) ; φ(ρ1 + . . . + ρk) ≤ φ(ρ1) + · · · + φ(ρk)

for all primitive collections {ρ1, . . . , ρk} for Σ ′}
since Σ ′ is simplicial and quasi-projective. Hence by Theorem 2.3,

CPL(Σ) = {φ ∈ PL(Σ) ; φ(ρ1 + · · · + ρk) ≤ φ(ρ1) + · · · + φ(ρk)

for all primitive collections {ρ1, . . . , ρk} for Σ ′} .
(12)
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We divide primitive collections P = {ρ1, . . . , ρk} for Σ ′ into two types:

Type A: P ⊂ σ(1) for some σ ∈ Σ

Type B: P �⊂ σ(1) for all σ ∈ Σ .

Note that if φ ∈ PL(Σ), then φ(ρ1 +· · ·+ρk) = φ(ρ1)+· · ·+φ(ρk) when P = {ρ1, . . . , ρk}
is a Type A primitive collection for Σ ′. Hence these can be omitted in (12), so that

CPL(Σ) = {φ ∈ PL(Σ) ; φ(ρ1 + · · · + ρk) ≤ φ(ρ1) + · · · + φ(ρk)

for all Type B primitive collections {ρ1, . . . , ρk} for Σ ′} .
(13)

However, a Type B primitive collection P for Σ ′ is a primitive collection for Σ . This is easy
to prove. First, P is not contained in any cone of Σ by the definition of Type B, and second,
every proper subset of P is contained in a cone of Σ ′ and hence lies in a cone of Σ since Σ ′
refines Σ . It follows that

φ(ρ1 + · · · + ρk) ≤ φ(ρ1) + · · · + φ(ρk)

is a primitive inequality for Σ whenver P = {ρ1, . . . , ρk} is a Type B primitive collection for
Σ ′.

Hence (13) shows that a subset of the primitive inequalities for Σ define CPL(Σ) inside
PL(Σ). Using the inclusion (1), the theorem now follows immediately. �

Here is an example to illustrate Theorem 3.4 and its proof.

EXAMPLE 3.5. Figure 3 shows the complete non-simplicial fan Σ in R3 with five
minimal generators:

ρ0 = (0, 0,−1) , ρ1 = (1, 1, 1) , ρ2 = (1,−1, 1) , ρ3 = (−1,−1, 1) , ρ4 = (−1, 1, 1)

and five maximal cones:

σ1 = Cone(ρ0, ρ1, ρ2) , σ2 = Cone(ρ0, ρ2, ρ3) , σ3 = Cone(ρ0, ρ3, ρ4) ,

σ4 = Cone(ρ0, ρ4, ρ1) , σ5 = Cone(ρ1, ρ2, ρ3, ρ4) .

FIGURE 3. Non-simplicial fan in R3.

The fan Σ is quasi-projective, and its primitive collections are:

P1 = {ρ0, ρ1, ρ3} , P2 = {ρ0, ρ2, ρ4} .
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A first observation is that if we used Batyrev’s definition of primitive collection in this case,
we would want every proper subset of P1 and P2 to generate a cone of Σ . This clearly isn’t
true, and in fact this example has no primitive collections if we use Batyrev’s definition. This
explains why Definition 1.1 is the correct definition in the non-simplicial case.

Theorem 3.4 states that CPL(Σ) ⊂ PL(Σ) is defined by the primitive inequalities com-
ing from the primitive collections P1 and P2. However, the proof of the theorem shows that
we need only one. To see why, consider the simplicial refinement Σ ′ of Σ given by subdivid-
ing non-simplicial cone σ5 along Cone(ρ2, ρ4). This gives the fan pictured in Example 2.4.
The fan Σ ′ has the same generators ρ0, . . . , ρ4 as Σ , and the primitive collections for Σ ′ are

P ′
1 = {ρ1, ρ3} , P2 = {ρ0, ρ2, ρ4} .

One easily checks that P ′
1 is of Type A and P2 is of Type B in the sense defined in the proof

of Theorem 3.4, and hence is a primitive collection for Σ . By (13), CPL(Σ) is defined by P2,
so that φ ∈ PL(Σ) is convex if and only if

φ(ρ0) + φ(ρ2) + φ(ρ4) ≥ φ(ρ0 + ρ2 + ρ4) .

It is interesting to note that the Type A primitive collection P ′
1 = {ρ1, ρ3} also plays an

important role. The primitive relation of P ′
1 is

ρ1 + ρ3 = ρ2 + ρ4 .

Now take φ ∈ PL(Σ). As noted in the proof of Theorem 3.4, this Type A primitive collection
gives the equality

φ(ρ1) + φ(ρ3) = φ(ρ1 + ρ3) ,(14)

which by the above primitive relation implies

φ(ρ1) + φ(ρ3) = φ(ρ2) + φ(ρ4) .

It is easy to see that this equality defines PL(Σ) inside of PL(Σ ′). In other words, φ ∈ PL(Σ ′)
lies in PL(Σ) if and only if it satisfies (14) coming from the Type A primitive collection for
Σ ′.

If we turn our attention to the other primitive collection P1 = {ρ0, ρ1, ρ3} for Σ , then
one easily sees that φ ∈ PL(Σ) is convex if and only if

φ(ρ0) + φ(ρ1) + φ(ρ3) ≥ φ(ρ0 + ρ1 + ρ3) .

This follows by considering the other simplicial refinement of Σ obtained by subdividing σ5

along Cone(ρ1, ρ3). �

Example 3.5 has some interesting features:

• Every primitive collection for Σ comes from a Type B primitive collection for a
simplicial refinement Σ ′ of Σ satisfying Σ ′(1) = Σ(1).

• For each such refinement Σ ′ of Σ , the Type A primitive collections for Σ ′ define
PL(Σ) ⊂ PL(Σ ′).
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We will see below that these properties hold in general.
3.3. Properties of primitive collections. We begin with the following useful property

of primitive collections.

PROPOSITION 3.6. Let Σ be a fan in NR
∼= Rn such that Σ has convex support of

dimension n. If P is a primitive collection for Σ , then every proper subset Q of P is linearly
independent.

PROOF. We use induction on |Q|. If |Q| = 1 there is nothing to show. Now assume
that |Q| = k + 1, k ≥ 1, and that every k-element subset of Q is linearly independent.

We show that Q is linearly independent by contradiction. Hence suppose Q is linearly
dependent. Then our induction hypothesis implies that the subspace span(Q) has dimension
k. Define Σ̃ = {σ ∩ span(Q) ; σ ∈ Σ}. We omit the straightforward proof that Σ̃ is a fan in
span(Q).

Now fix ρ ∈ Q and let σρ be the minimal cone of Σ containing P \ {ρ}. Notice that
σρ does not contain ρ since P is a primitive collection. Also let σQ be the minimal cone of
Σ containing Q. The cones σ̃Q = σQ ∩ span(Q) and σ̃ρ = σρ ∩ span(Q) are in the fan
Σ̃ and σ̃Q �= σ̃ρ since ρ is contained in σ̃Q but not in σ̃ρ . Therefore, their intersection is at
most (k − 1)-dimensional. On the other hand, the intersection contains k linearly independent
vectors

Q \ {ρ} ⊂ σ̃Q ∩ σ̃ρ ,

which is a contradiction. �

COROLLARY 3.7. Let Σ be a fan in NR
∼= Rn such that |Σ| is convex support of

dimension n. Then every primitive collection for Σ has at most n + 1 elements.

PROOF. This follows immediately from Proposition 3.6 since any maximal proper sub-
set Q = P \ {ρ} is linearly independent and hence has at most n elements. Therefore
P = Q ∪ {ρ} has at most n + 1 elements. �

REMARK 3.8. Proposition 3.6 and Corollary 3.7 are trivial in the simplicial case.

3.4. Type A description of PL(Σ). Let Σ be a fan in NR
∼= Rn with convex support

of dimension n, and let Σ ′ be a simplicial refinement with Σ(1) = Σ ′(1). Given σ ∈ Σ , let
Σσ = {σ ′ ∈ Σ ′ ; σ ′ ⊂ σ }. The following convexity result will be useful.

LEMMA 3.9. Let σ be a non-simplicial cone in Σ and take an interior wall τ ′ of Σσ

with τ = σ ′
1 ∩ σ ′

2, σ ′
1, σ

′
2 ∈ Σσ (n). Then σ ′

1 ∪ σ ′
2 is convex.

PROOF. Since τ ′(1) ⊂ σ(1), τ ′ divides σ into two convex subcones σ+, σ− with τ =
σ+ ∩ σ−. We may assume σ ′

1 ⊂ σ+, σ ′
2 ⊂ σ−. Given u ∈ σ ′

1, v ∈ σ ′
2, it follows easily that

the line segment uv lies in σ ′
1 ∪ σ ′

2. �

COROLLARY 3.10. In the situation of Lemma 3.9, let P be the two element set

P = (σ ′
1(1) ∪ σ ′

2(1)) \ τ ′(1) .
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Thus P consists of the generators of σ ′
1, σ

′
2 not lying in the wall τ ′ = σ ′

1 ∩ σ ′
2. Then P is a

primitive collection for Σ ′.

PROOF. First note that P is contained in neither σ ′
1 nor σ ′

2. Since P is contained in the
convex set σ ′

1 ∪ σ ′
2, it follows that P is contained in no cone of Σ ′. Thus P is a primitive

collection for Σ ′ since it has only two elements. �

As in the proof of Theorem 3.4, a primitive collection for Σ ′ has Type A when it is
contained in a cone of Σ . Hence the primitive collection for Σ ′ constructed in Corollary 3.10
has Type A. The idea is that these two element primitive collections define PL(Σ) inside
PL(Σ ′).

PROPOSITION 3.11. Let Σ be a fan in NR
∼= Rn with convex support of dimension n

and let Σ ′ be a simplicial refinement with Σ(1) = Σ ′(1). Then

PL(Σ) = {φ ∈ PL(Σ ′) ; φ(ρ1 + ρ2) = φ(ρ1) + φ(ρ2) for all

Type A primitive collections {ρ1, ρ2} for Σ ′} .

PROOF. The inclusion ⊂ is obvious since elements of PL(Σ) are linear on cones of Σ

and a Type A primitive collection is contained in such a cone.
For the opposite inclusion, take φ ∈ PL(Σ ′) such that φ(ρ1 + ρ2) = φ(ρ1) + φ(ρ2) for

all two element Type A primitive collections for Σ ′. For each σ ′ ∈ Σ ′(n), there is mσ ′ ∈ MR

such that φ(u) = 〈mσ ′ , u〉 for u ∈ σ ′. It suffices to show that mσ ′
1

= mσ ′
2

for cones σ ′
1, σ

′
2

that lie in the same cone σ of Σ and intersect in a wall σ ′
1 ∩ σ ′

2 = τ ′. This is the situation of
Corollary 3.10, where

σ ′
1(1) ∪ σ ′

2(1) = τ ′(1) ∪ {ρ1, ρ2}

and P = {ρ1, ρ2} is a two element Type A primitive collection for Σ ′. We label the elements
of P so that ρ1 ∈ σ ′

1 and ρ2 ∈ σ ′
2.

Since σ ′
1 ∪σ ′

2 is convex by Lemma 3.9, it contains ρ1 +ρ2. We may assume ρ1 +ρ2 ∈ σ ′
2

without loss of generality. Then

〈mσ ′
1
, ρ1〉 = φ(ρ1) = −φ(ρ2) + φ(ρ1 + ρ2) = −〈mσ ′

2
, ρ1〉 + 〈mσ ′

2
, ρ1 + p2〉 = 〈mσ ′

2
, ρ1〉 .

Since mσ ′
1
− mσ ′

2
∈ τ ′⊥, it follows that mσ ′

1
= mσ ′

2
. This completes the proof. �

3.5. Primitive collections supported on simplicial refinements. In the fan Σ pictured
in Figure 3 in Example 3.5, we saw that every primitive collection for Σ comes from a prim-
itive collection for a simplicial subdivision of Σ .

In general, if Σ ′ is a simplicial subdivision of Σ with Σ ′(1) = Σ(1), we say that a
primitive collection P for Σ is supported on Σ ′ if P is also a primitive collection for Σ ′. We
now prove that all primitive collections for Σ are supported on such simplicial subdivisions.
Here is the precise result.
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PROPOSITION 3.12. Let Σ be a quasi-projective fan in NR
∼= Rn with convex support

of dimension n and let P be a primitive collection for Σ . Then there exists a quasi-projective
simplicial refinement Σ ′ with Σ ′(1) = Σ(1) such that P is a primitive collection for Σ ′.

PROOF. By Proposition 3.6, every proper subset P is linearly independent. In particular,
if σ ∈ Σ , then P ∩σ(1) is a proper subset of P (since P is a primitive collection) and hence is
linearly independent. Thus we can apply Theorem 3.1 to obtain a quasi-projective simplicial
refinement Σ ′ such that P ∩ σ(1) generates a cone of Σ ′ for all σ ∈ Σ .

We claim that P is a primitive collection for Σ ′. First note that if P were contained in a
cone of Σ ′, then it would be contained in a cone of Σ , which we know to be false. Now let Q

be a proper subset of P . Then Q is contained in a cone σ ∈ Σ , so that Q ⊂ P ∩ σ(1). Since
P ∩ σ(1) generates a cone of Σ ′, it follows that Q is contained in a cone of Σ ′. Hence P is a
primitive collection for Σ ′. �

REMARK 3.13. When Σ is non-simiplicial, it may be impossible to find a single sim-
plicial refinement Σ ′ such that every primitive collection for Σ is also primitive for Σ ′.
In Figure 3 from Example 3.5, we see two primitive collections P1 = {ρ0, ρ1, ρ3} and
P2 = {ρ0, ρ2, ρ4}, but there is no simplicial refinement Σ ′ of Σ with Σ ′(1) = Σ(1) that
supports both P1 and P2.

4. Is quasi-projective necessary? In this section we explore an open question about
primitive collections. In [2], Casagrande raises the question of whether CPL(Σ) is defined by
primitive inequalities when Σ is not quasi-projective. Here is a classic example.

EXAMPLE 4.1. The following example of a non-projective smooth complete fan is
taken from Oda [13, p. 84, Example] (see also [11]). Consider the fan Σ in R3 with seven
minimal generators:

ρ1 = (−1, 0, 0) , ρ2 = (0,−1, 0) , ρ3 = (0, 0,−1) , ρ4 = (1, 1, 1) ,

ρ5 = (1, 1, 0) , p6 = (0, 1, 1) , ρ7 = (1, 0, 1) .

The cones of Σ are obtained by projecting from the origin through the triangulated polytope
shown in Figure 4 on the next page. The fan Σ has 15 walls and 10 maximal cones.

The seven primitive collections for Σ and their associated primitive relations are:

{ρ2, ρ4} : ρ2 + ρ4 = ρ7

{ρ1, ρ4} : ρ1 + ρ4 = ρ6

{ρ2, ρ5} : ρ2 + ρ5 = ρ3 + ρ7

{ρ3, ρ6} : ρ3 + ρ6 = ρ1 + ρ5

{ρ3, ρ4} : ρ3 + ρ4 = ρ5

{ρ1, ρ7} : ρ1 + ρ7 = ρ2 + ρ6

{ρ5, ρ6, ρ7} : ρ5 + ρ6 + ρ7 = 2ρ4 .
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FIGURE 4. Non quasi-projective example.

By (1), a convex function φ ∈ CPL(Σ) satisfies the primitive inequalities:
φ(ρ2) + φ(ρ4) ≥ φ(ρ7)

φ(ρ1) + φ(ρ4) ≥ φ(ρ6)

φ(ρ5) + φ(ρ2) ≥ φ(ρ3) + φ(ρ7)

φ(ρ3) + φ(ρ6) ≥ φ(ρ1) + φ(ρ5)

φ(ρ3) + φ(ρ4) ≥ φ(ρ5)

φ(ρ1) + φ(ρ7) ≥ φ(ρ2) + φ(ρ6)

φ(ρ5) + φ(ρ6) + φ(ρ7) ≥ 2φ(ρ4) .

(15)

Notice that adding up the third, fourth and sixth inequalities yields an equality, hence we have
3 equalities:

φ(ρ2) + φ(ρ5) = φ(ρ3) + φ(ρ7)

φ(ρ3) + φ(ρ6) = φ(ρ1) + φ(ρ5)

φ(ρ1) + φ(ρ7) = φ(ρ2) + φ(ρ6) .

To see what this says about the nef cone Nef(X), note that

Nef(X) ∼= {φ ∈ CPL(Σ) ; φ(ρ1) = φ(ρ2) = φ(ρ3) = 0} .

Assume φ(ρ1) = φ(ρ2) = φ(ρ3) = 0. Then the three equalities give φ(ρ5) = φ(ρ6) =
φ(ρ7). Define a = φ(ρ4) and b = φ(ρ5) = φ(ρ6) = φ(ρ7). Then inequalities (15) imply
a ≥ b and 3b ≥ 2a. It follows that Nef(X) is contained in the 2-dimensional cone pictured in
Figure 5 on the next page.

Since Pic(X)R has dimension 4 and Nef(X) has dimension at most two, we see that X is
non-projective since the nef cone does not have maximal dimension.

It is also easy to see that the cone in Figure 5 actually equals the nef cone Nef(X)—
just show that the generators of this cone are nef. For example, when a = b > 0, note that
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FIGURE 5. Cone defined by primitive inequalities.

Σ is a refinement of the complete fan Σ0 with 1-dimensional generators ρ1, ρ2, ρ3, ρ4. The
toric variety of Σ0 is P 3, and the class corresponding to a = b > 0 is the pullback of an
ample divisor on P 3, hence nef on X. For 3b = 2a > 0, one proceeds similarly by noting
that Σ is a refinement of the projective non-simplical fan Σ1 with 1-dimensional generators
ρ1, ρ2, ρ3, ρ5, ρ6, ρ7. �

Other more substantial examples can be found in Chapter 7 of Scaramuzza’s thesis [16].
Based on this, we make the following conjecture, which we credit to Casagrande.

CONJECTURE 4.2 (Casagrande). Let X be a simplicial toric variety coming from the
fan Σ in NR

∼= Rn. If |Σ| is convex of dimension n, then

CPL(Σ) = {φ ∈ PL(Σ) ; φ(ρ1) + · · · + φ(ρk) ≥ φ(ρ1 + · · · + ρk)

for all primitive collections {ρ1, . . . , ρk} for Σ} .

Besides the evidence provided by numerous examples, we also have the theoretical re-
sult of Casagrande [2, Thm. 5.6], which states that if a smooth complete non-projective toric
variety X has a toric blow-up Y → X with Y projective, then Conjecture 4.2 holds for X.
However, the proofs of the simplicial case given in Theorem 2.3 make essential use of ex-
tremal rays, which exist only in the quasi-projective case. It is likely that some significantly
new ideas will be needed to prove Conjecture 4.2 in general.

We extend Conjecture 4.2 to the non-simplicial case as follows.

CONJECTURE 4.3. Let X be a non-simplicial toric variety of a fan Σ in NR
∼= Rn

such that |Σ| is convex of dimension n. Then:
CPL(Σ) = {φ ∈ PL(Σ) ; φ(ρ1) + · · · + φ(ρk) ≥ φ(ρ1 + · · · + ρk)

for all primitive collections {ρ1, . . . , ρk} for Σ} .

Furthemore, every primitive collection for Σ is supported on a simplicial refinement Σ ′ of Σ

satisfying Σ ′(1) = Σ(1).

Given a non-simplicial fan Σ , the first part Conjecture 4.3 follows from Conjecture 4.2
and the existence of a simplicial refinement Σ ′ satisfying Σ ′(1) = Σ(1). The latter is proved
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in [17]. However, the final assertion of Conjecture 4.3 requires a version of Theorem 3.1 that
doesn’t assume that Σ is quasi-projective.
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