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Primitive divisors of Lucas and Lehmer sequences, II

par PAUL M VOUTIER

RÉSUMÉ. Soit 03B1 et 03B2 deux entiers algébriques complexes conjugués. On
propose un algorithme dont l’objet est de découvrir des éléments des suites
de Lucas ou de Lehmer associées à 03B1 et 03B2, n’ayant pas de diviseurs primitifs.
On utilise cette algorithme pour démontrer que pour tout 03B1 et 03B2 tel que
h(03B2/03B1)~ 4, le n-ième terme des suites de Lucas et de Lehmer admet un
diviseur primitif dès que n &#x3E; 30. Nous donnons en outre une amélioration
d’un résultat de Stewart se rapportant à des suites plus générales.

ABSTRACT Let 03B1 and 03B2 are conjugate complex algebraic integers which
generate Lucas or Lehmer sequences. We present an algorithm to search
for elements of such sequences which have no primitive divisors. We use this
algorithm to prove that for all 03B1 and 03B2 with h(03B2/03B1) ~ 4, the n-th element of
these sequences has a primitive divisor for n &#x3E; 30. In the course of proving
this result, we give an improvement of a result of Stewart concerning more
general sequences.

1. Introduction

Let a and {3 be algebraic numbers such that a + {3 and are relatively
prime non-zero rational integers and is not a root of unity.  The sequence

n
defined by ex - (3 for n &#x3E; 0 is called a Lucas sequence.

If, instead of supposing that a +,Q E Z, we only suppose that (a + (3)2 is
a non-zero rational integer, still relatively prime to then we define the
Lehmer sequence (u~,)~ o associated to a and {3 by

We say that a prime number p is a primitive divisor of a Lucas number
un if p divides but does not divide (a - 0)2 U2 ... U,,- 1 . Similarly,
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p is a primitive divisor of a Lehmer number un if p divides un but not

(a2 - ~~)22L3 ... Un-I.
Stewart [14, p. 80] showed, as a consequence of his Theorem 1, that

if n &#x3E; C then un has a primitive divisor, where C = e 452267 for Lucas
sequences and C = e4524fi7 for Lehmer sequences. In Theorem 2, we shall
obtain an improvement over Theorem 1 of [14] as well as decreasing the
size of C.

In an earlier article [16], we enumerated all Lucas and Lehmer sequences
whose n-th element has no primitive divisor for certain n  12 and all
12  n  30. We also presented some evidence to support the conjecture
made there that for n &#x3E; 30, the n-th element of any Lucas or Lehmer
sequence always has a primitive divisor.

Here, we present some further results concerning this conjecture. Our
main result, Theorem 1, states that the conjecture is true if the absolute
logarithmic height of a is small. In addition to providing further evidence for
the validity of the conjecture (or at least not providing a counterexample),
this result will also be useful in a forthcoming work where we shall make
further improvements to the size of C.

Throughout this paper, we shall use h(a) to denote the absolute loga-
rithmic height of the algebraic number a.

THEOREM 1. Suppose a and (3 generate a Lucas or Lehmer sequence with
h{~3/a)  4. Thert, for all n &#x3E; 30, the n-th element of this sequence has a
primitive divisor.

We prove this result by using Stewart’s idea [14, Section 5] of looking at
certain Thue equations. For any Lucas or Lehmer sequence there
is a pair of integers (p, q), dependent only on the sequence, such that if u~
has no primitive divisor then (p, q) is a solution of one of certain finitely
many Thue equations associated to n. We use this to show that if, for
n &#x3E; 30, u~, is without a primitive divisor then n must be the denominator
of a convergent in the continued-fraction expansion of arccos(pl(2q))/(21r).
The advantage gained by this is that the convergents of real numbers grow
quite quickly and so the problem of checking each n less than 2 - 101° is

reduced to checking no more than fifty such n.
In fact, we will show that if un has no primitive divisor, then the conver-

gent k /n must be an extremely good approximation to arccos(p/(2q))/(21r),
so good that except for a few exceptional cases with n small, we can show
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directly that k/n is not sufficiently close to the number in question and
therefore, eliminate n from consideration. In the remaining cases, a direct
examination of Un proves our desired result.

Stewart’s upper bound for n, stated above, is quite large and would thus
give rise to extremely long calculations just to determine theconvergents.
Fortunately it is now possible to reduce this upper bound considerably.
Because of its benefit to our work here, we shall determine such a smaller
upper bound. In fact, we establish a more general result which is an

improvement over Theorem 1 in Stewart’s paper (14~, whose proof requires
little more effort than proving the more specific result which only applies
to Lucas and Lehmer sequences.

THEOREM 2. (i) Suppose a are algebraic integers with ,Q/a having
degree di over Q, (a, (3) = (1) ccnd not a root of unity. Then there is a
prime ideal P which divides the ideal (an-,C3’~) but does not divide the ideals
(,m -,3m) for 1  rri  n for alln &#x3E; max f 2(2 di - 1), 4000(d1log(3d1))I2}.
(ii) If a and ,~ generate a Lucas or Lehmer sequence then the n-th element
of this seqttence has a primitive divisor for all n &#x3E; 2 - 1010.

2. Preliminary Lemmas to Theorem 2

We shall first require a lower bound for linear forms in two logarithms.
The work of Laurent, Mignotte and Nesterenko [8] will be suitable for our
needs. We also need a good lower bound for the height of a non-zero
algebraic number which is not a root of unity.

LEMMA 1. Suppose that, is a non-zero algebraic number of degree D &#x3E; 2
over Q which is not a root of unity,. Then

Proof. This is Corollary 1 of (17~. 0

Now let us continue.

LEMMA 2. Let q be a non-zero algebraic number of degree which
is not a root of unity and let log -y denote the principal value of its logarithm.
Put
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with bI a positive integer, b2 a non-negative integer and

If 0 then

Proof. First let us suppose that [q[ # 1. We can write -y = where r &#x3E; 0

and -7r  8  ir. Since r2 = 7 ~ 7, we have

so h(r)  h(¡). Thus, by Liouville’s inequality we have

and the lemma follows by Lemma 1 and the fact that h(q) &#x3E; log 2 if D =1.
We now turn to the case of 1,1 = 1. Since 7 is not a root of unity, D &#x3E; 2.

To obtain our lower bound for IAI in this case we will use Th6or6me 3
of [8]. However, this result requires that bl and b2 be non-zero, so we must
deal specially with the case of bl = 0.

By Liouville’s inequality and Lemma 1,

It is now clear that the lemma holds in this case.

To obtain a good constant in our lower bound we show that we may
assume B &#x3E; 679000. From Liouville’s inequality, we obtain

We can use D/2 here instead of D since q £ R (see Exercise 3.4 of [18)).
So the lemma is true whenever



255

Since D &#x3E; 2, applying Lemma 1, this inequality holds if

Using Maple, one can check that this is true for 2  B  679000.

We now invoke Th6or6me 3 of [8]. Let a = max {20, 12.851Iog,1 + D h(7)/2}
and H = max {17, D log(bl/(2a) + b2/(25.7~))/2 + 2.3D + 3.25}. Then

Since a &#x3E; 20 and 1/(2a) + 1/(25-77r)  0.0374, H  max f 17, (D/2) log B
+0.657D + 3.25}. Moreover, B &#x3E; 679000 implies that (D/2) log B +
0.657D + 3.25  0.66994D log B. As this last quantity is greater than
17 for B &#x3E; 679000, we have H  0.66994D log B.

We also want an upper bound for a in terms of D and h(y). First notice
that ~ 7r - ° Therefore, 12.85~ log7~+Dh(7)/2  Dh(-y)(40.37/(Dh(~y))
+1/2). Since D &#x3E; 2, we can apply Lemma 1. We obtain 40.37/(D he,)) +
1/2  20.185(log(3D))~+l/2  20.272(log(3D))3. Therefore, 12.851 log -yi +
Dh(-y)/2  20.272(log(3D))3D h(y) for all D &#x3E; 2. Moreover, this quantity
is greater than 20, so a  20.272(log(3D))3D h(7).

Applying these estimates to (1), we find that our lemma holds. 0

Suppose that a and (3 are algebraic integers in a number field K of
degree d over Q. Letting Ki = Q(/3/a), a number field of degree d1 over
Q, we set (3/a 13, /a,, where al and ,Ql are algebraic integers in Ki and
(al,,31) =.AI. We may assume, without loss of generality, that 
We note that, unless we state otherwise, log z shall always denote the

principal branch of the logarithmic function.

Now let us prove:

LEMMA 3. (i) We have

(ii) For 2 and n &#x3E; 2, we have
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Proof. (i) We can write = ai(l - ~1/0:1). By Liouville’s inequality,

and the result follows.

(ii) The upper bound follows directly from the triangle inequality and
our assumption that 

For the lower bound we write the quantity in question as

Applying Lemma 2.3 of [10] with r = 1/3 and z = we see

that either 
11

or

In the first case, the lemma holds so we need only consider the second
case. Here, we must have

Since we took the principal value of the logarithm of (3l/al, we have
-~r   1r and so Ikl  n/2 + 0.5/(2x) or 12ki  n.

As is, by assumption, not a root of unity, A # 0 and, since n &#x3E; 2,
we may apply Lemma 2 giving

By Lemma 1, we have log(1.3)  
since dl &#x3E; 2 and n &#x3E; 2. Our lemma follows. 0

LEMMA 4. Let where is the n-th order

cyclotomic polynomial. Suppose that P is a prime ideal in K which divides
(q,n(a, (3)) for n &#x3E; 2(2d1 - 1). This implies that P divides (an - (3n). If,
in addition, P divides (am - ~3"’~) for some rn  n, then

Proof. This is Lemma 4 of [13]. 0

Finally we need to bound some arithmetic functions which will appear
throughout this article.
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LEMMA 5. (i) Let w(n) denote the number of distinct prime factors of n.
For n &#x3E; 3,

For n &#x3E; 3,

where -y = 0.57721 ... is Euler’s constant.

Proof. (i) This follows from Th6or6me 11 of [11].
(ii) This is Theorem 15 of [12~. D

3. Proof of Theorem 2

We may assume that 2, for otherwise we can write a = OC1 /C2
where cl, c2 E Z with (cl, c2) = 1 and so a" - (3n = (ci - c2 )(,C~/c2)".
Now Zsigmondy [20] and, independently of him, Birkhoff and Vandiver [2]
have shown that for n &#x3E; 6 the n-th element of such sequences always has
a primitive divisor.

Therefore, we may also assume that n &#x3E; 3900(2 log(3 - 2))1211.74 . 
since Theorem 2 does not apply for smaller n when 2.

We note that

Letting A be the extension of .A1 in K, we have ({3/ (3I) = since

(a, #) = (1), and so

Since

the right-hand side of (2) is
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where denotes the set of all Archimedean absolute values defined

on Ki up to equivalence.

Applying Lemma 3, we see that the inner sum in the first term of this
expression is at least

Combining this lower bound with

and

we obtain

Notice that n has 2WJ(n)-1 factors m which satisfy = 1 and the
same number of factors m satisfying J-L(n/m) = -1. Now, by Lemma 1 and
our lower bound for n,

Thus
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By Lemma 4, if &#x3E; nd, then there exists a prime ideal
P which divides (an - but does not divide (am - ,Q"’ ) for any m  n.

Using (3) and Lemma 1~ as well as our assumptions that 2 and
n &#x3E; 1.74 . 10~° , this condition is satisfied if

From Lemma 5, we find that

for such n. Therefore, (4) is satisfied for

Since di &#x3E; 2, part (i) of the theorem holds.

(ii) Let be a Lucas or Lehmer sequence generated by a and
(3. Since a(3 and (a + (3)2 are relatively prime non-zero rational integers,
there exist two integers p and q such that a and ,Q are the two roots of
X2 - ~/p+2?X+~ Therefore, a, ,Q = (~/p+2~± p - 2~)/2 and so either
a/ {3 or (3/a is equal to (p+ p2 - 4q2)/(2q). Therefore we can take di = 2
and so part (i) of theorem implies part (11). 0

4. Preliminary Lemmas to Theorem 1

LEMMA 6. Let a be a non-negative real number. E R with -1 ::;
x, y  1 and then
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Proof. This result follows from finding the minimum value of the function

on the area in R2 defined by 0  x, y _ 7r, x =F y which is 2/7r2 and then
applying the contrapositive. D

Let us collect here various notations which we shall use throughout the
remainder of this article.

Notations. Given a complex-valued function f defined on C, we use 
to denote f (x~ (.

For a positive integer n, we let 9n(X) E Z[X] be the minimal polynomial
of 2 over Z; its degree is cp(n)/2 if n &#x3E; 3. We shall put Gn(X, Y) =_

We let m be the greatest odd square-free divisor of n. For such m, we
shall write (xm - 

Finally, for n &#x3E; 1, we let P(n) denote the largest prime divisor of n.

As we shall see in Section 5, the crucial result needed in the proof of
Theorem 1 is a good lower bound for for (j, n) = 1.
We will show that we need to obtain an upper bound for the absolute

value of hm(X) on the unit circle which we find using an idea and a result
of Bateman, Pomerance and Vaughan [1].

Let us start linking these two polynomials now.

LEMMA 7. Let n &#x3E; 3, 1  j  n with (j, r~) = 1 and (n = exp(27ri/n) .
Then

Proof. We can write
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Hence,

from which the lemma follows. D

To work with the cyclotomic polynomials we shall need some relation-
ships which they satisfy. We give these in the next lemma.

LEMMA 8. (i~ Let n be a positive integer and let m be its greatest odd
square-free divisor. We put m’ = gcd (2, n) m . Then

(ii) Let p be a prime number and n any positive integer not divisible by p.
Then 

I / -.,-Br l 

(iii) Let rn, m’ and n be as above. We put n’ = n/ gcd(n, 2), hm(X) =
(X"‘ -1)/~",,(X) and Cn = exp(27ri/n). Then, for all j with (j, n) = 1, we
have
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Proof. (i) This assertion follows easily from the two relations:

which are parts (iv) and (vi) of Proposition 5.16 from Chapter 2 of
Karpilovsky’s book [7].

(ii) This is again from Proposition 5.16 from Chapter 2 of [7}.
(iii) Applying part (i), we find that

= = 

Letting X = which is always a primitive m-th root of unity,
we have (-1)("z-1&#x3E;("’~~+1&#x3E;rn~ (;’z 1) - 
and the result follows. D

We see now that we have reduced the problem of bounding from
below for primitive n-th roots of unity to bounding from above. To
deal with this new problem, we shall now use ideas from [1].

LEMMA 9. Let m = pi ... pk where are odd primes arranged
in increasing order. Then

In 3 then the factor of 2 is not needed.

Proof. From Lemma 8(ii),

We now use induction on k to prove the lemma.

Since hi (X) = 1, hP, (X) = X - 1 and (X) = (X), the
lemma is true for k  2.
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Fork = 3, we have * Using the result just
established for h = 2 and a theorem of Carlitz [3] which shows that

PIP2/2, we obtain lhplp2p.1,  pip2. This is the desired in-

equality for J~ = 3.

Suppose now that the lemma holds for some k &#x3E; 3. We apply the
following estimate of Bateman, Pomerance and Vaughan, which follows
from Theorem 1 of their paper [1] and holds 3,

Thus from (5), we have

Hence the lemma holds. 0

We need the next lemma to deal with the case q = 2, although we will
use it for all q. A simple application of the triangle inequality would quickly
yield the inequality below with 31ql/5 replaced by lql/2. However, in the
case of q = 2, this would not be sufficient to prove our theorem: with
the lower bound that the previous lemmas imply for 
the upper bound we would obtain for the left-hand side of (11) would not
decrease with n but actually grow with n. To refine this trivial estimate,
it seems we must resort to an argument like the one which follows.

LEMMA 10. Let n &#x3E; 30 be a positive integer and let p and q be non-zero
integers with q &#x3E; 2jp)  2q and

For 1  j  n/2 = 1, we = Define
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Proof. We first divide the interval (-2, 2) into four subintervals and di-
vide the set of integers less than n/2 which are relatively prime to n
into four associated subsets. Let A = (-2, -1), A’ = {m : n/3  m 
n/2, (m, n) = 1},B = (-1,0),8’ = (m : n/4  m  n/3, (m, n) _

= (0,1),C’ = {m : n/6  m  n/4, (m, n) = 1}, D = (l, 2) and
D’ - {m : 0  m  ~/6, (m, n) = 11. If we let denote
the number of integers in the interval (nq/k, n(q + 1)/~C) which are rel-
atively prime to n then IA’l = cp(6, 2, n) = cp(n)/2 - p(3, 0, n), 18’1 =
w (3&#x3E; 0, n) - w (4&#x3E; 0, n), I C’l = w (4&#x3E; o&#x3E; n) - w (6&#x3E; 0, n) and I D’I = V (6, 0, r~).

Using Theorems 5-7 of [91, we have the following inequalities for the
cardinalities of these sets of integers:

Let us observe that p/q and

If p/q E .r4 then p  -3, since q &#x3E; 2, and either l or k is the largest
element of B’. Thus, (3}!) &#x3E; 3 + 4 cos (27rj /n) for each j E C’ U D’ and so

Combining these inequalities with (7), we obtain
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Since the quantity before ~g~(2 on the right-hand side of this
expression is at least as large as the similar quantity obtained for p/q E A,
we can ignore this case.

If (3ik) &#x3E; 0 then 11 - ,~~k~/ j~~’~f  1 for j E A’ so a similar analysis to
that above shows that

If p/q E C then, by the same reasoning, we obtain
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and

For n  210, n = 231 and n = 462, we can use these estimates to show
by direct calculation that our lemma holds.

To deal with n &#x3E; 210, we first show that max(ci , c2, c3, c4)  1 for such
n. Using the above expressions for these quantities we see that this holds if
min(3~~~~, 31""1) &#x3E; n. By (6), both IA’I and are at least ~)/6-2~)/3,
so we need only prove that (p(n) - 2 ’ &#x3E; 6 log n for n &#x3E; 210.

For 210  n  330 = 2 - 3 - 5 - 11, 2w(n)  8  n°-389. Lemma 5(ii)
yields the lower bound p(n) &#x3E; n°-719 for n &#x3E; 210. Since log n  for
n &#x3E; 210, we need only show that no-075 (no .33 - 2) log 3 &#x3E; 6 for n in this

range. But this is easily seen to be true.

For 330  n  2310 = 2 - 3 . 5 - 7 - 11, 2- (n)  16  no -48 Moreover,
by Lemma 5(i), for n &#x3E; 2310, 2~’~n~  no .47 Therefore,
for n &#x3E; 330, 2w~n&#x3E;  no -48 . Applying Lemma 5(ii) again, we find that
p(n) &#x3E; n°- ‘3 for n &#x3E; 330. Since log n  n°-3~ for n &#x3E; 330, we need only
show that no- 17 (no- 25 - 2) log 3 &#x3E; 6 for n in this range which is also easily
seen to be true. Therefore, max( CI, C2, C3, C4)  1.

So, from our lower bounds for the absolute values of the products of the
given above, to prove the lemma we need to show that
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is less than (5/3)cp(n)/2.
Let us first show that 2IA’I(2/3)IC’1 ~ 1 and 2IV’I(2/3)IB’1 &#x3E; 1. These in-

equalities will show that either the first or the last terms give the maximum
in this expression.

For the first of these two inequalities to be true, by (6) we need to
show that 0.08cp(n) - 0.26 ~ 2Wt’~&#x3E; &#x3E; 0. Similarly, the second inequality
requires that the stronger inequality 0.08cp(n) - 0.34 - 2‘~~"&#x3E; &#x3E; 0 holds. So
we need only consider this last inequality which we shall rewrite in the form
0.08/0.34 ~ 2~)/~).

For 210  n  330, we saw in a previous paragraph that 2Wf"&#x3E;/cp(n) 
0.33 C 0.171  0.08/0.34. We also saw that  n-O.25 
0.235  0.08/0.34 for n &#x3E; 330. Therefore, our desired inequalities holds and
we need only try to bound and 
from above.

Notice that = cp(4, 0, n) and that = cp(4, 1, n). Lehmer
[9, p. 351] has noted that E(4, 1, n) = -E(4, 0, n), where E(k, q, n) denotes
cp(n) - kcp(k, q, n), so we need only examine

Lehmer also gives precise information about E(4, 0, n) in Theorem 6 of
[9]. If n &#x3E; 4 and 4 divides n or n is divisible by a prime congruent to 1
mod 4 then E(4, 0, n) = 0 and our proof is complete. If neither of these
conditions is true then I E(4, 0, n) = 2"(n’) where n’ is as in the statement
of Lemma 8(iii). Notice that when E(4, 0, n) 0 0, n is not

congruent to 0 mod 4, so n’ is the odd part of n.

A direct calculation shows that for 210  n  750, with the exceptions
of n = 231 and 462 which we considered above,  0.05.

Therefore, (8/3)~~(3/2)’~o~))/4 ~ (5/3)~(~/2 for 210  n  750, n =1=
231,462. Recalling that we showed by calculation that the lemma holds for
30  n  210, for n = 231 and for n = 462, we now know that the lemma
holds for 30  n  750.

Notice that if n  4389 = 3’7’lld9 then either ~E(4, 0, n)~ = 0 or 2-(n 
8, since in the latter case n’ is odd and without prime divisors congruent to
1 mod 4. Using Lemma 5(ii), p(n) &#x3E; 160 and so JE(4, 0,  0.05
for n &#x3E; 750 and our lemma holds for 30  n  4389.

Applying the inequality 2W~’~~  , which follows from
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Lemma 5(i), and part (ii) of this same lemma, we find that

The right-hand side is a monotone-decreasing function for n &#x3E; 10 and
so it is less than 0.05 for n &#x3E; 4389. Therefore (8/3)~~(3/2)~~’/~ 
(5/3)‘~~"»2 for n &#x3E; 4389, which shows that the lemma is true. D

5. Proof of Theorem 1

Let be a Lucas or Lehmer sequence generated by a As
noted in the proof of Theorem 2, there exist two integers p and q such that
a and {3 are the two roots of X2 - p + 2qX + q. Notice that the n-th
element of the sequence generated by ia and I# is just ±un. Therefore, we
can assume that q = a# is positive. Also notice lpl  2q for otherwise a
and /3 are real and Carmichael (4), Ward [19] and Durst [5] have shown that
in this case the n-th element of these sequences has a primitive divisor for
n &#x3E; 12.

Let us define the (3}!) ’s and ,~~~~ as in Lemma 10. Stewart [14, Section 5]
has shown that if the n-th element of this sequence has no primitive divisor
then

Since lpi  2q, upon applying Lemma 10, we obtain

for n &#x3E; 30.

Therefore, if we can show that

then, by Lemma 10,
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and so, by Theorem 184 of (6~, k/n must be a convergent in the continued-
fraction expansion of 

Hence we first want to show that for n sufficiently large, the right-hand
inequality of (11) holds. We start by considering the case of q = 2, as this
is the most difficult one.

5.1. The case q = 2

Using the notation of Lemmas 8 and 9, we find, from Lemma 9, that

for m &#x3E; l.

If m = 1, but n &#x3E; 1, we have  .

Combining this upper bound with Lemmas 7 and 8(iii), we obtain

for n &#x3E; 1.

Applying this lower bound to the right-hand inequality of (11) and squar-
ing both sides, we want to show that

for n &#x3E; 30.

To prove that this holds for n sufficiently large, we take the logarithm
of both sides, which yields

From Lemma 5(ii), we see that cp(n) &#x3E; nO- 8043 for n &#x3E; 3500, while for
the term involving w(n) we use the fact that 2~’ /z is a monotone increasing
function for x &#x3E; 1/ log 2, 21/1 = 22/2 and Lemma 5(i). In this manner,
our problem is to show that

For n &#x3E; 3500, the sum of the second and third terms is at most n°’5g52.
Therefore, we need only show that -O.182no.209 + 1  0, but this is easily



270

seen to be true for n &#x3E; 3500. So we have an initial bound of intermediate
size.

Notice though that we did not make full use of the Lemma 9 in this
argument. A direct calculation on a computer using the result given in
Lemmas 7,8(iii) and 9 shows that the right-hand inequality of (11) holds
for all n &#x3E; 1260 when q = 2.

In the case of q = 2, Lucas and Lehmer sequences can result from
p = -3, -l,1 and 3. Since Gn(p, q) is a product of terms of the form
p - it is quite easy to calculate Gn(p, q), although care must
be taken to maintain sufficient accuracy, and so we can check whether un
has primitive divisors by means of (10). However, to check Un for each n
up to 1260 in this manner is quite time-consuming. Fortunately, one can
quickly extract still more information from (11). Given n, p and q, it is

easy to find the integer 1~ with (k, n) = 1 which minimizes the far left-
hand side of (11). As when considering 1260  n  3500, we can bound
from above the middle quantity in (11). For q = 2, p = -3, -1,1, 3 and
330  n  1260, we can verify in this way that the left-hand inequality in
(11) is violated and so for such n, the n-th element of these sequences has
a primitive divisor. But we still need to consider 30  n  330. For these
n, we use (10) as described earlier in this paragraph.

For n &#x3E; 1260, we have seen that n must be the denominator of a con-
vergent in the continued-fraction expansion for 

The question arises of how to deal with these n. We are fortunate that
in these cases the middle quantity in (11) is extremely small. For such n,
we proceed in the same manner that we checked the left-hand inequality in
(11) holds for 330  n  1260, except that now we know k too. Theorem 2
tells us that we need only check those convergents k /n with n  2 - l0i° .
For each convergent computed with n  2 - 101°, (p/q - 2 I
was considerably larger than the bound that the left-hand inequality of
(11) requires if Un were to be without a primitive divisor. In Table 1, for
p = -3, we list the convergents with n &#x3E; 1260 and give the logarithms of
the required and actual bounds, denoted dreq and dact, respectively. The
value of log ldreql given in Table 1 is truncated to its integer part, whereas
the value of log dact f is truncated to one decimal place.

Proceeding in this same way for p = -l,1 and 3, we are able to conclude
that if is the Lucas or Lehmer sequence generated by any of the
pairs (~,,~) _ (1 ± V/--7) / 2, (V3-.rJ=5)/2, (~~ ~)/2 or (v’7-.rý-1)/2,
then un has a primitive divisor for n &#x3E; 30.
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Table 1: (p, q) _ (-3,2) Verification

5.2. The case of q &#x3E; 2

For such pairs (p, q), we proceed along the same lines. The only difference
is that less work is required for small n. We already know that the right-
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hand inequality of (11) is satisfied for n &#x3E; 1260 by our work in the previous
section. We can check directly, as with 1260  n  3500 for q = 2, that the
right-hand inequality of (11) holds for &#x3E; nq where nq is given in
Table 2.

As in the case of 30  n  330 for q = 2, we directly check those un
with 30  n  nq for primitive divisors and for larger n we compare the
required and actual differences of lplq - 2 I in (11) to establish
our result. The actual difference is less than the required difference for all
nq  n  2 - 101° and all 3  q  3000 (this corresponds to all pairs of a
and /3 with h(,Q/a)  4). By Theorem 2, Theorem 1 now follows.

All the calculations in this article were performed using Release 3 of
Maple V and UBASIC 8.74 on an IBM-compatible PC with an 486DX2
running at 66 MHz. In total, the calculations required just over 100 hours
on this machine. Many of the calculations were performed using both
systems to provide a check on the quantities obtained and the results were
always identical up to the specified accuracy.

Table 2: Values of nq
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