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PRIMITIVE DIVISORS OF LUCAS AND LEHMER SEQUENCES

PAUL M. VOUTIER

Abstract. Stewart reduced the problem of determining all Lucas and Lehmer
sequences whose nth element does not have a primitive divisor to solving cer-
tain Thue equations. Using the method of Tzanakis and de Weger for solving
Thue equations, we determine such sequences for n < 30 . Further computa-
tions lead us to conjecture that, for n > 30 , the nth element of such sequences
always has a primitive divisor.

1.  INTRODUCTION

Let a and ß be algebraic numbers such that a + ß and aß are relatively
prime nonzero rational integers and a/ß is not a root of unity. The sequence
(un)™=o defined by un = (an - ß")/(a - ß) for n > 0 is called a Lucas se-
quence.

If, instead of supposing that a + ß e Z, we only suppose that (a + ß)2 is a
nonzero rational integer, still relatively prime to aß , then we define the Lehmer
sequence (u„)™=0 associated with a and ß by

Un =

a" - ßn

a- ß
an- ß"

2- ß2

if n is odd,

if n is even.

We say that a prime number p is a primitive divisor of a Lucas number
un if p divides w„ but does not divide (a - ß)2u2---u„-i . Similarly, p
is a primitive divisor of a Lehmer number  un   if p  divides   u„   but not
(Q2-j82)2U3'"Wn-l.

There is another sequence, (v„)%LQ, associated with every Lucas and Lehmer
sequence. However, v„ = u2n/u„ , so it has a primitive divisor if and only if
u2n does. Therefore, in what follows we need only consider the numbers un.

Drawing upon the ideas of Schnizel [16] and refined techniques for deter-
mining lower bounds for linear forms in logarithms, Stewart [17, p.80] showed,
as a consequence of his Theorem 1, that if n > C, then un has a primitive
divisor, where C = e452261 for Lucas sequences and C = e452467 for Lehmer
sequences.
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Moreover, Stewart [17, Theorem 2] also proved that for « > 6, « ^ 8, 10, 12
there are at most finitely many Lucas and Lehmer sequences whose «th ele-
ment is without a primitive divisor. And, as Stewart states (see [17, p.80]), for
Lucas sequences the conditions on n may be replaced by n > 4, n ^ 6. He
demonstrated this by reducing the problem of finding all Lucas and Lehmer
sequences whose nth element has no primitive divisor to solving finitely many
Thue equations.

Here, we will use the method of Tzanakis and de Weger [7, 19] to solve these
Thue equations and thus enumerate all Lucas and Lehmer sequences whose «th
element has no primitive divisor when n < 30 satisfies the conditions in the
previous paragraph.

Notice that if (u„) is the sequence generated by a and ß and (u'n) is the
sequence generated by -a and -ß, then u„ = ±u'n. We list only one of
these pairs in Table 1 below; thus, for each entry (a, ß) which generates a
sequence whose «th element is without a primitive divisor, the «th element
of the sequence generated by -a and -ß also lacks a primitive divisor.

Table 1

\±V5
a,ß

l±yf^l i±V=ïô liv^^TT

liv73!! 6±w^Ï9 6±v/r34î

l±v/z7 l±v^Ï9

l±w^6
l±Vz7

10 liv7^
5± Siv73^

12 l±yß i + V^ñ l±v/rîî

l + ̂ f-ÎÂ l + v^^ 1±>/=Ï9

13 l±^f^ï

18 liv^

30 livw
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Table 2

871

n a,ß

1±a/-7

yß±v^l

liv73^

x/ÏIiv7^

v^iv^

sfïÂ+v^n

\ß±V=3 vñ±V-i v^iv/^S

13 l±>/=7

14 v/Jiv7-!! v^iv^ v^iV-T

v^iv73? v^iv73! v^iv7^

15 v77±v7-r VTü±

18 liv7^ v^iv7^ n/Iív7^

24 n/Iív7^ v^iv7^

26
wñ±vrz\

30 l±/=7 v^iv7-^

Similarly, if a and /? generate a Lehmer sequence (m„) and (u'n) is the
Lehmer sequence generated by ia and iß, then «„ = ±u'n. Again, we list
only one of the four pairs in Table 2, and so for each entry (a, ß) generating a
sequence whose «th element is without a primitive divisor, the «th element of
the sequences generated by ika and ik ß , for k = 1, 2, 3, also lack primitive
divisors.

Theorem 1. (i) For 4 < « < 30, «,¿6, Table 1 gives a complete list, up to the
sign of a and ß, of all Lucas sequences whose nth element has no primitive
divisor.

(ix) For 6 < « < 30, «#8,10,12, Table 2 gives a complete list, up to
multiplication of a and ß by a fourth root of unity, of all Lehmer sequences
whose nth element has no primitive divisor.

Using continued fractions and Lemma 6(i) below, we may quickly search for
small solutions of Thue equations. By this method, we have determined that for
31 < « < 250 there are no solutions (x, y) of the appropriate Thue equations,
F„(X, Y) = m with max(|x|, \y\) < 106 which give rise to Lucas or Lehmer
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sequences whose «th element is without a primitive divisor. Notice that 106
is quite a bit larger than the entries X4 and Y4 in Tables 5-7 (see §6), which
give the maximum of \x\ and \y\ for all solutions (x,y) of each completely
solved Thue equation. Moreover, Birkhoff and Vandiver [ 1 ] have shown that
there are no Lucas sequences generated by a, ß eZ whose «th element does
not have a primitive divisor for « > 6 and Carmichael [4] proved the same
result for a, ß £R with « > 12. In the late 1950s, Ward [21] and Durst [9]
extended Carmichael's result to Lehmer sequences. Thus it seems reasonable to
make the following conjecture.

Conjecture 1. For « > 30, the «th element of a Lucas or Lehmer sequence
always has a primitive divisor.

In the next section, the lemmas necessary to establish the connection between
enumerating Lucas and Lehmer sequences whose «th element has no primitive
divisor and solving Thue equations are given as well as some results from al-
gebraic number theory which are necessary to solve these equations. In §3 we
consider the values n = 5, 8, 10 and 12 for which there are infinitely many
Lehmer sequences without a primitive divisor but only finitely many such Lu-
cas sequences. Then, in §4, we give a description of the algorithm of Tzanakis
and de Weger for solving Thue equations. In §5, we describe linear dependence
relations over Z between certain numbers which arise in our applications of
this algorithm. Finally, tables giving details of the computations for each value
of « are provided.

2. Some preliminary lemmas

Let <t>n(X, Y) he the homogeneous cyclotomic polynomial of order « and
<pn(X) = Q>n(X, 1). These polynomials are linked to Lucas and Lehmer se-
quences by the formula

(1) an-ßn = \[<S>d(a,ß).
d\n

Notation 1. For « > 1, we let P(n) denote the largest prime divisor of « .

Lemma 1. Let « > 4 and «#6,12. Then u„ has a primitive divisor if and
only if '<P„(a, ß) / ±1, ±P(n/(n, 3)). Furthermore, ui2 has a primitive divisor
ifandonlyifQ>i2(a, ß) # ±1, ±2, ±3, ±6.
Proof. This follows immediately from Lemmas 6 and 7 of Stewart [18], using
(1).   n

It is by means of this lemma that we obtain Thue equations. Indeed,

nil

®n(a,ß)= n («-«/*)= n (c2+ß2-iu+^j)cxß).
>=i ;'=i

(7,«)=1 (/,»)=!
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Let x = a2 + ß2 and y = aß . Then 4>„(a, ß) = F„(x, y), where F„(x, y)
is a binary form of total degree <p(n)¡2 in x and y and ç>(«) is the Euler
phi function. Moreover, since ÇJ„ + Cñj = 2cos(2nj/n) is an algebraic integer,
Fn(x,y) has rational integer coefficients. By Lemma 1, we have four Thue
equations associated with each «>4, «#6,12to solve. Recall that we
assumed (a + ß)2 and aß are integers, so x and y are integers. We can find
the values of a and ß associated with a given solution (x, y) of these Thue
equations as the roots of the polynomial X2 - \fx~+2y X + y .

We start with some properties of these binary forms.

Lemma 2. (i) If t is an odd integer, then F2t(X, Y) = F,(X, -Y).
(ii) Let « - px ■■ -prkk and m = px ■■•pskk, where Pi, ... , Pk we distinct

primes and the r¡ 's and s¡ 's are positive integers with I < s¡ < r¡. Then
Fn(X, Y) = Fm(X', ¥'), where Y' = Yn'm and X' can be written as a bi-
nary form of degree n/m in X and Y with integer coefficients.
Proof. These two statements follow easily from the analogous statements which
hold for the cyclotomic polynomials:

MX) = M-X)      and      <pn(X) = <pm {Xn'm) .

The first result is part (iv) of Proposition 5.16 from Chapter 2 of Karpilov-
sky's book [10], while the second is a slight generalization, whose proof is es-
sentially identical, of part (vi) of this same proposition,   d

There are two other results we need in order to implement the algorithm of
Tzanakis and de Weger. All but one of the Thue equations we consider here
split into linear factors in the field Q(cos(27r/«)). We need a factorization of
the ideal (P(n/(3, «))) in these fields as well as a system of fundamental units
for the ring of integers of these fields.

Lemma 3. (i) Ifn=pk is an odd prime power satisfying 7 < pk < 29, then

(P(n/(3 ,«))) = ip) = (2 - 2 cos(2nlpk)Y^I2.

(ii) For « = 15, 21 and 24, (P(n/(3, «))) = (1 + 2cos(2n/n)y^/2.
(iii) For « = 16 and 20, (P(n/(3, n))) = (2cos(2^/«))^">/2.

Proof. These factorizations are determined by using a theorem of Dedekind,
see Proposition 2.14 of Washington [22].   D

Note 1. Notice that as a consequence of this lemma, any algebraic integer in
Q(cos(27r/«)), where « is as stated, with norm equal to P(n/(3, «)) must be
an associate of the generator of the ideal given in these factorizations.

Lemma 4. (i) If « = pk , where p is a prime and <p(n) < 66, then

(sin(an/n)    , ...       .      .}
\    ■ \       ' :l<a< n 2, (a, n)=l\[ sxn(n/n) J

¿5 a system of fundamental units for <Q(cos(2n/n)).
In (ii)-(v), put r = 2cos(2n/n).
(ii) If n = 15, then {r, r - 1, r2 - 3} is a system of fundamental units.
(iii) If n = 20, then {r - 1, r - 2, r2 - 2} is a system of fundamental units.
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(iv) If « = 21, then {r, r - 1, r2 + r - 1, r2 - 2, r2 - 3} is a system of
fundamental units.

(v) If n = 24, then {r, 2r - 1, r2 - r - 1} is a system of fundamental units.
Proof, (i) follows from Theorem 8.2 of Washington [22], which states that the
index of the group generated by these units in the full unit group is the class
number and Theorem 1 of van der Linden [20], which states that the class
number of these fields is 1.

The systems of units given in the cases (ii)-(v) were found by the methods
of Pohst and Zassenhaus [14].   D

3. The cases « = 5,8, 10 and 12

For « = 5, 8, 10, 12, F„(X, Y) = m is of total degree two and reducible
to a Pell equation. Hence, there will be infinitely many solutions (if any) to the
Thue equations which arise in these cases. However, for Lucas sequences not
only is (a + ß)2 an integer but so is a + ß ; therefore x + 2y must be a perfect
square for any solution (x, y) of F„(X, Y) = m . Letting Z2 = X + 2Y and
substituting this expression for X in F„(X, Y) = m , we get an equation which
can be transformed into one of the form aX2 - bY* = c, where a, b, c are
pairwise relatively prime integers with a and b positive.

We start with a lemma stating two results which will be used below and
are likely to be difficult for the reader to find. First, a little notation. For
a positive odd square-free number A, let (a, b) be the least positive integer
solution of AX2 - Y2 = 2 and put K, = Q(y/Ä), K2 = Q(Vb + as/A~) and
K3 = Q(V-b + a\fA~). We also define %,2 = {a£K2: ^2/JCl(a) = 1} = {±ef :
n e Z} and ^3 = {a e K3 : J^j/k, (a) = 1} = {±^2 : " e Z}. For a € K2 or
K3, we let a' be its real conjugate.
Lemma 5. (i) Let A be a square-free odd positive integer. For positive integers
x and y satisfying Ax2 - y4 = 2, we put û = 2(Ax2 + y4 + 2xy2\[A). Then
either

# = ei+e[ + 2    or    û = e2 + e2 + 2.
(ii) Let c and D be positive square-free integers with  (c ,2) = (c, 3) =

(D, 3) = 1. The three equations 8c2X* ± 4c*2 + 1 = DY2, c2X4 + 1 = 2DY2
have between them at most one solution in positive integers.
Proof. These results, both due to Ljunggren, are Satz 2 of [11] and Satz VIII of
[12], respectively.   D

The author apologizes for the rather ad hoc form of this section, but there
seems to be no way around this. There is, presently, no elegant and unified the-
ory for solving these equations. One could use the Thue equation approach, used
in the case « = 12, k = -2 ; however, this apparently would entail formidable
computational difficulties for some of the Thue equations.

3.1. The case « = 5. Here we have F5(X, Y) = X2 + XY - Y2 = ±1, ±5 .
Letting X + 2Y = Z2, where Z is an integer, we obtain the equation Gs(Y, Z)
= Z4- 3YZ2 + Y2 = k = ±l, ±5. Solving G5(Y, Z) - k = 0 as a quadratic
in Y, we find that 2Y = 3Z2± y/5Z* + 4k, so that

5Z4 + 4k = W2.

It is this last equation we shall use.
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In the cases of k = ±1, Cohn [5, Theorem 7] has shown that the complete so-
lution of 5Z4 ± 4 = W2 in nonnegative integers is (W,Z) = {(1, 1), (2, 0),
(3, 1), (322, 12)}.   From this, we can show that the complete solution of
F5(X, Y) = ±1, X + 2Y = Z2 is (X, Y) e {(-610, 377), (-5, 3), (-3, 2),
(-2,1),(-1,1),(1,0),(2,-1),(34,55)}.

If k = ±5, we may substitute W = 5V and get the equation Z4 + 4 =
5V2. Here Cohn [5, Theorem 13] has shown that the complete solution in non-
negative integers is (V, Z) e {(1, 1), (2, 2)} . Thus we find that the complete
solution of F5(X, Y) = 5,X + 2Y = Z2 is (X, Y) e {(-18, 11), (-7,4),
(2,1), (3,-1)}.

The Lucas sequences which arise from these solutions are given in Table 1.
Notice that some of these solutions do not give rise to Lucas sequences since
for the corresponding values of a and ß , we have aß = 0 or a/ß is a root
of unity.

3.2. The case « = 8. Here we obtain 2Z4 + 2k = W2, where k = ±1, ±2
and 2Y = 2Z2 ± \/2Z4 + 2k .As W = 2V, we get the equation

Z4 + Ä: = 2F2.

For k = 1, our equation is the third equation in Lemma 5(ii) with c = D =
1. Notice that (V, Z) = (1, 1) is a solution in positive integers and hence, by
this lemma, the only such solution. This implies that the complete solution of
Fs(X, Y) = 1 where X + 2Y is a perfect square is (X, 7)e{(-3,2), (1,0)}.

If k = -1, we can factor Z4 - 1, getting (Z2 - 1)(Z2 + 1) = 2V2 . Notice
that Z must be odd, so that (Z2 - I, Z2 + I) = 2. Therefore, one of Z2 ± 1
is a square and the other twice a square. For Z # 0, Z2 + 1 is not a square and
hence Z2 - 1 must be a square. So Z = 0, ±1 and we find that the complete
solution of Ffi(X, Y) = -l,X + 2Y = Z2 is (X, Y)e{(-1, 1)}.

If k = 2, we see that Z = 2U and obtain the equation W4 = V2 - 1 =
(V + l)(V - 1). Notice that V must be odd and so (V - 1, V + 1) » 2. Thus
either V - 1 = 2H4 and V + 1 = 4K4, or V - 1 = 4a:4 and V + 1 =
2H4, from which we deduce that H4 - 2K4 = ± 1 . Delone and Faddeev
[8, Theorem 3, p.374] have shown that the complete solution in nonnegative
integers of these equations is (H, K) e {(1, 1), (1, 0)} . So we determine
that the complete solution of F$(X, Y) = 2 with X + 2Y a perfect square is
(X, Y) €{(-10, 7), (-2,1), (2,-1), (2,1)}.

If k = -2, the relation Z = 2U gives us the equation V2 - SU4 = -1,
which has no solution, since -1 is not a square mod 8 .

Computing the values of a and ß which correspond to these solutions, we
find that Table 1 is complete for « = 8 .

3.3. The case « = 10. Using the same argument as in the previous section, we
find that 107 = 5Z2 ± V5Z4 + 20k . If W2 = 5Z4 + 20A:, then W = 5V, so
we consider the equations

5V2 = Z4 + 4k
where again k = ±1, ±5 .

Notice that for k = ± 1, we have the same equations as for « = 5 and
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k = ±5. So we find the same values of Z . Here (X, Y) e {(-2, 3), (-1, 1),
( 1, 0), (2, 1 )} is the complete solution of FX0(X, Y) = ±1, X+ 2Y = Z2 .

For k = ±5 , we have Z = 5U, which leads to the equation F2 = 125U4 ±
4. By the theory of Pell equations, any solution must be the square root
of five times a Fibonacci number. Robbins [15, Theorem 3] has shown that
the only squares of the form five times a Fibonacci number are 0 and 25.
Thus the complete solution of FX0(X, Y) = ±5, X + 2Y = Z2 is (X, Y) e
{(-11, 18), (-2,1), (2,-1), (11, 7)}.

Again, the Lucas sequences which arise from these solutions are given in
Table 1.

3.4. The case « = 12. We have FX2(X, Y) = X2-2Y2 = k = ±1, ±2, ±3, ±6
and Y = 2Z2± V3Z4 + k, so that

3Z4 + A: = W2.

First we note that the equations for k = -1, 2, 3, -6 have no solutions by
considering them mod 3.

Consider next the case of k = 1. Here there are precisely two solutions of
3Z4 + 1 = W2 in positive integers, namely (W, Z) = (1, 2) or (2,7) (see
Ljunggren [13]). Thus the complete solution of FX2(X, Y) = 1 with X + 2Y =
Z2 is (X, Y) e {(-26, 15), (-7, 4), (-2, 1), (1, 0), (2, -1), (2, 1)}.

If k = -2, we convert the equation into a Thue equation. We factor W2 +
2 = 3Z4 as (W - v7=2)(^ + v73!) = 3Z4 . Thus we can write W - y/^2 =
AU4 and W + V^2 = BV4, with AB = 3L4, where A,B,L, U and V
are algebraic integers in <Q(V2), with A and B algebraic conjugates, U =
S -Tv^l and V = S+T^2. Using the facts that 3 = (1 + v7^2)(l - v73!),
the only units in Qtv7^) are ±1 and (W-yf-2, W + \f^2) divides (2V7^2),
we find that S and T give rise to a solution of W2 + 2 = 3Z4 if and only if

F(S, T) = S4 - 4S3T - 12S2T2 + SST3 + 4T4 = 1.

We will use the method of Tzanakis and de Weger to solve this Thue equation,
finding that (S, T) = (±1, 0) are the only solutions. To apply this method,
we need a system of fundamental units for the ring of integers of Q(a) where
F (a, 1) = 0. We find, by the methods of Pohst and Zassenhaus [14], that
{ex = (a3 - 4a2 - 10a + 12)/4, e2 = (2a3 - 9a2 - 20a + 26)/4, e3 =
(2a3 - 9a2 - 24a + 26)/4} is such a system. We give some of the details of the
computations used to solve this Thue equation in Table 5 of §6. From these
solutions of the Thue equation, we find that (W, Z) = (±1, ±1) are the only
solutions of W2 + 2 = 3Z4 and thus the complete solution of ^i2(^, Y) = -2
with X + 27 = Z2 is (X, Y)e{(-5, 3), (-1, 1)}.

If k - -3, then W = 3V and we obtain the equation Z4 - 3V2 = 1.
Ljunngren [13] has shown that (V, Z) = (0, ±1) are the only integer solutions.
Therefore the complete solution of FX2(X, Y) = -3 with X + 2Y a perfect
square is (X, Y) = (-3, 2).

For k = 6, we have W = 3V , which leads to the equation 3F2 - Z4 = 2,
the special case A = 3 of the equation in Lemma 5(i). The methods of Pohst
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and Zassenhaus [14] show that ex + e¡ + 2 = 24 + 12\/3, which gives rise to
no solutions, and e2 + t'2 + 2 = 8 + 4\/3, which gives rise to the solutions
(V, Z) = (±1, ±1). Thus, the complete solution of FniX, Y) = 6 with
X + 2Y a perfect square is (X, Y)e{(-9, 5), (3,-1)}.

Again, the Lucas sequences which arise from these solutions are given in
Table 1.

4. The algorithm

We now describe the algorithm which is used to solve these Thue equations.
We will follow the notation and numbering of constants from the paper of
Tzanakis and de Weger [19], except that we use d where they use « and label
our linear forms more explicitly. The reader will find in their paper proofs
of the lemmas below as well as explicit formulas for the constants mentioned
below.

Suppose we wish to solve F(X, Y) = m , where

FiX, Y) = Xd + fd_iXd-xY + --- + f0Yd€Z[X, Y]

is a monic irreducible polynomial of total degree d > 3 and m is a nonzero
integer. Let { = &»,..., <^> be the roots of giX) = FiX, 1), which we shall
assume are all real, and let K = Q(£). Notice that [K : Q] = d.

It is not necessary to assume that FiX, Y) is monic or that the roots of
giX) are all real in the method of Tzanakis and de Weger but it is true for the
Thue equations we consider here and it simplifies the description somewhat.

Let {ei, ... , e¿_i} be a system of fundamental units of cfK, the ring of
integers in K. We can partition the set of elements p of <?k with JVkjqÍp) — fn
into finitely many equivalence classes under the relation of being associates (see
the corollary to Theorem 5 on p. 90 of [3]) and let J( be a complete set
of representatives of these equivalence classes. Notice that if \m\ = 1, then
Jf = {1}. By Lemma 3, for our applications, when m # ± 1, Jf contains
only the generator of the ideal specified in there.

4.1. An initial upper bound via linear forms in logarithms. For (jc, y) e Z2
satisfying Fix, y) = m , we put ß = x - Çy. For each / and any choice of
j, k satisfying /' # j # k # /, we let

A(/',7, k, p) = log
£(/)._£U) ß(k)
£(i) _ ¿;(fc) ßU)

which we will express as a linear form in logarithms. For this purpose notice
that

ß = ±p^...^:{,
where ax, ... , a¿_r e Z and //e/. Using the notation

"o

we have

£(<) _ £(;) ß(k)
and    a i =

Ák)

-U) for I <i<d-l,
{(0 _ {(*) ¡¡{j)

A(/', j, k, p) =logao + ai logai +•   --l-ûrf-i loga¿_,.
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Let A = max (6, \ax |,... , \aí¡_x \). The use of 6 here is somewhat arbitrary.
To apply the known results to determine a lower bound for the absolute value of
these linear forms, we need only have 3 here. However, using 6 will yield some
stronger and simpler estimates in what follows, while imposing no significant
restrictions.

Lemma 6. There exist effectively computable constants Cs, C(,, Yx and Y2' de-
pending only on giX), K and the elements of J? such that the following state-
ments are true:

(i) If\y\ > Yi, then x/y is a convergent from the continued fraction expansion
of £('o) for some 1 < i0 < d.

(ii) Suppose that \y\ > Y{. Then, for i0 as in (i), for any choice of j and k
satisfying t'o # j # k / z0 and any peJ?, we have

\h(io, j, k, p)\ < C6expi-^r^J.

Proof. This is a combination of Lemmas 1.1, 1.2, 2.1 and 2.2 of [19].   D

Let yi, ... , yr be algebraic numbers with D = [Q(yi, ... ,yr):Q] and

L = bilogyi + ■ ■ ■ + brlogyr,

with bi, ... , breZ and B = max(|Z>. |, ... , \br\, 3). We put

h'(yi) = max(h(yi),\xogyi\/D,l/D)

for i = I, ... , r, where h(y¡) is the absolute logarithmic height of y¡ and let
H = h'(yi).h'(yr). With K4= l%(r + l)\rr+x(32D)r+2log(2Dr)H, we can
now state a recent result of Baker and Wüstholz.

Lemma 7. If L # 0, then

\L\ >e\o(-K4lo%B).

Proof. See Baker and Wüstholz [2].   D

One might expect that we will apply this result to the A(«'o, j, k, /¿)'s. How-
ever, it will frequently be the case that there are multiplicative relations between
the a,'s. These relations will allow us to eliminate some of the terms in the
A(/o, j, k, p)'s, obtaining new linear forms, A'(i'o, j, k, p), in fewer terms.
It will turn out that A'(/n, j, k, p) = t0A(io, j, k, p), where i0 is a positive
integer which depends on the particular form. Also the maximum, A', of the
absolute values of the coefficients of the A'(i0, j, k, p) can be shown to be at
most A2 since A > 6 (see §4.3).

Tzanakis and de Weger show in the proof of Lemma 2.4 of their paper [19]
that, for \y\ > Y¡, one has A(i0,j,k,p) ^ 0. Therefore, we can apply
Lemma 7 to show that, for \y\ > Y[ ,

lA'O'o,j,k,p)\>exr> i~K4lo%A').
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Thus, for \y\ > Y2',

|A(i'o ,j,k,p)\> exp (-2K4 log/I) /t0.

In accordance with the notation in [19], we shall label this constant 2K4 as
C7.

We also mention that the maximal real subfield of a cyclotomic field is a
Galois extension of Q, so D = d, with the exception of the equation arising
from n = 12, k = -2, where we let D = 24.

We can use this lower bound to prove the following lemma.

Lemma 8. Put
C9 = ^ (log(foC6) + C7 log (^)) •

// \y\ > Y{, then A<C9.
Proof. This is Lemma 2.4 of [19] except that we replace C(¡ by ioQ .   D

Applying this lemma to our linear forms, we obtain an upper bound for A .
By examining the tables at the end of the paper, we see that this bound is
very large, too large in fact to allow us to completely determine all solutions
of F(X, Y) = m in any naive way. We will use the so-called L3 algorithm
for lattice basis reduction to reduce the size of these upper bounds to the point
where a direct search is feasible. Our implementation of this algorithm will be
the iterative integer version given by de Weger in §3 of [6]. We then use either
Proposition 3.1 or Proposition 3.2 of [19] to obtain an improved upper bound
for A.

4.2. An improved upper bound from the L3 algorithm. Before using the L3
algorithm, there are two conditions we must check. First we check for linear
relations over Z among logai, ... , loga¿_i . If such relations exist, then |bi|
defined below will likely be too small for the hypotheses of Lemmas 9 and 10
to hold. Therefore, we must first eliminate such dependencies. This has an
advantage too, as we can replace A(i'o, j, k, p) by a linear form with fewer
terms and hence obtain smaller values of C-¡ and C9. Also the L3 algorithm
will run faster since we can then apply it to a smaller matrix with smaller entries.

We must also check whether loga0 is a linear combination of logai, ... ,
loga¿_i over Z. If this is the case, then the quantity ||Sfc|| in Lemma 9 will be
too small. We discuss this situation after Lemma 9.

By reordering the a,'s if necessary, we may assume that {logai, • • • , logap},
where p <d -I ,'xsa Q-linearly independent set. Proceeding as Tzanakis and
de Weger do in case (iii) of §11.3 of their paper [19], we can find integers to > 0
and tij for I < i < p, p + I < j <d - I such that

p
to logo, = Y lU lo8a<     for j =p + l, ... ,d-l

i=\
(notice that we use t0 and fy where Tzanakis and de Weger [19] use d and
dij). Using these relations, we can eliminate the terms for ap+i, ... , a(/_1 from
our linear form A(i0, j, k, p), obtaining
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A'(i0 ,j,k,p) = t0A(io ,j,k,p) = to logao + Y a¡ loSa¡ '
í=i

where
d-l

a'i = t0a¡ + Y t'Jai-
j=p+i

Letting T = max(ío, |íy| : 1 < i < p, p + 1 < j < d - 1), we have

(2) |A'(i'o ,j,k,p)\< t0C6 exp í — A J     with A < C9

by Lemmas 6(ii)-8, and

\a'i\ <(d-p)TA    for i = 1,... ,p.

With log ai, ... , logap being Q-linearly independent, we now apply the L3
algorithm to the matrix

/ 1

0
0

0
0
0

\

:           0      1 0
V[c0logai]    .    [c0logap] /

where cq is a real number somewhat larger than C^ , and obtain a matrix we
will denote by S3 . Let

p
x = (0, ... , 0, -[c0t0loga0])r = Ysihi '

i=i
where b, is the vector formed from the /th column of 38 and Si, ... , sp eR.
Let k be the largest integer such 5fc £ Z, and for x e M denote by ||x|| the
distance from x to the nearest integer.

Lemma 9. Suppose
2-e-'>/2||^ bi| > Vp2 + 5p + 3(d-p)TC9.

Then there are no solutions of \A(íq , j, k, p)\ < C¿ exv(-dA/Cs) with

Ci.     /    cotoCf,
A>Tl°\(d-p)TC9

Proof. This lemma is a slight modification of Proposition 3.2 of [19] (we obtain
a result for A whereas their result pertains to an upper bound for the |a¿|'s).
The proof is nearly identical to the proof of Lemma 3.10 in [7], the result upon
which Proposition 3.2 of [19] is based, except that at the very end of the proof
we use the upper bound for \A'(i0, j, k, p)\ in (2) which is in terms of A to
get our result in terms of A.   n

As we stated above, if logao is a linear combination of logai, • • • , loga¿_i
over Z, then the quantity ¡j^ || may be quite small. In this case we eliminate
logao from our linear forms. This situation only occurs for the Thue equations
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we consider with « = 7 and « = 9 . Let us now describe how we deal with this
situation.

Suppose
to logao H-híd_iloga¿_i =0,

with to, ... , t¿_i e Z satisfying to > 0, and let T = max(|i0|, ... , \t¡¡-i\) ■
Letting a'j = a¡to - t¡ for 1 < i < d - 1, we have

A'(i'o,j,k,p) = t0A(i0,j,k,p) = a[ logai + • • • + a'd_x loga¿_..

Notice that A' = max(3, \a\\, ... , \a'd_x\) < T(A + l)< l.UTA,since A>6.
Thus, we have

\A'(i0,j,k,p)\ < i0C6exp (-^^La^j     with A' < 1.11TC9,

by Lemmas 6(ii)-8.
For the Thue equations arising from « = 7 and 9, we have that logai, ... ,

loga¿_i are linearly independent over Q. Thus, we are ready to apply the L3
algorithm, our use of which shall be similar to the previous case: we apply the
algorithm to the same matrix srf as before, here with p = d - 1, obtaining the
matrix 38.

Lemma 10. Suppose

2<i/-2>/2|b1|> XAlyfd^+d^lTC^.

Then there are no solutions of |A(z'o, j, k, p)\ < C(, exp(-dA/Cs) with

Á     fl.l6CsT,     /0.85c0C6\     J\ .A>{-T-loi{-Q) + T)/t0-

Proof Letting q = d - 1, we have q2 + q-l=d2-d-l, and so the
hypothesis of Proposition 3.1 from [19] holds. Thus, we see that

Since T > to, our bound for A now follows from the fact that our definition
of the a,"s shows that A < (A' + T)/t0 .   D

4.3. Searching for solutions of F(X, Y) = m. We construct linear forms in
logarithms as in §4.1 and using the methods described above, get a good upper
bound for the size of the coefficients of these linear forms. We must do this
for each z'n between 1 and d and each p e J(. However, because of the
large bound we obtain from Lemma 8, the L3 algorithm takes a long time to
run when d is large. But one notices that only ao depends on z'o and p, so
the matrix s>/ defined in §4.2 depends only on the j and k defined in §4.1.
When d > 4, we can choose (;'i, kx) and (;'2, k2) with (;'i, kx) =¡¿ (;2, k2)
so that we need only apply the L3 algorithm to two matrices of the form si :
if z'o = j\ or z'o = /C), we let j = j2 and k = k2, otherwise we let j = j\
and k = kx . We choose '{J\, *i) and (;2, k2) so that e¡k,)/e¡il) and ef2)le\h)
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are conjugates for i = I, ... , d - I. This simplifies the height calculations
necessary for Lemma 7. And more importantly, we choose them to minimize
the number of Q-linearly independent loga,'s.

We then compute the quantities C5, C(¡, Yx and Y'2. Next we apply Lemma 7
to the A'(z0, j, k, p)'s to determine K4 . Notice that this lemma will give us
a lower bound in terms of A'. We saw in §4.2 that either A' < id - p)TA or
A' < I.ITA . An examination of the relations in the next section shows that
both id -p)T and I.IT are at most 6 and, since we have assumed A > 6, we
have A' < A2. Thus, for C7 we use 2K4 . From these quantities we find C9 .
Applying the L? algorithm as described above considerably reduces the upper
bound for A , and then applying the L3 a second time, using this new upper
bound for A in place of C9, we obtain a still smaller upper bound. At this
point we wish to determine an upper bound for \y\ from this last upper bound
for A. We use the following lemma.

Lemma 11. Suppose (x, y) e Z2 is a solution of FiX, Y) = m and A < CXo.
Then

(ECl° + ECi0 \
M+ ÇUi)-ÇU2) )

where Ej = T\d~x \e¡j)\ ", p+ = max,<,<</,ß£jr \p^\ and vu = ±1 whichever
makes \e^\ " > 1.
Proof. This is proven on p. 118 of the paper [ 19] of Tzanakis and de Weger.   d

Now we perform a direct search for solutions with \y\ < Yx and then check
whether (x, y) is a solution of FiX, Y) = m, where x/y is a convergent of
<£(') with \y\ < y3 for each 1 < i < d. In this manner we are able to determine
the complete solution of the Thue equation FiX, Y) = m .

5. Dependence relations

In §4.2, we described what to do when dependence relations arise among the
loga,'s. Here we give the relations that were found in our applications. These
relations were found either by making use of the nice form of the a,'s when «
is a prime power and by direct search otherwise.

Let us first establish an ordering of the units and their conjugates. In the case
of « / 12, let ax = 1, ... , a<P(n)i2-X be the increasing sequence of positive
integers less than «/2 which are relatively prime to « . In accordance with
Lemma 4, we let

€U) = lsin(a,+ifl^/«)
' sin(a77r7«)

denote the jth conjugate of the z'th fundamental unit. Notice that for our
purposes here, knowledge of the conjugates up to sign suffices, for the a,'s are
defined to be the absolute value of quotients of these conjugates.

For the Thue equation which arises from « = 12, we order the roots of
F(S, 1) as follows:  a") = I + \f3 + v76 + 2v73, a'2> = 1 + V3 - v76 + 2v73,
a'3' = 1 - v73+ ^6-2%/! and a<4) = 1 - V3 - V6 - 2yf3. The meaning of
e,-    is then clear, using the labelling of the fundamental units in §3.4.
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We now consider the dependence relations themselves.
For « = 7 and 9, we let (j, k) = (2, 3) when z0 = 1, (j, k) = (1, 3)

when z'o = 2, and U, k) = (1,2) when z'o = 3. As we mentioned in §4.2,
logao, logai and loga2 are linearly dependent over Q. When « = 7 and
m = ± 1, we have

3logao = logai -21oga2,
for each choice of z'o, ; and k . When « = 7 and m = ±1, we have

logao = -logai -21oga2,

for each choice of z'o, j and k . So we let to = 3 and T = 6.
When « = 9 and m = ± 1, we have

3logao = 2logai -loga2,

for each choice of z'o, j and k. When « = 9 and m = ±3, we have

logao = -loga2,

for each choice of z'o, j and k . Here we can use to — 3 and T = 3.
For « = 11, we let ij,k) = (1, 2) if i0 / 1, 2 and (j,k) = (3,5)

otherwise. With this choice, logai, loga2, loga3, loga4 are Q-linearly inde-
pendent.

For « = 12 with k = -2, we let ij, k) = (1,3) if z'o # 1,3 and
(j, k) = (2, 4) otherwise. In both cases, logai, loga2, loga3 are Q-linearly
independent, and so we let A' = A.

For n = 13, we let (;', k) = (1, 5) if z0 / 1, 5 and (j, k) = (2,3)
otherwise. In both cases, we have

ai = a3a5/a2    and    a4 = a3as.

We let
A' = logao + a\ loga2 + a'2 loga3 + a3 loga5.

For « = 15, we let (j, k) = (1, 2) if i0 ¿ 1, 2 and (j, k) = (3,4)
otherwise. With this choice, logai, loga2, loga3 are Q-linearly independent.

For « = 16, we let (j, k) = (1, 4) if z0 # 1, 4 and (j,k) = (2,3)
otherwise. In both cases, we have a3 = aia2 . So we let

A' = logao + a[ logai + a2 loga2.

For « = 17, we let ij, k) = (1, 4) if z0 / 1, 4 and ij, k) = (2,8)
otherwise. In both cases, we have

ai=a5ae/a7,    a2 = a5aô/a4    and    a3 = asa^.

So we let

A' = logao + a\ loga4 -I- a2 loga5 + a3 loga6 + a'4 loga7.

For « = 19, we let ij,k) = (1, 7) if i0 ¿ 1, 7 and (;',/<) = (2,5)
otherwise. In both cases, we have

a3 = aia2a4/ ia^ag)     and    a§ = aia2a4¡a-¡.
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So we let

A' = logao + a[ logai + a'2 loga2 + a3 loga4 + d4 loga5 + a'5 loga7 + a'6 loga8.

For « = 20, we let (;', k) = (1, 2) if z'0 ¿ 1, 2 and (j, k) = (3, 4) other-
wise. With this choice, logai, loga2 and loga3 are Q-linearly independent,
so we let A' = A.

For « = 21, we let (;', k) = (1, 5) if z0 ̂  1, 5 and (;', k) = (2,4)
otherwise. In both cases, we have

a4 = a3/a¡     and    05 — 1/aj.

So we let
A' = logao + a'i logaj + a2 loga2 + a3 loga3.

For « = 23, we let ij, k) = (1, 2) if z0 ̂  1, 2 and (./,/<) = (3,6)
otherwise. With this choice, logai, ... , logaio are Q-linearly independent.

For « = 24, we let (;', k) = (1,2) if i0 ¿ 1, 2 and (7, /c) = (3,4)
otherwise. In both cases, we have a2a^ = a\. So

A' = 3 loga0 + tf2loga2 + <z3loga3.

For « = 25, we let (;', k) = (2, 9) if z0 ?¿ 2, 9 and (;', /c) = (4, 3)
otherwise. In both cases, we have

ai = a5/a8, a2 = a5/a3 ,

a4 = as/aç and  a7 = a$/a9.

So we let

A' = logao + a'i loga3 + a'2 loga5 + a3 loga6 + a4 logag + a'5 loga9.

For « = 29, we let (7, k) = (1, 12) if z0 # 1, 12 and (;', k) = (2, 5)
otherwise. In both cases, we have

ai = ai0ai2/a4, a2 = ai0ai2/a6 ,

a3 = ai0ai2/a9, a5 = ai0ai2/ai3,

a7 = ai0ai2/a8 and  axx = ai0ai2.

So we let

A' = logao + a'i loga4 + a'2 logae + a3 logag
+a'4 loga9 -I- a'5 logaio + a'6 logan + a7 logat3.

6. Tables of results

6.1. Equations solved by the algorithm of Tzanakis and de Weger. For « =
7,9, 11,13,15,16,17,19,20,21,23,24, 25 and 29, as well as « = 12
with k = -2, we used the method of Tzanakis and de Weger as described in §4
to solve the Thue equations which arise. The method was implemented using the
MAPLE V Computer Algebra System on an 80486 DX2 based IBM-compatible
PC running at 50 MHz.   In Tables 3 and 4 we list the equations solved by
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Table 3

885

F„iX,Y) = m
X3 + X2Y - 2XY2 - F3 = ±1, ±7
X3 - 3XY2 + Y3 = ±1, ±3
Xs + X4Y - 4X3Y2 - 3X2Y3 + 3XY4 + Y5 = ±1, ±1111
X4 - 4X3Y - 12X2Y2 + SXY3 + 4F4 = 112
X6 + X5Y - 5X4Y2 - 4X3Y3 + 6X2Y4 + 3XY5
X4 - X3Y - 4X2Y2 + 4XY3 + Y4 = ±1, ±5

76 = ±1,±1313
15

x4-4x2y2 + 2y4 = ±i, ±216
17 Xi + X1Y - 7X6Y2 - 6X5Y3 + 15X4Y4

+ 10.Y3r5 - 10X276 - 4XY1 ± y8 = ±1, ±17

Table 4

FniX,Y) = m
19 X9 + X8 Y - M1 Y2 - 7X6 Y3+ 21X5 Y4        _

+ l5X4Yb - 20XsYb - 10X2Y' + 5XY* + Yv = ±1, ±19
X4 - 5X2Y2 + 5Y4 = ±1, ±5
X6 - X5Y - 6X4Y2 + 6X3Y3 + %X2Y4

20
%XY5 + Y6 = ±l, ±721

X11 + XWY - iOX^Y2 - 9X*Y3 + 36X'Y4 + 28XbYi23
-56X5F6-35A,4y7 + 35X3y8+ 15X2y9-65Xr10 - y"=±i, ±23
^r4-4^2y2 + y4 = ±i, ±224

25 Xx0 - 10X*Y2 + 35X6Y4 + X5Y5 - 50X4Y6
5X3Y7 + 25X2Y* + 5XY9 - Yx0 = ±1, ±5

29 xx4 + xx3y - i3x12y2- i2xny3 + 66z10y4

+55x9y5 - i65^8y6 - i20*7y7 + 2ioz6y8 + i26*5y9
-i26x4y'° - 56x3y" + 28x2y12 + 7^y13 - y14 = ±1, ±29

this method. These are followed by three tables (Tables 5-7) containing an
abridgement of the output from these programs for each equation solved. The
entries in these latter tables have been rounded up or down, as appropriate.
Requests for more information regarding these computations are, of course,
welcome.

The first entries in Tables 5-7, before di, are listed using the notation of §4.
As mentioned above, the L3 algorithm was used twice. The first time we let
c0 = 10rf| from which we obtained A < Ai . The second time, we let Co - lO''2
and found that A < A2. These quantities, Ax, A2, di and d2, are listed in
these tables. Finally, we used Lemma 11 to obtain an upper bound for \y\ from
A < A2. This is listed in Tables 5-7 under the entry y3. The entry X4 (resp.
y4) is the maximum of the absolute value of x (resp. y) for all solutions (x, y)
to the Thue equations which arise for each « . A complete list of solutions has
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Table 5

11 12(ifc = -2) 13

49 19
49 19 12 17

dJCs 1.127 1.508 1.584 2.171 1.834
C6 5900 18000 5-108 48000 2-10 ii
H 0.218 0.317 0.0373 1.162 0.132

8-10 10 1.2- 10u 1.6- 1023 6-1024 1.2- 1020
4-10 12 4-10 12 2-1025 3-1027 6-1021

29 29 120 90 77
61 84 150 72 82

20 18 16
30 42 38 22 31

8-10 13 3-1027 1033 3 • 1036 3-1032
(X4,Y4) (9,9) (3,3) (2,1) (1,0) (3,2)
time 70 s 62 s 94 s 81 s 60 s

Table 6

15 16 17 19 20

y12_ 11 29 37
d/Cs 1.034 1.738 2.265 2.564 0.869
Ce 610000 30000 7- 1016 6-10 19 5.6- 107
H 0.129 0.671 0.0887 0.0207 0.333
C7 8.7-1018 5.2-10 15 1.2-1025 1.2 • 1034 2.3-10 19

c9 8 • 1020 3-1021 6-1026 7 • 1035 3-1021
70 48 130 240 74

122 46 121 200 159
13 24 37 16

A2 37 12 38 48 57
^3 9 • 1030 8-10 10 5-1056 9-1083 2 • 1060

jX4,Y4) (4,3) (2,1) (2,1) (2,i; (2,1)
time 64 s 34 s 139 s 583 s 68 s

been omitted to save space; however, X4 and Y4 are sufficiently small that the
interested reader could easily determine all solutions. The last entry gives the
CPU time used for each n . We believe that the time is of interest, showing as
it does that the method of Tzanakis and de Weger is practical even for Thue
equations of moderate degree, provided the necessary system of fundamental
units and factorization of m are known.
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Table 7

887

21 23 24 25 29
11 10 14

22 54 63 85
G¡ 7-109 6-1025 300000 4-1024 2-1035
dJCl 0.833 2.89 0.758 2.07 3.854
H 0.260 0.00026 0.903 0.125 0.0177
C7 2.3-1020 1053 7 • 1015 3.4-1030 5.5 • 1040
Cg 3-1022 8 • 1054 7 • 1017 3-1032 3 • 1042

76 588 45 182 342
173 445 96 193 199
16 63 11 29 42

A2 63 68 41 56 44
2 - 1087 9-10 149 8-1051 3-10 123 3-10 127

jX4,Y4) (2,1) (2,1) (2,2) (2,1) (2,1)
txme 169 s 11356 s 51 s 595 s 2847 s

Table 8

14 18 22 26 27 28 30
m 11 13 14 15

iX4,Y4) (9,9) (3,3) (2,1) (3,2) (2,1) (2,1) (4,3)

6.2. Solutions of the equations with « = 2 mod 4 or nonsquarefree. With the
notation of Lemma 2, if « > 4 is not a power of three with m = 3, then
Pin/i3, «)) = P(m/(3, m)). If <pim)/2 > 3 and we have determined all
solutions of FmiX, Y) = ±1, ±P(m/(3, m)), then we can use Lemma 2(ii) to
find all solutions of F„iX, Y) = ±1, ±P(«/(«, 3)).

Similarly, if « = 2«i where m is odd, we use Lemma 2(i). In Table 8 we
give the values of m, X4 and Y4, where X4 and Y4 are as in the previous
tables, when 14 < « < 30 is nonsquarefree or « = 2 mod 4.
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