
proceedings of the
american mathematical society
Volume 115, Number 3, July 1992

PRIMITIVE ELEMENTS OF GALOIS EXTENSIONS
OF FINITE FIELDS

ISAO KIKUMASA AND TAKASI NAGAHARA

(Communicated by Louis J. Ratliff, Jr.)

Dedicated to Professor Nobuo Nobusawa on his sixtieth birthday

Abstract. As is well known, N?(«) = (1/n) J2d\n ß{d)q"ld coincides with the

number of monic irreducible polynomials of GF(q)[X] of degree n . In this

note we discuss the curve nNx(n) and the solutions of equations nNx(n) = b

(b > n) . As a corollary of these results, we present a necessary and sufficient

arithmetical condition for R/K to have a primitive element.

0. Introduction

Throughout this paper, K means a finite field, and all ring extensions of K

are assumed to be commutative and have an identity that is contained in K.

Moreover, all Galois extensions mean that in the sense of [ 1 ]. A Galois extension

R/K is called simple if R is /T-algebra isomorphic to a factor ring K[X]/(h)

for some polynomial h in K[X], that is, R/K has a primitive element.

In [4, 6, 7] and etc., the authors made some studies on primitive elements

of Galois extensions from several angles. On the other hand, the simplicity of

separable extensions was recently discussed by J. -D. Thérond [14] in some di-

rections. But, conditions studied in [14] are necessary and sufficient conditions

so that "all" separable extensions of a semilocal ring have primitive elements.

Hence, these conditions are not always applicable to discuss whether a given

Galois extension is simple or not.

The purpose of this note is to study the solutions of a certain equation, which

is concerned with finite fields and, using these results, to present arithmetical

conditions for the simplicity of Galois extensions over K .

In § 1 we consider a polynomial of degree m :

Kx(m) = (\/m)Y,ß{d)Xmld,

d\m

where p is the Moebius function on the set of natural numbers. As in [9],

for a finite field G¥(q) with q a power of a prime number, N9(m) is the

number of monic irreducible polynomials of GF^)^] of degree m. The aim
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of this section is to pursue the curve of m • ~Nx(m) and to study the solutions

of equations m • Nx(m) = b  (b > m) on the interval [1, oo).

In §2 we present a necessary and sufficient condition for the simplicity of

Galois extensions of K. In this discussion, the solutions of the equations in

the above play an important role.

In what follows, given a A'-algebra R and a set S, we use the following

conventions: [R: K] denotes the rank of A'-module R, l(R) the length of

composition series of i?-module R, and \S\ the cardinal number of S. Fur-

ther, by N and R, we denote the set of positive integers and the set of real

numbers respectively.

1. AN ALGEBRAIC EQUATION CONCERNED WITH N^fl)

Let

a — Pi p2       pn  ,

where «i, ay, a2 , ... , an € N and Pi,p2, ... ,pn are distinct prime numbers.

Then, we set

f(X)= 5Z (-l)"-'jir*i«9"*i
(*) l<e]<e2<•••<«,•</!, 0<i<n

where peipe2 ■ ■ -Pe = 1 if / = 0. One will easily see that the number of terms

in f(X) is E"=o ( ■) = 2" •
Now, we consider the equation

Ax) = aNq(a).

Then, as is shown in §2, £ := qa/<J>¡Pr-p-) ¿s a solution of this equation, that is,

/(¿j) = aNq(a). Moreover, for K = GF(q), a G-Galois extension R/K with

a = \G\/l(R) is simple if and only if |G| < aNq(a) = /(£).
In this section, we study the solutions of the algebraic equation

f(x) = b       (a < b g N).

First we prove the following theorem, which plays an important role in our

study.

Theorem 1.1. Let f(X) and g(X) be as in (*). Then

(1) /(1) = 0 and g(\) = \.
(2) f(x) and g(x) are strictly increasing on the interval [1, oo).

Proof. It is obvious that

/(1) = ¿(-1)B-''(")=(1-I)n = 0

(=0

and so g(l) = 1 - f(l) = 1. Hence we prove (2).
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For the base e of the natural logarithm, we set

h0(t) = é       (t> 0)

hi(t) = h0(pit) - h0(t)

hi+i(t) = hj(pl+xt) - hi(t)

hn(t) =.hn-i(p„t) - A„_,(r).

Then, it is easily seen that

n-2

(b) hn(t) = h0(pi ■ ■ -pnt) - J2 hi(pi+2 ■ ■ -pnt) - h„-i(t),

(c) hn(t)= J2 (-l)"-'(e')^-Pe,,
\<e¡<e2<-<e¡<n, 0<i<n

where pe¡ ■ ■■ pe¡ = 1 when í = 0.

Let Qo be the set of all strictly increasing functions h(z) with h(z) > 0

on the interval ]0, oo) and, similarly, £2] on the interval ]1, oo). Clearly,

h¡¡"\t) = e' e Q0 for m = 0, 1, 2, ... . Assume that 0 < i < n - 1 and

h({"\t) e iï0 for m = 0, 1, 2, ... . Then for any t > 0 and each m > 0, we

have h¡m)(pi+lt) > h\m)(t) and so

h^¡(t)=pflihlr)(p¡+lt)-hf\t)>0.

This means that h^\(t) e ßn for zw = 0, 1, 2, ... . Hence, we get

(d) hf\t) 6Í20     for 0 < i < n and m > 0.

In particular, h„(t) e Qo • We note here that the function t = loge x belongs to

Qi . Since f(X) = h„(\oge X) by (c), we obtain f(x) e Qi . Moreover, by (d),

n-2

^hi(pi+2- ■ ■ pnt) + hn-i(t) GQo-

/=0

This implies that g(x) € Qi by (b). Combining these with the fact that f(x)
and g(x) are continuous on (-00, +00), we have assertion (2).

Corollary 1.2. Let g(X) be as in (*). Then

n

x < g(x) < Y, x(p'P2-p")lPi    forx>\.
i=\

In particular, if n = 1 then x = g(x).

Proof. Let n = 1 . Then obviously x — g(x) and so we assume that n > 2.

Let hi (0 < i < n) be as in the proof of Theorem 1.1. Then, as is easily

seen, we have

0<h,(t)<h0(pip2---pit)     fort>0.

Hence, it follows that

0 < hi(Pi+2 ■ ■ -Pnt) < h0(Pl ■ --PiPi+2 ■ ■ -Pnt)

= (et)(PlP2-Pn)IPM (o < / < n - 2),
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and

0<A„-i(0 < (e1)1**1"■P'V"*.

Thus, by (b), we obtain that

n-2

g(e')= Yhi(pi+2---pnt) + hn-.i(t)
¡=o
n—2 n

<    X^(et\(P\-Pn)/P¡+\   +  fgt\{P\---Pn)/pn   —  ^ie'\{Pr-Pn)/P,'_

(=0 i=\

Next, by (b) again, we have

g(e') = h0(p2---pnt)+ y^h^Pi+i- ■ ■ pnt) + hn-i(t)\

= h0(p2---pnt) + C = (eT~Pn + C,

where C > 0. Then g(e') - e' = {(e*Y*-* - e') + C > 0 for t > 0. Setting
x = e'   (x > 1), we obtain our assertion.

Corollary 1.3. Let f(X) and g(X) be given as (*).

(1) If x>2 then f(x) > g(x).
(2) If0<x<\ then \f(x)\ <2n.
(3) For b € R with b > 2", the equation f(x) = b  has a solution in

]1, oo), which is unique in ]0, oo).

Proof. (1) If n = 1 then f(x)-g(x) = xp> -2x = x(xp'~l -2) > 0 for x > 2.
Let n > 2 and a - p\p2 ■ ■ ■ pn. Without loss of generality, we can assume

that pi < p2 < ■ ■■ < Pn ■ Then a > 2p2p¡ ■ ■ ■ p„ > P2P3 ■ • -pn + 2 . Hence the

degree of the leading term of g(x) is not greater than a - 2. Since all the

terms in g(x) have distinct degrees, we have

g(x) < xa~2 + x"~3 + ■ ■ ■ + X + 1

and so,

f(x) - g(x) = xa- 2g(x)

> Xa - 2(xa~2 + xa~3 + ■ ■ ■ + x + 1)

> x" - x(x"~2 + xa_3 + ■ • • + x + 1)

> xa ~(xa - \)/(x- 1)

= (xa(x-2)+ \)/(x- 1) >0       (x>2).

Thus we obtain f(x) > g(x) for x > 2 .

(2) Obviously f(0) = 0 and, by Theorem 1.1(1), /(l) = 0. Hence we can
assume that 0 < x < 1 . Then the absolute value of each term in f(x) is less

than 1 and the number of terms in f(x) is 2". Thus we have |/(x)| < 2" .

(3) This is a direct consequence of (2), Theorem 1.1(2) and limx^oo f(x) =

00 .

The following theorem is one of our main results in this note.
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Theorem 1.4. Let f(X) and g(X) be defined by (*), and let b e N with
b > P\P2 ■■■Pn- Then, the equation

(**) Ax) = b      (x>0)

has a unique solution. Furthermore, for the solution xo of the equation (**),
the following inequality holds:

1 < x0 < g(x0) < b.

Proof. Since b > p\p2 --Pn > 2" , the equation f(x) = b (x > 0) has a unique

solution Xo with jcn > 1 by Corollary 1.3. Further, it follows immediately

from Corollary 1.2 that xq < g(xo). Let a be a real number with \/b <

a < 1 . Then, since the equation g(x) = ab (x > 1) has a unique solution by

Theorem 1.1, we write this by Xi . Moreover, let x2 be the root of the equation

xPlp2-p„ = (a+i)b = g(X[) + b . Suppose that g(x2) < ab . Then, by Theorem

1.1(2), we have x2 < x\ and so

/(Xo) = b = X™"* - g(Xi) < XP"*-p" - g(Xi) = f(Xi) .

In virtue of Theorem 1.1 again, we get Xo < Xi and whence g(xo) < g(xi) =

ab < b. Hence, to prove the theorem, all we must do is to show that the

inequality g(x2) < ab holds for some a in \\/b, 1]. In case b >2n2, take 1

as a. Then it follows from Corollary 1.2 that

g(x2)<j^¿r2---pn)lp' = ir^+ml'p'
i=\ ¡=1

< n((a + l)b)l/2 = V2n2b < Vb^b = b = ab,      for a = 1.

If b < 2n2 then (n, p\p2, b) = (2,6,6) or (2,6,7) because b>p\p2---pn>

2-3- ••«(/i-f-l). Let n = 2 and pip2 = b - 6 . Then, putting a = 2/3, x\ = 10
and so

g(x2) = x\ + x\ -x2 = VTÖ + JW - tfW

< 3.2 + 2.2- 1.4 = 4 = ab.

Similarly, in case that n = 2, pxp2 = 6, and b = 1, we put a = 6/7 . Then

g(x2) = VT3 + v/Î3-yr3<4 + 3-l=a/J.

This completes the proof.

Remark 1.5. In the notation of Theorem 1.4, we denote the solution Xo of the

equation (**) by xo(a, b). Moreover, we set

e(a,b) = g(x0(a,b))/b.

Then

(1) 0<e(fl, A)< 1.

(2) If b = phph ■■■pi" where fteN  (i = 1, 2, ... , n) then

xo(a, b) = xo(b, b)    and    e(a, b) = e(b, b).

In addition, we put e(l, b) = 0.
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Example 1.6. Let a = 2-3 and b = 23-32. Then the equation (**) in Theorem

1.4 is

x6-x3-x2 + x-72 = 0       (x>0).

As is easily seen, the solution xn(6, 72) of this equation satisfies

2.0902 <x0(6, 72) < 2.0903.

Moreover, from this inequality, we obtain

0.158 <e(6, 72) < 0.159.

2. Primitive elements of Galois extensions of finite fields

Throughout this section, let q be a power of a prime number. We begin this

section with the following lemma, which is fundamental.

Lemma 2.1 [7, Theorem 1.6]. Let R be a Galois extension of rank b of GF(q).

Then the extension R/GF(q) is simple if and only if l(R) < Nq(b/l(R)).

Combining this lemma with the results in § 1, we have the following theorem,

which is a generalization of [5, Proposition 1].

Theorem 2.2. Let R be a G-Galois extension of GF(ps), b = \G\, and a =

b/l(R). Then the extension R/GF(ps) is simple if and only if

l(R)<bs/(\ogpb + \ogp(l+e(a,b))),

where s(a, b) is the constant given in §1, which depends only on b and the

prime divisors of a. In particular, when any prime divisor of b divides a, the

extension R/GF(ps) is simple if and only if

l(R) < bs/(\ogpb + logp(l+e(b, b))).

Proof. Put q = ps. In case l(R) — b , it follows from Lemma 2.1 and the fact

N?(l) = q that R/K is simple if and only if l(R) < q, which is equivalent to
that l(R) < bs/(\ogp b + logp(l + e(a, b))). Hence we assume that l(R) ¿ b .

Let a = Pi'p"2 ■ ■ -Pn" where n,ai,a2,...,a„gN, and P\ , p2, ... ,pn are

distinct prime numbers. Moreover, let f(X) be given as (*). Then,

aNq(a)= Ys^W1*
d\a

— q" _ q"Ip\ _ q"/P2_j. qa(P\Pi) _|_ ̂ a/(p,p3) + ...

-|- ... -|- l—\\'qa(PexPe2-Pe,) _j__|_ ( _ I \« qa/(p,p2- P„)

= f(qa^PlP2'"Pa'1)

where 1 < e\ < e{ < • • • < êf< n. We have already noted that f(x) is strictly

increasing on x > 1 by Theorem 1.1 and Xo(a,b) > 1 by Theorem 1.4.

Hence the inequality f(xo(a, b)) < f(qal(P\Pr-p><)) is equivalent to Xo(a, b) <

qalipxPi-Pn).  since l(R) < N,(a) if and only if b < aNq(a), it follows from
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Lemma 2.1 that

R/K is simple <^=> b < Aqa/iPlP2"'Pn))

«=*/(xto(«3))</(«a/(RA"*))

*=>x0(a, b)<qal{PiP2-p")

^\ogq(x0(a,brpr-p*)<a

<=>• \ogq(b + g(x0(a, b))) < a

<=> b/ logq(b + g(x0(a, b))) > b/a = l(R).

Since q — ps, we have

b/logq(b + g(x0(a,b))) = b/(logp(b + g(x0(a,b)))/\ogpq)

= bs/(logpb + \ogp(l + g(x0(a,b))/b))

= bs/(logp b + logp(l + e(a, b))).

Combining this with the previous equivalence relation, we obtain the first part

of our assertion. The second assertion follows from Remark 1.5(2).

The following is a corollary of the above theorem, and it is also a direct

consequence of [14, Théorème de l'élément primitif].

Corollary 2.3. Let R/K be a Galois extension. If [R: K] < \K\ then R/K is
simple.

Proof. Let b = [R: K]<\K\= ps and a = b/l(R). Then s > 1. By Remark
1.5, there holds either

l(R) = b< bs/\ogpb = bs/(\ogpb + \ogp(\+ß(a,b)))

or

l(R) < A/2 < bs/(s + 1) < bs/(logp b + logp(l + s(a, b))).

Whence R/K is simple in virtue of Theorem 2.2.

Example 2.4. By [4, 7], we see that there exists a (7-Galois extension R/GF(q)

satisfying q = 5, |G| = 72, and l(R) = 12. Put b = \G\ and a = b/l(R).
Then the equation (**) in Theorem 1.4 coincides with that in Example 1.6.

Using this fact, we know that the right-hand side in the inequality of Theorem

2.2 is more than 26.1 and less than 26.2. Hence R/GF(q) is simple by Theorem

2.2. On the other hand, there exists a G-Galois extension R/GF(q) such that

q = 5 , \G\ = 66, and l(R) — 65. Then, by a direct computation, we see that

l(R) > bs/(\ogp b + logp(l + s(a, b))). Hence, in this case, R/GF(q) is not

simple.
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