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1 Introduction

Over the past two decades, a number of ways have been developed for repre-
senting periodic juggling patterns by �nite sequences of nonnegative integers.
In the most common of these, the entries of the sequence indicate how long the
thrown object stays in the air. These juggling sequences have many interesting
mathematical properties. In particular, each juggling sequence has associated
with it a binary vector called its state. In this note, we analyze the juggling
sequences associated with an arbitrary state, and show how to enumerate the
number of such sequences which have a given length.

In the juggling vernacular, a juggling sequence (often called a siteswap by
jugglers) is a sequence T = (t1; t2; : : : ; tn) of nonnegative integers satisfying the
following modular condition [5]:

The quantities i+ ti (mod n) are all distinct for 1 � i � n:

The interpretation is this. Each ti denotes the amount of time that the ball (or
other object) is in the air. A ball thrown by an amount ti at time i means that
that this ball will come down at time i+ti. Often we will refer to ti as the height
the ball is thrown. The preceding modular condition is just the constraint that
juggling sequence is repeated inde�nitely, then two balls don't come down at
the same time. By convention, ti = 0 means that no ball is thrown at time i.

The number n is called the period of T , and the quantity 1
n

Pn

i=1 ti is called
the average of T . For jugglers, the average of T is the number of balls being
juggled, and we will usually refer to it this way in what follows. Ordinarily,
the sequence T is repeated inde�nitely. An example of a juggling sequence is
T0 = (5; 3; 0; 4; 2; 5; 2; 6; 1; 2): Here, T0 has period 10 and the number of balls
is 3. It is an immediate consequence of the de�nition of a juggling sequence
that the \number of balls" of a juggling sequence is always an integer (fortu-
nately!). It is known [5], for example, that the number of juggling sequences
with period n and at most b balls is exactly (b + 1)n: One can observe that
it is possible to decompose T0 = (5; 3; 0; 4; 2; 5; 2; 6; 1; 2) into 3 shorter juggling
sequences all with the same number of balls as follows: (5; 3; 0; 4)(2; 5; 2)(6; 1; 2).
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Furthermore, none of these shorter sequences can be further decomposed in this
manner (and in fact, this decomposition is unique). It will turn out that these
shorter juggling sequences are all examples of primitive juggling sequences. In
the following sections, we expand on this concept, introducing the concept of
�-juggling sequences, and primitive �-juggling sequences, where � denotes the
\state" of the sequence (de�ned in the next section). We also show how to
enumerate �-juggling sequences and primitive �-juggling sequences with period
n.

As we will see, one use of primitive juggling sequences is that we can make
new juggling sequences by taking arbitrary products of �-primitive juggling se-
quences. For example, with the primitive juggling sequences (3); (4; 2),(5; 3; 1),
(4; 5; 3; 0); (5; 2; 2), we can form the following new and complicated-looking jug-
gling sequences (which are hard to perform in part because they are hard to
remember!):

3334253134530522
42334233522453042423

35314242333453045305313531

2 Preliminaries

In the study of juggling sequences, a juggling state or landing schedule, denoted
by �, is a binary sequence h�1; �2; : : : ; �h; : : :i that indicates the times at which
the balls that are in the air at some particular time will land. To de�ne the
juggling state immediately after a particular throw has been made, let us take
the time of this throw to be the time 0. Then �i = 1 if there is a ball in
the air that will land at time i, and otherwise �i = 0. Every � is actually an
in�nite binary sequence in which there are only �nitely many nonzero entries.
Ordinarily, we only write an initial part of � containing its nonzero entries, say
� = h�1; �2; : : : ; �hi, with the understanding that �k = 0 for k > h.

We now de�ne the state � of a juggling sequence T = (t1; t2; : : : ; tn) to
be the state immediately after the last throw tn, where we assume that the
sequence T has been repeated in�nitely many times in the past. Thus, we have
�i = 1 if and only if there is some j 2 f1; 2; : : : ; ng and some d > 0 such that
j + tj = i + dn. For example, the state of the juggling sequence (4; 1; 5; 2) is
h1; 1; 0; 1i (see Figure 1). The number of 1's in �, denoted by j�j, is the number
of balls in the pattern.

The act of juggling generates a sequence of juggling states which follows one
rule: At a state � = h�1; �2; : : : ; �hi, if �1 = 1, the options for the next throw
are a j-throw (or a throw of height j) for those j's with �j+1 = 0. If �1 = 0 then
no ball is thrown, and this is a no-throw. So, after a j-throw, � is transformed
into �0 where �0j = 1 and �0k = �k+1 for k 6= j. After a no-throw, the new state
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Figure 1: A juggling sequence and its associated state.

�0 satis�es �0k = �k+1, the only option for all k. The number of balls always
remains constant.

For a �xed b, the state diagram Db for b balls is a directed graph with vertices
being the juggling states � with j�j = b, and with directed edges de�ned by
the above transformations. In addition, the edge associated with a ti-throw is
labelled by ti. Of course, Db is an in�nite directed graph, and all the outdegrees
of vertices � with �1 > 0 have in�nite degree. For each h > 0, we de�ne the
�nite subgraph Db;h of Db to be the subgraph induced by those vertices � with
�k = 0 for k > h. (From a historical perspective, the notion of the state vector
and the state diagram for juggling sequences appears to be due to Jack Boyce
(see [10]). In Figure 2, the state diagram for 3 balls and height at most 5 is
illustrated.

It is easy to see that a juggling sequence corresponds to a cycle in the state
diagram (see [12], [16]). A prime juggling sequence is de�ned to be a jug-
gling sequence with no repeated states. In other words, a prime juggling se-
quence is associated with a simple cycle in the state diagram. For example,
the juggling sequence (5; 0; 5; 3; 0; 5; 5; 1) is a prime juggling sequence with state
� = h1; 0; 1; 1; 0i as can be seen in the state diagram shown in Figure 2 .

Note that while (4; 2) and (5; 0; 4) are both juggling sequences with 3 balls,
the concatenation (or \product") (4; 2)(5; 0; 4) = (4; 2; 5; 0; 4) is not a juggling
sequence. In this sense, we cannot take arbitrary products of prime juggling
sequences to get new juggling sequences. The reason for this is basically because
these two juggling sequences have di�erent states. We will elaborate on this
more in the next section.
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Figure 2: The state diagram for 3 balls and height 5.

It is clear from the de�nition of the state diagram Db that the product of any
two juggling sequences with the same state is also a juggling sequence with that
state. In the juggling literature, there is a distinguished state �(b), called the
ground state for b ball patterns, de�ned by �(b) = h1; 1; : : : ; 1i, where there are b
1's. Examples of juggling sequences which have this ground state are (3); (4; 2),
(5; 3; 1), (5; 5; 5; 0; 0), etc., in D3. In general, a juggling sequence T with state �
(i.e., which corresponds to a cycle in Db starting and ending at �) will be called
a �-juggling sequence.

Let us de�ne a �-juggling sequence to be primitive if it cannot be written as
the product of two shorter �-juggling sequences. Thus, a �-juggling sequence is
primitive if the corresponding cycle in the state diagram does not visit the state
� more than once. With this de�nition, prime juggling sequences are primitive,
but not conversely. For example, in D3, (2; 3; 5; 2) is a primitive h1; 1; 0; 1; 0i-
juggling sequence that is not prime. We might point out that while (2; 3; 5; 2) is a
primitive h1; 1; 0; 1; 0i-juggling sequence, the related juggling sequence (3; 5; 2; 2)
is not a primitive h1; 1; 1; 0; 0i-juggling sequence. That is, while in juggling we
would not distinguish between these two, the analysis does break them into two
classes. The main question we address in this note is to count the number of
primitive �-juggling sequences which have period n.
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3 Enumerating ground state juggling sequences

As a warm-up to the general case treated in the next section, we will �rst
consider the simplest case, which is for juggling sequences in the ground state,
i.e., with state � = �(b) = h1; 1; : : : ; 1i (where there are b 1's). Let us denote by
J(b; n) = J(�(b); n) the number of juggling sequences with state �(b) and period
n. Also, let P (b; n) = P (�(b); n) denote the number of primitive �(b)-juggling
sequences with period n.

Although there is an extensive literature on juggling (as well as a great
deal of interest by many jugglers), relatively few of these numbers have been
computed, let alone analyzed. It turns out that these numbers have many
interesting properties and are related to some known sequences in the literature.
We begin with a warm-up theorem.

Theorem 1 For any b and n, the number J(b; n) satis�es

J(b; n) =

�
(b+ 1)n�bb! if n � b;

n! otherwise.

Proof: First, observe that the �-juggling sequences of period n are precisely
the sequences T = (t1; t2; : : : ; tn) with the property that fti + i : i 2 [1; n]g =
[b + 1; b + n]. For, we can't have ti + i < b + 1 since this would imply that
two balls would land at the same time, and we can't have ti + i > b + n,
since in this case we wouldn't return to state �(b) after n steps. Thus, for
every i, b + 1 � ti + i � b + n. The modular condition now implies that
fti + i : i 2 [1; n]g = [b + 1; b + n]. Consequently, the problem of determining
the number of �(b)-juggling sequences of period n is the same as determining
the number of permutations � on f1; : : : ; ng such that �(i) � b + i, since each
such permutation corresponds to a juggling sequence T with ti = �(i) + b� i.

We consider the matrix M with columns and rows indexed by f1; 2; : : : ; ng.
The entries M(i; j) of M are 1 if j � i � b, and 0 otherwise. It is not hard
to see that J(b; n) = Per(M), the permanent of M . Recall that the permanent
of a square matrix is similar to the determinant of the matrix except no minus
signs are used when summing the terms. It is straightforward to compute that
if n � b then Per(M) = (b+1)n�bb!, as desired. Finally, if n < b then the above
argument shows that J(n; b) = n!, and the proof is complete. �

We can now derive the number P (b; n) of primitive juggling sequences from
J(b; n) using the following recurrence relation:

J(b; n) = P (b; n) + P (b; n� 1)J(b; 1) + � � �+ P (b; 1)J(b; n� 1) (1)

with P (b; 1) = J(b; 1) = 1.
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For a �xed b, consider the generating function fb(x) de�ned by

fb(x) = 1 +

1X
i=1

J(b; i)xi:

Also de�ne

gb(x) =

1X
i=1

P (b; i)xi:

>From (1), we have
fb(x)� 1 = gb(x)fb(x):

Therefore, gb(x) satis�es

gb(x) = 1� 1

fb(x)
:

For example, for the case of b = 2 (using the above values of J(2; n)) we have

f2(x) = 1 + x+

1X
k=2

2 � 3k�2xk

=
1� 2x� x2

1� 3x

= 1 + x+ 2x2 + 6x3 + 18x4 + 54x5 + 162x6 + 486x7 + � � � ;
g2(x) =

x� x2

1� 2x� x2

= x+ x2 + 3x3 + 7x4 + 17x5 + 41x6 + 99x7 + � � � :

A quick check in Sloane [13] shows that the above sequence of coe�cients of
gb(x) (which are the values of P (n; 2)) and its generating function are well
known. Among their many interpretations are the following:

(i) The numbers P (n; 2) are numerators of the continued fraction convergents
to

p
2:

(ii) P (n; 2) is the number of n-step non-self-intersecting paths starting at (0; 0)
with steps of types (1; 0); (�1; 0) or (0; 1) (see [15]).

(iii) P (2k; 2) = T (k; 3) and P (2k+1; 2) = S(2k; 2p2) where T (k; x) and S(k; x)
are Chebyshev polynomials of the �rst and second kinds, respectively.

The connection to primitive juggling sequences of 2 balls seems to be new.
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For the case of b = 3, we have

f3(x) = 1 + x+ 2x2 +

1X
k=3

2 � 3 � 4k�3xk

=
1� 3x� 2x2 � 2x3

1� 4x

= 1 + x+ 2x2 + 6x3 + 24x4 + 96x5 + 384x6 + � � � ;
g3(x) = 1� 1� 4x

(1� 4x)(1 + x+ 2x2) + 6x3
(2)

=
x� 2x2 � 2x3

1� 3x� 2x2 � 2x3

= x+ x2 + 3x3 + 13x4 + 47x5 + 173x6 + 639x7 + � � � :
The sequence for P (3; n) above is listed in Sloane [13] as sequence number
A084519, the �rst 25 terms of which were computed by Antti Karttunen. It
was conjectured by Benoit Cloitre that they satisfy the following recurrence
relation:

P (3; n) = 3P (3; n� 1) + 2P (3; n� 2) + 2P (3; n� 3): (3)

This in fact now follows easily from the above explicit generating function in
(2).

For general b, the generating function gb(x) is

gb(x) = 1� 1� (b+ 1)x

1� x
Pb�1

k=0(b� k)k!xk
(4)

which is obtained by using the expression for fb(x):

fb(x) =
1� x

Pb�1
k=0(b� k)k!xk

1� (b+ 1)x
:

Holding n �xed and letting b tend to in�nity, the generating function gb(x)
stabilizes to the following well known function:

g(x) = 1� 1P1
k=0 k!x

k
= x+ x2 + 3x3 + 13x4 + 71x5 + 461x6 + � � � :

This follows from the observation that J(b; n) = n! for b � n � 1, and the fact
that P (b; n) is determined by J(b; 1); : : : ; J(b; n). For example, the coe�cient
of xk in g(x) can be interpreted as (see [13] # A003319):

(i) the number of (indecomposable) permutations of [1; k] not �xing [1; j], for
0 < j < k (see [8]),

(ii) the maximal number of subgroups of index k� 1 in any 2-generator group
(see [15]),
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(iii) the dimension of the homogeneous components of the space of primitive
elements of the Malvenuto-Reutenauer Hopf algebra of permutations (see
[1, 11]).

For general b, the recurrence relation for P (b; n) can be derived from the
generating function gb(x) in (4):

P (b; n) =

b�1X
k=0

(b� k)k!P (b; n� k � 1)

which explains the coe�cients in (3).

4 Enumerating general �-juggling sequences

In this section we consider �-juggling sequences for general state vectors �.

Lemma 1 A necessary condition for a �-juggling sequence of period n to exist

is that for all k > n, �k = 1 implies �k�n = 1.

Proof: First, observe that if we are in state � and we execute the sequence
of throws t1; t2; : : : ; tm then the new state will be �0, where �0j = 1 if and only
if either �0j+m = 1, or for some i, ti + i = j +m. In other words, a ball will
land in j beats if and only if either there was already a ball in the air that was
scheduled to land then, or one of the m balls that were thrown will land then.
If T is a �-juggling sequence with period n, then after n steps we must return
to the state �. Therefore, �j = 1 if and only if either �j+n = 1, or for some i,
ti + i = j + n. So in particular, if �j+n = 1 then �j = 1. �

We note that the condition in the preceding lemma is equivalent to the require-
ment that for all k; �k = 0 implies �k+n = 0.

For each value of n satisfying the conditions of the preceding lemma, we de�ne
a set U�;n = fu1; u2; : : : ; ung as follows. For 1 � i � n, ui is de�ned to be the
least value i + dn for d � 0 such that �i+dn = 0, where, as above, we assume
that �j = 0 for j > h.

Next, for these n, we de�ne the matrix M�;n as follows. The rows and columns
of M�;n are indexed by f1; 2; : : : ; ng. We de�ne M�;n(i; j) to be 1 if i � uj ,
and 0 otherwise. Therefore in the jth column, there are exactly minfuj ; ng 1's
above maxfn� uj ; 0g 0's.
Let J(�; n) denote the number of �-juggling sequences, and let P (�; n) denote
the number of primitive �-juggling sequences.
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Theorem 2 For a given state vector � and period n satisfying Lemma 1, the

number J(�; n) of �-juggling sequences satis�es

J(�; n) = Per(M�;n):

Proof: Observe that the modular constraints on the ti imply that for each
j in [1; n], there must be a unique i such that ti + i = j + nd for some d. By
Lemma 1, �j+nd = 1 if j + nd < uj and �j+nd = 0 if j + nd � uj . Thus, we
cannot have ti+ i = j+nd < uj , because then we would have two balls landing
at the same time. On the other hand, we cannot have ti+ i = j+nd > uj since
in this case we wouldn't return to state � after n steps. (Note the similarity to
the argument in Theorem 1.) We conclude from this that fti + i : i 2 [1; n]g
must be equal to U�;n.

For each permutation � of f1; 2; : : : ; ng which contributes 1 to Per(M�;n),
we can de�ne T = (t1; t2; : : : ; tn) by setting ti = u�(i) � i. From the de�nition
of M(�), we see that ti � 0, ti + i are distinct modulo n, and, in fact, T is a
�-juggling sequence with period n. Furthermore, for any �-juggling sequence
T = (t1; t2; : : : ; tn), we can de�ne a permutation � with �(i) � ti + i (mod n)
which contributes 1 to the permanent. This proves the theorem. �

We next state a lemma useful for evaluating the permanent in the preceding
theorem. Of course, the value of the permanent of a matrix is unchanged by
permutating the rows and columns of the matrix.

Lemma 2 Suppose M is a binary matrix with rows and columns indexed by

f1; 2; : : : ; ng such that the jth column of M consists of vj 1's above n� vj 0's.
Furthermore, assume that 0 � v1 � v2 � � � � � vn � n. Then

Per(M) =

nY
j=1

(vj � j + 1):

Proof: The proof follows by an easy induction on n. �

The recurrence relation for P (�; n) is quite similar to that in (1), namely,

J(�; n) = P (�; n) + P (�; n� 1)J(�; 1) + � � �+ P (�; 1)J(�; n� 1) (5)

except that we have P (�; 1) = 0 = J(�; 1) if � is not the ground state.

We can de�ne the generating functions

f�(x) = 1 +

1X
i=1

J(�; i)xi

and

g�(x) =

1X
i=1

P (�; i)xi
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and again we have

g�(x) = 1� 1

f�(x):

>From this representation, we can obtain various kinds of speci�c information
about P�;n.

As an example, let � = h1; 0; 1; 1; 1; 0; 1; 1i. It can then be checked that the
only n for which �-juggling sequences with period n exist are n = 4 and n � 7.
For these values of n we have U�;4 = f2; 9; 11; 12g; U�;7 = f2; 6; 10; 11; 12; 14; 15g;
U�;8 = f2; 6; 9; 11; 12; 13; 15; 16g, and in general, for n � 8,

U�;n = f2; 6; 9; 10; : : : ; n; n+ 1; n+ 3; n+ 4; n+ 5; n+ 7; n+ 8g:

This implies (by Lemma 1) that:

f�(x) = 1 + 12x4 + 2 � 5 � 5!x7 + 2 � 5 � 6!x8 + � � �+ 2 � 5 � 7n�8 � 6!xn + � � �

= 1 + 12x4 + 1200x7 +
7200x8

1� 7x

=
1� 7x+ 12x4 � 84x5 + 1200x7 � 1200x8

1� 7x

= 1 + 12x4 + 1200x7 + 7200x8 + 50400x9 + 352800x10 + 2469600x11 � � �

and

g�(x) =
12x4(1� 7x+ 100x3 � 100x4)

1� 7x+ 12x4 � 84x5 + 1200x7 � 1200x8

= 12x4 + 1200x7 + 7056x8 + 50400x9 + 352800x10 + 2440800x11 + � � � :

Thus, the values of P (n) = P (�; n) satisfy the linear recurrence

P (n) = 7P (n� 1)� 12P (n� 4) + 84P (n� 5)� 1200P (n� 7) + 1200P (n� 8);

which implies that P (�; n) grows like c � �n, where � = 6:991237188 : : : is the
largest real root of x8 � 7x7 + 12x4 � 84x3 + 1200x� 1200.

5 Concluding remarks

We close with a few unanswered questions which we feel are worth pursuing.

� It seems intuitively clear that among all b ball state vectors �, for each n

P (�; n) is largest when � is the ground state �(b). Is this true?

� Are there many other sequences of J(�; n) and P (�; n) for various state
vectors � which have arisen in other contexts? We haven't done any real
exploration of this question but the fact that we found the three mentioned
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in the earlier sections makes us believe that there probably are. Here are
a few others:

gh0;1;1i(x) = 2x3(1 + 3x+ 9x2 + 25x3 + 69x4 + 189x5 + 517x6 + � � � )

whose coe�cients form Sequence A077846 in [13],

gh0;0;1i(x) = x3(1 + 2x+ 4x2 + 7x3 + 12x4 + 20x5 + � � � )
whose coe�cients are Fibonacci numbers minus 1 (Sequence A000071 in
[13]), and

gh0;1i(x) = x(x+ 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + � � � )
which is Sequence A000027 in [13]. Of course, a good check as to whether a
sequence has appeared in the literature before is to consult Sloane's Online
Encyclopedia of Integer Sequences [13]. Here we list several generating
functions of primitive juggling sequences that have not yet been identi�ed
at the time this paper was written:

gh1;0;1i(x) =
2x2 � 2x3

1� 3x+ 2x2 � 2x3

= 2x2 + 4x3 + 8x4 + 20x5 + 52x6 + 132x7 + � � � ;
gh0;1;1;1i(x) =

x4 � 2x5 � 2x6

1� 4x+ x4 � 2x5 � 2x6

= x4 + 2x5 + 6x6 + 24x7 + 95x8 + 380x9 + � � � :

As mentioned before, even for ground states �(b), b � 4, g�(b)(x) is not
fully understood.

� Can the prime juggling sequences with state � and period n be enumer-
ated along the same lines that primitive juggling sequences were? This
appears at present to be a more di�cult problem.

� Can the primitive juggling sequences with state �, period n, and height at
most h be e�ectively enumerated? This means that every ti is at most h
for the allowable juggling sequences T . More generally, one could require
that h1 � ti � h2 for all i.

� What are the analogous results for multiplex juggling patterns? In this
case, many balls (i.e., more than one) are allowed to be thrown and caught
at each time instant. There have been a number of interesting papers
published dealing with other aspects of multiplex juggling sequences (see
[7], [12], [14]).
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