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We describe the simulation of dihedral gauge theories on digital quantum computers. The non-
abelian discrete gauge group DN – the dihedral group – serves as an approximation to U(1) × Z2
lattice gauge theory. In order to carry out such a lattice simulation, we detail the construction of
efficient quantum circuits to realize basic primitives including the nonabelian Fourier transform over
DN , the trace operation, and the group multiplication and inversion operations. For each case the
required quantum resources scale linearly or as low-degree polynomials in n = logN . We experi-
mentally benchmark our gates on the Rigetti Aspen-9 quantum processor for the case of D4. The
estimated fidelity of all D4 gates was found to exceed 80%.

I. INTRODUCTION

A promising area for quantum advantage is simulat-
ing the dynamics of nonperturbative quantum field the-
ories [1–5]. In order to propagate for a time t, one re-
quires the unitary operator U(t) = e−iHt which in gen-
eral may be challenging to efficiently implement on a
quantum computer. Different quantum algorithms ex-
ist for approximating U(t), in particular, Trotter-Suzuki
product formulas [3, 4, 6–14], quantum walks [15], Tay-
lor series approximations [16], and quantum signal pro-
cessing [17, 18], as well as more recent variational ap-
proaches [19–21]. While each of these algorithms differs
in how to approximate U(t), fundamentally these meth-
ods all require implementing operations derived from the
Hamiltonian H as quantum circuits [22]. Thus, a small
set of primitive operations should be required for all of
them. In the case of gauge theories, the Kogut-Susskind
Hamiltonian HKS [23] is the most common Hamiltonian
discussed in the literature for quantum simulations. Us-
ing HKS , initial comparisons between a few quantum al-
gorithms was performed for the Schwinger model [24].

For efficient digital simulations, the local lattice de-
grees of freedom must be truncated. For fermionic de-
grees of freedom, this is relatively easy [25–27]. Further
proposals discuss how to map lattice fermions (e.g. Wil-
son and staggered) to these encodings [28] or use gauge
symmetry to eliminate them [29, 30]. The question of
gauge boson digitization is murkier, with many propos-
als [10, 31–66] that make complicated tradeoffs. Digi-
tizing reduces symmetries – either explicitly or through
finite-truncations [33]. Furthermore, the utility of a given
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scheme depends upon spacetime dimensionality [67].
Care must be taken, as the regulated theory may not
have the original theory as its continuum limit [68–73].

One promising digitization method is the approxima-
tion of gauge theories by discrete subgroups [10, 40–
44, 65, 74]. Replacing the continuous group by a discrete
subgroup was explored in the early days of Euclidean
lattice field theory as a resource reduction procedure,
with most studies focusing on the theories in (3 + 1) di-
mensions with the Wilson action. The viability of the
ZN subgroups replacing U(1) were studied in [75, 76].
Further studies of the crystal-like discrete subgroups of
SU(N) were performed [40, 41, 65, 77–79], including with
fermions [80, 81]. Alongside this work, theoretical stud-
ies revealed that such discrete subgroup approximations
correspond to effective field theories of continuous groups
where a mass is given to the gauge fields through the
Higgs mechanism [82–86]. The result of this mass is
that the discrete subgroup fails to well approximate the
continuous group below a certain lattice spacing af (or
equivalently beyond a certain coupling βf ).

In lattice calculations, one performs calculations at
fixed lattice spacing a = a(β) which shrinks as β → ∞
for asymptotically free theories. To control extrapola-
tion errors in taking a → 0, one simulates in the scaling
regime of a� m−1

IR where mIR is the infrared mass scale
of the physics of interest. We will consider the start of the
scaling regime as occurring at as. Thus, the approxima-
tion error from using discrete subgroups should be small
provided that as & af or equivalently that βs . βf . For
the Wilson action, βf are known. In the case of U(1) in
(3 + 1)-d with βs = 1, Zn>5 satisfies βf > βs. For non-
abelian groups, only a finite set of crystallike subgroups
exist. SU(2) has three: the binary tetrahedral BT, the
binary octahedral BO, and the binary icosahedral BI.
While BT has βf = 2.24(8) in 3 + 1d, BO and BI have
βf = 3.26(8) and βf = 5.82(8) respectively [41], above
βs = 2.2. Hence, BO and BI appear useful for SU(2).

For SU(3) (the theory underlying QCD) with βs ≈ 6
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in (3 + 1)-d, all five crystal-like subgroups have βf < βs
, with the largest, the 1080-element Valentiner group1,
V having βf = 3.935(5) [41]. Thus the discrete ap-
proximation is inadequate when using the Wilson action.
By extending V to include the midpoints between ele-
ments of V, one can increase βf ≈ 7 [90]. However
this require more qubits and sacrifices gauge symme-
try. This gauge violation is dangerous on noisy quan-
tum computers [91–93]. An alternative approach to de-
crease af introduces additional terms into the lattice ac-
tion [41, 76, 79, 87, 88, 94–97], although only in [41, 79]
were Monte Carlo calculations undertaken for SU(3). In
[41] it was shown that such modified actions of V could
reach into the scaling regime, finding calculations could
be undertaken at a > 0.08 fm without the effects of af
being seen. This suggest that V can reproduce SU(3)
in the scaling region with a modified action, such that
practical quantum computations of SU(3) could be per-
formed.

Nonabelian gauge theories have a number of novel fea-
tures not seen in abelian ones, and thus studies of abelian
theories like U(1) or ZN may be unrepresentative of the
full complexity of lattice gauge theories. Unfortunately,
even the smallest crystal-like subgroup of a nonabelian
theory, BT requires 6 qubits per register and is thus be-
yond current hardware. To reduce this cost to be more in-
line with near-term devices, in this work we study a class
of discrete groups that are not crystal-like subgroups of a
single continuous group. The binary dihedral groups DN

have 2N elements and are each an extension of ZN by
an additional Z2 subgroup giving DN ' ZN oZ2. In the
limit of N →∞ this becomes U(1)×Z2. D3 and D4 have
previously been investigated for simulation on quantum
computers [10, 22]. Having 6 and 8 elements respectively,
they both require 3 qubits per register. Unfortunately
in both (2 + 1)-d and (3 + 1)-d, these two groups have
as < af with the standard Wilson action and thus either
a modified action or larger group is required to minimize
the discrete group approximation error. For larger N ,
the necessary primitive gates are unknown, and within
this work we will derive a set of such gates for D2n gauge
theories which naturally map onto qubit devices.

Since we are interested in finding gauge theories that
could be simulated on near-term quantum devices, it be-
hooves us to study not just (3 + 1)-d but also consider
(2 + 1)-d theories. Using classical lattice simulations, we
have determined that in both spacetimes, while βf > βs
for D8, it is only slightly larger, so either D9 (which we
did not simulate) or D10 would be desirable to have sim-
ulations with sufficiently small a (See Fig. 1). The de-
pendence of af on βf within the scaling regime is expo-
nential, so a slightly larger group can have dramatically
smaller errors. Since D2n theories can more efficiently be
implemented in qubits, we believe that the 5-qubit D16
should be the ultimate target for quantum hardware of

1 Sometimes called S(1080) [41, 79, 87, 88] or Σ3×360 [89] .

the near-future, with D4 and D8 as important stepping
stones to it. After this, BT would be a natural next step.

FIG. 1. Euclidean calculations of lattice energy density 〈E0〉
as measured by the expectation value of the plaquette as a
function of Wilson coupling beta on 4d lattices for different
DN groups (top) d = 2 + 1 dimensions and (bottom) d =
3+1 dimensions. The shaded region corresponds to couplings
outside the scaling regime for the U(1)× Z2 theory.

In this paper, we construct quantum circuits imple-
menting the four primitive gates (inversion, multiplica-
tion, trace, and Fourier) required to simulate the D2n
theories. A Trotterized time evolution circuit can be
built using these gates. Although Trotterized evolution
on quantum processors is unfeasible at present due to the
limited two-qubit gate fidelities, we benchmark the prim-
itive gates for D4 individually on the Rigetti Aspen-9
QPU to evaluate if simulations are practical on near-term
quantum processors. We perform process tomography to
measure the process fidelities of the trace and Fourier
gates. Since process tomography is experimentally costly
for a six-qubit gate, the fidelity of the multiplication gate
is estimated by the fraction of the correct bit-strings pro-
duced for all possible pairs of input bit-strings. The pro-
cess fidelity of the inversion gate is reported based on the
benchmark result of the CCPHASE gate [98].

This paper is organized as follows. In Sec. II the Eu-
clidean action lattice formalism is briefly reviewed and its
connection to the Hamiltonian formulation is elucidated.
Sec. III presents an overview of the four primitive gates
required for implementing the group operations necessary
for lattice gauge theories on quantum computers. This is
followed by quantum circuit constructions for these gates
for D2n gauge theories: the inversion gate in Sec. IV, the
multiplication gate in Sec. V, the trace gate in Sec. VI,
and the Fourier transform gate in Sec. VII. Benchmark-
ing results for our D4 gates on the Rigetti Aspen-9 QPU
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are found in Sec. VIII. We conclude and discuss future
work in Sec. IX.

II. LATTICE FIELD THEORY

In order to understand the origin of the various pri-
mative gates requires from simulating lattice gauge the-
ory, it is useful to review the connection between the
Kogut-Susskind Hamiltonian [23] and the Euclidean Wil-
son action. We summarize the derivation of [99] that
begins with the anisotropic Wilson action in Euclidean
time τ = it defined on a spacetime lattice:

SE = −βt
∑
t

Re TrUt − βs
∑
s

Re TrUs (1)

where i = t, s refers to temporal and spatial plaquettes
Ui formed from gauge links. We introduce anisotropy
between the lattice spacings by using different bare cou-
plings on the spatial and temporal plaquettes:

βt(a, a0) = a

g2
t (a, a0)a0

, βs(a, a0) = a0

g2
s(a, a0)a. (2)

The renormalized anisotropic parameter ξ ≡ a/a0 is
used to denote the physical change in the lattice spac-
ings caused by tuning the bare parameters βt, βs. To
approach the Hamiltonian limit (a0 → 0), it becomes
natural to introduce two new couplings, g2

H = gsgt, and
the speed of light, c = gsg

−1
t .

The connection to the Hamiltonian is via the transfer
matrix, T (a, a0) which takes a state at time τ , |τ〉, to
|τ + 1〉. T is related to SE by the partition function Z:

Z =
∫
DUe−SE = TrT (a0)N (3)

where N counts time slices. It follows that the matrix
elements of T (a0) are [99]

〈τ+1|T (a0)|τ〉

=e
βs
2

∑
s

Re TrUse
βt
∑
{τ,τ+1}

Re TrUt
e
βs
2

∑
s

Re TrUs

≡T 1/2
V TKT

1/2
V , (4)

where we have used the second-order Trotterization.
Since T (a0) ≡ e−a0H(a,a0), we desire T (a0) in terms of
variables on one time slice. While this is trivial for Us, Ut

couples links at two times Uij(τ), Uij(τ +1). To proceed,
we gauge-fix in the temporal gauge, U0i = 1, yielding

SK = −βt
∑
{τ,τ+1}

Re TrUij(τ)U†ij(τ + 1). (5)

The next step is to express T (a0) in terms of operators.
The link operator is simply Ûij |τ〉 = Uij |τ〉. For TK ,
we need an operator that evolves a link via Rij(g)|τ〉 =
|τ ′〉, where Uij → gUij . This operator has the property
of Rij(g)Rij(h) = Rij(gh) and can define a conjugate
momentum to Ûij by performing a rotation on Uij(x, τ+
1). With this, we write

TK =
∏
{ij}

TK,ij =
∏
{ij}

[∫
DgRij(g)eβt Re Trg

]
, (6)

where the product is over all spatial links Uij(τ). Any
group element equals g = eiω·λ where λi are the adjoint
generators, and Rij(g) = eiω·lij in terms of the generators
lij of that representation. Defining

∏
α(Dωα)J(ω) as the

invariant group measure with a Jacobian J , TK(a0) is

TK,ij =
∫ ∏

α

(Dωα)J(ω)eiω·lijeβtTr cos(ω·λ). (7)

Summing over all character functions of the group, this
integral is can be performed analytically, requiring the
Fourier transform over the group. This was used in [22]
and seems to be a viable procedure when the group is
finite. On the other hand, when dealing with continuous
groups, the summation contains infinite character func-
tions and is thus computationally impractical.

To remedy this obstacle in continuous groups, one ex-
pands TK to O(ω2) leaving Gaussian integrals. Neglect-
ing the overall normalization, T (a0) is

T (a0) = e
βs
2

∑
s

Re TrÛse
−β−1

t

∑
{ij}

l2ije
βs
2

∑
s

Re TrÛs .
(8)

Regardless of whether one approximates TK or not, the
integral corresponds to the Fourier transform of the
gauge group. This transform which diagonalizes the ki-
netic energy is why we need a primative quantum Fourier
transform gate for the given group.

From Eq. (8), we use the definition of T (a0) to ob-
tain a lattice Hamiltonian. However, since lij and Ûij do
not commute, rearranging this expression into a single
exponential requires application of the Baker-Campbell-
Hausdorff (BCH) formula, yielding:
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H(a, a0) = 1
c(a, a0)a

(
g2
H(a, a0)

∑
{ij}

l2ij − g−2
H (a, a0)

∑
s

Re TrÛs

− 1
24

1
c2(a, a0)ξ2

∑
{ij},s

(
g2
H(a, a0)[2l2ij , [l2ij ,Re TrÛs]]− g−2

H (a, a0)[Re TrÛs, [l2ij ,Re TrÛs]]
)

+ . . .

)
. (9)

Taking the a0 → 0 limit of T (a0):

T (τ) ≡ lim
a0→0,N→∞

T (a0)N , (10)

the BCH terms vanish and one obtains HKS ≡
− 1
τ log(T (τ)) [23]:

HKS = 1
c(a)a

g2
H(a)

∑
{ij}

l2ij −
1

g2
H(a)

∑
s

Re TrUs

 .

(11)
This is a common starting point for the evolution of lat-
tice gauge theories on quantum computers. From this,
we see that in order to simulate these gauge theories,
there are a number of basic, group-dependent gates that
can be used to simulate the two terms of Eq. (11). Along
with the quantum Fourier transform for the kinetic term,
for the potential term we need to be able to introduce a
phase ∝ Re TrUs. This is the origin of the need for the
trace gate, the multiplication gate (needed to compute
the plaquette Us from the four links forming it), and the
inversion gate (needed to uncompute the plaquette).

III. OVERVIEW OF BASIC GATES

In ref. [22], the basic set of gates requires for a gen-
eral gauge group G were given. This construction be-
gins with the defining for G a qubit G-register by iden-
tifying each group element with a computational basis
state |g〉 , g ∈ G. For pure-gauge Hamiltonians, a set of
useful primitive gates defined on the G-register are: in-
version, multiplication, trace, and the quantum Fourier
transform.

The inversion gate acts on a single G-register mapping
each group element to its inverse. This is defined in the
fiducial basis by

U−1 |g〉 =
∣∣g−1〉 . (12)

The group (matrix) multiplication gate acts on two G-
registers and is defined by

U× |g〉 |h〉 = |g〉 |gh〉 . (13)

Here we have defined U× as implementing in-place left
multiplication, in the sense that the content of the sec-
ond register was multiplied on the left. Left multiplica-
tion suffices for a minimal set as right multiplication can

be implemented using two applications each of U−1 and
U× [22], although fidelity of simulations may be improved
by directly implement right multiplication as well.

The trace of a plaquette appears in HKS , and so to
perform this operation we combine the matrix multipli-
cation gate with a single-register trace gate:

UTr(θ) |g〉 = eiθRe Tr g |g〉 . (14)
In our construction, the final gate required on the G-

register is the Fourier transform gate UF . This gate acts
on a G-register to rotate into the Fourier basis:

UF
∑
g∈G

f(g) |g〉 =
∑
ρ∈Ĝ

f̂(ρ)ij |ρ, i, j〉 . (15)

The second sum is taken over ρ, the representations of G,
and f̂ denotes the Fourier transform of f . This gate diag-
onalizes what will be the ‘kinetic’ part of the Trotterized
time-evolution operator. After application of the gate,
the register is no longer a G-register but a Ĝ-register.

In the subsequent section we consider quantum circuit
implementations of these gates for the dihedral group
DN = {g = smrk|s2 = rN = e} generated by a reflection
s and rotation r; we review the important properties of
DN in Appendix A. Following [22], the 2N group ele-
ments smrk, m ∈ {0, 1}, k ∈ {0, . . . , N − 1}, are encoded
using standard binary in the qubit computational basis
states |m〉|k〉, where the register |k〉 uses dlog2 Ne qubits.
We may variously refer to the |m〉 as the s-qubit or the
reflection qubit, and the |k〉 as the r-register or the rota-
tion register. In this paper, we focus exclusively on the
case N = 2n, so that in all we need n+1 qubits to encode
all the elements of DN .

IV. INVERSION GATE

Here we describe how to construct a circuit realizing
the inversion gate U−1 |g〉 = |g−1〉 for DN . First, con-
sider the case of a general discrete gauge group G. As
observed in [22], if we have access to both the multi-
plication gate U× and its reversed (adjoint) circuit U†×,
then we can implement U−1 using an ancillary G-register
initialized to the group identity element |e〉. We discuss
construction of the multiplication gate in Sect. V. We can
then implement U−1 using the sequence of operations

|g〉 |e〉
U†×−−→ |g〉 |g−1〉 SWAP−−−−−→ |g−1〉 |g〉 U×−−→ |g−1〉 |e〉 ,

(16)
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at which point the ancillary register has been returned
to |e〉 and can be reused or discarded. We note that the
SWAP may be performed virtually by simply switching
(relabelling) the top and bottom registers in the circuit
for U×. Hence the cost of this implementation of U−1 is
at most twice that of U×. Note that the property that
the ancilla register is initialized and returned to a fixed
state can be used to further simplify the circuits for U†× so
that fewer gates are required than for the general case. In
any case, the use of ancilliary G-register means this im-
plementation requires at least log |G| additional qubits,
with log |G| = n+ 1 for DN .

Alternatively, one may use the properties of DN (see
Appendix A) to derive more specific constructions requir-
ing fewer ancilla qubits and lower circuit depth. For this
we use that the inverse of an element smrk is given by

(
smrk

)−1 = smr(N−k)(1−m)+mk (17)

As a result, given the qubit encoding smrk → |m〉|k〉 de-
scribed above, the effect of U−1 is to change the state of
the register |0〉|k〉 → |0〉|N − k〉, and leave |1〉|k〉 unmod-
ified. Therefore, controlled on the state of the left-most
qubit, we need to compute the 2’s complement of the
register |k〉. The 2’s complement of an n-bit binary num-
ber is defined as its complement with respect to 2n, so
that the sum of the number and its complement equals
N = 2n (≡ 0). It can be obtained by first taking its 1’s
complement, i.e., flipping all the 0s to 1s and 1s to 0s,
and then adding 1 to the resulting integer.

FIG. 2. Schematic quantum circuit implementation of the in-
version gate U−1. The controlled 1’s complement operation
can be implemented with n CNOT gates. The controlled in-
crement gate can be implemented with O(n) Tofolli gates us-
ing a constant number of additional ancilla qubits [100, 101].

Hence, controlled on m = 0, we apply a Pauli X gate
(i.e., a CNOT) to each qubit in |r〉, followed by the in-
crement operation. Treating the register |r〉 as an integer
mod N , the increment operation can be implemented us-
ing simplified versions of standard quantum circuits for
addition; various constructions with different tradeoffs in
terms of size, depth, and number of ancilla qubits can be
found in the literature, see in particular [101, Table 1].
In terms of circuit depth, a straightforward modification
of the constructions of [100, 101] yields quantum circuits
for the controlled-increment operation using O(n) To-
folli gates and as few as 1 additional ancilla qubits. A
schematic circuit for the inversion gate is shown in Fig. 2,
and an example circuit is shown in Fig. 3.

FIG. 3. Example: A simplified implementation of the inver-
sion gate U−1 for D8. The first two gates correspond to the
1’s complement operation, and the last two to incrementation;
an inner pair of CNOTs has canceled out.

V. MULTIPLICATION GATE

Here we describe how to build a circuit realizing the
multiplication gate U×|g〉|h〉 = |g〉|gh〉 for the dihedral
group. We employ the following group multiplication rule
for elements of DN

sm1rk1 · sm2rk2 = sm1+m2rNm2+(−1)m2k1+k2 , (18)

which implies that it suffices to construct a circuit that
performs either addition or subtraction depending on
whether m2 = 0 or m2 = 1. Therefore, the task of real-
izing the DN multiplication gate reduces to performing
conditional binary arithmetic on qubits.

In the case where m2 = 0, we must add k1 and k2,
whereas in the case where m2 = 1, we must add the
two’s complement of k1 and k2. The construction of the
circuit to compute the two’s complement is given in the
section on the inversion gate IV, except that now we con-
trol on the value of the leading qubit being 1 instead of
0. Having conditionally prepared the two’s complement
of k1, we must then perform binary addition to complete
the computation of Eq. (18).

A variety of proposed quantum algorithms for addition
and multiplication exist in the literature [102, 103] with
different resource tradeoffs, see, e.g., [104, Table 1]. One
approach is to use the classical full-adder, which takes
inputs A and B, the two bits to be added, and Cin, the
carry-in bit from the previous bit addition, and outputs
the sum S and the carry-out Cout. In Reed-Muller form,
these are given by

S = A⊕B ⊕ Cin
Cout = AB ⊕ACin ⊕BCin. (19)

If we choose to over-write one of the registers with the
sum, say the register containing the A bits in the con-
vention above, then we we can compute S at every step
using 2 CNOTs, one controlled on the value of B and
the other on the value of Cin, with the target being A.
Similarly, we can compute Cout and write out its value to
an ancillary qubit at every step using 3 CCNOT gates.



6

Therefore, for a D2n gauge theory, using this scheme we
would require 2 CNOTs to compute the sum and 3 CC-
NOTs to compute the carry outs for each of n − 2 bits,
in addition to n− 1 ancillary qubits to hold the value of
the carries. We would only need 1 CNOT to compute
the sum of the least significant bit, and 1 CCNOT to
compute the carry-out for this bit. We also do not need
to compute the carry-out of the most significant bit. As-
suming 1 CCNOT ∼ 6 CNOTs, in all this adds a cost of
20n − 31 CNOTs in addition to the circuit to compute
the two’s complement in order to implement the multi-
plication gate.

An example implementation for the D8 multiplication
gate is shown in Fig. 4.

FIG. 4. A multiplication gate circuit for D8 theory

VI. TRACE GATE

Here we describe how to construct quantum circuits
realizing the trace gate UTr(θ) |g〉 = eiθRe Tr g |g〉 for DN .
Observe that, unlike the other basic gates we consider,
this family of gates is parameterized by a real number
θ. We describe both a straightforward implementation
that scales with N , and is in principle exact, as well as
a more complicated implementation that scales polyno-
mially with n := log2 N , but generally comes with some
degree of approximation error; we refer to these as di-
rect and ancilla-assisted implementations, respectively.
Though its implementation cost has worse asymptotic
scaling, the direct construction may be especially useful
when N is relatively small, such as the important cases
for near-term experiments described in Section I.

Here Tr g corresponds to the matrix trace in the funda-
mental representation. We let HTr denote the diagonal
Hamiltonian defined as HTr |g〉 = Re(Tr(g)) |g〉 such that
UTr(θ) |g〉 = eiθRe(Tr(g)) = eiθHTr .

For DN , in the fundamental (two-dimensional) repre-
sentation for each group element g = smrk we have

ρ(g) =
(

0 1
1 0

)m(
ω 0
0 ω

)k
, where ω = e2πi/N . (20)

Clearly ρ(g) is always traceless when m = 1. When m =
0 we have Tr(g) := Tr(ρ(g)) = ωk+ω−k = 2 cos(2πk/N),
and so for each N the trace values uniformly sample

from one period of 2 cos(x). Hence for DN we observe
Re Tr(g) = Tr(g). Therefore we have

HTr = |0〉 〈0| ⊗
N−1∑
k=0

2 cos(2πk/N) |k〉 〈k| . (21)

Direct implementation: We first consider implemen-
tation of UTr(θ) by directly simulating evolution under
the Hamiltonian HTr for time θ. Diagonal Hamiltonians
on n qubits can be uniquely written as H =

∑
α aαZα,

where Zα = Zα1 . . . Zαj denotes a tensor product of Pauli
Z operators indexed by subsets of qubits α ⊂ [n], with
coefficients given by aα = 1

2n Tr[ZαH] ∈ R [105]. We
may apply this decomposition to HTr, or, to take advan-
tage of its tensor structure, to only the second factor on
the right-hand side of Eq. (21), as desired; in general,
however, the number of non-zero terms in such a decom-
position is proportional to N . Nevertheless, for moder-
ate N this decomposition yields an straightforward im-
plementation of UTr(θ). For the latter case, i.e., writing
HTr = |0〉 〈0| ⊗

∑
α aαZα, we have

UTr(θ) =
N∏
α=0

eiθaα|0〉〈0|⊗Zα =
N∏
α=0

Λm=0(eiθaαZα),(22)

where Λm=0(eiθaαZα) denotes the controlled unitary im-
plementing eiθaαZα conditioned on the first qubit being
zero, and we used the fact that diagonal terms mutually
commute. Each controlled rotation can be implemented
with O(n) basic gates consisting of CNOTs and single-
qubit gates [105, 106]; however the number of rotations
may be proportional to N = 2n. An advantage of this
approach is that if qubit rotations can be implemented
exactly then so can UTr(θ). If we tolerate approximation
error in UTr(θ) the gate costs can be further reduced [107].

For example, consider D4, for which Eq. (20) gives
ρ(g) = Xm(iZ)k, which has trace 2 for g = e and −2 for
g = r2, else 0. Hence we have the Hamiltonian HTr =
2 |000〉 〈000|− 2 |010〉 〈010| which we may write as HTr =
1
2 (Zk1 +ZmZk1 +Zk1Zk0 +ZmZk1Zk0), or with control as
HTr = |0〉 〈0| ⊗ (Zk1 +Zk1Zk0) = 2 |0〉 〈0| ⊗Zk1 ⊗ |0〉 〈0| .
So for D4 we see that we can implement UTr exactly
with a double-controlled Z rotation, or a controlled Z
and controlled ZZ rotation, or a combination of Z, two
ZZ, and a ZZZ rotations.

Ancilla-enabled implementation: On the other hand,
when N becomes large it is desirable to have a quantum
circuit for the trace gate with resource costs that scales
polynomially with n as opposed to N = 2n. This can
be accomplished if we accept tradeoffs such as the use of
ancilla qubit registers and some degree of approximation
error. Here the basic idea is that we use the ancilla regis-
ters as scratchpad space for quantum arithmetic circuits
that coherently compute the trace value for each group
element, upon which we apply controlled rotation gates
to achieve the desired phase kickback. Clearly, for real
numbers any finite size ancilla register will lead to some
degree of approximation error, in general, in the com-
puted values and resulting phases. This error may be
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systematically reduced by employing larger ancilla reg-
isters and circuits that utilize higher precision numbers;
we leave a detailed analysis of these time, space, and
precision tradeoffs for future work.

Let’s first consider restricting the required trigonomet-
ric quantities to the first first quadrant 0 ≤ 2π`/N < π/2
which will simplify construction of the resulting quantum
circuits. In particular, many approximations for comput-
ing numerical functions come with guaranteed precision
only over such a bounded interval, and moreover some
trigonometric algorithms proceed by computing values of
cos and sin simultaneously. Observe that for each group
element |g〉 = |mkn−1 . . . k1k0〉 we have Tr(g) = 2(1 −
m) cos(2φk/N), and so the periodicity of the cosine func-
tion implies that the bit kn−1 controls the sign of the co-
efficient and the bit kn−2 controls the ’phase’, i.e., explic-
itly Tr(0kn−10kn−3 . . . k1k0) = 2(−1)kn−1 cos(2πk′/N)
and Tr(0kn−11kn−3 . . . k1k0) = −2(−1)kn−1 sin(2πk/N),
where k′ is the integer given by the bits kn−3 . . . k1k0.
(Note that a similar treatment of the first 3 bits may be
employed in the direct case above for the D4 example.)

Assume for the moment we can implement the de-
sired quantum arithmetic modules for computing fixed-
precision trigonometric functions to b bits of accuracy
after the decimal point [102]. Then UTr can be imple-
mented as follows:

1. (Compute classical functions.) Append a suffi-
ciently large ancilla register |00 . . . 0〉 and reversibly
compute (in superposition) the transformation for
each basis state |g〉 = |mkn−1kn−2k

′〉

|mkn−1kn−2k
′〉 |0 . . . 0〉

→ |mkn−1kn−2k
′〉 | ˜sin(2πk′/N)〉 | ˜cos(2πk′/N)〉 |sp〉 ,

where x̃ denotes a b-bit binary approximation of
a quantity 0 ≤ x < 1. The remaining scratchpad
register, |sp〉, denotes intermediate classical values
which will be used to facilitate uncomputation. We
discuss how this may be implemented below.

2. (Phase kickback.) Given a b-bit quantity 0 ≤ x < 1
we can implement |x〉 → eiθx |x〉 (up to an irrele-
vant global phase) using a controlled RZ(θ2−j) gate
applied to each jth bit of |x〉, j = 1, . . . , b, such that
the number of such gates is b. The single-qubit Z
rotation gate is defined as RZ(φ) = e−iφZ/2. Sim-
ilarly, we can implement |x〉 → ei2θx |x〉 applying
instead controlled RZ(θ21−j) gates. Hence we ap-
ply two high-level unitaries that kickback a phase
of θTr(g) to each basis state, as schematically de-
picted in Fig. 5.

3. (Uncomputation.) As the operation of the second
step is diagonal, we can restore the ancilla qubits
to |00 . . . 0〉 then discard for reuse by applying the
reverse of the circuit in Step 1. Hence each input
basis state is taken to the desired state

|g〉 = |mk〉 → eiθ2(1−m) cos(2πk/N) |mk〉 = eiθTr(g) |g〉

FIG. 5. Schematic for phase kickback of Tr(g) using regis-
ters containing the required cos and sin values. Here the two
schematic gates represent one multicontrolled-Z rotation for
each bit in the sin/cos registers, respectively, i.e., the gate
RZ(θ21−j) is applied for each jth bit, j = 1, . . . , b, encoding
the 2−j bit.

The cost of Steps 1 and 3 depend on the arithmetic
subroutine used and the number b of bits of accuracy in
the sin and cos registers. This cost dominates that of Step
2 which depends linearly on b. Here we’ve assumed the
ancilla qubits are restored to |00 . . . 0〉 for reuse; we note
that the allocation and uncomputation of ancilla qubit
resources may often be significantly optimized within the
context of an overall algorithm [102].

Computing the trigonometric functions: Methods for
computing the cos and sin functions using quantum arith-
metic circuits are discussed in [102, 103, 108, 109]. Dif-
ferent approaches come with different tradeoffs in terms
of the number of qubits, number and types of basic gates,
and required numerical accuracy for a given application.

The approach of [108, Sec. 5 and App. 2] requires only
addition and multiplication operations, and simultane-
ously computes both sin and cos using repeated squaring
via the approximation

eiθa = cos(a) + i sin(a) = (eiθa/R)R

' (1− iθa/R− (θa/R)2/2)R (23)

such that the quantity 1 − iθa/R − (θa/R)2/2 is com-
puted by storing separately its real and imaginary parts,
for a suitable R = 2r � 1 selected with respect to the
accuracy parameter b. Repeatedly squaring this quan-
tity (requiring only r operations) then yields the desired
sin and cos approximations. Roughly, the error in these
approximations goes as 1/R for sufficiently many bits of
accuracy in the sin and cos registers as well as the inter-
mediate quantities (cf. [108, Prop. 1 and 2]).

Alternatively, the approach of [103, App. D] uses
piecewise polynomial approximations implemented via
controlled Horner polynomial evaluation (such that each
degree d polynomial approximation requires d + 1 addi-
tions and multiplications), while the approach of [109]
employs nontrivial quantum submodules for approxi-
mately computing square roots. In these approaches care
must be taken to ensure the desired accuracy is achieved.

Hence the ancilla-assisted approaches yield quantum
circuits with resource costs scaling as low-degree polyno-
mials in n = logN and the accuracy bits b. The specific



8

cost in terms of gates and ancillas depends on these pa-
rameters and the particular quantum arithmetic circuits
employed as subroutines. As stated the direct approach
is much simpler for moderate N ; we show an explicit
quantum circuit for this implementation of UTr(θ) for D4
and its compilation to hardware gates in Fig. 10 below.

VII. FOURIER GATE

The standard n-qubit quantum Fourier trans-
form [110], a critical component of Shor’s prime factoring
algorithm, corresponds to the abelian group Z2n . Quan-
tum circuits implementing Fourier transforms over a va-
riety of nonabelian groups have been considered in [111–
114], though there remains important groups for which
efficient QFT circuits are not known [115].2

Here we consider the explicit construction of quantum
circuits for the QFT on DN . Our construction employs
the standard QFT as a subroutine. We note that the
more general construction of [111] for efficient circuits
for QFTs over metacyclic groups also includes DN .

The Fourier transform of a representation of some fi-
nite group G is defined as

f̂(ρ) =
√
dρ
N

∑
g∈G

f(g)ρ(g), (24)

where N = |G|, dρ is the dimensionality of the repre-
sentation ρ, and f is a function over G. The inverse
transform is given by

f(g) = 1√
N

∑
ρ∈Ĝ

√
dρTr(f̂(ρ)ρ(g−1)), (25)

where the dual Ĝ is the set of all irreducible represen-
tations (irrep) of G. Note, if there exists a subgroup
H ⊂ G and elements {gi}ni=1 such that we can write
G = ∪ni=1giH, i.e., a left transversal of H exists in G,
then∑
g∈G

f(g)ρ(g) =
n∑
i=1

∑
h∈H

f(gih)ρ(gih) (26)

=
n∑
i=1

ρ(gi)
∑
h∈H

fi(h)ρ(h) =
n∑
i=1

ρ(gi)f̂i(ρ|H)

where we have defined fi(h) = f(gih), ρ|H denotes the
restriction of the representation ρ to the subgroup H,
and f̂i represents the Fourier transform of the function
fi. Using this, we can compute the Fourier transform
f̂ on the representation ρ in a recursive manner for
the series of subgroups H1, . . . ,Hn that form a chain

G ⊃ H1 ⊃ · · · ⊃ Hn = id, using “adapted bases” such
that ρ|Hi can be written as a direct sum of irreps of Hi.

Let α : G → C and αi(g) ≡ α(gig), where gi, g ∈
G. Then, we may similarly construct quantum Fourier
transforms (QFTs) via the following series of operations

|ψ〉 =
∑
g∈G

α(g)|g〉 =
∑
i=1

∑
h∈H

α(gih)|gi〉|h〉

=
n∑
i=1
|gi〉

(∑
h∈H

αi(h)|h〉
)

FH−−→
n∑
i=1
|gi〉

∑
h̃∈Ĥ

α̂i(h̃)|h̃〉


U−→

∑
g̃∈Ĝ

α̂(g̃)|g̃〉 = |ψ̃〉 (27)

where FH denotes the Fourier transform over the
subgroup H, and U denotes a change of basis from
T ⊗ BH to BG, where T denotes the coset representa-
tives {gi}ni=1 and BH (BG) denotes the Fourier basis of
the group H (respectively G). In our encoding of DN

elements smrk → |g〉 = |m〉|k〉, |k〉 encode the basis
elements of ZN , while |k̃〉 denote the Fourier basis of
ZN . Then, we have FH : |m〉|k〉 → |m〉|k̃〉. Likewise,
denoting the Fourier basis of DN by |g̃〉, the final
transformation is U : |m〉|k̃〉 → |g̃〉. Determining U is of-
ten the more non-trivial part of any such QFT algorithm.

For even N , the group DN has the following four 1-
dimensional irreps using m ∈ {0, 1} and k ∈ {0 . . . N−1}:

• ρA : rk → 1, srk → 1

• ρB : rk → 1, srk → −1

• ρC : smrk → 1 for even k; smrk → −1 for odd k

• ρD : rk → 1, srk → −1 for even k; and rk → −1,
and srk → 1 for odd k,

and N−2
2 2-dimensional irrep:

φ(l)(smrk) =
(

0 1
1 0

)m(
ei2πl/N 0

0 e−i2πl/N

)k
, (28)

where 1 ≤ l < N
2 . DN has a cyclic subgroup ZN =

{r0, . . . , rN−1} for which the QFT is well known [110],
and for which the elements {e, s} provide a left transver-
sal in DN . Our encoding of DN elements into qubits,
smrk → |m〉|k〉, and the existence of the QFT over ZN
provide all the steps in Eq. (27) to compute the QFT
over DN except the last one involving a change of basis.
This non-trivial step is provided by [111]

2 We note that an efficient quantum circuit for the QFT of a group
G does not entail an efficient quantum algorithm for the corre-
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U : |mN + p
N

2 + x〉 →

{
|mN + pN2 + x〉, 1 < x < N

2(
eiπ

N
2

)pm
1√
2

∑1
j=0

(
eiπ
)jm |jN + pN2 + x〉, x = 0 (29)

FIG. 6. Circuit computing UF of the DN group. The first
part of the circuit computes the Fourier transform FZN over
ZN = {r0, . . . , rN−1}, while the latter part performs a change
of basis |gi〉|h̃〉 → |g̃〉, implementing the unitary transform
given in Eq. (29).

FIG. 7. Circuit for implementing Φ(ω). This is given by a
simple application of a CCPHASE gate targeted on an ancil-
lary qubit, obtaining a phase kick-back on the qubits |k〉 and
|i〉, on which it is controlled.

where m, p ∈ {0, 1} are the 2 most significant bits, while
x ∈ {0, . . . , N2 − 1} specifies the state of the remaining
part of the register. The complete circuit for UF for DN

(N = 2n for some n) is given in Fig. 6. There, we use
the operation Φ(ω)|u〉|v〉 = ωuv|u〉|v〉, with ω = eiπ

N
2 .

In general, if u takes on n1 values and v takes on n2 val-
ues, then Φ can be compiled using Θ(dlog(n1)e dlog(n2)e)
gates. In our case however, m and p only take on 2 values
each, and we can therefore compile this operation using a
single CCPHASE gate and an ancillary qubit, as shown
in Fig. 7. With this formulation, we reduce the gate costs
for D4 from 5 entangling gates in [22] to 2.

Upon the execution of the Fourier gate, the four 1-
dimensional irreps of DN (with N = 2n) are encoded
into the following basis states

ρA → |00〉|0〉⊗n−1, ρB → |10〉|0〉⊗n−1

ρC → |01〉|0〉⊗n−1, ρD → |11〉|0〉⊗n−1

sponding Hidden Subgroup Problem (HSP) for G, an important
class of problems that includes both the prime factoring and
graph isomorphism problems [115]. Subexponential time quan-
tum algorithms for the HSP on DN are given in [116, 117] using
the standard QFT rather than the DN one considered here.

while the matrix entries ρ(l)
ij , the i-th row and j-th col-

umn of the 2-dimensional irreps indexed by l ∈ [1, N2 )
and given by Eq. (28) are encoded into the remaining
computational basis states as ρ(l)

ij → |ij〉|l〉 If so desired,
one could rearrange the representations to appear in a
different order, e.g. the first four computational basis
states | . . . 00〉, | . . . 01〉, | . . . 10〉, | . . . 11〉 encoding the
four 1-dimensional irreps, the next four encoding the ma-
trix entries of the l = 1 2-dimensional irrep and so on.
In principle, the amplitudes of any two basis states |s〉
and |s′〉 could be exchanged by using an ancillary qubit
|t〉 and applying an (n + 1)-qubit controlled operation
Cn+1(s) = |s〉〈s| ⊗ X +

∑2n+1−1
s6=s′=0 |s′〉〈s′| ⊗ I on a single

target qubit |t〉, followed by at most n + 1 CNOTs con-
trolled on |t〉 to change |s〉 to |s′〉.

However, for us, this is unnecessary since to apply the
kinetic gate, we only ever need to apply the Fourier gate
to transform to the momentum basis, and thereupon ap-
ply a diagonal operator, followed by the inverse of the
Fourier gate to move back to position basis. In Appendix
B, we prove that the Fourier gate diagonalizes the kinetic
gate for DN theory (even N), satisfying our requirement.

VIII. EXPERIMENTAL RESULTS

In this section, we discuss experimental results from
running realizations of the circuits described above on
the Rigetti Aspen-9 QPU, which features 32 trans-
mon qubits with a square-octagon topology [118–120]
(see Fig. 8). The Rigetti stack [121] allows us to use
the Quil language [122] to program the Aspen-9 de-
vice, and its associated optimizing compiler Quilc [123]
to compile fundamental gates into its native gateset
{RZ(θ),RX(kπ/2),CPHASE,CZ,XY}. A recently real-
ized native gate CCPHASE [98] is also accessible using
the Quil language. We report the process fidelities of the
Fourier, inversion and trace gates for D4 theory. The
multiplication gate for D4 involves a 6-qubit circuit, per-
forming process tomography on which is experimentally
costly. Instead, we compute the fraction of correct bit-
strings the gate produces for all possible pairs of input
bitstrings, and report this as the accuracy of this oper-
ation as a proxy to its fidelity. We find all the gates to
have greater than 80% fidelity or accuracy.

VIII.1. D4 Multiplication Gate

Concretely, for D4 theory, we can use the encod-
ing srj → |s〉|j〉 = |a〉|bc〉 as in [22] to specify an
element of D4 as sar2b+c. We compute the product
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FIG. 8. The Rigetti Aspen-9 QPU consists of 32 trans-
mon qubits arranged in a square-octagon lattice. Single-qubit
gates {RZ(θ), RX(kπ/2)} are available for the qubits denoted
by the integers. Native two-qubit gates (CPHASE, CZ, XY)
can be applied between the connected qubits with the linkage
denoted by grey lines.

|abc〉 = |(a1b1c1) · (a2b2c2)〉, using the multiplication gate
U×|a1b1c1〉|a2b2c2〉 = |a1b1c1〉|abc〉. Whether we perform
subtraction or addition, the right-most bit will simply
be given by c = c1 ⊕ c2. The relation is similar for the
left-most bit (a).

For the second-right-most bit (b), we must first
mod-2 sum both bits involved in the product, b1 ⊕ b2.
However, we must also account for the carry from (to)
the mod-2 addition (subtraction) of the right-most
bit. Depending on whether we perform addition or
subtraction, the appropriate carry is either c1c2 or c1c̄2
respectively. Thus, in all, we have the two following rules.

For m2 = 0 (addition), we obtain

a = a1 ⊕ a2, b = b1 ⊕ b2 ⊕ c1c2, c = c1 ⊕ c2 (30)

For m2 = 1 (subtraction), we obtain the product

a = a1 ⊕ a2, b = b1 ⊕ b2 ⊕ c1c̄2, c = c1 ⊕ c2 (31)

In circuit form, this is provided in Fig. (9). We im-
plement this on the Rigetti Aspen-9 QPU, whose lat-
tice topology is shown in Fig. 8. In order to minimize
the number of SWAPs necessary to compile the circuit
onto the native hardware, we use a 6-qubit sub-lattice
consisting of the identifications (a1, b1, c1, a2, b2, c2) =
(22, 30, 35, 21, 37, 36). This identification ensures only
nearest-neighbor interactions in the implementation of
the gate. In addition to 2-qubit gates such as CPHASE
[120] and XY [119], the Rigetti hardware also allows the
use of 3-qubit gates [98]. This can be used to compile the
Toffoli gate with a single application of the CCPHASE
gate, up to a few single-qubit gates.

In order to benchmark the multiplication gate, we start
with each possible pair of 3-bitstrings, apply the multipli-
cation gate, and obtain the fraction of correct bitstrings
that we measure as output from a total of 10,000 shots.
Using only 2-qubit gates to compile the Toffoli in Fig.
9, we can obtain some depth reduction by identifying a
CNOT followed by a SWAP operation with a single XY
gate (upto single-qubit gates) as described in [124]. Us-
ing this approach, the average fraction of correct output
bitstrings, over all possible input pairs of 3-bitstrings, is
found to be ∼ 0.19(6) where the standard deviation is
reported in parenthesis. However, if we use the native

FIG. 9. Multiplication gate circuit for D4 theory

CCPHASE gate to compile the Toffoli in the multiplica-
tion gate, the average fraction of correct output bitstrings
goes up to ∼ 0.89(18). If we instead take the majority
vote of 200 successive shots, we boost the average fraction
of correct output bitstrings even more to ∼ 0.91(15).

VIII.2. D4 trace gate and Fourier gate

To benchmark the fidelities of UF and UTr(θ = π/2)
of the D4 theory, we carry out Quantum Process To-
mography (QPT) [110]. To minimize SWAP gates due
to Aspen-9 connectivity, we swap the qubit ordering for
a linear connectivity and implement the circuits on the
qubits (17, 10, 11) of Aspen-9. We also allow the qubit
ordering to be different at the beginning and at the end of
the circuits as shown in Fig. 10(a) and (c). The circuits
are compiled into the native gate set {RZ(θ), RX(kπ/2),
CPHASE, CZ, XY} by Quilc, and need 2 and 4 two-qubit
CPHASE gate, respectively as seen in Fig. 10(b) and (d).

QPT measures the process fidelities of UF and UTr(θ =
π/2) to be 0.920 and 0.857. The process infidelity is
dominated by the error of the two-qubit CPHASE gates
which are calibrated to be around 2% to 3% at the time
of the experiments. The χ matrices measured with 8000
shots are shown in Fig. 11 with the inset ideal matri-
ces. Readout error mitigation is implemented by mod-
eling the readout error as a classical stochastic process
characterized by a confusion matrix, which can be deter-
mined by preparing all bit strings |000〉, |001〉, ..., |111〉
and measuring the output. Any distribution is then post-
processed by inverting the confusion matrix to mitigate
the readout error. More details of the readout error mit-
igation can be found in Refs. [125, 126].

VIII.3. D4 inversion gate

As described in Sec. IV, in order to construct the inver-
sion gate, we need to apply the 2’s complement (neglect-
ing the leading bit) of the rotation register controlled on
the value of the reflection qubit being 0. The only non-
trivial operations the D4 inversion gate therefore has are
|001〉 → |011〉 and |011〉 → |001〉. This operation can be
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FIG. 10. UF and UTr(θ = π/2) for D4 theory and their compiled versions for Aspen-9 QPU with qubits (11, 10, 17). We use
the Quilc compiler to convert the circuits to versions using only native gates of Aspen-9 QPU.

FIG. 11. The χ matrices associated with UTr(θ = π/2) and UF . The process fidelity is determined by f = Tr(χ†targetχ), where
the target χtarget is computed by noiseless simulator (see insets). UTr(θ = π/2) has a lower fidelity f = 0.857 compared to that
of UF being f = 0.920 since UTr(θ = π/2) consists of two more CZ gates. While the process tomography involves pairs of all
43 Pauli operators, to avoid overcrowding, we only display the labels of every four of the operators in the figures above.

FIG. 12. Inversion gate for D4 theory.

implemented using a single CCPHASE(π) gate [98], with

a few additional single-qubit gates, as shown in Fig. 12.
The process fidelity of the CCPHASE gate is computed
to be ∼ 87.1% on the Aspen-9 sub-lattice (10, 11, 12) (see
Fig. 8) using cycle benchmarking [127].

IX. CONCLUSIONS

In this paper, we have shown how to construct quan-
tum circuits for the simulation of arbitrary D2n gauge
theories. The operations were shown to reduce to simpler
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ones such as computing the two’s complement, or binary
arithmetic, and therefore benefit from the wide variety
of techniques used to implement such operations. The
Fourier gate was shown to assume a particularly simple
form. All these operations were shown to scale as O(n),
or as a low-degree polynomial in n in the case of the
trace gate, providing an exponential advantage over clas-
sical state vector simulation. Experimentally, we found
the success rate of the various operations for D4 theory
to be greater than or equal to roughly 80% on Rigetti’s
Aspen-9 quantum processor. These findings provide en-
couragement that large scale lattice simulations of gauge
theories are within reach.

Looking to the future, several directions warrant men-
tion. The first would be to extend the construction of
primitive gates to gauge theories beyond D2n , in partic-
ular to the crystal-like subgroups of SU(N) theories. The
second would be to perform a detailed resource analysis
both on the individual gates and algorithms for state
preparation [128, 129] and extracting physical observ-
ables [130, 131] from simulations on specific architecture.
Another followup would investigate the performance of

these gates and their combinations on current devices.
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[19] C. Ĉırstoiu, Z. Holmes, J. Iosue, L. Cincio, P. J. Coles,
and A. Sornborger, Variational fast forwarding for quan-
tum simulation beyond the coherence time, npj Quan-
tum Information 6, 82 (2020).

[20] J. Gibbs, K. Gili, Z. Holmes, B. Commeau, A. Arra-
smith, L. Cincio, P. J. Coles, and A. Sornborger, Long-
time simulations with high fidelity on quantum hard-
ware (2021), arXiv:2102.04313 [quant-ph].

[21] Y.-X. Yao, N. Gomes, F. Zhang, C.-Z. Wang, K.-M. Ho,
T. Iadecola, and P. P. Orth, Adaptive variational quan-
tum dynamics simulations, PRX Quantum 2, 030307

https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.1217069
https://doi.org/10.1126/science.1217069
https://arxiv.org/abs/1111.3633
https://doi.org/10.22331/q-2018-01-08-44
https://arxiv.org/abs/1703.00454
https://arxiv.org/abs/1703.00454
https://arxiv.org/abs/1112.4833
https://doi.org/10.1103/PhysRevLett.114.070502
https://doi.org/10.1103/PhysRevLett.114.070502
https://arxiv.org/abs/1404.2868
https://arxiv.org/abs/1404.7115
https://doi.org/10.1103/PhysRevA.98.012332
https://arxiv.org/abs/1711.04006
https://arxiv.org/abs/1711.04006
https://doi.org/10.1088/1367-2630/aadb71
https://arxiv.org/abs/1804.02082
https://doi.org/10.1137/18M1231511
https://doi.org/10.1137/18M1231511
https://doi.org/10.1103/PhysRevA.104.012611
https://doi.org/10.1103/PhysRevA.104.012611
https://doi.org/10.1103/PhysRevX.11.011020
https://doi.org/10.1103/PhysRevX.11.011020
https://doi.org/10.1103/PhysRevLett.123.070503
https://doi.org/10.1103/PhysRevLett.114.090502
https://doi.org/10.1103/PhysRevLett.114.090502
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.1038/s41534-020-00302-0
https://doi.org/10.1038/s41534-020-00302-0
https://arxiv.org/abs/2102.04313
https://doi.org/10.1103/PRXQuantum.2.030307


13

(2021).
[22] H. Lamm, S. Lawrence, and Y. Yamauchi (NuQS),

General Methods for Digital Quantum Simulation of
Gauge Theories, Phys. Rev. D100, 034518 (2019),
arXiv:1903.08807 [hep-lat].

[23] J. Kogut and L. Susskind, Hamiltonian formulation of
Wilson’s lattice gauge theories, Phys. Rev. D 11, 395
(1975).

[24] A. F. Shaw, P. Lougovski, J. R. Stryker, and
N. Wiebe, Quantum Algorithms for Simulating the
Lattice Schwinger Model, Quantum 4, 306 (2020),
arXiv:2002.11146 [quant-ph].

[25] P. Jordan and E. P. Wigner, About the Pauli exclusion
principle, Z. Phys. 47, 631 (1928).

[26] S. Bravyi and A. Y. Kitaev, Fermionic quantum com-
putation, Annals of Physics 298, 210 (2002).

[27] Y.-A. Chen and A. Kapustin, Bosonization in three spa-
tial dimensions and a 2-form gauge theory, Phys. Rev. B
100, 245127 (2019), arXiv:1807.07081 [cond-mat.str-el].

[28] C. Muschik, M. Heyl, E. Martinez, T. Monz,
P. Schindler, B. Vogell, M. Dalmonte, P. Hauke,
R. Blatt, and P. Zoller, U(1) Wilson lattice gauge the-
ories in digital quantum simulators, New J. Phys. 19,
103020 (2017), arXiv:1612.08653 [quant-ph].

[29] E. Zohar and J. I. Cirac, Eliminating fermionic matter
fields in lattice gauge theories, Phys. Rev. B 98, 075119
(2018), arXiv:1805.05347 [quant-ph].

[30] E. Zohar and J. I. Cirac, Removing Staggered Fermionic
Matter in U(N) and SU(N) Lattice Gauge Theories,
Phys. Rev. D 99, 114511 (2019), arXiv:1905.00652
[quant-ph].

[31] E. Zohar, J. I. Cirac, and B. Reznik, Simulating Com-
pact Quantum Electrodynamics with ultracold atoms:
Probing confinement and nonperturbative effects, Phys.
Rev. Lett. 109, 125302 (2012), arXiv:1204.6574 [quant-
ph].

[32] E. Zohar, J. I. Cirac, and B. Reznik, Cold-Atom
Quantum Simulator for SU(2) Yang-Mills Lattice
Gauge Theory, Phys. Rev. Lett. 110, 125304 (2013),
arXiv:1211.2241 [quant-ph].

[33] E. Zohar, J. I. Cirac, and B. Reznik, Quantum simula-
tions of gauge theories with ultracold atoms: local gauge
invariance from angular momentum conservation, Phys.
Rev. A88, 023617 (2013), arXiv:1303.5040 [quant-ph].

[34] E. Zohar and M. Burrello, Formulation of lattice gauge
theories for quantum simulations, Phys. Rev. D91,
054506 (2015), arXiv:1409.3085 [quant-ph].

[35] E. Zohar, J. I. Cirac, and B. Reznik, Quantum Sim-
ulations of Lattice Gauge Theories using Ultracold
Atoms in Optical Lattices, Rept. Prog. Phys. 79, 014401
(2016), arXiv:1503.02312 [quant-ph].

[36] E. Zohar, A. Farace, B. Reznik, and J. I. Cirac, Digital
lattice gauge theories, Phys. Rev. A95, 023604 (2017),
arXiv:1607.08121 [quant-ph].

[37] N. Klco, J. R. Stryker, and M. J. Savage, SU(2) non-
Abelian gauge field theory in one dimension on digital
quantum computers, Phys. Rev. D 101, 074512 (2020),
arXiv:1908.06935 [quant-ph].

[38] A. Ciavarella, N. Klco, and M. J. Savage, Trailhead for
quantum simulation of su(3) yang-mills lattice gauge
theory in the local multiplet basis, Phys. Rev. D 103,
094501 (2021).

[39] J. Liu and Y. Xin, Quantum simulation of quantum field
theories as quantum chemistry (2020), arXiv:2004.13234

[hep-th].
[40] D. C. Hackett, K. Howe, C. Hughes, W. Jay, E. T.

Neil, and J. N. Simone, Digitizing Gauge Fields: Lat-
tice Monte Carlo Results for Future Quantum Comput-
ers, Phys. Rev. A 99, 062341 (2019), arXiv:1811.03629
[quant-ph].

[41] A. Alexandru, P. F. Bedaque, S. Harmalkar, H. Lamm,
S. Lawrence, and N. C. Warrington (NuQS), Gluon field
digitization for quantum computers, Phys.Rev.D 100,
114501 (2019), arXiv:1906.11213 [hep-lat].

[42] A. Yamamoto, Real-time simulation of (2+1)-
dimensional lattice gauge theory on qubits, PTEP
2021, 013B06 (2021), arXiv:2008.11395 [hep-lat].

[43] J. F. Haase, L. Dellantonio, A. Celi, D. Paulson, A. Kan,
K. Jansen, and C. A. Muschik, A resource efficient ap-
proach for quantum and classical simulations of gauge
theories in particle physics, Quantum 5, 393 (2021).

[44] T. Armon, S. Ashkenazi, G. Garćıa-Moreno,
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[113] M. Püschel, M. Rötteler, and T. Beth, Fast quan-
tum Fourier transforms for a class of non-abelian
groups, in International Symposium on Applied Alge-
bra, Algebraic Algorithms, and Error-Correcting Codes
(Springer, 1999) pp. 148–159.

[114] C. Moore, D. Rockmore, and A. Russell, Generic quan-
tum Fourier transforms, ACM Transactions on Algo-
rithms (TALG) 2, 707 (2006).

[115] A. M. Childs and W. Van Dam, Quantum algorithms
for algebraic problems, Reviews of Modern Physics 82,

1 (2010).
[116] O. Regev, A subexponential time algorithm for the di-

hedral hidden subgroup problem with polynomial space,
arXiv preprint quant-ph/0406151 (2004).

[117] G. Kuperberg, Another subexponential-time quantum
algorithm for the dihedral hidden subgroup problem,
arXiv preprint arXiv:1112.3333 (2011).

[118] S. S. Hong, A. T. Papageorge, P. Sivarajah, G. Cross-
man, N. Didier, A. M. Polloreno, E. A. Sete, S. W.
Turkowski, M. P. da Silva, and B. R. Johnson, Demon-
stration of a parametrically activated entangling gate
protected from flux noise, Phys. Rev. A 101, 012302
(2020).

[119] D. M. Abrams, N. Didier, M. P. Johnson, Blake R .and
da Silva, and C. A. Ryan, Implementation of XY entan-
gling gates with a single calibrated pulse, Nature Elec-
tronics 3, 744 (2020).

[120] M. Reagor et al., Demonstration of universal parametric
entangling gates on a multi-qubit lattice, Sci. Adv. 4,
eaao3603 (2018).

[121] P. J. Karalekas, N. A. Tezak, E. C. Peterson, C. A.
Ryan, M. P. da Silva, and R. S. Smith, A quantum-
classical cloud platform optimized for variational hybrid
algorithms, Quantum Science and Technology 5, 024003
(2020).

[122] R. S. Smith, M. J. Curtis, and W. J. Zeng, A
practical quantum instruction set architecture (2016),
arXiv:1608.03355 [quant-ph].

[123] R. S. Smith, E. C. Peterson, M. G. Skilbeck,
and E. J. Davis, An open-source, industrial-strength
optimizing compiler for quantum programs (2020),
arXiv:2003.13961 [quant-ph].

[124] N. Schuch and J. Siewert, Natural two-qubit gate for
quantum computation using the XY interaction, Phys.
Rev. A 67, 032301 (2003).

[125] E. Peters, A. C. Y. Li, and G. N. Perdue, Perturbative
readout error mitigation for near term quantum com-
puters (2021), arXiv:2105.08161 [quant-ph].

[126] P. D. Nation, H. Kang, N. Sundaresan, and J. M. Gam-
betta, Scalable mitigation of measurement errors on
quantum computers, PRX Quantum 2, 040326 (2021).

[127] A. Erhard, J. J. Wallman, L. Postler, M. Meth,
R. Stricker, E. A. Martinez, P. Schindler, T. Monz,
J. Emerson, and R. Blatt, Characterizing large-scale
quantum computers via cycle benchmarking, Nature
Communications 10, 5347 (2019).

[128] S. Harmalkar, H. Lamm, and S. Lawrence (NuQS),
Quantum Simulation of Field Theories Without State
Preparation (2020), arXiv:2001.11490 [hep-lat].

[129] E. J. Gustafson and H. Lamm, Toward quantum simu-
lations of Z2 gauge theory without state preparation,
Phys. Rev. D 103, 054507 (2021), arXiv:2011.11677
[hep-lat].

[130] H. Lamm, S. Lawrence, and Y. Yamauchi (NuQS), Par-
ton physics on a quantum computer, Phys. Rev. Res. 2,
013272 (2020), arXiv:1908.10439 [hep-lat].

[131] T. D. Cohen, H. Lamm, S. Lawrence, and Y. Yamauchi
(NuQS Collaboration), Quantum algorithms for trans-
port coefficients in gauge theories, Phys. Rev. D 104,
094514 (2021).

https://doi.org/10.1016/0003-4916(90)90325-I
https://doi.org/10.1016/0003-4916(90)90325-I
https://arxiv.org/abs/2108.01652
https://algassert.com/circuits/2015/06/12/Constructing-Large-Increment-Gates.html
https://doi.org/10.26421/QIC17.7-8-7
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1145/258533.258548
https://doi.org/10.1145/258533.258548
https://doi.org/10.1145/258533.258548
https://doi.org/10.1103/PhysRevA.101.012302
https://doi.org/10.1103/PhysRevA.101.012302
https://doi.org/10.1038/s41928-020-00498-1
https://doi.org/10.1038/s41928-020-00498-1
https://doi.org/10.1126/sciadv.aao3603
https://doi.org/10.1126/sciadv.aao3603
https://doi.org/10.1088/2058-9565/ab7559
https://doi.org/10.1088/2058-9565/ab7559
https://arxiv.org/abs/1608.03355
https://arxiv.org/abs/2003.13961
https://doi.org/10.1103/PhysRevA.67.032301
https://doi.org/10.1103/PhysRevA.67.032301
https://arxiv.org/abs/2105.08161
https://doi.org/10.1103/PRXQuantum.2.040326
https://doi.org/10.1038/s41467-019-13068-7
https://doi.org/10.1038/s41467-019-13068-7
https://arxiv.org/abs/2001.11490
https://doi.org/10.1103/PhysRevD.103.054507
https://arxiv.org/abs/2011.11677
https://arxiv.org/abs/2011.11677
https://doi.org/10.1103/PhysRevResearch.2.013272
https://doi.org/10.1103/PhysRevResearch.2.013272
https://arxiv.org/abs/1908.10439
https://doi.org/10.1103/PhysRevD.104.094514
https://doi.org/10.1103/PhysRevD.104.094514


16

Appendix A: Algebraic properties of dihedral groups

Here, we note a few important properties of DN , the
dihedral group of symmetries of a regular N -sided poly-
gon, which is generated by two elements: r (a rotation)
and s (a reflection) such that rN = s2 = e, the iden-
tity element. Here N can be any positive integer, and
it follows that each DN is isomorphic to the semidirect
product of cyclic groups ZN o Z2. Each of the 2N ele-
ments of DN can be uniquely expressed as smrk, where
m ∈ {0, 1} and k ∈ {0, 1, . . . , N−1}. The two generators
satisfy the property srs = r−1 = rN−1, or equivalently
sr = rN−1s, which in geometric terms means that a mir-
ror reflection of a rotation gives a rotation in the opposite
direction. Observe that this implies

srk+1 = rN−1srk = · · · = rN−(k+1)s (A1)

so that by induction we have srk = rN−ks for k ∈
{0, . . . , N − 1}. These properties can be summarized as

smrk = rNm+(−1)mksm. (A2)

Through a similar calculation we also have

rksm = smrNm+(−1)mk. (A3)

Using the above we find the product rule of Eq. (18):

sm1rk1 · sm2rk2 = sm1sm2rNm2+(−1)m2k1rk2

= sm1+m2rNm2+(−1)m2k1+k2 . (A4)

From Eq. (A2) we the inverse of srk to be(
srk
)−1 = rN−ks = srk (A5)

while the inverse of rk is simply
(
rk
)−1 = rN−k so that

in general, the inverse of a DN element is given by Eq.
(17), i.e.,

(
smrk

)−1 = smr(N−k)(1−m)+mk.

Appendix B: Proof that Fourier gate diagonalizes
DN (even N) Kinetic gate

Given Mij = Re
[
Tr
(
ρ†(gi)ρ(gj)

)]
and the matrix T

with entries Tij = expβMij , here we show that FTF †,
where F is the unitary matrix corresponding to the
nonabelian Fourier transform, is diagonal. Moreover,
we provide an explicit form of this diagonal matrix for
arbitrary DN (even N).

Note that M is dependent on the representation we
use. There are 4 1D irreps of the DN (even N) group,

• ρA : rk → 1, srk → 1

• ρB : rk → 1, srk → −1

• ρC : smrk → 1 for even k; smrk → −1 for odd k

• ρD : rk → 1, srk → −1 for even k; and rk → −1,
and srk → 1 for odd k,

where m ∈ {0, 1} and k ∈ {0 . . . N − 1}, and N
2 − 1 2D

irreps,

φ(l)(smrk) = Xm

(
ei2πlk/N 0

0 e−i2πlk/N

)
(B1)

with 1 ≤ l < N/2 and 0 ≤ k < N . We work with the
l = 1 2D irreps, and denote φ(smrk) ≡ φ(1)(smrk) in
what follows for simplicity. Then, letting i ≡ (m′, k′) =
Nm′ + k′, j ≡ (m, k) = Nm+ k, it is clear that Mij can
be non-zero only when m = m′. In this case, we see that

φ†(smrk
′
)φ(smrk) =

(
ei2π(k−k′)/N 0

0 e−i2π(k−k′)/N

)
(B2)

so that Mi;j = M(m′,k′);(m,k) = 2δm,m′ cos
[
2π
(
k′−k
N

)]
.

Therefore,

Tij ≡ T(m′,k′);(m,k) = e2δm,m′β cos [2π(k′−k)/N]

(B3)

Now the Fourier matrix is built out of the inequivalent
irreps of the DN group, and can be represented as

F =



ρa
ρb
ρc
ρd

φ00(1)
φ01(1)
φ10(1)
φ11(1)

...
φ00(N/2−1)
φ01(N/2−1)
φ10(N/2−1)
φ11(N/2−1)



(B4)

so that we have

F0i = ρa= [1]2N

F1i = ρb= [1]N [−1]N

F2i = ρc= [1,−1]N

F3i = ρd= [1,−1]N/2[−1, 1]N/2 (B5)

where [a]m1 [b]m2 denotes an m1 + m2-dimensional
row vector with the first m1 entries equaling a,
and the next m2 entries equaling b, and [a, b]m de-
notes a 2m-dimensional row vector with entries al-
ternating between a and b. Let F ′ = FT and
ρ′a, . . . , ρ

′
d, φ
′
00(1), . . . , φ

′
11(N/2−1) denote its rows.
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We then have
(FT )0;(m,k) =

∑
m′,k′

F0;(m′,k′)T(m′,k′);(m,k)

= N +
N−1∑
k′=0

e2β cos [2π(k′−k)/N]

= N +
N−1∑
k′=0

e2β cos (2πk′/N) (B6)

where in the last step we have repeatedly used the iden-
tity cos

(
2π(N−k)

N

)
= cos

( 2πk
N

)
. The last expression in

Eq. B6 is independent of (m, k), so that

ρ′a =
(
N +

N−1∑
k′=0

e2β cos (2πk′/N)
)
ρa (B7)

Similarly,
(FT )1;(m,k) = F1;(m′,k′)T(m′,k′);(m,k)

=
∑
k′

e2δ0,mβ cos [2π(k′−k)/N]

−
∑
k′

e2δ1,mβ cos [2π(k′−k)/N]

= (1− 2m)
(∑

k′

e2β cos (2πk′/N) −N

)
(B8)

and since (ρb)(m,k) = (1− 2m), we have

ρ′b =
(∑

k′

e2β cos (2πk′/N) −N

)
ρb (B9)

Through very similar calculations, we find

(FT )2;(m,k) =
∑
m′

[ ∑
k′ odd

(−1)e2δm,m′β cos [2π(k′−k)/N]+

∑
k′ even

e2δm,m′β cos [2π(k′−k)/N]
]

=
∑
k′

(−1)k
′
e2β cos (2πk′/N) (B10)

and, for the last of the 1D irreps,

(FT )3;(m,k) = (−1)m
∑
k′

(−1)k
′
e2β cos (2πk′/N)(B11)

so that

ρ′c,d =
(∑

k′

(−1)k
′
e2β cos (2πk′/N)

)
ρc,d (B12)

Next, for the 2D irreps, we have
φ00(l)(smrk) = (1−m)ei2πlk/N

φ01(l)(smrk) = me−i2πlk/N

φ10(l)(smrk) = mei2πlk/N

φ11(l)(smrk) = (1−m)e−i2πlk/N (B13)

We will make use of the identities
N−1∑
k′=0

cos
(

2πlk′
N

)
= sin (πl)

(
cos (πl) cot

(
πl

N

)
+ sin (πl)

)
(B14)

N−1∑
k′=0

sin
(

2πlk′
N

)
= 1

2

(
cos
(
πl

N

)
− cos

(
πl(2N − 1)

N

))
× cosec

(
πl

N

)
(B15)

both of which vanish for l ∈ Z. Therefore,
N−1∑
k′=0

e±i2πlk
′/N = 0 (B16)

for 1 ≤ l < N/2. We will also make use of the identity
N−1∑
k′=0

e±i2πlk
′/N =

N−1∑
k′=0

e±i2πl(k
′+k)/N (B17)

for k = 0, . . . , N − 1.

Now, analyzing the transformation of the 2D irreps as
we did before for the 1D irreps, we have

φ′00(l)(smrk) =
∑

(m′,k′)

φ00(l)(sm
′
rk
′
)T(m′,k′);(m,k)

=
∑
m′,k′

(1−m′)ei2πlk
′/Ne2βδm,m′ cos [2π(k′−k)/N ]

=
{∑

k′ e
i2πlk′/Ne2β cos (2πk′/N) , m = 0∑

k′ e
i2πlk′/N , m = 1

= (1−m)ei2πlk/N
∑
k′

ei2πlk
′/Ne2β cos (2πk′/N)

=
(∑

k′

ei2πlk
′/Ne2β cos (2πk′/N)

)
φ00(l) (B18)

where in the second to last equality, we have used Eqns.
B16 and B17. Repeating essentially the same arguments,
we also obtain

φ′01(l)(smrk) =
(∑

k′

e−i2πlk
′/Ne2β cos (2πk′/N)

)
φ01(l)

φ′10(l)(smrk) =
(∑

k′

ei2πlk
′/Ne2β cos (2πk′/N)

)
φ01(l)

φ′11(l)(smrk) =
(∑

k′

e−i2πlk
′/Ne2β cos (2πk′/N)

)
φ11(l)

(B19)
Altogether, we have shown that ρ′i ∝ ρi for all irre-

ducible representations ρi. Finally, using the Schur or-
thogonality relations which state that for two inequiva-
lent irreps of some finite group G, φ : G → Un(C) and
ρ : G→ Um(C), we have

〈φkl, ρij〉 = 0, 〈φkl, φij〉 = δikδjl (B20)
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and so we find

FTF † = Diag


(
N +

N−1∑
k′=0

e2β cos (2πk′/N)
)
,

(∑
k′

e2β cos (2πk′/N) −N

)
,

[∑
k′

(−1)k
′
e2β cos (2πk′/N)

]2

,

[(∑
k′

ei2πlk
′/Ne2β cos (2πk′/N)

)
,

(∑
k′

e−i2πlk
′/Ne2β cos (2πk′/N)

)
,

(∑
k′

ei2πlk
′/Ne2β cos (2πk′/N)

)
,

(∑
k′

e−i2πlk
′/Ne2β cos (2πk′/N)

)]N
2 −1

l=1

 (B21)

where, [f1(l), . . . , fk(l)]ml=1 denotes mk entries with in-
creasing values of l. The expression above is valid for

even N . We do not consider the odd N case in our pa-
per, though the analysis may be carried out similarly.
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